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An unprecedented increase is expected in the demand for mobile data traffic, which 

requires significant changes in the access network. On the one hand, the penetration 

of new technologies and networks such as Internet of Things (IoT) introduces a 

large amount of additional traffic of different kinds. On the other hand, the cell size 

will be reduced, which results in a higher number of base stations that need to be 

deployed, requiring additional investments by operators. 

This thesis proposes the integration of base stations with a software-defined core 

network as a way to make the access network more cost-effective, scalable and 

flexible. Virtualisation technologies allow the possibility of deploying network 

nodes using generic, off-the-shelf IT hardware, therefore reducing costs thanks to 

the application of economies of scale. This thesis implements a virtualised solution 

for LTE network’s access node, eNodeB. It will be shown that virtualisation also 

presents additional benefits in terms of network orchestration and scalability. The 

result of the thesis can initially be used as a part of a simulated end to end SDN 

controlled mobile network, allowing the modification of user plane protocol stack. It 

can be later integrated with a software defined radio component and used with 

radioheads to form full SDN style base stations e.g. for a 5G test network. 

Keywords: virtualisation, LTE, eNodeB, EPC, NFV, SDN, UE  

 



I 

 

 

 

 

 

 

Contents 

 

 

Introduction .................................................................................................................... 1 

1.1 Motivation ........................................................................................................ 1 

1.2 Research problem............................................................................................. 2 

1.3 Objective and Scope ........................................................................................ 2 

1.4 Structure ........................................................................................................... 3 

Background .................................................................................................................... 4 

2.1 Software Defined Networking (SDN) ............................................................. 4 

2.1.1 Evolution of SDN ......................................................................................... 4 

2.2 OpenFlow ......................................................................................................... 5 

2.3 Networks Functions Virtualisation (NFV) ....................................................... 5 

2.4 Software Defined Radio (SDR) ....................................................................... 6 

2.4.1 Evolution of SDR .......................................................................................... 6 

2.4.2 Cognitive radio.............................................................................................. 7 

2.5 Long Term Evolution (LTE) ............................................................................ 7 

2.5.1 eNodeB ......................................................................................................... 8 

2.5.2 Mobility Management Entity (MME) ........................................................... 8 

2.5.3 Protocols ....................................................................................................... 8 

2.5.4 X2 Application Protocol (X2AP) .................................................................. 9 

2.5.5 S1 Application Protocol (S1AP) ................................................................... 9 

2.5.6 Radio Link Control protocol (RLC) ........................................................... 10 

2.5.7 Logical channels ......................................................................................... 10 

2.5.8 Physical Resource block ............................................................................. 11 

2.5.9 Packet Data Convergence Protocol (PDCP) ............................................... 11 

2.5.10 Radio Resource Control (RRC) ................................................................ 11 

2.5.11 Control of lower layers in RRC ................................................................ 14 

2.5.12 Non Access Stratum (NAS) ...................................................................... 15 

Related work ................................................................................................................ 18 

3.1 MME model ................................................................................................... 18 

3.2 Design Tools .................................................................................................. 20 

3.2.1 The GSMTAP header .................................................................................. 20 

3.2.2 Virtual Machine........................................................................................... 21 

3.2.3 Linux network namespaces ......................................................................... 21 

Implementation ............................................................................................................ 22 

4.1 eNodeB model ............................................................................................... 22 

4.1.1 PDCP module .............................................................................................. 22 

4.1.2 State machines ............................................................................................ 24 

4.1.3 RRC module................................................................................................ 24 

4.1.4 RRC state machines .................................................................................... 25 



II 

 

 

 

4.1.5 S1AP module .............................................................................................. 26 

4.1.6 UE NAS module ......................................................................................... 27 

Experimentation methodology ..................................................................................... 29 

5.1 Motivation ...................................................................................................... 29 

5.2 Virtual Machines scenario .............................................................................. 30 

5.2.1 Challenges of the VM scenario ................................................................... 31 

5.3 Linux networking namespaces scenario ........................................................ 32 

5.3.1 Challenges of the NS scenario .................................................................... 33 

5.4 Testing scenario .............................................................................................. 33 

Implementation results ................................................................................................. 34 

6.1 Implementation Scope ................................................................................... 34 

6.2 Traffic type ..................................................................................................... 34 

6.3 Base systems .................................................................................................. 35 

6.4 Control plane testbed measurements ............................................................. 35 

6.5 User plane testbed measurements .................................................................. 36 

6.6 Orchestration measurements .......................................................................... 41 

6.7 Results in different base systems ................................................................... 42 

6.8 Analysis of user plane tests ............................................................................ 42 

6.9 Analysis of orchestration results .................................................................... 43 

6.10 Comparison of base systems ........................................................................ 44 

Conclusions .................................................................................................................. 45 

Reference ..................................................................................................................... 47 

 



III 

 

 

 

Acronyms 

AM Acknowledged Mode 

ARQ Automatic Repeat reQuest  

API Application Programming Interface 

CCCH Common Control CHannel 

DCCH Dedicated Control CHannel 

DTCH Dedicated Traffic CHannel 

CES Customer Edge Switching 

CMAS Commercial Mobile Alert Service 

DRB Data Radio Bearer carrying user plane data 

DRX Discontinuous Reception 

eNB  eNodeB 

EPC Evolved Packet Core 

EPS Evolved Packet System 

ETWS Earthquake and Tsunami Warning system  

E-UTRA Evolved Universal Terrestrial Radio Access 

FMS First Missing (PDCP) Service Data Unit 

GNU GNU’s Not Unix! (Recursive Acronym) 

GTP GPRS Tunnelling Protocol 

HARQ Hybrid Automatic Repeat reQuest 

HSS Home Subscriber Server 

IE Information Element 

IMSI International Mobile Subscriber Identity  

I/O Input/Output 

IoT Internet of Things 

ITU International Telecommunications Union 

LTE Long-Term Evolution 

MAC Media Access Control 

MME Mobility Management Entity 

NAS Non-Access Stratum 

NAT Network Address Translation 

NFV Networks Functions Virtualisation 

NSN Nokia Siemens Networks 

OS Operating System 

PCRF Policy control and Charging Rules Function 

PDCP Packet Data Convergence Protocol 

PDN Packet Data Network 

PDU Protocol Data Unit 

P-GW Packet data network-GateWay 

PRB Physical Resource Block 

PPS Packets Per Second 

RLC Radio Link Control protocol 

RRC Radio Resource Control protocol 

S1AP S1 Application Protocol 



IV 

 

 

 

SAE System Architecture Evolution   

S-GW Serving-GateWay    

SDN Software- Defined Networking 

SDR Software- Defined Radio 

SDU Service Data Unit 

SRB Signalling Radio Bearer carrying control plane data 

SSH Secure SHell 

s-TMSI SAE Temporary Mobile Station Identifier  

TEID Tunnel Endpoint IDentifier 

TM Transparent Mode 

UE User Equipment 

UM Unacknowledged Mode 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VRF Virtual Routing and Forwarding 



 

 

1 

 

Chapter 1  

 

Introduction 

Since their introduction in the market in late 1940’s (US) / early 1950’s (Europe) [1], 

the number of mobile phone subscriptions in Europe has grown up to an estimate of 

120,6 subscriptions per 100 inhabitants
1
 in 2015. Nowadays there is a wide variety of 

devices in the market, offering advanced technological features and high data 

transmission rates [2], [3]. 

This translates to a corresponding increase in the demand of mobile data traffic. The 

global mobile data traffic grew 81 percent in 2013, and by 2018 it is expected that the 

aggregate smartphone traffic will be 11 times more than today [4]. 

As a consequence of this growth, it is expected that new network structures with 

smaller cell sizes will be deployed. Estimates are that the increase in traffic cannot be 

supported by the current macro cell networks for another year or two [5]. At the same 

time, the increase in demand is expected to be coupled together with a corresponding 

decrease in the price paid for data to operators. These two factors present a future 

scenario where the elements of the access network need to become cheaper to install 

and maintain, easier to manage and update, and also more scalable. 

In the new paradigm of software defined networks, virtualised access nodes can 

satisfy these needs, thanks to the advanced state of development of cloud 

technologies. The proposal of such paradigm is to separate the network elements into 

forwarding (hardware) and control (software) components. In this way most of the 

hardware needed to fulfil the network requirements no longer has to be be specialized 

network hardware. Moreover, the network application servers can be virtualised and 

sourced on-demand. This separation allows the deployment of Software Defined 

Network (SDN) which is more dynamic [6] and has the possibility of adding new 

capabilities or correcting faults in any of the elements in a matter of seconds. 

 

1.1 Motivation 

The Evolved Universal Terrestrial Radio Access (E-UTRA) network is the access 

network of the Long Term Evolution (LTE) architecture which is composed of 

                                                 
1
 (May 2015) ITU statistics: http://www.itu.int/en/ITU-D/Statistics/Pages/default.aspx 
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commercial eNodeB’s that communicate with the core network through 

mobile-specific protocol solutions. This restricts the flexibility in terms of integration 

with other network functionalities such as caching, monitoring and packet forwarding. 

The virtualisation of the network opens up the possibility of modifying the network 

protocol stack itself, allowing for a more flexible network implementation. More 

specifically a new type of base station with SDN capability can be introduced, which 

is capable of interacting with an SDN-enabled packet core network. 

By means of virtualisation and SDN technologies, it is possible to implement different 

network functionalities on commercial off-the-shelf data communications equipment 

as opposed to specialized communications equipment. The deployment of more 

standard, mass-produced equipment provides the possibility of taking advantage of 

economies of scale and therefore reduces capital expenditure. 

  

1.2 Research problem 

The purpose of this thesis is to develop a virtualised eNodeB application and study its 

performance in the context of a software-defined network, in a practical manner. This 

application must be capable of utilizing the LTE radio protocols and assign and 

recognize radio resources, so that it can be later integrated with a software defined 

radio component and radioheads to form a full SDN style base station. 

The application is used to emulate an end to end SDN controlled mobile network, 

which allows the modification of the user plane protocol stack.  

1.3 Objective and Scope 

For this thesis I have studied the most relevant functionalities of the eNodeB inside 

the Evolved Packet Core (EPC). I have designed and implemented virtualised eNodeB 

and UE applications, which are capable of performing the most significant LTE 

procedures, so that a user plane connection can be established and used. The logic of 

both applications is capable of performing basic operations regarding management of 

radio resources, while at the same time they can be run in a local Ethernet network, 

without the need of radio heads, for testing purposes.  

For the rest of virtualised elements of the network, I have employed an existing 

implementation of the Mobility Management Entity (MME) and Home Subscriber 

Server (HSS), as well as an available open source implementation of the Serving 

/Packet Data Network Gateway (S/P GW). 

Finally, I have developed a testbed whose purpose is to measure the performance of 

the eNodeB application in such a network. The testbed includes a modified version of 

a traffic analyser that allows the visualisation of LTE protocols and signalling in this 

context. Different testing configurations have been attempted, and in this thesis I 

describe the configuration that I considered to present the results that are most reliable 

and specific to eNodeB. During the testing phase, I have also proposed, implemented 
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and tested modifications to the user plane stack, the testbed and the applications, to 

present them as practical examples of the advantages that virtualisation technologies 

can bring to base stations. 

 

 

1.4 Structure 

This thesis is divided in 7 chapters, where Chapter 1 is the introduction. Chapter 2 

provides a theoretical background introducing the concepts of SDN, SDR and 

presents their respective evolutions in time. Chapter 3 discusses the current 

development ongoing in parallel with this work, which have been used as reference, 

as well as the most relevant tools that have been used, and the hypotheses under 

which the work was made. Chapter 4 describes in detail the practicalities for the 

implementation of the SDN enhanced eNodeB. Chapter 5 details the experimentation 

methodology. Chapter 6 evaluates the results, and further analyses the scope and 

validity of said results. Finally, Chapter 7 provides conclusions. 
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Chapter 2 

 

Background 

This chapter describes the technologies involved in the implementation of the 

objectives of this thesis. First, a definition of SDN, NFV and SDR technologies is 

provided, followed by a description of their evolution and relevant examples of 

application of such technologies. Next, the LTE architecture is described, including its 

network elements MME and eNodeB. Finally, the LTE protocols involved in this 

work are described together with their most relevant functions. 

 

2.1 Software Defined Networking (SDN) 

SDN is a network architecture that separates the forwarding plane and the control 

plane functions, which are vertically integrated. The control plane can control several 

devices
2
.  

This allows the control to be migrated from individual network elements into remote 

computing devices. Network administrators can access these remote devices to 

manage network services, thus allowing those services to be abstracted from lower 

level functionality. On the other hand, the applications and network services can treat 

the network as a logical entity [7]. 

 

2.1.1 Evolution of SDN 

The concept of programmable networks has been present in the industry for many 

years already. Throughout this evolution, there have been different approaches to the 

concept of SDN [8].  

The Open Signalling working group was created in 1995, promoting the development 

of a programmable network, which is easy to escalate. After that, an IETF working 

group released the specification of General Switch Management Protocol (GSMP), a 

                                                 
2
 Open Networking Foundation: SDN definition. Available online: 

https://www.opennetworking.org/sdn-resources/sdn-definition 
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protocol that allows a controller to access many network functions such as reservation 

and deletion of switch resources.  

In the early 2000’s, the researchers explored ways to address the challenges of 

network management functions, such as predicting or controlling traffic routes. The 

tendency was to find ways to separate the control and data planes so that the network 

management tasks could be easier. In 2006 NETCONF was proposed as a 

management protocol capable of modifying the configuration of network devices. In 

that same year, the Ethane project defined a new network architecture that could use a 

centralized controller to manage policy and security in a network [8] [9]. 

Currently, the two most popular SDN architectures are OpenFlow and ForCES. Both 

approaches establish the separation between the hardware that takes care of data 

forwarding and an abstraction layer that is responsible for communication with the 

controller through a signalling protocol (OpenFlow or ForCES). ForCES (Forwarding 

and Control Element Separation) establishes also a similar separation, defining the 

Forwarding Element and the Control Element, which communicate with each other 

through the ForCES protocol. 

 

2.2 OpenFlow 

OpenFlow is one of the leading technologies in SDN which is currently promoted by 

the Open Networking Foundation (ONF). The ONF was formed in March 2011 and 

backed up by companies like Microsoft, Google, Cisco or Facebook [10]. 

It was proposed in 2008 as “a way for researchers to run experimental protocols in the 

networks they use every day” [11]. OpenFlow takes advantage of the capability of 

many modern Ethernet switches to separate different flows, which allows the 

possibility to separate ordinary “production” traffic from “research” traffic that can be 

used for experimentation.  

 

The OpenFlow feature can be easily implemented to an existing switch, since no 

hardware change is needed. Therefore, hardware vendors tend to support the 

possibility of enabling OpenFlow in their devices. 

 

2.3 Networks Functions Virtualisation (NFV) 

The aim of Network Functions Virtualisation (NFV) is to make use of IT 

virtualisation technology to standardize a wide variety of network components into a 

smaller subset of elements, capable of performing data processing, packet switching 

and storage at a large scale [12]. These network components could be located in 

“Datacentres, Network Nodes and in the end user premises” [12]. Virtualisation of 

network functions is not interdependent with SDN. Thus, network functions can be 

virtualised without the need of SDN implementation, and the separation of control 
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and data forwarding planes can be achieved without the need of virtualising the 

networks functions.  

Nevertheless, a better performance is expected by combining NFV and SDN. SDN 

allows for easier operation and maintenance, while on the other hand NFV provides 

an infrastructure upon which SDN programs can be run. 

 

2.4 Software Defined Radio (SDR) 

The Software Defined Radio Forum defines SDR as “Radio in which some or all of 

the physical layer functions are software defined
3
”. This implies that functions of 

devices which have been usually hardware are now done by a software program, in 

some cases even the device itself is substituted by a program. 

The same hardware is being used as a base for many different devices, thus the cost of 

each device is lower than specialized hardware’s cost, making it more affordable. 

 

2.4.1 Evolution of SDR 

The concept of SDR is not new, but the current state of development of the 

technology makes it possible for developers to implement functionalities that 

previously have been merely concepts. 

In 1987, Air Force Rome Labs developed a programmable modem intended as an 

evolution of the ICNIA architecture, consisting of several single-purpose radios that 

were used as one piece of equipment. The next examples can be found at 1990 and 

1995 with systems SPEAKeasy-I and SPEAKeasy-II respectively, developed by 

AFRL and DARPA. In this case it was a fully programmable radio, including a 

programmable cryptography chip. The second SPEAKeasy model had a more 

compact size and therefore more practical. Later, these systems evolved so that the 

software could be fully independent from the hardware and therefore used in other 

models [13]. 

In 1996 the SDR forum was founded, with the intention of advocating “for the 

innovative use of spectrum, and advancing radio technologies that support essential or 

critical communications worldwide”. The organization played an important role in the 

development of industry standards, which could allow the software components to be 

more portable across different hardware vendors [13]. 

The evolution of computers has made it possible that nowadays the digital signal 

processing operations required for radio hardware can be performed by software in a 

personal computer. In 2001 the GNU Radio project was initiated, which is a 

software-defined radio system distributed under the terms of the GNU General Public 

                                                 
3
 SDR forum web page: http://www.wirelessinnovation.org 
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License, allowing virtually anyone to use it. 

 

2.4.2 Cognitive radio 

Cognitive radio was defined by IEEE and SDR Forum as a “Radio in which 

communications systems are aware of their environment and internal state, and can 

make decisions about their radio operating behaviour based on that information and 

predefined objectives” [14]. 

In basic software defined radio, important radio properties can be software defined, 

such as carrier frequency, signal bandwidth, modulation and network access. In the 

current stage of development, many other functions can be defined by software, such 

as wireless networking, artificial intelligence, the regulatory support, the business 

model and even the protocols themselves. 

Cognitive radio allows for transmitters to measure the spectrum that is currently in 

use and which spectrum is available, and by selecting the available spectrum it is 

possible to avoid mutual interference. Other very useful feature is the automatic 

adjustment of the transmitted power. 

 

2.5 Long Term Evolution (LTE) 

The Long Term Evolution project was initiated in 2004 and the first LTE release
4
 was 

3GPP Release 8 in December 2008 . Even though at the beginning of LTE 

development there were no applications that had bandwidth and latency requirements 

as demanding as nowadays, the industry demanded a new wireless system that was 

suitable for high data rate, as the UMTS system was considered as more oriented 

towards voice service. At the time when this thesis has been written, LTE remains the 

latest extension in the evolution of 3GPP systems.   

The term “Evolution” in LTE is also used to refer to its specific radio access network 

Evolved – Evolved Universal Terrestrial Radio Access Network (E-UTRAN), the core 

network architecture i.e. System Architecture Evolution (SAE) and its corresponding 

packet core i.e. Evolved Packet Core (EPC). 

The EPC is composed by the Packet Data Network Gateway (P-GW), the Serving 

Gateway (S-GW), the Home Subscriber Server (HSS), the Policy Control and 

Charging Rules Function (PCRF), and the Mobility Management Entity (MME). 

In the outer limits of the EPC is the P-GW, which provides connectivity with external 

data networks. Among its functions the P-GW takes care or allocating IP addresses to 

the User Equipment (UE) and filtering of IP packets (guided by the PCRF) into data 

streams. 

                                                 
4
 3

rd
 Generation Partnership Project website: 

http://www.3gpp.org/technologies/keywords-acronyms/98-lte 
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The S-GW constitutes an anchor for mobility during LTE handovers and also for 

mobility between LTE and other technologies. The uplink/downlink data passes 

through the S-GW, irrespective of the access network. [15]. 

The Home Subscriber Server constitutes a user database that contains the information 

of the subscriber profiles and performs authentication and authorization of the user.  

The central node of the core network is the MME. It performs bearer management 

functions, and it is responsible for the UE idle mode procedure. The MME also 

performs authentication procedures to check the validity of the UE and provides 

security keys to the eNodeB [15]. 

 

2.5.1 eNodeB 

The Radio Access Network or E-UTRAN consists only of eNodeB’s. The advantage 

of this in comparison to UTRAN is that the number of network elements in the uplink 

/downlink data stream is minimized, resulting in lower round trip times. The 

eNodeB’s communicate with other eNodeB’s using the X2 interface.  

The eNodeB provides the UE with data and control plane terminations. It is 

responsible for managing the radio resources for the UE and establishing and 

managing radio bearers towards the UE. The eNodeB is responsible for collecting 

radio measurements from the UE, and handover procedures. 

 

2.5.2 Mobility Management Entity (MME) 

The Mobility Management Entity is responsible for the signalling related to mobility 

and security for the E-UTRAN access. The MME is also responsible for the 

management of resources such as the EPS bearers.  

The MME constitutes the end point of the Non-Access Stratum (NAS), in contrast 

with the eNodeB which merely encapsulates the NAS messages in Radio Resource 

Control protocol (RRC) messages or S1-Application Protocol (S1-AP) messages and 

forwards them. The protocol stack is shown in Figure 1 where we can identify the 

location of the NAS and S1-AP protocols. 

2.5.3 Protocols 

Figure 1 shows the corresponding protocols for the LTE stack. In the control plane 

protocol stack, it is important to note that the NAS layer is not present in the eNodeB. 

The user information can be transmitted through the usage of the user plane protocol 

stack once the UE has been connected to the network (see Figure 3 and Figure 5). 

Also in the user plane stack, it must be noted that the UDP/IP layer is not present in 

the radio link between UE and eNodeB, and yet a user plane application running in 
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the UE side may still be using the UDP/IP layer and expecting UDP datagrams. 

 

Figure 1: Control plane LTE protocol stacks UE – MME ([16] Fig. 5.1.1.3-1) 

 

 

Figure 2: User plane LTE protocol stacks UE – PGW ([16] Fig. 5.1.2.1-1)  

2.5.4 X2 Application Protocol (X2AP) 

The X2 Application Protocol is the protocol used by eNodeB’s to communicate 

between themselves within the E-UTRAN. It provides the functions of mobility 

management, load management, reporting of general error situations, resetting of X2, 

setup of X2, eNB configuration update, mobility parameters management, mobility 

robustness optimization and energy saving [17].  

2.5.5 S1 Application Protocol (S1AP) 

The S1 Application Protocol [18] provides the signalling between the E-UTRAN and 

the Evolved Packet Core, which is required to fulfil a number of functions, including 

radio access bearer management, mobility functions, handling of information related 

to active UE and signalling function between UE and MME. 

As seen in Figure 1, S1AP will be the highest layer control plane protocol in the 

eNodeB, meaning that NAS messages directed from UE to MME and vice versa will 
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be encapsulated within S1AP messages. It also means that the virtualised eNodeB 

application’s logic will not parse NAS messages but simply forward them. 

2.5.6 Radio Link Control protocol (RLC) 

The RLC protocol is responsible for the framing of RLC Service Data Units (SDU) 

and putting them into the size indicated by the lower Media Access Control (MAC) 

layer. These SDUs are then segmented and/or concatenated to construct RLC PDUs 

[15]. There are three different types of RLC PDUs: 

In Transparent Mode (TM), the data is transmitted as it is. No headers are added 

neither concatenation is performed of the SDUs. TM offers no delivery guarantees 

[19]. 

In Unacknowledged Mode (UM), the data is transmitted with RLC headers, but still 

no delivery guarantees. This is suitable for carrying delay-sensitive user traffic. 

In Acknowledged Mode (AM), the data is transmitted with the possibility of 

retransmission. This mode is used by most of the traffic in both control plane and user 

plane (background type user traffic such as web browsing and file transfer). 

The RLC functions that we considered most relevant with respect to this thesis were 

TM/UM/AM data transfer and Automatic Repeat Request (ARQ) procedures 

(polling). 

The advantage gained by having the possibility of choosing AM or UM/TM transfer 

in the RLC layer is that we are allowed to sacrifice reliability in favour of shorter 

delay by using a non-Acknowledged mode. In the MAC layer, Hybrid Automatic 

Repeat Request (HARQ) is employed which is faster than ARQ. 

2.5.7 Logical channels 

Logical channels are established between the sublayers of RLC and Media Access 

Control (MAC). The differentiation between the different logical channels that exist in 

LTE has to do with the nature of the information that they transport. 

With respect to the control plane, Common Control CHannel (CCCH) and Dedicated 

Control CHannel (DCCH) are most relevant in this work. The CCCH will be used 

when an UE has no connection to the access network, while DCCH will be used once 

the UE is connected. 

On the other hand, Dedicated Traffic CHannel (DTCH) will be the channel used for 

transmission of user plane information, once a data radio bearer is established (see 

next section). 

Other logical channels are: Paging Control CHannel (PCCH) for the paging 

procedure, Broadcast Control CHannel (BCCH), Multicast Control CHannel 

(MCCH), Multicast Traffic CHannel (MTCH). 
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2.5.8 Physical Resource block 

The Physical Resource Block (PRB) is the basic radio resource allocation unit for 

LTE. Different radio signals can be multiplexed depending on their carrier frequency 

and the time period during which they are sent. Thus, the LTE radio resources consist 

of carrier frequencies and time slots that can be assigned out of the frequency and 

time resources available.. The PRB is therefore a unit in bandwidth and time. It 

consists of 12 subcarriers for a total bandwidth of 180 KHz, and 0,5 ms during which 

7 symbols can be transmitted.  

Even though this work does not deal with the physical layer directly, the concept of 

resource block is important for the eNodeB and UE to deduce the corresponding time 

slot in which the messages are being sent, since this slot will be configured as uplink 

(UL) or downlink (DL) and thus the message will be considered UL or DL according 

by that.  

Traffic in the uplink direction is sent from the UE to the core network, while 

downlink traffic is transmitted from the core network to the UE. 

2.5.9 Packet Data Convergence Protocol (PDCP) 

The PDCP protocol supports functions such as header compression, ciphering and/or 

integrity protection in the LTE stack. It also has the capability of tracking and 

maintaining sequence numbers and the order in which the packets are received. In this 

way, the PDCP layer provides in-sequence delivery of upper layer PDUs. 

A PDCP PDU may have 10 different formats if we take into account the different 

sequence numbers’ lengths: these formats are specified in clauses 6.2.2 to 6.2.9 of 

[20]. These PDUs can be further classified as control or user plane PDUs, being the 

first type (clause 6.2.2) corresponding to a PDU carrying data from Signalling Radio 

Bearers (SRB), and the second type (clauses 6.2.3 to 6.2.9) the type that carries data 

from Data Radio Bearers (DRB). The data plane PDUs themselves can be further 

classified as Data or Control PDUs, distinction that is indicated in the first bit of each 

data plane PDU (D/C: 0 for Data and 1 for Control). 

2.5.10 Radio Resource Control (RRC) 

The RRC layer is present both in UE and eNodeB elements of the LTE architecture. 

This layer is responsible for many aspects of the radio connection and configuration 

between both elements and as such it belongs to the control plane. 

Because of its presence in the control plane in both of the elements that were 

virtualised in the development phase of this work, the RRC layer has a wide influence 

in the architecture and design. It will also play a key role in the design of the API of 

any software defined module that is involved with the physical layer. 

From the point of view of this implementation and upper layers, the important 
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functions of RRC include the UE measurement reporting, mobility management 

(handover procedures will be related to UE measurements), transfer of NAS messages 

and the establishment and maintenance or release of radio connection between UE 

and eNodeB. 

The Radio Bearers (RB) provide a connection segment using the EUTRAN for 

supporting a LTE bearer. 

The Signalling Radio Bearer 0 or SRB0 provides no integrity nor ciphering 

protection. It is used for the establishment or reestablishment of connection. Only 

RRC messages are carried through this bearer. Uses the Common Control CHannel 

(CCCH) on Transparent Mode RLC. The virtualised eNodeB and UE applications will 

process all packets that are sent through this bearer. 

The SRB1 carries most of the RRC messages. It can also transmit NAS information in 

exceptional cases when SRB2 is not established or when NAS is piggybacked in the 

Connection Establishment procedure. Uses the Dedicated Control CHannel (DCCH) 

logical channel on Acknowledged Mode RLC, and PDCP integrity protection and 

ciphering are applicable.  

The virtualised eNodeB and UE application will process packets sent through SRB1 

only if the bearer has been configured previously with the radio resources allocated 

for that UE. The same applies for bearers SRB2, and all Data Radio Bearers. 

SRB2 supports lower priority RRC messages. This bearer is typically for 

uplink/downlink information transfer, carrying NAS information or measurement 

results. Uses also the DCCH logical channel, so both RLC AM and PDCP ciphering 

and integrity protection are applicable. 

Data Radio Bearers (DRB) 0 to 11 (see [21] clause 6.4) carry user plane messages. 

UM or AM RLC modes may be used. RRC Connection Setup Complete message may 

also carry a NAS piggybacked message. 

The following RRC procedures are the most relevant ones for this work. Virtualised 

eNodeB and UE application must be capable of performing these procedures and 

assign the corresponding radio bearers and logical channels, for the radio emulation to 

be faithful to LTE specifications. 

The RRC connection establishment ([21] clause 5.3.3) is used for establishing an 

RRC connection between EUTRAN the UE (at least SRB1 will be available).  

The RRC Connection Setup Complete message can also carry NAS piggybacked 

messages. This implies that the first NAS message that the UE can send to the 

eNodeB can be already included in the last message of this procedure. 
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RRC Messages 
RRCConnection 

Request 

RRCConnection 

Setup 

RRCConnection 

SetupComplete 

PDCP N/A N/A   

Signalling radio bearer SRB0 SRB0 SRB1 

RLC-SAP TM - UL TM - DL AM 

MAC - Logical channel CCCH CCCH DCCH 

Table 1: Summary of the RRC connection establishment procedure and the 

configuration required for each message 

The RRC connection reconfiguration ([21] clause 5.3.5) can be performed on its 

own or as part of a larger procedure, for example a handover procedure. The purpose 

of this procedure is establishing, modifying or releasing Radio Bearers except for 

SRB1, and/or configure, modify or release the measurements that are to be collected 

by the UE.  

The RRC Connection Reconfiguration Complete message can also carry NAS 

piggybacked messages.  

 

 

 

The UL/DL Information transfer ([21] clause 6.2.2) procedure is used for 

transmission of NAS messages. 

The RRC operations can be modelled by a state machine [22] from the point of view 

Event  RRC reconfiguration failure 
RRC Connection 

Reconfiguration Complete  

Information 

element  

Without MobilityControlInfo  

=> non- handover  
  

UE RRC state  RRC_IDLE  RRC_CONNECTED  

Other actions  

In eNB, after timeout -> 

initiates RRC connection 

re-establishment  

  

PDCP  
Release RBs’ associated 

PDCP entity  

Available. Depends on 

configuration  

Signalling radio 

bearer  
  SRB2  

RLC-SAP  Release of RLC entity  Configured  

MAC - Logical 

channel   
MAC reset  UL DCCH  

Table 2: Summary of the RRC connection reconfiguration procedure and the most important 

characteristics of each message 
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of the UE (see [21] clause 4.2.1). Each UE may be in the state RRC CONNECTED or 

RRC IDLE. If supported by the network, the UE may enter also in discontinuous 

reception (DRX) states. 

 

 

Figure 3: RRC state machine 

 

2.5.11 Control of lower layers in RRC 

The procedures presented in section 2.5.10 indicate a degree of control of the RRC 

layer over the MAC layer. At the same time, procedures corresponding to the MAC 

layer will require specific parameters from RRC. This can be also observed in the 

architecture suggestion presented in Figure 4.[23] 
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Figure 4: RRC architecture suggestion ([23] fig.4.2.1-1) 

 

According to the definitions given in 2.1 and 2.2, a software-defined network 

component will be structured in a modular manner with respect to the network layers, 

and an interface is needed between the different modules. In this case, a software 

module executing the networking functions of the MAC layer will require certain 

information elements and parameters from the RRC layer within the time of 

milliseconds. Thus there must be a fast-access, register-like part of the RRC module 

where certain RRC parameters are available.  

This relationship between the different software modules will later allow the 

justification of the specific SW eNodeB model developed for this thesis. 

2.5.12 Non Access Stratum (NAS) 

The Non-Access Stratum is responsible for the attach procedure (Figure 5), which 

connects the UE to the core network. The NAS is the highest control layer in the LTE 

stack shown in Figure 1. 
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Figure 5: Attach procedure ([16], Figure 5.3.2.1-1) 

 

 

The attach procedure sets the basic signalling needed for the UE to establish a user 

plane connection. In this way, this procedure is also later used as a reference for 

performance in the control plane. 

As part of this thesis, a NAS module has been developed for the UE application that 

connects to the virtualised eNodeB. The implementation of the NAS is functional, and 

A 

B 
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is capable of connecting and authenticating the UE by generating the parameters in 

compliance with [24], clause 10.5.3.1 and [25]. 
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Chapter 3 

 

Related work 

This chapter presents an overview of the virtualised MME application and its 

implementation. Next, the GSMTAP header, Virtual Machines and Linux network 

namespaces are presented, as design tools that will enable the implementation of the 

virtualised eNodeB and UE application.  

3.1 MME model 

In October 2013 an experimental EPC was developed in the department of 

Networking and Communications at Aalto School of Electrical Engineering, using 

existing UE and eNB emulations provided by a third party company, for which a 

MME application had to be developed. This MME is now part of the current EPC 

implementation. 

The initial MME design was based on an “engine” part, which is essentially a queue 

where the states are executed in the sequence defined by a state machine model. This 

way, it is possible to have different independent modules (state machines) which can 

be executed in the engine: the S1 module containing the NAS module, S6a module 

and S11 module. 

 

 

 

Figure 6: Virtualised MME model [26] 
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Since its initial proposal in [26], this MME model has been further developed from C 

based to a C++ based model, providing a more streamlined implementation. 

Most of these tasks are done in asynchronous mode, meaning that we are not creating 

separated threads for each function. This allows for a more scalable solution and also 

the computing resources are more efficiently used [26]. 
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3.2 Design Tools 

A structure as complex as the LTE stack and its functionalities could not be easily 

virtualised without the usage of a fair amount of existing tools that facilitate the 

implementation of the corresponding modules in one way or another. In the spirit of 

keeping compatibility and developing a system as open as possible, tools have been 

chosen which already were used for similar tasks, or that can facilitate compatibility 

with industry standards. 

3.2.1 The GSMTAP header 

GSMTAP is a pseudo-header that is originally intended to transport frames from the 

GSM radio interface in an UDP/IP message. This header is therefore not part of the 

protocol itself, and it has been used for free software implementations of mobile 

interfaces, being OpenBTS (openbts.org) the most notable one. It seems then natural, 

to continue with this trend when implementing an interface that corresponds to the 

next evolution of the radio access technology. 

On the other hand GSMTAP provides with the specific UDP port 4729 assigned by 

the Internet Assigned Numbers Authority (IANA). Apart from the advantages derived 

from having a standardized port to use in cases where no port was otherwise 

specified, this brings also the possibility of using UDP sockets which will be further 

discussed in Chapter 5. 

The addition of this header allows us to have an abstraction from the physical 

channels and also of the logical channels if necessary. The GSMTAP header includes 

a field for the channel type where the channels CCCH, DCCH or DTCH can be 

indicated (see [27]): 

 

 

Figure 7: Sub-types for LTE RRC defined in the GSMTAP header 

 

In conclusion, the usage of this header is a way to convey parameters that correspond 

to the radio link, over Ethernet. 

/* sub-types for TYPE_LTE_RRC */ 

#define GSMTAP_LTE_CH_BCCH 0x01 

 

#define GSMTAP_LTE_CH_CCCH 0x02 

#define GSMTAP_LTE_CH_DCCH 0x03 

#define GSMTAP_LTE_CH_MCCH 0x04 

#define GSMTAP_LTE_CH_PCCH 0x05 

#define GSMTAP_LTE_CH_DTCH 0x06 

#define GSMTAP_LTE_CH_MTCH 0x07 
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3.2.2 Virtual Machine 

A virtual machine (VM) is a software program whose purpose is to provide the 

capability of executing programs as the physical machine would. In the context of this 

thesis, virtual machines will refer more specifically to virtual computers where the 

corresponding NFV programs will be run.  

The usage of virtual machines provides the possibility of simulating a network 

scenario with several elements in the same computer. Apart from that, it also allows 

each element to be running in the most convenient operating system and/or 

distribution, and the machines can be chosen to be the same that would be used in a 

real deployment to run the programs, which makes the simulation as realistic as 

possible, only dependent on the processing power of the host computer. 

Virtual machines also makes the simulation independent from the host computer’s 

system and configuration. The NFV software may require specific version of an 

operating system, kernel, specific libraries or configuration. The employment of 

virtual machines reduces the configuration requirements of the host computer, since 

the only requirement is for the computer to be able to run the VM software. 

A negative aspect of the VM software is that its performance is expected to be worse 

that its physical counterpart. Here it is important to note that many of these concepts 

are not new as explained in Chapter 2, but the current state of technology is what has 

allowed that the gain in flexibility and reduction in costs can compensate for the loss 

in efficiency that virtualisation technologies represent. 

3.2.3 Linux network namespaces 

In the Linux operating system, it is possible to create different network namespaces 

where each namespace can have its own routing table, its own iptables setup 

providing NAT and filtering, and run its own network processes. This technology 

comes from the Virtual Routing and Forwarding (VRF) capability of routers and 

switches, which has existed since the 1990’s and allows, for example, a switch, to 

support thousands of VLANs at the same time. 

In the context of this thesis, the Linux namespaces allow for a more minimalistic 

approach to the simulation of a network with different elements in the same computer, 

provided that the corresponding VNF programs can all be run in the same Linux 

operating system. This tool is therefore convenient for the process of development 

and testing, since it speeds up the setting up of the simulation and test scenarios.  
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Chapter 4 

 

Implementation 

This chapter describes the practicalities of the implementation of the virtualised 

eNodeB and the UE application. It begins by presenting an overview of the 

requirements of the implementation. Next, the software modules are presented, which 

will perform the functions that correspond to PDCP, RRC, S1AP and NAS layers of 

the LTE stack. The implementation of each module is explained, as well as the 

rationale behind the design decisions. 

 

4.1 eNodeB model 

The objective of this implementation will be to integrate the virtualised eNodeB in an 

existing software-defined core network. This implementation must allow the 

possibility of obtaining measurements that will show the improvements derived from 

such an integration. 

The requirements for scalability have been taken into account in the design of the 

virtualised eNodeB and all of its modules. As mentioned in section 3.1, the preferred 

architecture (as advocated e.g. in [28]) is one where only one thread is used (as in one 

thread per processor core), and all events are handled asynchronously including timers 

and reading data from sockets. 

The model consists of several software modules, named after the LTE layers involved. 

Each module will perform the functions of its corresponding LTE layer. 

4.1.1 PDCP module 

After the examination of the protocol stack, it can be noted that the PDCP module has 

a considerable specific weight in this eNodeB implementation; not only because of its 

presence and the functionality it provides in the user plane, but also because of its role 

in the control plane once the RRC connection has been successfully established 

(which is described in the state machine as “forwarding” state). 

I have developed this PDCP module specifically for this project. It is designed in such 

a way that both UE and eNodeB contain internal PDCP entities that exchange PDCP 
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PDUs between them, according to the structure proposed in ([20], clause 4.2.1). 

Each Radio Bearer is associated with a PDCP entity, which brings that each entity is 

associated with either user plane or control plane and a bearer index. 

Each PDCP entity is responsible for the formatting and maintenance of sequence 

numbers. 

Each PDCP entity is also responsible for the correct ordering of received SDUs (from 

RLC) according to sequence numbers. This functionality requires the maintenance of 

fields where a register is kept of the SDUs that have been received correctly. 

This specific set of functionalities, implemented according to [20], is expected to 

work on top of an Ethernet network, which brings up the question of whether the 

packets should be sent and/or received through conventional UDP sockets, raw 

sockets, or a customized type of socket which implements this particular protocol. To 

answer this question, we must take into account the before mentioned “specific 

weight” of the PDCP module in our implementation. 

In the case of raw sockets, the result would be a module which is receiving all the 

possible types of packets that are transmitted to a single Ethernet interface, decoding a 

PDU which can be of one out of 10 different formats (if we take into account the 

sequence number sizes). This not only increases the possibility of processing the 

wrong packet as a PDCP PDU, but also arguably decreases the performance of our 

implementation heavily by forcing unnecessary processing in the receiving entity’s 

part. 

The case of implementing a specific type of sockets for this project poses the 

challenge of decoding PDU’s that lack a unique formal type of header as such, but 

merely begin with an octet where a set of reserved bits and a sequence number field. 

Since there are different lengths for the sequence number field depending on whether 

the PDU corresponds to user or control plane, it follows that the field lengths would 

be different for each PDCP entity. Furthermore, the sequence number itself could have 

virtually any content, forcing the implementation to be further customized, away from 

the standard specifications found in [20]. Compliance with standards and 

interoperability with commercial equipment being some of the primary goals of this 

project, this second implementation option can be discarded right away. 

With the use of GSMTAP headers, the UDP socket option appears as the most 

feasible and practical. Its only demanding requirement is that it includes elements that 

are inextricably related to the RRC module, and therefore must be updated constantly 

and as immediately as possible. 

In the radio link a PDCP entity is created in both sides of the communication. In this 

case Ethernet is being used. In the GSMtap header, the “subslot” field is being used 

for the UL/DL subslot configuration (see 4.1.3) whose values range from 0 to 9, ten 

possible values out of 256 possible. For this reason a convention is established 

between eNodeB and UE that the remaining most significant 4 bits be used for 

specifying the type of PDCP PDU. This convention is not standardized but specific of 

this implementation, and it facilitates the receiver’s PDCP module the type of PDCP 

PDU that is being received. 
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4.1.2 State machines 

In this project we designed a set of software modules that correspond to the different 

layers present in LTE, and each of the modules is modelled as a state machine, or else 

an aggregate of state machines. In the case of the UE, the NAS layer ([29]: clause 

5.1.3) and the RRC layer ([21] clause 4.2.1) have already well defined state machines 

in the corresponding standard definitions. In the case of the rest of state machines and 

modules, the implementation has been more specific for the project, although still 

maintaining a degree of compliance with the specifications. For better clarity, the 

diagrams of said state machines will be presented for each corresponding section. 

The software of each module is written in such a way that the specific operations of 

the layers, together with the parsing of the information elements (IEs), is located in 

specific libraries, in such a way that is not necessary for the developer to know the 

details of the implementation itself. 

On the other hand the specific instructions to be executed in each state of the state 

machine, as well as the conditions that trigger each set of actions, are included in 

separate files, one file corresponding to each state, often using one sentence that 

defines each instruction or condition, thus being more easily readable and 

understandable. 

4.1.3 RRC module 

As explained in2.5.11, the RRC layer in LTE is responsible of MAC functions which 

has deep implications in its software implementation. 

Without going into deep detail with all possible RRC layer parameters, let us take for 

example the System Frame Number field (SFN), which is updated every 10 

milliseconds. The SFN changes in eNodeB and when it does, this information with at 

least this frequency is needed by the MAC layer.  

It is then reasonable to assume that the RRC layer related information must be stored 

in a readily accessible, “register”-like memory structure (the heap, accessible via 

function callbacks). See Figure 8 for a proposal of MAC-RRC software API and refer 

to sections 2.5.10 and 2.5.11 for elaboration on the roles of each channel or module: 
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Figure 8: eNodeB MAC API 

 

With respect to data structures related to RRC and in general to all other software 

modules developed to this thesis such as PDCP, S1AP and NAS, the usage of 

configuration files has been reduced to the minimum, and for initial configuration 

purposes (startup).  

It is a general practice in cloud applications, that no information is to be stored locally 

in the computer in runtime, and thus observing this practice in each module keeps the 

design in line with the cloudification trends (see e.g. [7]: “Future Network 

Architecture” or [30]: section 4.9). 

The different UL/DL configurations that are possible in the radio link between UE 

and eNodeB are shown in table 4.2-2 of [31]. One of these possible configurations 

must be used in the radio link, since in each given configuration there is a 

correspondence between SFN and whether the resource block is UL or DL. 

In this implementation, the GSMTAP header is also used to send the SFN value, 

particularly the 4 least significant bits of the “subslot” field, and configuration 3 from 

[31] is used by default. This is again a convention used for this implementation only, 

since a format is needed to convey the type of physical channel that is being used in 

each case. 

4.1.4 RRC state machines 

Both the RRC state machine in the UE program and the RRC state machine in 

eNodeB have the same states that have been presented in section 2.5.10, with the 

difference being that the eNodeB program will keep track of multiple RRC states 

machines and sets of RRC timers, one for each UE that is connected. 

Due to the nature of the timers that are being used, all the RRC timers are abstracted 

in an class called “timeline” where all the events are marked. Ultimately only one 
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“timer” object is used for all UEs, and the “timeline” class is responsible for adjusting 

the deadline to the nearest event, and updating the list of events afterwards. 

The only disparities with respect to the simple state model shown in 2.5.10 are the 

implementation of the specific RRC connection procedures, which follow the models 

illustrated in figures 9, 10, and 11.. 

 

Figure 9: RRC connection procedure 

 

It is important here to remember that the eNodeB does not have a NAS layer module 

(Figure 1). Therefore, from the eNodeB’s point of view, the NAS Attach procedure is 

simply an RRC Connection Reconfiguration procedure, preceded and followed by a 

forwarding phase where NAS messages are passed in UL and DL direction 

encapsulated in RRC (from/to UE) and S1AP (from/to MME) messages.  

4.1.5 S1AP module 

The model used for the S1AP module and its corresponding state machine is more 

simple than the RRC model in the sense that only one state machine is considered and 
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the communication is assumed to be between the eNodeB and one MME (as opposed 

to multiple UE’s in the RRC case). 

In the virtualised eNodeB, the S1AP module is the highest level control module. As a 

consequence of this, the other state machines in the eNodeB will be subject to the 

S1AP state machine. 

It can be recalled from 2.5.5 that the NAS layer is not present in the eNodeB. 

However, the eNodeB’s S1AP module will change its state once the user plane data is 

enabled, which occurs once the NAS attach procedure is finished. 

 

Figure 10: S1AP State Machine 

4.1.6 UE NAS module 

The UE module has been modelled according to 3GPP standards and is capable of 

completing a RRC connection procedure, a NAS authentication procedure with the 

already existing MME and S/P Gateway, as well as UL and DL user plane data 

transfer once the Attach procedure is finished. The NAS module presented in Figure 

11 constitutes a simplified version of the state machine described in (Figure 

5.1.3.2.2.7.1 of [29]). 
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Figure 11: NAS State machine 
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Chapter 5 

 

Experimentation methodology 

This chapter begins by presenting the motivation behind the experimentation. Then it 

presents the virtual machines and network namespaces scenarios, where different trial 

simulations have been performed. Each scenario is introduced, followed by a more 

detailed description of its setup and configuration and a discussion about the 

challenges encountered when performing a simulation on each scenario. The last 

section reaches to a conclusion about the scenario from where the test results will be 

obtained. 

 

5.1 Motivation 

For emulating a software defined network with NFV components, some kind of 

virtualisation technology will be required.  

To better understand this requirement, we must note that in the NFV paradigm, each 

network component’s functions are performed by a computer program. This program 

is designed to be run in a computer with a specific network configuration and which 

has installed in it the necessary library dependencies for the program to be run. In 

many cases it is also desirable that the program is running in a specific OS, be it 

because of advantages of performance that the OS’ version provides, or because of 

specific implementation needs, such a modified version of kernel that includes a 

customized kernel module (see [32] as an example of this type of implementation). 

Therefore is not practical to create a testbed that runs on a specific machine, in a 

specific operating system. At the same time, the intention behind this work is that 

other researchers can reproduce it and also that the radio emulation components can 

be integrated with radio software and a radiohead. It is best to have a software that 

can be run in different machines, even in cloud computing if desired. 

In the sections 5.2 and 5.3, scenarios with different ways of setting up the emulation 

are proposed and analysed. 

Once the system is established, my intention is to test the capacity of the virtualised 

base station for transmission of user plane traffic. As described in the introduction, it 

is expected that the base stations will be required to process an ever increasing 
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amount of user plane data. For this reason, the user plane tests for the eNodeB must 

involve sending a big amount of user plane packets in the shortest time possible. 

At the same time, a simulation involving small packet size will be the most interesting 

for the purpose of this thesis. 5G technologies are expected to carry a significant 

amount of machine to machine traffic (M2M) and interactive type of traffic, which 

involves small packet size (see e.g. section 3.1 in [33]). At the same time, the 

modification of the protocol stack was mentioned in section 1.2 as part of the 

objectives of this implementation and it affects small packets the most. The specific 

type of traffic which was used will be described in detail in the results section 6.2. 

Finally, the system under test is the eNodeB. If packets are lost by some element other 

than the eNodeB, it should not be considered. This means that the network must be 

configured in such a way that no packets are lost by the kernel.  

In the simulations performed to provide the results of Chapter 6, different network 

measurement tools were used and for any amount of traffic the observed packet loss 

was 0%. This result makes sense if we consider that the virtualised eNodeB is simply 

an application with a buffer, which uses the memory of the system. This brings the 

realization that the system memory and application buffers are big enough not to be a 

bottleneck for the traffic. For this reason, the eNodeB is considered as a queueing 

system where packets are not lost, and I will measure its performance in terms of the 

rate at which it processes packets, also called service rate in queueing theory and 

denoted by µ. The packet arrival rate or λ is also measured and shown in the results to 

compare it to µ. The practicalities of how these measurements are taken are described 

in 6.5. 

As an outcome of this testing, the results will show a feasible way of using the 

application in terms of amount of traffic that it can handle in a period of time. More 

specifically, we will find an upper bound in the packet arrival rate, which is analysed 

in detail in section 6.8. 

5.2 Virtual Machines scenario 

Because of the possibility of many implementation disparities, the most generic 

experimenting scenario is the one where a number of different virtual machines are 

run in the same computer or server, each one of the machines running its own 

networking component in its own OS and/or OS kernel version. 

Both the UE and eNodeB applications are being developed in machines with Linux 

Debian OS. The applications used for MME and S/P Gateway are installed and run in 

Ubuntu server machines with installations as simplistic as possible, thus the 

convenience of accessing them through an SSH client instead of the limited built-in 

terminal. The SSH connection is set up through the “management” network, created 

with the Virtual Machine management program, which allows to connect to the 

different VM’s from the host computer’s OS (Windows in this case). 

The networking configuration used for this scenario is depicted in Figure 12. 
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Figure 12: Networks configured in VM scenario 

 

The IP and IP mask of the Packet Data Network (PDN) is set up by the S/P GW and 

can be configured in the S/P GW machine. The PDN IP that will be assigned to the 

UE once the Attach procedure is completed successfully will fall within this range of 

IP addresses. 

5.2.1 Challenges of the VM scenario 

As mentioned earlier, this scenario allows for the flexibility needed in order to 

accommodate different implementations which require different operating systems 

and / or kernel versions. However, this type of experiment with four VM’s running in 

the same computer will impose heavy requirements on the computer’s processing 

power and memory.  

Moreover, implementations that rely on a customized version of the kernel will often 

do so with the objective of improving performance (among others).  

A good example on this is the OpenAir interface implementation [32], which includes 

a latency test in its test suite. At the time when this thesis was developed, OpenAir’s 

requirement for maximum latency in this test was 45000 ns. This requirement was 

easily fulfilled by one of the lab’s machines at Communication and Networking 

Department in Aalto University, where one of its hard drive’s partitions was used to 

install the specific kernel version required by OpenAir project. However, a virtual 

machine with the same kernel version and the same installation, run on the same 

machine, failed to achieve the latency requirement in any of the test runs performed, 

displaying in some cases more than twice of the maximum latency required. Also the 

basic installation and execution of the software was noticeably slower in a virtual 

machine. 

In Chapter 6, I will give examples of similar differences in performance my own 
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implementation. 

 

5.3 Linux networking namespaces scenario 

The NFV applications (MME, S/P GW, eNodeB, UE) used in this project have the 

advantage of flexibility in terms of the variety of Linux distributions in which they 

can be run. In the VM scenario, different operating systems were used with different 

networking configurations, but it must be noted that two of them were Debian and the 

other two were Debian-based distributions. 

It is therefore possible to run all four applications in the same Debian machine while 

keeping the same networks and IP ranges used in the VM scenario, save by the 

common “mgmt” network which will be no longer needed. This will be accomplished 

by having 4 different network namespaces, one for each application, and an additional 

namespace which will represent a client in the PDN side (called “PDN host” in the 

VM scenario), which connects to the LTE network through the S/P Gateway. 

The requirements for this one machine will be having installed the required libraries 

for all four applications, and also a Linux kernel version of 3.8 or newer, (for full 

support of SCTP in network namespaces). 

The OS will in fact treat these namespaces as if they were different networks, while 

the improvement in performance will be noticeable especially for slower machines. At 

the same time, this scenario allows for more flexibility of experimentation, since 

network namespaces can be deleted and created with one Linux command. The 

network configuration of this scenario is presented in Figure 13. 

 

Figure 13: NS scenario’s networking configuration 

 

It can be noted that the configuration has remained similar to the one of the VM 
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scenario, only with the addition of the bridges. Upon the finalization of the Attach 

procedure, user plane is established and two new interfaces will be created on the 

UE’s namespace. One will be called “uehost”, and it will be using the PDN IP that 

was assigned by the S/P Gateway. The other interface will be called “ueappl”, 

(application interface) and will have no own IP address, but rather a layer 3 socket 

will be listening bound to this interface, with the purpose of receiving the user plane 

packets that must be encapsulated and sent uplink to the LTE network. 

 

5.3.1 Challenges of the NS scenario 

Apart from the requirement of all elements being run in the same operating system, 

the results obtained in this simulation scenario presented more stability with respect to 

the ones obtained with different VM’s. 

The challenges derived from running this simulation are, for the most part, of 

practical nature. 

Since all of the network elements, tools and services employed must run on the same 

kernel version with the same base installation, it means that a subset must be found 

that meets all the requirements. 

At the same time, this configuration is vulnerable to new versions of tools and 

libraries being developed, which render the older obsolete. In extreme cases some 

components may not be usable anymore in newer architectures (such was the case 

with e.g. the S1AP module) and tweaks are required. This lack of flexibility was never 

an issue in the case of the VM scenario, where the same snapshot of the virtual 

machine is being used independently of the host machine. 

5.4 Testing scenario 

The trials with different simulation scenarios reveal that it is best to run the emulation 

in one virtual machine. Using VMs would demand a degree of technical expertise and 

knowledge of the code that is not reasonable, and only brings the advantage of better 

performance, which can be also improved by using a machine with more memory and 

processing power. 

On the other hand, the use of multiple VMs harms performance significantly. Once 

the software can be installed and run, there is no reason not to run all applications on 

the same VM, with the use of different namespaces. This way, the system can be 

easily installed in a wide range of systems, and the observations from the emulation 

results can be reproduced, with differences only in performance. 
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Chapter 6 

 

Implementation results 

This chapter presents the results derived from simulations performed using the 

virtualised EPC. It begins by defining the scope of the simulation and identifying the 

factors that will affect the results. Next, the type of traffic that will be transmitted 

through the EPC is presented. After that, different base systems are described, where 

the simulations are performed. Then, the different testbed measurements are 

introduced, as well as the explanation of how the results have been obtained, and the 

resulting data are presented. After that, the data are analysed in detail, and 

explanations are provided for the most significant results. The chapter concludes with 

a comparison of the data obtained from the simulations in different systems. 

 

6.1 Implementation Scope 

In order to test the core network and the user plane connection from UE to PDN as a 

whole, the namespaces scenario has been used. In this way, the results obtained in this 

simulation are isolated from the effects of the physical network. The packet 

processing outside the applications themselves is done by the OS’s kernel. For this 

reason, the packet loss (if any) can only be caused by application errors and/or 

packets lost by kernel. Similarly, the delay is the contribution of the kernel’s packet 

processing delay and the applications’. 

6.2 Traffic type 

The UDP packets transmitted in the simulations will have a payload size of 12 Bytes. 

The experiments have been performed with the objective of testing the system’s 

capacity to process big quantities of small packets. The importance of such capacity in 

the design is explained in section 4.1.1 and motivated by recent technological 

developments (see [34] section 3.2.1, [35], [30] section 4.9). 

Protocols other than UDP may also be used in the testing, but it will result in these 

packets being encapsulated by UDP packets as soon as the packets are processed by 

the applications. This can be observed for the eNodeB-MME-SPGW interface in the 
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user plane protocol stack in 2.5.3. It is also the case for the UE-eNodeB interface 

when taking into account the usage of GSMTAP header for the PDCP packets 

described in 3.2.1. 

 

6.3 Base systems 

As explained in 6.1, a significant part of the packet processing is performed by the OS 

kernel. A comparison between packet processing speeds in different kernel versions 

lies beyond the scope of this thesis. However, the combination of packet processing 

delay and packet loss imposes a limitation on the virtualisation technology itself 

which must be accounted for, as will be shown in the results. 

The simulations will be run with different base system configurations in order to 

illustrate the differences in performance between virtualisation technologies.  

One simulation will be run in a virtual machine.  

A second simulation is run in a virtual machine on the same host machine, whose 

processor has hardware support for virtualisation enabled. This technology aims to 

faithfully map the processor instructions in the VM as if they were executed in the 

native CPU. 

A third simulation is run in a Linux container (lxc) over a Linux native OS. 

For each result, three different measurements are taken. 

 

6.4 Control plane testbed measurements 

The Linux networking stack is complex, and testing it is a study field on itself. This 

simulation only adds to that complexity by introducing four applications (UE, 

eNodeB, MME and S/P GW). It is then expected, that on some cases spurious values 

appear, or that one service fails and data will be missing. The data in table 4 originates 

from one of many simulations performed, which shows both issues and illustrates the 

motivation behind this iterative method for obtaining results. In table 4, attach time is 

calculated as the time it takes from point A to B in Figure 5. CPU usage is provided 

by CPU timers5
. 

  

                                                 
5
 More details about accuracy in Boost CPU timers documentation: 

http://www.boost.org/doc/libs/1_55_0/libs/timer/doc/cpu_timers.html#Timer-accuracy 
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VM results UE 1 UE 2 UE 3 UE 4 UE 5 UE 6 

Attach Times (ms): 27,94 33,37 36,09 27,78 32,09 34,11 

CPU usage in attach (%) 35,80 % 30,00 % 55,40 % 36,00 % 31,20 % 35,70 % 

 

UE 7 UE 8 UE 9 UE 10 Average 

Attach Times (ms): 28,03 28,13 30,11 34,19 31,18 

CPU usage in attach (%) 35,60 % 33,20 % 29,20 % - 35,79 % 

Table 4: Packet loss values from simulation run in VM 

 

The results shown for the average values are consistent relative to the rest of 

simulations run on the same machine.  

As mentioned in 6.1.1, propagation and transmission delays do not apply to this 

simulation. The results for round-trip time provide a context with other delay values 

to which they may be compared. Specifically, it is expected to be the longest delay for 

processing one packet. RTT includes the processing delays of the four applications 

and the added processing delays of the Linux kernel. It is also run on a VM, which is 

the least efficient setup for processing time, out of the options presented. The attach 

timer is implemented in the UE application, and it is started when the UE sends the 

RRC Connection Setup Complete message to the eNodeB, which has piggybacked the 

NAS Attach Request. The timer is stopped at reception of NAS Attach Accept by the 

UE. 

 

6.5 User plane testbed measurements 

The objective of this part of the simulation has been testing the user plane connection 

established between UE and PDN, when exposed to large quantities of small packets 

in a shortest time possible. It is possible to send packets to the application as fast as 

possible, but it is not possible to send all of them simultaneously. This situation has 

been simulated by creating a ping flood, where the PDN IP of the UE is pinged from 

another host in the PDN.  

The flooding with packets is achieved by sending bursts of packets with “zero” delay 

between them. Here, it is implied that the software itself will not introduce timed 

delays between each packet that is sent. However, in practice, a minimum delay, 

caused by the application itself, is always involved between the sending of two 

packets. For this reason, the network is not expected to become congested 

immediately as the traffic is sent, but in a progressive manner. The testing process 

consisted on sending bursts of packets with variable sizes (size of the burst being the 

number of consecutive, not-delayed packets), and observing the effects in packet loss 

depending on the amount of packets that is used in each burst. 

Considering the complexity of the system that is being analysed, many network 

measuring tools have been discarded due to their results being misleading. Obtaining 
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of results may be obstructed by limitations of the measuring tool itself. They can also 

be affected by specific behaviour of one of the applications, or simply not localized 

enough to derive conclusions for them. In order to isolate the results obtained in the 

eNodeB from the rest of the system, four burst timers have been used to count packets 

and inter-packet times.  

The user plane data can be sent in the Downlink direction (from the packet network to 

the UE), or in uplink direction, (from the UE to the network). The four timers 

correspond to the four possible combinations of user plane inter-packet times that are 

Transmitted/Uplink, Transmitted/Downlink, Received/Uplink and 

Received/Downlink. The resolution of these timers is expected to be close to 1µs [39]. 

Figure 14 illustrates how the measurements are taken for the downlink direction. The 

timers register the times of arrival (for example). Then, the difference between 

consecutive times is stored as inter-arrival time. The eNodeB uses a threshold value 

for the inter-arrival time to determine what is considered a burst of packets. If the 

inter-arrival time is smaller than this threshold, the second packet is considered as part 

of a “burst”. When the burst ends or the emulation ends, the number of received 

packets is divided by the total time duration of the burst to obtain the arrival rate (λ). 

 

 

Figure 14: Illustration of how the measurements of arrival rate (λ) and service rate (µ) are taken in the 

eNodeB application 

 

 

The purpose of this experimentation is to show a significant difference in the results 

of one burst size respect to another, which led to the progression of number of burst 

sizes, shown in the X axis in Figure 15. For this same reason, and due to similarity 

between results for higher burst sizes (higher than 1000 packets), results are displayed 

in logarithmic scale. 



 

 

38 

 

 

 

Figure 15: Arrival rate (λ) and service rate (µ) (packets per second) in eNodeB, as a function of burst 

size (packets), in the downlink direction, from simulation run in VM.  

 

The graph in Figures 14, 15, 16, 17 and 18 is a way to visualise the application’s 

ability to process big numbers of packets, and how many packets can be fit into one 

burst. However, the x axis in a graph can be easily confused with “time”. To avoid 

this confusion, I have sent burst sizes that increase monotonically with time (waiting 5 

seconds between one burst and the next). I have also represented the bursts in 

chronological order. 

Since the application only counts a packet as part of a burst in terms of its inter-arrival 

time difference with the previous packet, it is easy to deduce from Figure 15 that e.g. 

the four last bursts that were sent were of 75, 120, 300 and 4000 packets respectively. 

In Figure 15 it can be observed that the application is capable of processing packets at 

similar rates as they arrive, until the arrival rate gets too high (~372 packets per 

second). For bigger burst sizes, we observe that the arrival rate (λ) decreases, which 

allows the application to follow up, always at a slightly slower rate than the arrivals.  

This decrease in arrival rates limits our ability to test the system, since one of the 

main objectives of this testbed, as explained in 5.1, is to produce λ high enough to test 

the limits of the eNodeB application. An assumption is made that such limitation is 

imposed by the S/P Gw application. This assumption will be explained in more detail 

in the analysis of section 6.8. 

In an attempt to avoid this limitation in arrival rates, a second test will be done where 

the packets are sent directly to the eNodeB without the intervention of the S/P Gw 

application.  

This test is performed in such a way that, once the attach procedure is completed, the 
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eNodeB application will assign a port to the connected UE. The testing program that 

sends user plane traffic to that UE obtains knowledge of that port and the UE’s TEID, 

so the program can add the GTP header itself and send the user plane packets directly 

to the eNodeB application. In this way, the packets are not processed by the S/P Gw 

and the inter-packet delay is reduced to a new minimum. 

 

 

Figure 16: Arrival rate (λ) (pps) in eNodeB as a function of burst size (packets), when packets are sent 

directly to eNodeB 

 

In Figure 16 we observe that with similar burst sizes we can now create arrival rates 

now that are much higher, which allows us to stress the application further. However, 

the curve growth is not completely monotonic with burst size, as we cannot produce 

higher arrival rates past the 358-packets burst. 

It is worth noting that the application has now become unable to process all the 

packets in the same burst by the time the 299 packet burst arrives. In that case, it 

records a burst of 265 packets instead of the previous 299 and the remaining bursts 

get fragmented in the same way. Some of these fragments have been omitted since 

they didn’t produce a high enough λ in the application, which was their initial 

purpose. 

The eNodeB application and the testing program are processes running in the OS, 

requiring a significant amount of processing time once they reach their maximum 

rates. The OS manages the computing resources of the machine and distributes 

processing time among processes with different scheduling priorities. The testing 

program’s priority could affect the arrival rate, and the eNodeB application’s priority 

could affect the service rate. Both testing program and eNodeB application have been 

run with the same specific scheduling priority
6
. 

                                                 
6
 Scheduling priorities set using “nice” program in Linux. See the manual page of “nice” for more 

information. 
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With the much higher λ achieved in Figure 16, the transmission rates in the eNodeB 

will be measured. The rates are expected to be higher, since less processing is now 

needed for the packets. 

 

 

 

Figure 17: Service rate (µ) (pps) in eNodeB as a function of burst size (packets), from simulation run in 

VM, when packets are sent directly to eNodeB 

 

In Figure 17, we observe that the application is stable in the range of packet sizes 

shown in the x axis. 

Having the connected UE assigned to a specific port in application runtime, allows for 

a modification of the eNodeB downlink logic to forward the packet directly to that 

specific UE. In this way, no additional information is required for the eNodeB logic to 

identify that UE. Thus the parsing of the UE’s TEID value in the GTP header is not 

needed, and neither is the GTP header itself. 

A third experiment is then performed, where modified versions of the packet burst 

generator and eNodeB applications are used to send the user plane packets without the 

GTP header. 

Figure 18 shows that now the application is stable in a wider range of packet bursts 

compared to Figure 17. 
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Figure 18: Arrival rate (λ) and service rate (µ) (pps) in eNodeB as a function of burst size (packets), 

from simulation run in VM, when packets are sent directly to eNodeB and without GTP header.  

 

6.6 Orchestration measurements 

Virtualisation technologies provide with the possibility to change the configuration of 

the system and the network components themselves. The flexibility of the 

implementation has been tested by organizing two different versions of the 

components in two branches. These versions differ in the networking configuration 

used, the interfaces and IP addresses. The eNodeB and UE applications also differ. In 

the first branch, a less efficient version of eNodeB is used, while UE will have layer 3 

sockets both for UL and DL, making the user plane connection much slower for UL. 

At the same time, the UE implementation makes use of threads. In the second branch, 

layer 2 sockets are used for UL, UE has a fully asynchronous design which makes no 

use of threads, more complex configuration is needed and performance is improved. 

The process of taking into use the second branch when started from the first branch 

will be called “upgrade”, and the reverse process will be called “downgrade”. These 

processes will be timed. 

For both directions, the process’ time includes: deletion of old configuration, loading 

of the new branch, compilation of software in new branch and creation of the new 

network configuration. 
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VM 

 Downgrade 1 minute 27 seconds 

Upgrade 1 minute 26 seconds 

VM with virtualisation support  

Downgrade 38 seconds 

Upgrade 37 seconds 

Linux containers (LXC)  

Downgrade 18,6 seconds 

Upgrade 17,1 seconds 

Table 5: VM orchestration results 

6.7 Results in different base systems 

As proposed in 6.3, the same simulations will be run in different systems running on 

top of the same physical machine. Figure 19 shows results similar in shape to the ones 

in Figure 15, with all the rates scaled up as a result of the system having more 

processing power. Figure 19 also shows the same decrease in arrival rates as in figure 

15. However, in this case the application has enough processing power so it can keep 

up with the incoming rate of packets for the whole range. 

 

 

Figure 19: Arrival rate (λ) and service rate (µ) (pps) in eNodeB, as a function of burst size (packets), 

from simulation run in VM with hardware virtualisation support 

6.8 Analysis of user plane tests 

The results presented in section 6.5 show the behaviour of a complex system of four 

software-defined network elements, and will not occur in this network in the absence 

of said applications. 

In Figure 15, the packet bursts present a distribution that hints to the original 

parameters with which they were sent. For burst sizes bigger than 40, the buffer 
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limitations of the eNB application begin to show in a gap between arrival and service 

rates. Two ping floods, of 400 and 4000 packets respectively, were performed at the 

end of the simulation. Results for higher burst sizes have been omitted for not 

presenting significant differences. Indeed, as the burst size increases, the arrival rates 

begin to drop, as they are affected by the slowing down of the preceding applications. 

In the asynchronous type of operation, the OS is notified that an input/output 

operation has to be performed. It is not until the OS notifies that the operation was 

performed (the packet was read), that the corresponding callback function is run and 

the corresponding timer value is read. This explains the faithfulness of the values 

shown for arrival rates. The program continues operation normally and following 

packets are received when the OS signals it. In this way, packets aren’t lost given 

enough memory, but a higher transmission rate is shown at the point where arrival 

rate starts to decrease, corresponding to packets from the queue that are still being 

processed. 

The service rates in Figure 16 show the normalizing effect of the application with 

higher arrival rates. It can be observed that the system is put to its maximum capacity, 

and packets in the last bursts are being transmitted at a rate which is as high as 

possible for the application. The application gets close to a maximum service rate and 

then the rate gets lower as the asynchronous processes wait for the I/O notification 

from the OS. It is possible that a similar effect takes place in the S/P Gw application, 

which could explain the difference in smoothness between the curves in Figure 15 and 

Figure 17.  

Figures 16 and 17 present a variability of packet transmission rates. From this we can 

conclude that there is an upper bound in terms of pps (packets per second), which is 

the maximum value for λ. Below this upper bound, we have a range of λ within which 

the application works in a deterministic manner. 

In the user plane experiments, the packets are sent with the first 8 octets of the GTP 

header [36] which are the mandatory part and thus the minimum possible overhead 

that GTP can add. However, with the payload size of 12 bytes, the total size of the 

packet is 48 bytes. The GTP header then represents a 16,67% of the total packet size. 

After removing the GTP header from user plane packets, Figure 18 shows an increase 

in the burst sizes (X axis in Figure 18) that can be transmitted to the UE compared to 

Figure 17. In other words, the application is still put to its limit, but the limit is 

reached less often because more packets can be sent per burst. It also means that the 

upper bound is now higher, so the range of operation of the application has been 

increased with respect to the one observed in Figure 18. 

6.9 Analysis of orchestration results 

The results shown in Table 5 depict the worst possible scenario in terms of knowledge 

of the target system. The entire configuration must be undone and re-created, and the 

software must be compiled. There is a possibility that the OS and library versions of 

the target system are known in advance, in which case the compilation can be done 

beforehand. This way, 1 minute and 5 seconds can be saved from upgrade times, 
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which represents 75,6% of the total upgrade time. 

6.10 Comparison of base systems 

The objective of this base system comparison is showing the effect of hardware 

features related to virtualisation. Theoretically, it is expected that performance will be 

better as the system gets closer to the native system. 

In Figure 19, the performance improvement allows the application to remain stable 

for higher burst sizes. That is, there is a small difference between arrival and service 

rates for the whole simulation, compared to the ~366 pps limit in Figure 15. 

Moreover, the maximum rates achieved by the application are 3,3 times higher.  

The upgrade time is 37,8 s for VM with hardware virtualisation support, which 

represents a 43,4% reduction of the upgrade time. 

Finally, the upgrade time for the system installed on Linux containers was 17,1 

seconds which is a 45,2% of the previous time using a VM. This means that, using 

containers, it took less than half of the time for upgrading the system on the same 

computer. 
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Chapter 7 

 

Conclusions 

Network Functions Virtualisation is a recent technology, of which few practical 

examples were known at the realization of this work. It is yet to be seen which ones of 

the expected benefits of NFV will play a key role in the future networks, or whether it 

will impact the industry as suggested by [6], [12], [34], and [30]. 

When a NFV solution is implemented, decisions must be made on which base systems 

this solution is used. The comparison shown in 6.10 helps illustrate the impact that 

this decision will have in practice. 

The evolution of mobile networks is affected by the appearance of newer systems and 

technologies. Infrastructures such as the Internet of Things (section 3.2.2 in [37]) are 

progressively taken into use, populating the network with a much higher amount of 

small-sized packets. These small-sized packets arrive to the network in such quantity 

that they cannot be processed in a time interval suitable for the application [38]. 

Various experiments have been done in this work involving small packets. At the 

same time, small modifications have been made to improve the performance of the 

network, serving as an example of the adaptation capabilities of NFV. 

Software defined networks offer tangible benefits regarding upgrading, repairing, 

configuration and overall flexibility of the network. The most significant results in 

this aspect are the ones shown for upgrade times in 6.9 and 6.10, proving that a new 

network configuration with enhanced network elements can be set up in a matter of 

seconds. 

Also in section 6.9, two implementations are compared, one of which is fully 

asynchronous. Here it must be pointed out that this is an extensive study topic, where 

the validity of the results is dependent on the benchmark that is used. The motivators 

for an asynchronous event handling approach cannot be solely based on the 

performance results themselves. However, given the practical nature of this thesis, a 

case can be made for the ease of implementation and maintenance of the 

asynchronous model. The complexity in debugging race conditions due to the usage 

of shared resources increases along with the progress of the development itself. 

Frequency of appearance of such issues increases with the number of threads and 

shared resources (either tracked or untracked). The relevance of such factors in 

modern implementation practices is reflected in the evolution of programming 

standards themselves, as shown in [39]. 
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