Aalto University
School of Science

Degree Programme in Computer Science and Engineering

Lari Lehtomaki

Realizing eID scheme on TPM 2.0 hardware

Master’s Thesis
Espoo, April 12th, 2016

Supervisor: Professor N. Asokan
Instructor: M.Sc. Thomas Nyman

A' Aalto University
|
Aalto University

School of Science ABSTRACT OF
Degree Programme in Computer Science and Engineering MASTER’S THESIS

Author: Lari Lehtomaki

Title:

Realizing eID scheme on TPM 2.0 hardware

Date: April 12th, 2016 Pages: 52
Major: Data Communication Software Code: T-110
Supervisor: Professor N. Asokan

Instructor: M.Sc. Thomas Nyman

Most of the financial, healthcare, and governmental services are available on In-
ternet, where traditional identification methods used on face-to-face identification
are not possible. Identification with username and password is a mediocre solu-
tion and therefore some services require strong authentication. Finland has three
approved strong authentication methods: smart cards, bank credentials, and mo-
bile ID. Out of the three authentication methods, only the government issued
smart card is available to everyone who police can identify reliably. Bank cre-
dentials require identification with an identity document from Finland or other
European Economic Area (EEA) country. Mobile ID explicitly require identi-
fication with Finnish identity document. The problem with smart cards is the
requirement for a reader, slow functioning, and requirement for custom driver.
A TPM could function as a replacement for a smart card with accompanying
software library.

In this thesis, I created a PKCS #11 software library that allows TPM to be
used for browser based authentication according to draft specification by Finnish
population registry. The keys used for authentication are created, stored and used
securely inside the TPM. TPMs are deemed viable replacement for smart cards.
The implemented system is faster to use than smart cards and has similar security
properties as smart cards have. The created library contains implementations for
30% of all TPM 2.0 functions and could be used as a base for further TPM 2.0
based software.

Keywords: security, trusted computing, eID, PKCS#11

Language: English

A, , Aalto-yliopisto

Aalto-yliopisto

Perustieteiden korkeakoulu DIPLOMITYON
Tietotekniikan koulutusohjelma TIIVISTELMA
Tekija: Lari Lehtomaéki

Tyon nimi:
Sahkoisen identiteetin toteuttaminen TPM 2.0 -laitteistolla

Paivays: 12. huhtikuu 2016 Sivumaara: 52
Piaaaine: Tietoliikenneohjelmistot Koodi: T-110
Valvoja: Professori N. Asokan

Ohjaaja: FM Thomas Nyman

Pankki-, terveys- ja julkiset palvelut ovat suureksi osin saatavilla internetin véali-
tykselld. Tunnistautuminen kéyttdjatunnuksella ja salasanalla ei takaa riittavéia
luotettavuutta, vaan joissain palveluissa on kéytettavd vahvaa tunnistautumis-
ta. Suomessa on talld hetkelld kiytossid kolme vahvaa tunnistautumisvélinettas:
pankkien kayttamat verkkopankkitunnukset, Vaestorekisterikeskuksen kansalais-
varmenne ja teleyritysten mobiilivarmenteet. Naista kolmesta kansalaisvarmenne
on ainoa, joka ei vaadi asiakkuutta ja on taten kaikille saatavilla, jotka poliisi voi
luotettavasti tunnistaa. Verkkopankkitunnukset vaativat tunnistautumisen suo-
malaisella tai Euroopan talousalueen (ETA) valtion myontdmalld henkilotodis-
tus. Mobiilivarmenne myonnetaan vain henkilolle, joka voidaan tunnistaa suoma-
laisella henkilotodistuksella. Kansalaisvarmenne on kuitenkin alykortti kaikkine
alykortin ongelmineen: sen kayttdmiseen tarvitaan erillinen lukija, sen toiminta
on hidasta ja se vaatii erillisen laiteajurin. Témén tyon tavoitteena on luoda rat-
kaisu, jolla alykorttipohjainen tunnistautuminen voidaan toteuttaa tietokoneissa
olevan TPM-piirin avulla.

Tassa diplomityossa luotiin PKCS #11 -rajapinnan tayttava ohjelmistokirjasto,
joka mahdollistaa TPM-piirin kéyttamisen tunnistautumiseen selaimessa Vaesto-
rekisterikeskuksen laatiman maéritelméan luonnoksen mukaan. Tunnistautumisa-
vaimet luodaan, tallennetaan ja niitd kdytetadn TPM:ssa, mika varmistaa avain-
ten luottamuksellisuuden. Alykortin toiminnallisuudet todettiin mahdolliseksi to-
teuttaa TPM-piirilla. Toteutettu jarjestelma on nopeampi kayttaa kuin dlykortti
ja se takaa alykortteja vastaavan tietoturvatason. Tyon tuloksena tehty kirjasto
toteuttaa 30 % kaikista TPM 2.0 -ohjelmistorajapinnoista, ja kirjastoa voidaan
kayttaa osana tulevia TPM 2.0 -ohjelmistoja.

Asiasanat: tietoturva, vahva tunnistautuminen, sahkoinen henkilokortti

Kieli: Englanti

Acknowledgements

Foremost, I would like to express my gratitude to Professor Asokan for of-
fering an interesting topic and a position on the Secure Systems group at
Aalto University. I am grateful to M.Sc. Thomas Nyman, my instructor, for
guidance on the topic, help on academic writing and patience reading draft
versions. [also wish to thank D.Sc. Jan-Erik Ekberg for providing valuable
help on understanding the TPM.

Last but not least, I would like to thank my family for supporting me
on this journey. Special thanks for Riku who helped multiple times with
structure and secrets of scientific writing. Finally, thank you Elli for the
motivation and support you have provided.

© \
Lar” llitnot
Espoo, April 12th, 2016

Lari Lehtomaéki

Abbreviations and Acronyms

API Application Programming Interface
CSR Certificate Signing Request

EA Enhanced Authorization

elD Electronic Identification

EK Endorsement Key

GP GlobalPlatform

HMAC Hash-based Message Authentication Code
HSM Hardware Security Module

ME Management Engine

MMU Memory Management Unit

MPU Memory Protection Unit

OS Operating System

PCR Platform Configuration Register
PKCS Public-Key Cryptography Standards
REE Rich Execution Environment

RTM Root of Trust for Measurement

SE Secure Element

SMM
SoC
TCB
TCG
TCTI
TEE
TLS
TSS

TPM

System Management Mode

System on a Chip

Trusted Computing Base

Trusted Computing Group

TPM command transmission interface
Trusted Execution Environment
Transport Layer Security

TPM Software Stack

Trusted Platform Module

Contents

1 Introduction
1.1 Problem statement
1.2 Research Goals
1.3 Structure
2 Background
2.1 Public-key cryptography
2.2 Standardization
2.3 Trusted Platform Module
2.3.1 Platform Configuration Register
2.3.2 Enhanced Authorization
2.3.3 TPM Software Stack
2.3.4 TPM Form Factor
2.4 Trusted Execution Environment
2.5 Intel Management Engine
2.6 ARM TrustZone
2.7 On-Board Credentials.
2.8 Smartcards
3 Design
3.1 Requirements
3.1.1 Functionality
3.1.2 Algorithms
3.2 Mapping TPM and PKCS #11 interfaces
3.2.1 Sessions
3.2.2 Authentication
3.2.3 Multi-part command flow

10
10
10

12
13
13
14
16
17
18
19
20
21
21
22
22

4 Implementation

4.1 Architecture
4.2 TPM communication module
4.2.1 TPM communication interface

4.2.2 Implemented TPM functions

4.2.2.1 Functions used forelD

4.2.2.2 Additional implemented functions

4.3 PKCS #11module
4.3.1 PKCS #11 interface

5 Evaluation
5.1 Implementation coverage
5.2 Performance metrics
53 Results.

6 Discussion
6.1 Security compared to smart card
6.2 Usability compared to smart card
6.3 Improvements Lo

A Introduction to common TPM2 commands

28
28
29
30
31
31
33
34
35

36
36
37
38

41
41
42
43

50

Chapter 1

Introduction

Internet has revolutionized services that previously required face-to-face con-
tact. Brick-and-mortar services are superseded with Internet-based services
in the banking industry, governmental services, and local take-away restau-
rants. Lack of face-to-face contact and traditional methods of identifying
people, Internet services need new kinds of authentication methods. Pass-
words are widely used, but have proven to be inefficient and insecure solution
on critical systems. User security is further weakened with typical end user
habits of reusing the passwords on multiple sites, not using adequately long
passwords, and choosing passwords that are in some way predictable [9].
These systems require strong authentication to protect users from malicious
entities.

The Finnish Act on Strong Electronic Identification and Electronic Sig-
natures [1] defines three orthogonal methods to authenticate a user. Authen-
tication can be done with something the user knows (e.g. passwords), some-
thing the user possesses (e.g. one time codes, tokens), and some physically
unique property of the user. The act states that strong user authentication
is based on two methods out of the three possible. Generally this is known
as multi-factor authentication.

Currently citizens in Finland have three strong authentication methods
available: the government issued identity card with smart card (eID), bank-
ing credentials with one time codes, and mobile ID [7]. The Finnish citizen
card (FINeID) requires a separate hardware reader and driver software, which
limit the utility to only committed users [21, 22]. Banking credentials can
be issued only to customers of banks, which can be a problem, for example,
for foreigners [4, 5]. A mobile ID requires mobile phone to have charge, a

CHAPTER 1. INTRODUCTION 10

working network connection, and is dependent on mobile carriers [6].

1.1 Problem statement

There is a need for a public key based user authentication system that can
be made widely available. Using public-key cryptography as a strong au-
thentication method has proven to be a secure solution which has been used
on Transport Layer Security (TLS) protected websites as well as on phys-
ical smart cards. As previously mentioned, smart card -based systems are
not easy to use. To have a viable replacement technology for passwords,
public-key cryptography needs a functional and easy-to-use method for key
management. Combining this key management method with a solution to
integrate public-key authentication to web browsers would enhance the se-
curity of web authentication.

1.2 Research Goals

The aim of this thesis is to implement a hardware based solution for public-
key authentication, which is widely deployable. Keeping in mind the pre-
viously stated problems on the current system, the goal is to implement a
replacement method for smart card based elDs. The solution should be a
strong authentication method and provide the same functionality as the cur-
rent smart cards. Strong authentication is achieved with public-key cryptog-
raphy and these keys are stored using TPM 2.0 as a key-storage. The solution
is available to use on web browsers, and therefore the implemented solution is
packaged as a software library. The solution uses TPM 2.0 hardware, which
is expected to be widely available on PC platform and has not been used on
similar systems previously.

1.3 Structure

This thesis is divided into seven chapters. The work is motivated by de-
scribing the need for new authentication methods that provide an assurance
required on financial and governmental services. Chapter 2 - Background will
introduce hardware security mechanisms used in this thesis and comparable
technologies. Chapters 3 - Design and 4 - Implementation explains the logical

CHAPTER 1. INTRODUCTION 11

design and implementation details used to combine TPM 2.0 functionality
behind PKCS #11 interface commonly used in authentication. Chapter 5 -
Evaluation reports implementation coverage and compares the performance
of implemented model to a smart card based eID solution. Chapter 5.3 -
Results aggregates the work done and the evaluation of solution. Chapter 6
- Discussion compares TPM based solution to smart card based eID solution
on security and functionality.

Chapter 2

Background

Trusted Computing is a general term describing hardware assisted security
technologies used to secure software. The need for security technologies arise
as the systems have a growing number of components from multiple sources
and not all the sources can be verified or trusted equally. Similarly, single
large software could be divided to different security levels.

The security of a system is based on a set of hardware and software com-
ponents which is called the Trusted Computing Base (TCB). A vulnerability
in some part of TCB would compromise the security of whole system. On
the other hand, misbehaving hardware or vulnerability in software outside of
TCB must not affect the security of the whole system.

Hardware based solutions to trusted computing vary greatly as they have
different objectives and constraints. A Trusted Platform Module (TPM) is
a secure crypto-processor, which is used as key storage, to authenticate the
platform, and to ensure platform integrity. A Trusted Execution Environ-
ment (TEE) is a complete execution environment running custom software
protected from Operating System (OS) and applications in a normal envi-
ronment. A Secure Element (SE) is a tamper-resistant platform capable
of running confidential applications and storing their data securely. Memory
Management Unit (MMU) and Memory Protection Unit (MPU) are hardware
modules used to segregate memory regions for different tasks. Memory al-
location can be used as a building block for security architectures [14]. Vir-
tualization technologies (Intel VT-x etc.) can be used to create isolated
environments, which is similar to the concept of TEE [32]. These solutions
require at least partial trust on the hardware.

12

CHAPTER 2. BACKGROUND 13

2.1 Public-key cryptography

In symmetric cryptography, both the sender and the receiver use the same
shared key to encrypt and decrypt the communication. Public-key cryptog-
raphy uses two keys, a public key and a private key. Anyone with a public
key can encrypt a message, which can be decrypted only with a matching
private key. Public-key cryptography can equally be used to create a digital
signatures. A private key can be used to create a signature, which can be
verified with a matching public key.

2.2 Standardization

Multiple approaches to trusted computing has created also various sepa-
rate standardization efforts to enable trusted computing. The most promi-
nent ones are carried out by the Trusted Computing Group (TCG) and
GlobalPlatform (GP).

The Trusted Computing Group (TCG) is non-profit organization devel-
oping trusted computing standards. The most active standard has been the
TPM standards, which define a security module for the PC platform. TPM
module functions as a Root of Trust for Measurement (RTM) and includes
functionality for public-key cryptography and key storage. A new version of
TPM standard, the version 2.0, was published in 2014 and it contains new
features including new algorithms and an authorization model, which are
used in this thesis.

GlobalPlatform (GP) is a non-profit industry consortium combining ex-
perts from multiple businesses to collaborate and standardize specifications
on issues in trusted computing. Their standardization effort has focused
on Secure Elements (SEs) and TEEs. Standards published by GlobalPlat-
form include a Card Specification and a multi-part TEE device specification.
A card specification standardizes smart cards, payment cards, and trans-
portation cards. TEE device specifications create a common Application
Programming Interface (API) for multiple hardware based TEEs.

A group of Public-Key Cryptography Standards (PKCS), originally pub-
lished by RSA Security, define techniques to use on public-key cryptography.
Four RSA operations: encrypt, decrypt, sign, and verify are defined on first
published standard PKCS #1 [25]. Widely used format for Certificate Sign-
ing Request (CSR) is defined on PKCS #10 [20]. The PKCS #11 standard

CHAPTER 2. BACKGROUND 14

defines a Cryptoki API to access cryptographic operations on particular to-
ken. [24]

2.3 Trusted Platform Module

Data communication path

11.4.4 Asymmetric Engine(s) f=—

—t11.4.8 Key Generation

11.4.2 Hash Engine(s) —

pt 11.4.10 RNG

11.4.6 Symmetric Enging(s) fe——

—rt11.8 Power Detection

12 & 13 Management —

Execution Engine
(Parts 3 & 4)

11.5 Authorization —

11.6 Volatile Memory

« PCR Banks
11.7 Non-Volatile Memory* b=t & Keys in use
« Platform Seed « Sessions
« Endorsement Seed - « Etc.
« Storage Seed
« Monotonic counters
« Etc.

* NV memory may be provided by a system chip with the data going
to/from NV in a protected form. What is kept in the *TPM" in that
case is a cached copy of the NV contents.

Figure 2.1: TPM Architecture Overview [29]

A Trusted Platform Module (TPM) is a security module with prede-
fined set of cryptographic functions. These functions include symmetric and
asymmetric cryptography, hash calculation, key creation, and random num-
ber creation. In addition, the module contains a memory to store keys and
special registers to store platform state as seen by attestation measurements.
The TPM is an isolated execution environment in which the computation is
performed. Communication with the module is done on two-way 1/O bus,
which is the only communication channel between the host operating system
and the TPM. These components are shown on Figure 2.1.

TPM specifications are defined by the Trusted Computing Group (TCG),
and the first version was published by the group in 2006. Version 1.2 compat-

CHAPTER 2. BACKGROUND 15

ible modules have received wide acceptance among business class computer
manufacturers, and have been included in virtually all enterprise-class desk-
tops and laptops and are therefore available in tens of millions of devices [3].
Version 2.0 of the TPM specification was published in 2014 containing new
features and updating the short comings of previous version. New TPM 2.0
modules are not compatible with chips conforming to the previous version of
the specification. Therefore, software communicating with the TPM has to
first identify the version of the module.

The TPM 2.0 contains several new features, which include support for
new cryptographic algorithms, Enhanced Authorization (EA), and possi-
bility to implement TPM functionality on software. Support for multiple
cryptographic algorithms is included as previous version supported only one
algorithm for each cryptographic operation. EA allows more complex ob-
ject authorization schemes than the previously used password and Platform
Configuration Register (PCR) based scheme.

TPM 2.0 has separated one storage hierarchy used in TPM 1.2 to four
different storage hierarchies. New hierarchies separate the authorization of
different usage levels and improve the management of objects. Four new
hierarchies are storage hierarchy, platform hierarchy, endorsement hierarchy,
and null hierarchy. The storage hierarchy is meant to be used by the platform
owner and is equivalent in functionality to the TPM 1.2 storage hierarchy.
The platform hierarchy is meant to be used by the BIOS and the System
Management Mode (SMM). The endorsement hierarchy is for attestation,
and the null hierarchy is for temporal storage.

One of the improvements is to use cryptographically bound names to
identify resources in the TPM. Objects can be identified by using hash value
of the object. This is an improvement to TPM 1.2 that used runtime issued
identifiers, or handles, to identify objects.

TPM can store cryptographic keys and other data commonly referred
as objects. These stored objects can be accessible to all or the access can
be restricted. Sessions are used to authorize access to restricted objects.
Objects on TPM have authentication value, which is used to compare against
authorization provided by the session. Authorization can be for example a
password string. Authorization is not required for all types of commands
on TPM. Commands not requiring access to restricted objects inside TPM
can be called without authenticated session. For example, hash and time
functions do not require authentication.

Authentication to TPM 2.0 can be done with a plaintext password, with

CHAPTER 2. BACKGROUND 16

a Hash-based Message Authentication Code (HMAC) value calculated from
the password or with an Enhanced Authorization (EA) policy. Plaintext
password is the simplest method to use, as no session is created and the
password is sent in clear-text with every command. A HMAC session protects
the password by transferring only a pre-calculated HMAC value to TPM,
which validates the access. With an EA session, authorization is bound to
the state of TPM. EA is described in more detail on section 2.3.2. HMAC
and EA sessions are started with TPM2_StartAuthSession! command. [2]

2.3.1 Platform Configuration Register

Platform Configuration Registers (PCRs) are special registers containing a
hash value. They are used to store cryptographically produced measurements
of platform state, verifying the software and configuration. Storing a value
in a PCR is called an extend operation, which combines the previous hash
value and new measurement with a one-way hash function.

A TPM contains 24 PCRs, where measurements from different platform
components are stored in distinct registers. The platform can be shown to
be in some verified state by verifying the value of each register. As the TPM
does not know the expected state of platform, the register values need to be
compared against trusted measurements to validate the state. To verify that
expected OS version is booted the PC, each part of the boot process needs
to be measured and verified. This is called Secure Boot.

PCRs can be modified with two operations. Register extending and reg-
ister reset. Extend operation updates the register value by combining the
current value with an input value. Extend is defined in Equation 2.1. Values
of PCR can be described as an unbalanced binary hash tree, where new value
is added as a new root node and left child is the old value and the right child
is the input parameters [16, 17]. A Figure 2.2 contains a visualization of PCR
values interpreted as binary hash tree where the hash function is SHA-256.

PCRyew = Hashay(PCReyrrent||digest) (2.1)

Register reset sets the register value back to the default initial state of
the register. The default initial state can be all zeros or all ones depending
on the register. The platform specification can also define some other default
value to present the initial platform state.

LAll TPM2 commands are briefly introduced on Appendix A.

CHAPTER 2. BACKGROUND 17

PCR value after
85a86€6f...
second update
PCR value after 2nd stored
first update value

Figure 2.2: PCR interpreted as binary hash tree

PCR value after
third update

3th stored
value

Initial
state

1st stored
value

TPM 2.0 can support more than one hash function and therefore multiple
PCR register banks are supported. Each register bank contains 24 PCR
registers for some particular hash function. Therefore a TPM can have PCR
values extended with both SHA-1 and SHA-256 hash functions.

2.3.2 Enhanced Authorization

Enhanced Authorization (EA) is a new authorization method available in
the TPM 2.0. An authorization can be a password, an HMAC value or a
collection of EA policies. An EA policy is a condition for the state of TPM
which must be satisfied to gain access. Multiple EA policies can be chained
to create complex policy hierarchies. A session stores the state of the EA
policy in a policyDigest field. EA policy grants access to an object if the
policyDigest of session equals to the authPolicy field of the object.

The EA session is started with the command TPM2_StartAuthSession
with proper parameters. This starts a session with zero authorization and
the expected authorization is accomplished with a series of policy commands.
Policy commands are used to update the authorization of the session. With
policy commands, the authorization can be linked to user entered passwords,
current values of PCR registers, or testing content of non-volatile memory.

CHAPTER 2. BACKGROUND 18

These policies can be seen as tests that can pass or fail and which can be
combined with logical AN D and OR connectives to formulate complex policy
statements. A brief introduction to used TPM commands are presented on
Appendix A, which contains also policy commands.

The state of policy session, the authorization, is stored on policyDigest
field of the session. Policy commands update the policyDigest, and each up-
dated value is tied to the previous value by concatenating the previous value
and the name of new command and then hashing this as the new policyDigest
value. This is similar to PCR extend shown on Equation 2.1. Exception to
previous update mechanism are policy commands (such as TPM2_PolicyOR or
TPM2_PolicyAuthorize) which reset the policyDigest value to allow multi-
ple valid policyDigests to be included in authorization session. Authorization
with policy session can be linked to specific state of the system by combining
values in the PCR registers to the policyDigest.

2.3.3 TPM Software Stack

The function of the TPM Software Stack (TSS) is to facilitate application
access to TPM without letting processes to disturb each other. This is ac-
complished by allowing only one application to access TPM at a time. Before
an application can access the TPM, TSS swaps out the context of previous
applications and loads the context of current application to TPM. This is
done to mimic exclusive access to TPM for application. This helps further
to counter the very limited memory of TPM by allowing applications to use
all of the available resources on TPM, as well as limiting the access to only
the current applications resources.

TSS has predefined APIs for multiple levels of access to TPM. The main
goal is to provide an interoperable interface for application developers cre-
ating applications to multiple platforms. These APIs are shown on the Fig-
ure 2.3, which also shows the relationship between the TPM 1.2 and TPM 2.0
TSS implementations.

TrouSerS is an open-source project creating a GNU /Linux implementa-
tion of TSS. At the time of writing, TrouSerS only has support for older
versions of the TPM/TSS specification.

CHAPTER 2. BACKGROUND 19

TSS Stack v. 1.2 TSS Stack v. 2.0
e ~ f ~
Application Application
- I W, - I W,
s ~ f ~
3 TCG Service Provider (TSP) System API (SAPI)
§ - W, - W,
g ! !
> (D (" TPM Command Transmission D
TSS Core Services (TCS) Interface (TCT)
- 1 W, - I W,
s ~ f R " e ~
. . . esource vVlanager
TCG Device Driver Library (TDDL) TPM Access Broker (TAB)
- W, -
A £
2 v
TY ~ f ~
% § TPM Device Driver TPM Device Driver
< - , g ,
4 4
v v
s ~ f ~
Trusted Platform Module (TPM) Trusted Platform Module (TPM)
- W, - W,

Figure 2.3: TSS subsystems [27, 28, 31]

2.3.4 TPM Form Factor

Discrete Chip TPM

The first version of the standard defined TPM as an integrated circuit (IC)
with two possible predefined form factors. Figures 2.4 and 2.5 show the two
possible form factors of TPM chips. TSSOP28 package is on the left and
VQFN32 package is on the right. TPM chips are interchangeable between
different manufacturers, as both the functionality and the form are fixed in
specifications [29, 30].

Software TPM

The version 2.0 of TPM standard allows implementing TPM functionality
on software instead of discrete hardware modules. This allows TPM func-
tionality to be embedded on systems where a host processor supports special
execution mode separating TPM from the rest of the system. This can allow

CHAPTER 2. BACKGROUND 20

Figure 2.4: TPM 1.2 chip in Figure 2.5: TPM 2.0 chip in
TSSOP28 package [11] VQFN32 package [12]

TPMs to be included on smaller systems as no extra physical components are
required. Possible systems include platforms where multiple separate execu-
tion environments are available, System on a Chip (SoC), and inside other
TEE solutions. Intel has leveraged this possibility in their NUC platforms,
which have implemented TPM inside Management Engine (ME). Another
interesting possibility is to include TPM functionality inside GlobalPlatform
Device TEE as a trusted application. Microsoft has created a design and an
implementation for firmware TPM leveraging ARM TrustZone [23].

2.4 Trusted Execution Environment

A Trusted Execution Environment (TEE) is an isolated execution environ-
ment for running secure tasks. The objective of TEE is to protect assets from
software attacks originating outside of TEE. Characteristics of the TEE are
isolation, integrity and confidentiality for the applications running on it [10].
The application running on TEE can provide security service to regular en-
vironment. The regular execution environment runs concurrently with the
TEE.

GlobalPlatform has created hardware and software architectures for
Trusted Execution Environments (TEEs). The GlobalPlatform model forms
a split-world environment where a trusted OS and a rich OS run side by
side, one on Trusted Execution Environment (TEE), and another on Rich
Execution Environment (REE). The communication between these two en-
vironments occurs through APIs defined in the GlobalPlatform device spec-
ification.

CHAPTER 2. BACKGROUND 21

2.5 Intel Management Engine

Intel Management Engine (ME) is a separate execution environment inside
Intel system chipset. This environment contains a separate OS and is running
applications that are used to manage the computer. ME is used to provide
remote management features called Intel Active Management Technology
(AMT). As the ME is separated from main system, it is operational as long as
the computer is connected to mains and can be used to control the computer
even if it is turned off. Intel NUC platform uses the ME to implement a
software based TPM. From ME point of view, the TPM is just one application
running on ME environment.

Management Engine should not be mixed up with System Management
Mode (SMM), which is an operating mode on Intel x86 processors. In this
mode all normal execution is halted and a software, usually part of platform
firmware, is executed.

2.6 ARM TrustZone

The ARM TrustZone is a security technology for ARM based processors to
split one processor into two isolated domains. A secure and a normal do-
main both run their own OS, and access from a normal domain to a secure
domain is possible only through the secure monitor. This monitor acts as a
gatekeeper between the TrustZone domains. The separate execution domains
have equal capabilities except that they have a separate memory space. A
separate monitor mode controls the change from domain to domain. Appli-
cations from a normal domain can access functionality of secure part through
APL

The most common scenario is to run small embedded OS on the secure
domain with only very limited set of applications. This forms the small
TCB which is verified against anomalies. The normal domain then runs the
full sized OS, for example Android. Most of the current smart phones and
tablets contain an ARM processor with TrustZone capabilities. Therefore
the previously mentioned GlobalPlatform TEE is modeled after TrustZones
split-world architecture.

CHAPTER 2. BACKGROUND 22

2.7 On-Board Credentials

Kostiainen et al. present an On-Board Credentials (ObC) as a general creden-
tial storage method utilizing secure hardware to protect stored credentials.
They state that the ObC could be implemented on any secure hardware and
they give three example environments: TI M-Shield, TPM, and hypervi-
sor. The security of the system is stated to be as secure as the underlying
hardware. They implemented ObC on Texas Instruments’ M-Shield secure
hardware, used on the Nokia mobile phones. [15] Later versions of the ObC
were implemented on ARM TrustZone.

The ObC system is modular and can be used to store credentials from
multiple sources. The system is also designed to have no technical or pol-
icy restriction for the use. This is further emphasized with secure remote
provisioning which is accessible to any party willing to setup the required
systems.

ObC can also be used to store credential programs that generate the
credentials at runtime, for example, a program for generating one-time pass-
words from protected secret seed. As some algorithms might not be publicly
known, the programs can be stored also securely.

2.8 Smart cards

Smart cards are identification cards containing an embedded electronic chip
for electronic identification. Smart cards have the same form-factor as used
on ISO standardized identity cards. Smart cards also contain an embedded
electronic chip containing a microprocessor and memory. The processor and
memory are very limited compared to desktop computers and therefore the
processing times could span multiple seconds for single operations. FElec-
tronics used on smart cards form a Secure Element (SE) meaning that they
are packaged on a tamper-proof chip. The chip usually holds a RSA pri-
vate key and identification is done by signing a challenge with the private
key. Private key can only be accessed by the microprocessor on card, which
guarantees the confidentiality. Smart cards are standardized by the ISO on
ISO/IEC 7816 Series - Smart Card Standards.

Chapter 3

Design

Electronic identification with public-key encryption is based on presenting
a signature, which is made with a private key. This signature acts as the
proof of possession of a private key. Typically on RSA cryptosystems the
signed data is a hash function of the original data. This sets four functional
requirements for the implementation of Electronic Identification (eID) on
TPM. Firstly, the design must be able to calculate RSA signature, which
requires a public-private key-pair. Secondly, the private key should have
access control in place to allow only legitimate use of key. Thirdly, this key-
pair should be generated inside TPM to stay confidential. Fourthly, a hash
function is needed for the signature.

Algorithmic requirements are based on most widely used secure authen-
tication algorithms. Previously identified functional requirements lead to a
set of algorithmic requirements. Firstly, a signature creation algorithm is
needed conforming to HT'MLS5 and Digital Signatures specification issued by
Finnish population registry [8]. Secondly, a public-private key-pair genera-
tion algorithm is required. Thirdly, multiple hash functions are required to
support both previously widely used algorithms and also newest algorithms.

The PKCS #11 library format is a widely accepted API for cryptographic
functions. This library format is widely used to access hardware based key-
stores like Hardware Security Modules (HSMs) and smart cards. For ex-
ample, Firefox browser supports PKCS #11 to access keys and certificates
available on external hardware. Previously identified functionalities are ad-
justed to fit into a format defined in PKCS #11 standard. Implemented
PKCS #11 library supports multiple algorithms for each function. [24]

HTMLS5 and Digital Signatures specification describes an authentication

23

CHAPTER 3. DESIGN 24

flow done inside a web browser [8]. The elD solution described is going
to be a link between a TPM hardware and a web browser as required by
the specification. The architecture of the eID solution is presented on the
right side of Figure 3.1. The eID solution is called the PKCS #11 TPM
library. The library acts as a middleware between the browser and the OS
TPM driver. The left side depicts a typical architecture used on TPM based
programs.

To complete RSA functionality, encryption, decryption, signing, and sig-
nature verification are implemented. Encryption does not benefit from secure
hardware, as the operation does not use private key, and it can therefore be
done in software if possible.

| e ~
: Browser
e D | \. 7
Application | 1
|
| ()
) ! . : PKCS #1
TSS | TPM Library
l . J
1 | i)
)
Kemel TPM
Driver
4
Hardware

Figure 3.1: Use case

CHAPTER 3. DESIGN 25

3.1 Requirements

3.1.1 Functionality

The previously identified three functional requirements can be implemented
on TPM hardware securely. TPM stored keys are always a part of a key
hierarchy which starts from a primary key. A key is protected by the key
above it on key hierarchy. The primary key is special key type, which starts
the hierarchy and therefore it has extra implied properties. The primary
key is always created with attributes prohibiting the extraction of private
key, prohibiting moving the private key to other hierarchy, and enabling
decryption with the primary key.

Creating a primary key-pair and creating a normal public-private key-pair
have their distinct commands on TPM. Both commands have same syntax
and keys can be used interchangeably if the TPM key protection hierarchy
is ignored.

TPM implements two separate command flows to calculate a hash func-
tion. Differences between these two flows are described in detail on sec-
tion 3.2.3.

A signature in public-key cryptography is created with the private key by
signing a hash value of original data. Right after the hash value is calculated
on TPM the same value can be returned to TPM for signature calculation.
Calculating a RSA signature on TPM is done with TPM2_Sign TPM com-
mand.

3.1.2 Algorithms

RSA algorithm is used to generate a signature with public-private key-pair.
RSA signing scheme can only sign data with length less than or equal to key
size. Therefore a hash algorithm is used to compact the data and identify
it uniquely. This unique fingerprint calculated with the hash is then signed
using RSA algorithm.

Used hash functions are first generation SHA for backward compatibil-
ity and second generation SHA-256 as current recommended hash function.
These hash functions are implemented on the PKCS #11 library to be used
on signing. Both RSASSA-PSS and RSASSA-PKCS1-vl_5 RSA signature
schemes defined on RFC 3447 (PKCS #1) are supported [13].

CHAPTER 3. DESIGN 26

3.2 Mapping TPM and PKCS #11 interfaces

PKCS #11 library specification is designed to be modular framework which
can be extended with new algorithms. TPM interface is on the other hand
an interface to very limited hardware, which implements the predefined TPM
functions. Combining these two interfaces requires planning to match equal
function on both sides.

3.2.1 Sessions

Sessions is the first example of dissimilarities between these two frameworks,
which needs adaptation between PKCS #11 and TPM. PKCS #11 sessions
are shared context for nearly all commands queried through the interface.
These sessions can be read-only or read-write session where the former type
is the default type for a new session. An open session can be upgraded to
a more capable one by logging in. Sessions on TPM are only used as an
authentication for accessing privileged objects. Commands such as hashing
do not require a session on authentication at all.

3.2.2 Authentication

Authentication is the second example. PKCS #11 has C_Login command
for authentication which requires a PIN code as a parameter. This PIN code
is the secret token granting access. A PIN code is used as a legacy term in
this context and the parameter can handle any kind of password string as
long as the underlying device supports this.

TPM on the other hand supports three kind of authentication: password,
HMAC, and Enhanced Authorization (EA). Password authentication is a
plain static password communicated to TPM on every command requiring
authorization. HMAC authentication is static password with HMAC value
calculated before entering to TPM.! This can protect the used password
of eavesdropping if the HMAC value is calculated beforehand. These two
can be right directly combined with PKCS #11 authentication. EA bounds
the particular state of the TPM to allow access to protected resources. A
password can be one of the measured states on EA.

!The key used on HMAC is a combination of session parameters, salt, and nonces.

CHAPTER 3. DESIGN 27

3.2.3 Multi-part command flow

The third example is the command flow for multi-part commands, commands
that need to transfer more data than is possible in one operation. Hash
functions are an example of this function class as the length of input data
can be arbitrary. PKCS #11 has two alternatives for multi-part command
flows.

C_CommandInit = C_Command or
C_CommandInit = C_CommandUpdate = C_CommandFinal

On former case, the C_CommandInit has arguments for the algorithms or
keys. Second part of the command then contains all the data and terminates
the command. On latter case, C_Command Init is equal to previous example,
C_CommandUpdate contains the data partitioned to multiple fragments, and
C_CommandFinal terminates the process with last fragment.

As previously mentioned, TPM has two separate command flows to cal-
culate a hash function. If the hashed data can fit in one TPM command,
then TPM2_Hash can be used.? If the data is larger than approximately 2
kB then multi-part hashing is required. Multi-part hashing is divided into
three phases, start of the sequence where the algorithm is defined, update
sequence where more data is fed to hash function and complete phase where
the last increment of data can be given and which returns the calculated
hash value. Commands for multi-part hash are TPM2_HashSequenceStart
command following with zero or more TPM2_SequenceUpdate commands and
finally TPM2_SequenceComplete command.

As PKCS #11 always requires at least two commands to issue a multi-
part command, e.g. sign, this forces the TPM as well use multi-part com-
mands. C_CommandInit on PKCS #11 interface maps to start command on
TPM and C_Command to update and complete commands. The three-part
PKCS #11 commands are mapped as they are to equivalent TPM commands.

2In TCG PC Client Platform TPM Profile (PTP) Specification a maximum command
size is defined to be ”large enough to support the largest implemented command”. Largest
mandatory command is TPM2_ContextLoad with 2074 bytes. [30, p. 54]

Chapter 4

Implementation

The previous chapter described a design for a software library communicating
between the web browser and a TPM. On this chapter a detailed description
of the library is provided.

This library communicates directly with the Linux kernel TPM device
driver. This is contrary to typical applications using TPM through TSS
interfaces as shown on Figure 2.3 on page 19. The decision was forced by
the lack of T'SS implementation on Linux for TPM 2.0 at the time of writ-
ing. This restricts other applications from accessing TPM as long as this
library is running. Similarly multiple instances of this library cannot run
simultaneously.

Implementation is programmed with C language and source code con-
forms to C89 standard. To use TPM 2.0 hardware on Linux, at least a Linux
kernel version 4.0.0 is required. This is the first version to include TPM 2.0
device driver.

4.1 Architecture

Implementation of the library is divided into two modules, each with their
distinct operations. The TPM communication module handles the commu-
nication with the TPM hardware and provides an easy to use interface for
TPM 2.0 commands. The API provided by the communication module mim-
ics closely the command codes used by TPM 2.0. Communication module
can be used to build other applications that need to access TPM function-
ality. PKCS #11 module implements Cryptoki API defined in PKCS #11
standard. Logical structure of implementation is visualized on Figure 4.1.

28

CHAPTER 4. IMPLEMENTATION 29

TPM
<:| Pﬁciﬁllg Communication |:>
odule Module hardware

Figure 4.1: Structure of implementation

4.2 TPM communication module

The TPM communication module is a non-compatible replacement for TSS
to handle low-level communication with the TPM. The module has a wrapper
function for each implemented TPM2 command and handles all the details
on communication.

The module communicates with the TPM through Linux character de-
vice /dev/tpm0. This character device is made by the kernel device driver
for TPM. A typical Linux application using TPM would use TSS as a mid-
dleware.

Communication with TPM chip consists of command and response pairs.
This module is a synchronous as each command execution blocks until a
response is available from the TPM. Synchronous operation mode was chosen
over an asynchronous as this would have increased the complexity of both
the TPM communication module and applications using it.

Marshaling a buffer means transferring only the used size of buffer and
not the maximum size. Variable length TPM2B types consist of a size field
and a buffer field. An unmarshaled type could be 2 bytes size field and
4096 bytes buffer field. If this type is used to transfer a 2048 byte public
key, then the 16-bit size field would containing value 2048, and the buffer
would be 2048 bytes long. Marshaling is done to minimize communicated
data between a host system and TPM. As the previous example shows, this
can halve the communicated data. Buffer marshaling is done without action
from developer.

The TPM specification define strictly the return value for each kind of
failed operation. This helps debugging as a wrong value on input parameter
has a meaningful error message. The communication module can be compiled
with debug options to print return values, error messages, and even full

CHAPTER 4. IMPLEMENTATION 30

bytecode of commands and responses.

4.2.1 TPM communication interface

The TPM communicates through a serial interface, exposes by TPM device
driver.! Communication through this serial interface is done with a binary
communication protocol. The protocol defines how TPM command and re-
sponse structures are serialized for transportation.

Each TPM command has its distinct response message and no other com-
mand can be issued before a response to previous command is received. This
limitation is due on the single threaded nature of TPM.

The communication interface uses a big-endian byte order, also called
the network byte order. This is reversed compared to a byte order used on
Intel x86 processors. This affects all fixed length parameters, i.e. uint16_t,
uint32_t, and uint64_t and their aliases.

Keys, buffers, and strings, which do not have fixed length are transferred
as variable length buffers. Variable length types consist of 16-bit size field
and the data field, which size is defined by the size field. Types with variable
length are named with a TPM2B_-prefix, e.g. TPM2B_DIGEST.

The TPM command structure is defined on Specification Part 1, Sec-
tion 18 [29]. Commands and responses have similar structures, where they
both have 4 components that are not all mandatory. Fach command must
start with a header containing a tag, a size of command and a TPM com-
mand code. The command code is followed by up to three handles, which
are used to indicate protected objects for TPM command, e.g. signing keys.
If a command is accessing protected resources on TPM, an authorization
area is present after the handles. Commands having input parameters to the
TPM contain also a parameter component. All commands can be divided
into these four components, header, handles, authorization, and parameters.

A response starts equally with header containing the same three field as
commands. On the response, the last field of header contains a response
code indicating the return value of the command. Equally to commands,
the second component of response is handles. If the response contains an
authorization area, a ”size of parameter” field is added before the param-
eter component. The response data from TPM operation is passed in the

LTPM platform profiles describe how data from a serial like interface is transferred on
platform specific hardware bus. PC computers follow the TCG PC Client Platform TPM
Profile (PTP) Specification [30].

CHAPTER 4. IMPLEMENTATION 31

Field ‘ Tag ‘ Size of command ‘ Command Code
Value | TPM_ST_NO_SESSIONS TPM_CC_ReadClock
0x80 0x01 0x00 0x00 0x00 0x0Oa | 0x00 0x00 0x01 0x81

Table 4.1: TPM command header as bytecode

parameter component. The authorization area is the last component if it is
included on the response.

Commands have a few variations on which components they have and
what kind of information is stored in any given fields. Each command is
defined in details on Specification Part 3 [29]. A TPM2_Sign command, having
all the four components, is visualized on Table 4.2. The table contains as
well information on the order, type, and size of fields. The variable length
TPM2B fields on table are sized to fit SHA-256 hash.

The simplest commands contain only three fields required in header, tag,
size, and command code. TPM2_ReadClock is such a command, and byte
stream for this command is listed on Table 4.1. First two bytes are tag, next
four indicate the size of command, and the last four are command code. Tag
field indicates if the command contains one or more authorizations (sessions)
and thus authorizationSize/parameterSize fields.

4.2.2 Implemented TPM functions

TPM communication module contains implementations for 31 TPM 2.0 com-
mands. TPM 2.0 has a total of 108 defined commands. The API exposed
by the communication module mimics closely the underlying API of TPM.
Each implemented TPM 2.0 command has equally named function on com-
munication module.

4.2.2.1 Functions used for eID

The implementation of electronic identification requires three functional-
ities. As previously stated, hash calculation is done as multi-part op-
eration. ~Commands TPM2_HashSequenceStart, TPM2_SequenceUpdate,
and TPM2_SequenceComplete are used to calculate hash functions as re-
quired. Without the multi-part requirement from PKCS #11 interface, the
TPM2_Hash command could have been used. The signature is calculated with
the TPM2_Sign command. The key-pair is created with TPM2_CreatePrimary

CHAPTER 4. IMPLEMENTATION 32
Component Field Type Size | Offset
Header Tag uint16_t 2 0

Size of Command uint32_t 4 2

Command code uint32 t 4 6

Handles Key handle TPMI_DH_OBJECT 4 10
Authorization | Authorization size =~ TPM_AUTHORIZATION SIZE 4 14
Authorization Area TPMS_AUTH_COMMAND 10 24

sessionHandle TPMI_SH_AUTH_SESSION 4 24

nonce TPM2B_DIGEST 22 28

size uintl6_t 2 28

buffer char/[] 20 30

sessionAttributes TPMA_SESSION 1 50

hmac TPM2B_AUTH 22 o1

size uintl6_t 2 o1

buffer char/[] 20 53

Parameters digest TPM2B_DIGEST 22 73
size uint16_t 2 73

buffer char[] 20 75

inScheme TPMT_SIG_SCHEME 4 95

scheme TPMI_ALG_SIG_SCHEME 2 95

details TPMU_SIG_SCHEME 2 97

sha256 TPMS_SIG_SCHEME_SHA256 | 2 97

| hashAlg TPMI_ALG_HASH 2 97

validation TPMT_TK_HASHCHECK 28 99

tag TPM_ST 99

hierarchy TPMI_RH_HIERARCHY 101

digest TPM2B_DIGEST 22| 105

size uintl6_t 2 105

buffer char[] 20 107

Table 4.2: TPM2_Sign command layout

CHAPTER 4. IMPLEMENTATION 33

command. This commands is identical to TPM2 Create command, except
that it creates primary keys and does not require authorization.

4.2.2.2 Additional implemented functions

Non-volatile memory commands TPM has non-volatile memory which
is usable by applications. The memory can be used for example to store cer-
tificates for the keys stored in TPM. The non-volatile memory is allocated
with TPM2_NV_DefineSpace command, which associates specified authoriza-
tion requirements to a memory block. The value of NV-memory is read
with TPM2_NV_Read command. Similarly TPM2 NV Write command writes
values to the NV-memory. If a memory region is defined as a counter, then
counter is updated with command TPM2 NV_Increment and cannot be mod-
ified with the write command. The non-volatile memory region is freed with
the TPM2_NV_UnDefineSpace command.

Enhanced Authorization (EA) Commands EA commands
are used to construct a policy allowing access if certain condi-
tions are fulfilled. With policy commands the conditions can be
chained into complex authorization requirements. Implemented
commands are TPM2_PolicyAuthorize, TPM2_PolicyAuthValue,
TPM2_PolicyCommandCode, TPM2_PolicyCounterTimer, TPM2_policyNv,
TPM2_PolicyOR, TPM2_PolicyPassword, TPM2_PolicyPCR,
TPM2_PolicySecret, and TPM2_PolicyGetDigest.

RSA cryptosystem The RSA public-key cryptosystem consists of sign,
verify, encrypt, and decrypt operations. The sign command was introduced
previously as it was used on elD implementation. The signature verification
is done with TPM2 VerifySignature command. This command could also
be implemented on software as only the public key is required. Similarly
encrypt with TPM2_RSA_Encrypt command is possible to optimize away from
slow TPM to be performed on main CPU. RSA decrypt uses private key
for operation and therefore TPM2_RSA _Decrypt command is important to
perform on TPM.

Time TPM has a monotonic counter to keep track of time. This counter
advances only when the TPM is powered and therefore needs adjustment if it
is needed to be aligned with real time. Additionally the hardware keeps count

CHAPTER 4. IMPLEMENTATION 34

of number resets and restarts. TPM2 ReadClock command is implemented,
which returns the value of three counters.

Random Number Generation TPM can be used as a hardware random
number generator. Output from random number generator can be requested
with TPM2_ GetRandom command. Random number generator can accept an
additional input with TPM2_StirRandom command to further differentiate
the output.

General-Purpose Commands TPM module is initialized with
TPM2_Startup command. This command should be called before op-
erating with TPM for the first time. Usually TPM is initialized by the TSS
framework library.

TPM specification leaves most of functions as optional and lots of imple-
mentation details to manufacturers to decide. These details can be dynam-
ically queried with TPM2_GetCapability command. Capability information
contains, for example, implemented commands, algorithms, and memory con-
strains.

The memory on TPM is very limited, which constrains simultaneously
available keys or sessions on TPM memory to only a few objects. Therefore,
cleaning memory of unused objects is a frequent operation which is done with
TPM2_FlushContext command.

Password based authorization is not the only available authorization
model and command TPM2_StartAuthSession is used to start HMAC and
EA based authorization sessions. When session is no longer required com-
mand TPM2_FlushContext is used to remove session from TPM memory.

An external public key can be loaded to TPM with command
TPM2_LoadExternal. This is required if a signature must be verified or a
policy based authorization is extended with pre-authorized values signed by
trusted third party.

4.3 PKCS #11 module

PKCS #11 module is a wrapper for TPM functionality. This module con-
tains only the functionality to pass request and responses between the
PKCS #11 interface and TPM command module. Detailed list of imple-
mented PKCS #11 functions are listed on Table 5.3 on the next chapter.

CHAPTER 4. IMPLEMENTATION 35

4.3.1 PKCS #11 interface

PKCS #11 is one of the PKCS, which defines an API for public-key opera-
tions in cryptography.

Interface specification is extensive, including key generation, signing, en-
cryption, hashing, message authentication codes, and random number gen-
eration. In each implementation one can choose which subset of the specifi-
cation to implement as not all of the functionality is required by the spec-
ification. For example, a cryptographic token containing pre-issued public
and private keys could be used only for signing, and expose only public key
signing part of the programming interface.

A minimal implementation of PKCS #11 library would consist of only
C_GetFunctionList function. Fully functional PKCS #11 library needs
at least parts from four functions groups defined in PKCS #11 standard.
Groups defined on standard are General-purpose Functions, Slot and Token
Management Functions, Session Management Functions, and Object Man-
agement Functions. [24]

PKCS #11 module is commonly implemented as a shared library, which
allows multiple applications to access cryptographic tokens through same
interface. Each implementation of PKCS #11 shared library is tailored to a
particular type of cryptographic token.

Chapter 5

Evaluation

5.1 Implementation coverage

The implemented PKCS #11 library contains only a subset of functional-
ity presented on PKCS #11 standard. Required functionality identified in
Chapter 3 are implemented and additionally calculation of hash function and
random number generation are included. List of implemented PKCS #11
functions are presented on Table 5.3 at the end of chapter.

Validity of the implementations is tested using two test methods. TPM
communication module is tested using unit tests for each implemented TPM
command. Functionalities tested using unit tests, are listed on Table 5.3,
column TPM unit tests. All unit tests are self-contained, meaning that they
do not expect the TPM to be in any particular state. Tests are written in
a manner which keeps the TPM state unchanged. This includes removal of
created keys after the test, ending all active sessions, and flushing possible
active sequences.

The PKCS #11 module is tested using pkcs11-tool from OpenSC project®.
This tool is a command line application used to manage and use PKCS #11
security tokens. The pkcs11-tool has a built in capability to perform tests
on the token and report if operation was carried out successfully. The fourth
column on Table 5.3 contains a list of tested PKCS #11 functionalities.

These PKCS #11 tests further validate the functionality of TPM com-
munication module. The pkcs11-tool command contains a predefined test
set containing the expected outputs for each cryptographic operation. Tests
are run through PKCS #11 interface using TPM for cryptographic oper-

https://github.com/0penSC/OpenSC/

36

https://github.com/OpenSC/OpenSC/

CHAPTER 5. EVALUATION 37

ations. Running pkcsll-tool command against implemented PKCS #11
library uses the same interfaces as a browser would calling the library.

Size of implementation was measured using lines of code metrics which
are presented on Table 5.1. These statistics were measured using CLOC

utility?.
Language | files | blank | comment | code
C 23 | 1244 639 | 5298
C Header 8 799 1006 | 2916
make 1 31 3 95
32 | 2074 1648 | 8309

Table 5.1: Lines of code

5.2 Performance metrics

Performance of the TPM 2.0 and implemented PKCS #11 library was evalu-
ated against a TPM 1.2 and a smart card. All metrics were collected in a sim-
ilar manner running pkcsi11l-tool command repeatedly for each PKCS #11
module. TPM 2.0 metrics were collected from Intel NUC computer® where
TPM is implemented as a software running probably on Intel ME. TPM 1.2
metrics were run on Infineon TPM chip? with Opencryptoki® as PKCS #11
library. EID metrics were measured from Finnish electronic identity card
with OpenSC provided PKCS #11 library.

Used hash algorithms were SHA-1 on TPMs and SHA-256 on TPM 2.0.
Signing was measured by creating RSA signatures with 2048 bit keys. The
signature tests were not run at all on TPM 1.2. All measurements were an
average of 1000 runs. Performance metrics were shown on Table 5.2.

The hash calculation was faster on TPM 1.2 chip compared to TPM 2.0,
which runs on software. This leads to the conclusion that the TPM runs
on Intel ME, which has a separate extremely limited execution environment
compared to the main processor. The big difference on the signature creation
between elD and TPM is probably due to smart card technology used on elD.

’https://github.com/AlDanial/cloc
3Intel NUC D34010 with software TPM
4Infineon SLB 9635 TT 1.2
Shttp://opencryptoki.sourceforge.net/

https://github.com/AlDanial/cloc
http://opencryptoki.sourceforge.net/

CHAPTER 5. EVALUATION 38

Hash RSA signature
SHA-1 SHA-256 SHA-1 SHA-256
TPM 1.2 | 0.02s + 0.00 - - -
TPM 2.0 | 0.06s £ 0.00 | 0.06s £+ 0.00 | 1.36s 4+ 0.00 | 1.36s5 +0.00
elD - - 4.25s £ 0.00 | 4.25s £+ 0.00

Table 5.2: Performance of hash and RSA signature tested through
PKCS #11 interface

5.3 Results

The goal was to implement a TPM based elD solution usable from web
browsers. Chapter 3 identified the required functionalities of TPM and algo-
rithms used for web based authentication. Based on these, the implementa-
tion was described in chapter 4 and evaluated in chapter 5.

In the light of measurements provided in previous chapter, the TPM based
authentication is evidently faster than the compared smart card. The mean
time to compute 2048 bit RSA signature on TPM is 1.36 seconds. This is
almost three times faster than the 4.25 seconds required on smart card.

CHAPTER 5. EVALUATION

Table 5.3: Implemented PKCS #11 functions

PKCS #11 function

Implemented

TPM Unit
tests

PKCS #11

interface tests

C Initialize

C Finalize

C_ Getlnfo

C_ GetFunctionList
C_ GetSlotList

C_ GetSlotInfo

C GetTokenlInfo

C_ WaitForSlotEvent
C_ GetMechanismlList
C_ GetMechanismInfo
C InitToken

C_ InitPIN

C_ SetPIN
C__OpenSession

C_ CloseSession

C_ CloseAllSessions
C__ GetSessionlnfo

C_ GetOperationState
C_ SetOperationState
C_ Login

C_ Logout

C_ CreateObject

C_ CopyObject

C_ DestroyObject

C_ GetObjectSize

C_ GetAttributeValue
C_ SetAttributeValue
C_ FindObjectsInit
C_ FindObjects

C_ FindObjectsFinal
C__Encryptlnit
C__Encrypt
C__EncryptUpdate
C__EncryptFinal

AN NN ANERN ANANE NN YA

ANERN

v

partial

v
4
v

AN NN SN AN NN Y RN

SN

AN

39

CHAPTER 5. EVALUATION

40

PKCS #11 function

Implemented

TPM Unit
tests

PKCS #11

interface tests

C_ Decryptlnit

C_ Decrypt

C_ DecryptUpdate

C_ DecryptFinal

C_ DigestlInit

C_ Digest

C_ DigestUpdate

C_ DigestKey

C_ DigestFinal

C_ SignInit

C_ Sign

C_ SignUpdate

C_ SignFinal

C_ SignRecoverlnit

C_ SignRecover

C_ Verifylnit

C_ Verify

C_ VerifyUpdate

C_ VerifyFinal

C_ VerifyRecoverlnit
C_ VerifyRecover

C_ DigestEncryptUpdate
C_ DecryptDigestUpdate
C_ SignEncryptUpdate
C_ DecryptVerifyUpdate
C_ GenerateKey

C_ GenerateKeyPair
C_ WrapKey
C_UnwrapKey

C_ DeriveKey

C SeedRandom
C_GenerateRandom
C_GetFunctionStatus
C_CancelFunction

NSNS

ASANENENEN

AN NN

AN

NSNS

AN NN

ASANEN

NSANENENEN

NNANENEN

Chapter 6

Discussion

6.1 Security compared to smart card

The access to smart card is protected by a PIN code, which is required to use
keys. Equally, keys in TPM are protected by a PIN code or a password. This
PIN code is typed using keyboard on both the smart card and TPM. The
keyboard and the operating system are not verified and could be malicious
and capture the typed PIN code. Some smart card readers use build-in
keypads to mitigate the operating system from spying on PIN code. For
TPM, normal keyboard is the only available input method. Still, remote
attestation could be used to attest to the OS. In the end, PIN code security
of the TPM and smart card could be equal and both techniques could counter
the PIN code capture.

The Secure Element (SE) is a separate chip usually embedded on smart
cards or mobile SIM cards. The distinct properties of SE include the tamper-
proof chip. On the other hand discrete TPM chips are not required to be
tamper proof. Software based TPMs run on separate execution environments
or distinct processor modes but are not mandated to run on trusted hardware
[29, Part 1, p. 41]. Hence, TPM based solution has lower physical security
properties compared to SE, which needs to take into consideration.

The security of the TPM 2.0 based eID implementation can be enhanced
significantly by combining it with an operating system attestation and TPM
Enhanced Authorization (EA). The previously mentioned PIN code inter-
ception is possible as the BIOS, bootloaders and operating system cannot be
ensured to be trustworthy. By using EA, the access to keys could be linked
to a particular state of the platform stored on the PCR memory. With the

41

CHAPTER 6. DISCUSSION 42

help of software vendors, this could be extended further to include not just
one state but all the possible unaltered states of the software stack. If the
OS is measured to be unaltered and the vendor of the OS is deemed trust-
worthy, the PIN code interception is only possible through a bug in the OS
implementation.

6.2 Usability compared to smart card

The use of smart card based elD is limited to environments in which a smart
card reader is available. Additionally, USB readers are commonly available
and they are easy to connect to desktops and laptops, but are unusable on
mobile phones and tablets. This will give a strong advantage for a TPM based
elD solution. The TPM 2.0 standard enables implementing TPM functional-
ity inside firmware, which allows TPMs to be implemented on TEEs. Most of
the current smart phones already include ARM TrustZone capable hardware
and therefore could be easy targets on which to build a TPM. Making elD
accessible to smart phones and tablets would increase the usage as more and
more Internet based services are used on phones and tablets.

Based on the performance metrics presented on section 5.2, an elD im-
plemented on a TPM is three times faster than similar smart card based
solutions. This translates directly to faster login times in web browsers. As
web browsers do not give any progress indicator on signature creation pro-
cess, the waiting time is seen as part of the page loading time. Fast, modern
web pages load in less than a second, and a 4 s login time would deteriorate
the user experience. With 1-second signature creation, the web page load
time could be the dominant part of the whole web page load time.

In home environments in which the computer is shared between multi-
ple users, the TPM could have multiple identities stored inside. Multiple
identities would not require multiple OS user accounts, as the currently used
PKCS #11 interface can include more than one identity, and authentication
is authorized with a personal password when required. On more heteroge-
neous environments more than one identity could be used simultaneously if
required.

Unlike traditional eID smart cards, the TPM based solution could not
be moved from one computer to another one as the keys are required to
stay inside a TPM. To allow users to authenticate themselves on multiple
computers, a separate key and certificate would be needed on each computer.

CHAPTER 6. DISCUSSION 43

This would require another method to authenticate the user using strong
authentication to bootstrap the trust on new computers.

The most obvious limitation is also the requirement for a TPM. At the
moment, TPMs are included in virtually all business class desktop and laptop
computers, but only a few consumer grade computers contains the chip. This
will probably change as TPM 2.0 allows firmware based TPMs, which Intel
has already used on their NUC platform. Similarly, Microsoft has included
TPM 2.0 on their Surface tablet series. TPM 2.0 is expected to be part of
almost all new PC hardware, as Microsoft has included it in the requirements
for Windows 10 hardware. Windows 10 minimum hardware requirements
states that TPM 2.0 is required for Windows 10 Mobile OS and, after 1-year
transitional period, also for Windows 10 desktop version. A device must
meet these requirements to gain the Windows Compatible status. [18]

6.3 Improvements

The implemented library is a proof-of-concept and contains multiple issues.
Five improvements that could be implemented in the future are described
here.

Store authentication certificates on TPM A certificate used for au-
thentication could be stored inside the TPM non-volatile memory. This
would remove the need to use external storage and make all user controlled
data to reside inside the TPM. Further DER encoded certificate could be
divided into three parts: fields before the public key, the public key, and
fields after the public key. Only the fields before the public key and after
the public key need to be stored on non-volatile memory, as the public key
is already stored on the TPM with the private key. Now reading the certifi-
cate from TPM could be done with two TPM2_NV_Read commands and one
TPM2_ReadPublic command.

Reformat the library to be compatible with the TSS In this work,
the library was implemented as a non-compatible replacement for the TPM
Software Stack (TSS). This was due to lack of T'SS implementation on Linux
for TPM 2.0 at the time of writing. The library could be reformatted to work
on top of T'SS by converting TPM command module to use TPM command
transmission interface (TCTI) with a small changes. Communication with

CHAPTER 6. DISCUSSION 44

TPM device driver is centralized into tpm2_transmit, which handles both
sending and receiving data. The functionality of the tpm2_transmit function
could be changed to call transmit and receive functions of TCTI. Addi-
tionally, TCTI finalize function would need to be called before the library
shutdown. This would make the implemented library compatible with TSS
APIs, which could help porting the software to other platforms. For exam-
ple, Windows has a TSS implementation available, which would be an easy
target. Further, the use of TSS would allow multiple applications to use the
TPM at the same time. Intel published an open-source TSS implementation
on July 2015

Limit password guessing The current implementation does not limit
how many times a wrong password can be typed, enabling brute-force attack
to recover the password. Brute-force attacks could be mitigated by imple-
menting a EA based access control, where a policy defines how many times
incorrect password could be typed before key is locked. This type of system
was defined by Nyman et al. using complex EA policies and multiple sessions
inside the TPM to separate the privileges to increment the counter, reset the
counter, and access the keys [19]. Shao et al. have performed a formal
analysis of TPM 2.0 Enhanced Authorization (EA) and they found a misuse
case in this system, which leads to a time-of-check time-of-use (TOCTOU)
attack [26].

Create a proof of TPM stored keys One of the benefits of TPM com-
pared to software based cryptography is the secure key creation and storage.
The key can be created inside TPM using a template specified by the user.
The template is an additional input to the key creation algorithm, which
combines it with TPM based secrets to create a new unique key. The TPM
can create a proof to assure a remote system, that the keys are stored se-
curely inside the TPM. The proof could be created by signing a key and key
parameters with an Endorsement Key (EK) stored only inside TPM, which
has a certificate from the TPM manufacturer stating this. The proof is cre-
ated with TPM2_Certify command, and based on the proof a remote party
can verify the key storage mechanism [29, Part 1, page 28].

'https://github.com/0lorg/TPM2.0-TSS

https://github.com/01org/TPM2.0-TSS

CHAPTER 6. DISCUSSION 45

Store keys on persistent key hierarchy Current implementation uses
TPM null hierarchy to store the keys. A proper storage hierarchy must be
used before the system is operational as the null hierarchy is not persistent
and is cleared on every hardware restart. A similar issue is the usage of
primary keys as elD identity keys. On production ready system the keys
would be created in TPM Platform hierarchy in which they could be stored
on their own subtree. The elD software would create a primary key which
contains all the identity keys as sub keys. This requires implementing a
TPM2 Create command, which is not implemented in current work. The
required work is minimal as the TPM2_CreatePrimary command is almost
identical to TPM2_Create and can therefore be used as a template.

Bibliography

1]

Act on Strong Electronic Identification and Electronic Signatures
(Laki vahvasta sahkoisestd tunnistamisesta ja sahkoisista allekirjoituk-
sista 617/2009), 2009. Available at http://www.finlex.fi/en/laki/
kaannokset/2009/en20090617 . pdf.

ARTHUR, W., CHALLENER, D., AND GOLDMAN, K. A Practical Guide
to TPM 2.0. Apress, 2015.

BRINK, D. Endpoint Security: Hardware Roots of Trust. Research
Brief, Aberdeen Group, June 2012.

FEDERATION OF FINNISH FINANCIAL SERVICES. Tupas Identifica-
tion Services for Service Providers - Service Description and Service
Provider’s Guidelines. http://www.finanssiala.fi/maksujenvalitys/
dokumentit/TUPAS_service_description_v23c.pdf, January 2011.

FEDERATION OF FINNISH FINANCIAL SERVICES. Tupas Identifi-
cation Service Identification Principles. http://www.finanssiala.
fi/maksujenvalitys/dokumentit/TUPAS_identification_principles_
v20c.pdf, December 2013.

FiCom Ry. Mobiiliasiointivarmenne - Varmennepoliti-
ikka Operaattoreiden mobiiliasiointiavarmenteita varten
Versio 1.1. http://www.mobiilivarmenne.fi/documents/

Mobiiliasiointivarmenne-Varmennepolitiikka.pdf, April 2011.

FiNNiSH COMMUNICATIONS REGULATORY AUTHORITY. Strong
electronic identification, electronic signatures and certifi-
cates. https://www.viestintavirasto.fi/en/cybersecurity/

electronicidentificationandsignature.html, October 2013.

46

http://www.finlex.fi/en/laki/kaannokset/2009/en20090617.pdf
http://www.finlex.fi/en/laki/kaannokset/2009/en20090617.pdf
http://www.finanssiala.fi/maksujenvalitys/dokumentit/TUPAS_service_description_v23c.pdf
http://www.finanssiala.fi/maksujenvalitys/dokumentit/TUPAS_service_description_v23c.pdf
http://www.finanssiala.fi/maksujenvalitys/dokumentit/TUPAS_identification_principles_v20c.pdf
http://www.finanssiala.fi/maksujenvalitys/dokumentit/TUPAS_identification_principles_v20c.pdf
http://www.finanssiala.fi/maksujenvalitys/dokumentit/TUPAS_identification_principles_v20c.pdf
http://www.mobiilivarmenne.fi/documents/Mobiiliasiointivarmenne-Varmennepolitiikka.pdf
http://www.mobiilivarmenne.fi/documents/Mobiiliasiointivarmenne-Varmennepolitiikka.pdf
https://www.viestintavirasto.fi/en/cybersecurity/electronicidentificationandsignature.html
https://www.viestintavirasto.fi/en/cybersecurity/electronicidentificationandsignature.html

BIBLIOGRAPHY 47

8]

[12]

[13]

[14]

[15]

FiNNISH POPULATION REGISTER CENTRE. HTML5 and Digital Sig-
natures - Signature Creation Service 1.0.1. https://eevertti.vrk.fi/
Default.aspx?id=0&docid=1335&action=Publish, June 2015.

FLORENCIO, D., AND HERLEY, C. A Large-scale Study of Web Pass-
word Habits. In Proceedings of the 16th International Conference on
World Wide Web (New York, NY, USA, 2007), WWW 07, ACM,
pp. 657-666.

GLOBALPLATFORM DEVICE TECHNOLOGY. TEE System Architecture

v1.0. http://www.globalplatform.org/specificationsdevice.asp, De-
cember 2011.

INFINEON. Infineon’s TPM Security Chips Are First to Receive
Global TCG and Common Criteria Certification and UK Government
Approval; Showing World Trust in Infineon Security Expertise for
PC and Data Network Protection. http://www.infineon.com/cms/en/
about-infineon/press/press-releases/2009/INFCCS200912-015.html,
December 2009.

INFINEON. Infineon Expands its Trusted Computing Expertise to Mo-
bile Devices: OPTIGA™ TPM 2.0 Chips Secure Microsoft Surface Pro
3 Tablet . http://www.infineon.com/cms/en/about-infineon/press/
press-releases/2015/INFCCS201502-026.html, February 2015.

JonssoN, J., AND KAriski, B. RFC 3447: Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1.
https://tools.ietf.org/html/rfc3447, February 2003.

KOEBERL, P., SCHULZ, S., SADEGHI, A.-R., AND VARADHARAJAN,
V. TrustLite: A security architecture for tiny embedded devices. Pro-

ceedings of the 9th European Conference on Computer Systems, FuroSys
2014 (2014).

KosTIAINEN, K., EKBERG, J.-E., ASOKAN, N., AND RANTALA, A.
On-board Credentials with Open Provisioning. In Proceedings of the
4th International Symposium on Information, Computer, and Commu-
nications Security (New York, NY, USA, 2009), ASIACCS 09, ACM,
pp. 104-115.

https://eevertti.vrk.fi/Default.aspx?id=0&docid=1335&action=Publish
https://eevertti.vrk.fi/Default.aspx?id=0&docid=1335&action=Publish
http://www.globalplatform.org/specificationsdevice.asp
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2009/INFCCS200912-015.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2009/INFCCS200912-015.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2015/INFCCS201502-026.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2015/INFCCS201502-026.html
https://tools.ietf.org/html/rfc3447

BIBLIOGRAPHY 48

[16]

[17]

[20]

[21]

[22]

23]

[24]

[25]

MENEZES, A. J., VANSTONE, S. A., AND OORrscHOT, P. C. V. Hand-
book of Applied Cryptography, 5th ed. CRC Press, Inc., Boca Raton, FL,
USA, 2001.

MERKLE, R. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology — CRYPTO ’87, C. Pomerance,
Ed., vol. 293. Springer Berlin Heidelberg, 1988, ch. Lecture Notes in
Computer Science, pp. 369-378.

MicrOSOFT. Windows Hardware Dev Center: Minimum hardware
requirements for Windows 10. https://msdn.microsoft.com/library/
windows/hardware/dn915086%28v=vs.85%29.aspx. Accessed: 2015-12-16.

NvyMmaN, T., EKBERG, J.-E., AND AsoOkAN, N. Citizen Electronic
Identities Using TPM 2.0. In Proceedings of the 4th International Work-
shop on Trustworthy Embedded Devices (New York, NY, USA, 2014),
TrustED 14, ACM, pp. 37-48.

NysTrROM, M., AND KALISKI, B. RFC 2986: Public-Key Cryptogra-
phy Standards (PKCS) #10: Certification Request Syntax Specification
Version 1.7. https://tools.ietf.org/html/rfc2986, November 2000.

PoLICE OF FINLAND. Applying for an identity card. http://poliisi.

fi/identity_card/applying_for_an_identity_card. Referenced on 4th
of April 2016.

PoLICE OF FINLAND. Issuing an identity card to a foreign citizen. http:
//poliisi.fi/identity_card/applying_for_an_identity_card. Refer-
enced on 4th of April 2016.

Raj, H., SArROIU, S., WOLMAN, A., AIGNER, R., Cox, J., ENG-
LAND, P., FENNER, C., KINSHUMANN, K., LOESER, J., MATTOON,
D., NystrOM, M., ROBINSON, D., SPIGER, R., THOM, S., AND
WooTEN, D. fTPM: A Firmware-based TPM 2.0 Implementation.
Tech. Rep. MSR-TR-2015-84, November 2015.

RSA SecurITY INC. Public-Key Cryptography Standards (PKCS)
#11: Cryptographic Token Interface Standard (Cryptoki) V2.30, April
20009.

RSA SeEcurITY INC. Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Standard V2.2, October 2012.

https://msdn.microsoft.com/library/windows/hardware/dn915086%28v=vs.85%29.aspx
https://msdn.microsoft.com/library/windows/hardware/dn915086%28v=vs.85%29.aspx
https://tools.ietf.org/html/rfc2986
http://poliisi.fi/identity_card/applying_for_an_identity_card
http://poliisi.fi/identity_card/applying_for_an_identity_card
http://poliisi.fi/identity_card/applying_for_an_identity_card
http://poliisi.fi/identity_card/applying_for_an_identity_card

BIBLIOGRAPHY 49

[26]

[30]

[31]

32]

SHAO, J., QIN, Y., FENG, D., AND WANG, W. Formal Analysis of
Enhanced Authorization in the TPM 2.0. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Se-
curity (New York, NY, USA, 2015), ASIA CCS ’15, ACM, pp. 273-284.

TRUSTED COMPUTING GROUP. TCG Software Stack (TSS) Specifica-
tion version 1.20 Errata A. https://www.trustedcomputinggroup.org/
resources/tcg_software_stack_tss_specification, March 2007.

TRUSTED COMPUTING GROUP. TCG Software Stack Feature API Fam-
ily 2.0, Level 00 Revision .12. https://www.trustedcomputinggroup.
org/resources/tss_feature_api_specification, November 2014.

TRUSTED COMPUTING GROUP. Trusted Platform Module Li-
brary Specification, Family 2.0, Level 00, Revision 01.16, Parts 1-
4. https://www.trustedcomputinggroup.org/resources/tpm_library_
specification, October 2014.

TRUSTED COMPUTING GROUP. TCG PC Client Platform
TPM Profile (PTP) Specification, Family 2.0, Level 00, Revi-
sion 00.43. https://www.trustedcomputinggroup.org/resources/pc_
client_platform_tpm_profile_ptp_specification, January 2015.

TRUSTED COMPUTING GROUP. TSS System Level API and TPM
Command Transmission Interface Specification Family 2.0, Level 00,
Revision 01.00. https://www.trustedcomputinggroup.org/resources/
tss_system_level_api_and_tpm_command_transmission_interface_

specification, January 2015.

UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS,
F. C. M., ANDERSON, A. V., BENNETT, S. M., KAGI, A., LEUNG,
F. H., AND SMITH, L. Intel virtualization technology. Computer 38, 5
(May 2005), 48-56.

https://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
https://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
https://www.trustedcomputinggroup.org/resources/tss_feature_api_specification
https://www.trustedcomputinggroup.org/resources/tss_feature_api_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://www.trustedcomputinggroup.org/resources/pc_client_platform_tpm_profile_ptp_specification
https://www.trustedcomputinggroup.org/resources/pc_client_platform_tpm_profile_ptp_specification
https://www.trustedcomputinggroup.org/resources/tss_system_level_api_and_tpm_command_transmission_interface_specification
https://www.trustedcomputinggroup.org/resources/tss_system_level_api_and_tpm_command_transmission_interface_specification
https://www.trustedcomputinggroup.org/resources/tss_system_level_api_and_tpm_command_transmission_interface_specification

Appendix A

Introduction to common TPM2

commands

TPM2_StartUp
TPM2_GetCapability

TPM2_FlushContext

TPM2_Hash

Initialize the TPM.

Inquire implementation specific information from
TPM.

Remove object (key, session, sequence, etc.) from
TPM memory.

Calculate hash function in one operation.

TPM2_HashSequenceStart Calculate hash function from large data

TPM2_SequenceUpdate
TPM2_SequenceComplet

TPM2_Create
TPM2_CreatePrimary

TPM2_LoadExternal

TPM2_ReadPublic

TPM2_Sign
TPM2_VerifySignature

buffer.
Append data to sequence.

e Append data to sequence and close the se-
quence.

Create new key-pair on TPM.

Create new primary key-pair on TPM. Primary
keys form a key hierarchy and therefore do not
have parent key.

Load external public or public-private key into
TPM.

Read public part of a key-pair.
Cryptographically sign a hash created by TPM.
Verify a cryptographic signature.

30

APPENDIX A. INTRODUCTION TO COMMON TPM2 COMMANDS51

TPM2_ StartAuthSession Start HMAC or policy based authorization
session on TPM.

TPM2 PolicyRestart Returns the policy authorization session to
its initial condition.

TPM2_PolicyAuthorize If the current policyDigest value is signed
with valid certificate X then the policyDigest
is replaced with value equal to certificate X.

TPM2_PolicyAuthValue Updates policyDigest if user can provide right
auth Value to access some restricted object.

TPM2_PolicyCommandCode Limit the use of policy session to only one
command code.

TPM2_PolicyGetDigest Read the current policyDigest.

TPM2_PolicyNV Updates the policyDigest value based on
value of non-volatile memory. Can test if the
value on NV memory is equal, non-equal, less
than or more than some arbitrary.

TPM2_PolicyOR If the policyDigest matches one of the input
digest values, then the policyDigest is reset to
zero and updated by the concatenation of all
input digest values.

TPM2_PolicyPassword Authorize the access if a valid password au-
thorization is provided when the policy ses-
sion is used.

TPM2_PolicyPCR Updates the policyDigest value based on a
value of particular PCR.

TPM2_PolicySigned Update the policy if a valid signature for the
parameters of the command is presented.

TPM2_PolicySecret Update the policy if a knowledge of a secret

is presented in a form of HMAC hash of the
command parameters.

APPENDIX A. INTRODUCTION TO COMMON TPM2 COMMANDS52

TPM2_NV_DefineSpace Allocate a space from non-volatile memory.

TPM2_NV_Extend Add a new value to hash chain/tree stored on
NV memory. Behaves as PCRs.

TPM2_NV_Increment Increment a counter stored on non-volatile
memory.

TPM2_NV_Read Read from non-volatile memory.

TPM2_NV_SetBits Modify non-volatile memory allocated as bit
field.

TPM2_NV_UndefineSpace Deallocate space in non-volatile memory.
TPM2 NV_Write Write to non-volatile memory.

	Cover page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Research Goals
	1.3 Structure

	2 Background
	2.1 Public-key cryptography
	2.2 Standardization
	2.3 Trusted Platform Module
	2.3.1 Platform Configuration Register
	2.3.2 Enhanced Authorization
	2.3.3 TPM Software Stack
	2.3.4 TPM Form Factor

	2.4 Trusted Execution Environment
	2.5 Intel Management Engine
	2.6 ARM TrustZone
	2.7 On-Board Credentials
	2.8 Smart cards

	3 Design
	3.1 Requirements
	3.1.1 Functionality
	3.1.2 Algorithms

	3.2 Mapping TPM and PKCS #11 interfaces
	3.2.1 Sessions
	3.2.2 Authentication
	3.2.3 Multi-part command flow

	4 Implementation
	4.1 Architecture
	4.2 TPM communication module
	4.2.1 TPM communication interface
	4.2.2 Implemented TPM functions
	4.2.2.1 Functions used for eID
	4.2.2.2 Additional implemented functions

	4.3 PKCS #11 module
	4.3.1 PKCS #11 interface

	5 Evaluation
	5.1 Implementation coverage
	5.2 Performance metrics
	5.3 Results

	6 Discussion
	6.1 Security compared to smart card
	6.2 Usability compared to smart card
	6.3 Improvements

	Bibliography
	A Introduction to common TPM2 commands

		2016-04-12T23:28:41+0300
	LEHTOMÄKI LARI 145932533

	

