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Distributed Object and Block Storages systems are studied in this thesis and their
suitability as a storage solution for a dockerized cloud was evaluated. Docker
is a relatively new virtualization framework. In beginning it was designed for
containerizing processes on single host environments. However, it started to be
used in multi host configurations and clouds, which has caused need for persistent
storage solutions which are not relaying on host machine storage.
Two open source distributed storage solutions were studied. Swift is an eventually
consistent Object Storage system developed for the Openstack project. Ceph is a
consistent storage system including object, block and file system storage subsystems.
Swift and Ceph Object Storage systems were compared against each other. The
Ceph Block Storage performance was evaluated against the virtual machine disk.
The results show that Ceph has double the throughput in small objects from 8KB
to 128KB compared to Swift throughput, and 30% better performance in files
from 256KB to 100MB. The main trend between Swift and Ceph is that Ceph has
better throughput on read operations in all object sizes. The Ceph Block Storage
system was able to utilize 88.5% of the virtual machine disk write throughput.
Throughput efficiency was calculated by multiplying write throughput of Ceph
block by three and it dividing by virtual machine disk write throughput. Ceph
block throughput needed to be tripled because replication tripled amount of disk
writes. Ceph journal files were not stored on the disk so those wont affect efficiency.
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Työssä käsitellään hajautettuja objekti- ja lohko -tallennusmenetelmiä sekä niiden
sopivuutta pysyväistallennukseksi dockerisoituun pilveen. Docker on suhteellisen
uusi virtualisointityökalu ja se oli alunperin suunniteltu pelkästään yhden koneen
prosessien virtualisointiin. Sitä kuitenkin alettiin käyttämään pilvipalveluissa vir-
tualisointityökaluna, mikä on aiheuttanut tarpeen hajautetulle tallentamiselle, sillä
tallentaminen isäntäkoneen kovalevylle ei ole toimiva ratkaisu pilvipalveluissa.
Työssä käsiteltiin kahta avoimen lähdekoodin hajautettua tallennusjärjestelmää,
Swift ja Ceph. Swift on Openstack projetin objekti-tallennusjärjestelmä. Ceph puo-
lestaan tukee hajautettuja objekti, lohko, ja tietojärjestelmä tallennusmenetelmiä.
Objekti-tallennuksessa Swiftin ja Cephin suorituskykyjä verratiin toisiinsa ja lohko-
tallennuksessa Cephin suorituskykyä verrattin virtuaalikoneen suorituskykyyn.
Tuloksissa huomattiin Cephin saavuttavan kaksinkertaisen suorituskyvyn verrat-
tuna Swiftiin, kun testin objektien koko oli 8 kilotavusta 128 kilotavuun. Näitä
suuremmilla objekteilla aina 100MB saakka suorituskyky ero oli enään 30% Cephin
hyväksi. Yleisesti Cephi saavutti paremman suorituskyvyn objekteja luettaessa
verrattuna Swiftiin. Cephin lohko tallennus osoitti testeissä hyvää suorituskykyä
kyetessään 88,5% kirjoitus hyötysuhteeseen verrattaessa virtuaalikoneen kovale-
vyyn. Hyötysuhde laskettiin kertomalla Cephin lohkon surituskyky kolmella ja
jakamalla se virtuaalikoneen kovalevyn suoritusteholla. Cephin suorituskyky kerrot-
tiin kolmella sillä Cephi tallentaa kaiken kolmeen kertaan. Cephin lokikirjoituksia
ei tarvinnut huomioida yhtälössä sillä niitä ei tallennettu kovalevylle.

Avainsanat: Docker, objekti, lohko, tallennus, skaalautuva, pilvi
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1 Introduction
Nowadays more and more applications are converted to a cloud environment or they
have been designed from start to suit the cloud. This increases the flexibility and
robustness of applications and makes global usage of same application possible.

However, as different parts of the application are not necessarily running physically
in the same location, it means that some traditional services and methods are not
any more suitable for a cloudified environment.

Virtualization has come to solve flexibility and cost efficiency problems. In
traditional virtualization the whole operating system has been virtualized, so that
there are two operating systems running on top of each other. This solution gives
excellent partitioning so that different VMs (virtual machines) can not affect each
other. Drawback in this is that two kernels will take twice the memory. Even it has
been developed so that we have hardware acceleration for most of execution some
processor commands some commands are still needed to be software emulated.

If an application does not need total separation from host machine it can be ran
inside container. Containers will only virtualize application not the whole operating
system. As containers enclose container application from other applications and
containers the application will see as it would be running on its own host without
others.

Docker containers were originally developed for single machine application vir-
tualization. Therefore it has lacked some multi-host capabilities like multi-host
networking and data storage. However, in recent Docker versions there have been
added features to partially solve these problems.

Docker was selected as container virtualization platform for this paper as it is
currently most used containerization solution and also easiest to use. This master
thesis compares two open source Object Storage solution and one Block Storage
solution and their suitability as storage solution for docker based cloud. For Object
Storages performance is compared between these two different Object Storages and
for the Block Storage comparison is done against the virtual machine local disk and
results are adjusted to take count of block device data replication.
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2 Docker
Docker is an open source project, which has been designed to virtualize applications
by containerizing them. It was open sourced in 2013, since then it has growth its
popularity as a virtualization solution among developers. Docker has three base
elements which are called build, ship and run. Build means that containers are built
to include all binaries what application will need for running. Shipping means that
containers should be easily distributed from one machine to another without any
third party applications. And last run means that if containers runs on one host it
should be able to run in any host with Docker.

To be able to run and used Docker containers the host machine needs a daemon
named Docker engine to be running in it. The Docker engine is the tool to build,
ship, run and manage containers. So it is the hearth of whole Docker infrastructure.

Figure 1: Layers in different configurations of running docker.

In Figure 1 are shown layers of three different Docker configurations where most
left the Docker containers are running directly on a host OS. In middle containers
run in virtual machine which is running on host OS. The most right containers are
running in virtual machine running on top of hypervisor running directly on hardware.
For the application point of view all environments are same and if container is made
in one of those environments it will run in all of them.
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Even the application would be using shared binary files it is not able to detect
others containers using the same binary files. However, files can be shared among
containers as long as containers are running on the same host.

Docker can be used as replacement for virtual machines at some extent. It will
provide network, process and file system isolation. Advantage in the Docker approach
is that almost no extra overhead will be added by using Docker containers compared
application running on bare hardware [21]. All containers have all application binaries
and its dependencies and only kernel is shared with host operating system and other
containers.

Main strategies in Docker to isolate containers from each other and host machine
is to use kernel cgroups and namespaces to hide information about other processes.
With these abilities application in container will see as it would be running in system
without any other processes. The kernel namespaces are used in Docker to isolate
following properties:

– Proses id

– Networking

– Inter process communication

– Mount point management

– Unix timesharing system

Proses id isolation will ensure that only possesses running in container are shown.
It combined with inter process communication will ensure that the process in container
is not able to affect processes running in other containers or on host machine.

All containers have their own networking stack meaning that container can only
access their own sockets and they see traffic as it would be in physically different
machine. By linking ports from host machine to container. Container can get access
to packets coming to that host port. However, it is possible to link host machine
ports to container ports while container is running.

Docker containers are built using the Dockerfile script. It contains all information
needed to build a specific container. First the base image of container is defined.
It can be scratch, so nothing will be added or the base image can be any Linux
distribution compatible with host machine kernel. In order to avoid the unnecessary
data replication, the container building process in Docker is layered, so that many
containers can use the same base image. Also if changes in Dockerfile are made, only
layers after the change are needed to be rebuild.

The layered file structure is made possible with Docker own Union file system
[23], which main purpose is to make container lightweight by making read-only layers
that can be used by multiple containers. It enables in container rebuilding that only
some layers will need to be rebuild. [24] Containers can also share volumes and host
directories can be linked in container. [32] The sharing is currently working only in
one host machine. this is one of the reasons, why this master thesis have been made.
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More containers can be running on same host compared to VM as containers do
not have everything duplicated as full VM will have. Containers are just isolated
processes so they do not need to own a fixed amount of RAM, instead they can use
shared kernel to share memory among containers. However, Docker supports memory
usage limits per container. [36]

2.1 Security

Main difference between Docker container and VMs in security aspect is that container
processes will communicate directly to host OS kernel, as every VM will have their
own kernel on top of hypervisor and host OS kernel. This basically means that
malicious application in VM will need to escape from VM before it can attack host
OS, as in a Docker container applications have direct access to host kernel. However,
the access to kernel is limited, but it will not prevent all attacks. If kernel has some
vulnerability malicious container can try to use that to get control to host machine.

Docker has been designed to containerize applications. So different applications
wont affect each other and they can use conflict libs without errors as processes
shares only kernel and all libraries are container specific. [26] Security problem in
Docker is that it do not have strict division between containers as all containers are
using same kernel. Containers can not see other processes and or their data on a
disk, there is still possibility for application to get out of it’s container by misusing
possible vulnerability in host kernel. Another problem is that users in container
have the same privileges as host users, so container root is also root in host. Docker
community is solving this problem by trying to make mapping so that container user
will be different from host and other containers users, so that container user will
never get full privileges. [25]

Other solution to tackle this security problem is that only signed containers
should be ran so that unauthorized user could not run or modify containers in the
system. Docker 1.8 have made this solution in user friendly form for the Docker
developers. [27]

In version 1.10 Docker got new security features to prevent problems descried
previously. Now system calls can be filtered so that if application do not need them
they can be blacklisted for preventing exploits what uses those commands. Another
great new feature is name-space mapping that finally allows mapping container root
pid0 to other pid in host machine, so that even container root would get out of it
container it is not root in host machine. [34]

2.2 Networking

In the local installation, Docker creates own bridged sub network named as Docker0
on the host machine. [22] Launched containers are added to it if network is not
defined and all containers in that bridged network communicate each other using their
subnet IP addresses. Containers can also use the Docker0 network for connecting
outside the host machine.
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It is possible to map host ports to container ports to expose container services
as if they are running natively on the host. If a container needs to be hidden from
other containers Docker allows creating private network and set specific containers
to use those networks. Containers can be connected to more than one network or
the network driver can be set to none so that container has no network end point
connected to it. For network discovery containers can be linked so that they can find
easily each other and with user specified networks there is DNS service for container
discovery. [22]

However, locally defined networks are not enough for distributed systems. There
are third party solutions like Weave [38] for multi host networking. However, Docker
version 1.9 introduced production ready version of Docker multi-host networking.
[33] Now it is possible to create multi-host wide networks with aliased containers.
It would be great and simple solution if it would have good performance, but tests
made for this thesis shows that it has a poor performance and it is not suitable for
applications with heavy network usage.

Figure 2: Docker networking structure. With default configurations containers are

in the Docker0 network.

In Figure 2 is shown one host Docker network structure where the host machine
Docker daemon have made the Docker0 network. There the host machine has the
first IP what in this example is 172.17.0.1 then for containers are given next free
addresses.

2.3 Docker Machine

Docker machine is tool to create and install Docker engines to physical or virtual
machines. It supports wide variety of different platforms from bare metal to Open-
Stack and VMware virtualization environments. Environments can be mixed so
different cloud infrastructures can be used parallel. It is also designed to manage
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these different machines and their Docker engines. With Docker machine tool it
is possible to use ssh in machines, copy files between host and Docker machine
and start containers in those machines. With this tool it is also possible to restart
machine, upgrade it’s Docker engine or remove the whole virtual machine or just
clean modification made by it in bare metal installation. [35]

2.4 Docker Swarm

Docker Swarm has been developed to manage a pool of Docker hosts and divide
container payload among them. As single Docker daemon does not have any build in
method to communicate to other Docker daemons on different host. There is need for
hypervisor like application to control group of Docker hosts. Docker community has
solved this problem with the Docker Swarm. Swarm contains many necessary tools
to orchestrate pool of Docker daemons on different hosts. Main features in Swarm
1.0 are multi host networking and third party API to persistent storage support. [28]

Swarm uses network for communicating between nodes and all Swarm instances are
similar no matter on what hardware or cloudification platform is used. It is possible
to make hybrid cloud where different parts are running on different environments as
long as each Swarm instance can access each other. [28]

Distributed Swarm cloud needs a way to discover nodes in a cluster and containers
running in them to be able to work as one. Swarm can use different discovery
services and currently it supports Consul, Etcd and Zookeeper. These are distributed
key/value stores where all swarm nodes can store their IPs and port information
for discovery. To keep cluster consistent Swarm uses one master node to manage
containers and other services in Swarm cloud. In cloud can be multiple master, but
only one is active at time. If current master drops from cluster other masters will
vote which will be new active master. [29]
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Figure 3: Swarm architecture. Swarm has one active master and multiple slave

nodes. Swarm services uses external key/value store for distributing their ip:port

information and also the current state of local Docker daemon information.

Figure 3 shows high level architecture of Swam where all host machines have
docker daemon and swarm service running on them. Those will inform other nodes by
its state by writing data to external key/value store. The key value store is exclude
in image from Swarm cluster as it can be storing data of other services than Swarm.

2.5 Kubernetes

Kubernetes is an open source orchestration system made by Google for Docker
containers. It has been designed to be lightweight and simple, but it still is able to run
on multi cloud environment. It has automatic self-healing properties for replacement,
restart and replication of containers. [20] Kubernetes have been developed based
on Googles previous experiences from making Borg cluster manager [58]. So in
Kubernetes many flaws found in design of Borg has been fixed.

Kubernetes is designed to deploy, schedule, maintain and scale the container
cluster. So that for administer running new applications in cluster would be as easy
as possible. Scheduling means that administer just starts pod in cluster and scheduler
finds correct place for it based on scheduling rules and node stress.

In high level Kubernetes has the master node which orchestrates whole cluster.
Nodes are running on top of VMs or bare hardware servers and inside those are
Pods which contains application containers. Every node has one Kubelet service
that keeps pods running and restart them if any pod is unhealthy. Also every node
contains one proxy which will route API calls to applications. It is capable to make
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load balancing for pod, so that it is possible to run same pods on different hosts and
distribute load among those. [20]

In micro service application structure there is usually multiple small applications
which should be communicating with each other. In this situation pods have their
advantage as it ties applications needing connectivity to each other to one group. So
when applications are needed to be relocated it is easy to just start the whole pod
on new host. So the service responsible for relocating applications do not need to
know anything about needs of applications inside pod. Grouping containers helps
also to ensure low latency between containers in pod as they have to be running on
the same host machine.

2.6 Flocker

Flocker is an open-source data volume management tool made by ClusterHQ. It
allows to combine Docker containers and volumes so that when container is moved
from one host to another the volume will also follow. Flocker also allows moving
volumes without container binding. [39]

Data replication and the actual data replacement in Flocker is implemented by
using third party network connected Block Storage. [40] For managing Flocker cluster
needs one Flocker control service running in it. The controller service is interface for
other services to manage Flocker global state and it commands all Flocker agents
on all nodes. All docker nodes will need Flocker plugin to enable usage of Flocker
movable volumes. Also every node needs Flocker agent which keeps node state correct
based on configurations. When the agent founds out that state of node is incorrect
it will notify the controller about situation and after notification it will fix state
differences. [41]

So data safety in Flocker depends mostly on underlying blocks storage solution
and how well its data replication strategies are designed. Another flaw of Flocker
design is its control service as it is currently running only on one node and without
redundancy support. However, if the cloud infrastructure supports restarting of
services, died controller can be restarted on another host.
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3 Cloud storage
More and more applications are running on public and private cloud. There is a need
for cloud based storage solutions as traditional storage solutions (NAS, SAN) are too
strict to adapt flexible need of cloud, in addition those systems were not designed to
scale big enough for distributed cloud solutions. In many cases cloud services are
growing fast and huge amount of calculation power and storage are needed. And
it is not economically feasible to just scale up old solutions. Another challenge in
large systems is that hardware and networking failures should be considered more
common than in traditional storage solutions. System should be designed to work
when some parts of systems would be in fault or unreachable state.

Clouds size is growing every year. Needs to store data increases at the same
rate. When data sizes are in petabyte size it becomes critical that storage solution is
efficient to be able to store the data at generation speed. Different application uses
storage in different ways and in many cases it is impossible to make one solution that
would be suitable for all applications. It is necessary to know what storage solution
suits best for specific use case.

As hardware failures in cloud systems are common, data should be stored in
multiple different locations to ensure that no data will be lost even some physical
devices would break. This data replication will increase used disk space many times
if data replication is done just by replicating all data to multiple devices. Erasure
coding can be used to reduce used disk space, but it will need for more CPU usage
to calculate coding and recalculate data from coded blocks. With high IOPS that
can be impractical.

Cloud storages can be divided in different groups depending data accessing rate.
Hot storage has a high data I/O throughput and it is typically the main storage
solution. There latency is usually tens of millisecond or even less. [59] Cold storages
are solutions where data will be accessed rarely. Typical example is backups what
are accessed seldom. There latency can be from couple of seconds to hours or even
days depending storage solution. Cold storages are mainly used due their low price
per TB of data compared to hot storage. [42] Warm storage have been designed to
be solution between hot and cold, as it has low access latency as hot storage, but
with lower I/O rate. [59]

3.1 Object Storage

In Object Storage data can be stored in variable sizes objects [3]. Typically objects
contain data itself and meta data related to object properties. Mainly Object Storages
are designed to store big files from tens of megabytes to multi gigabyte files, like
images, videos and backups.

Swift and Ceph have been selected as examples as they are a open source and quite
commonly used in enterprise solutions. Also these two cloud storages have different
approaches as Swift is eventually consistent and Ceph is consistent storage solution.
Main advantage for Swift from eventually consistency is that it can have lower latency
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as replication can be done background as Ceph need to write all replicates before it
can give acknowledge to client. On the other hand if Ceph has written data to disk
it will be same for all clients no matter from what node the data is searched. Swift
will synchronize the data between different replicates after the modification have
be done. If another client tries to accesses same data and the object is read from
another storage node with replicated data it is possible that those two replicated are
not in synchronized state and another client got old information. So this have to be
considered when designing applications using Swift.

3.2 Block Storage

Block Storage is storage solution type where data is stored in volumes which usually
are spoken as blocks. The block will be presented for operating system as hard drive
and it can be used as it would be physical device on that machine. In many cases
file system is installed on top of the block device for better operability of various
applications.
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4 Openstack Swift Object Storage
Swift is open source project belonging to Openstack family. It is designed to be
highly available, distributed an eventually consistent object store. It can be used
through http API to store efficiently big files like videos or backups. [47]

4.1 Architecture

Openstack Swift is build from following parts: proxy servers, rings, zones, accounts,
containers, objects and partitions. This chapter will cover architecture of Swift
Object Storage.

Figure 4 describes Swift high level architecture. Beginning from left clients
are users or applications what are using Swift restful API for accessing objects in
the Object Storage. In real application there are usually load balancer between
clients and proxy servers to evenly distribute load, but clients could also be directly
communicating to proxy servers as presented in figure.

Figure 4: Openstack Swift architecture.

When the proxy server gets client request it will first validate if the user has valid
access rights to the data it would be assessing. If everything is correct proxy will
look from its local ring data structure which storage node would be responsible for
that data. After founding responsible node it will try to access that node to execute
the user request command. And finally the proxy will pass the traffic through it.
The client will be only communicating with the proxy server and will never see the
infrastructure behind it.

In default Swift configurations objects are stored as one blob to disk and only
bigger files are sliced to multiple smaller objects. If the object is stored in parts
manifest file will be created to contain information how the object is constructed.
The actual data is then sliced in client side and named with a specific prefix then
individual parts can be stored to cluster as any other object. When the sliced object
is downloaded all parts can be loaded same time so read the performance can be
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increased. If big object is created or modified the manifest file should be changed
after all objects are stored to cluster to prevent loading partial objects. [44]

4.1.1 Proxy server

Proxy servers are used to handle incoming API request to Swift and route requests
accordingly where data is located based on the information read from the ring. When
objects are streamed to or from object servers, the stream goes through the proxy
without any buffering. [48]

No data will be directly shared from proxy to another so if one proxy fails others
can take it workload on the fly. Proxy servers are also responsible for making erasure
coding and decoding, if erasure coding is enabled in system. When Proxy server
is working as an interface to Object Storage, it needs to handle a large amount of
errors. For example if client tries to write file but the responsible storage node is not
available the proxy server will ask from the a ring for handoff server where to store
the object. [48]

4.1.2 The Rings

The Ring is a data structure used to determine object locations in a Swift cluster.
There are different rings for account database, container database and individual
objects. All these three works in the same manner and they are maintained by
manual application called ring builder. [43]

Ring builder can make the rings or update old ones. It will makes optimized
Python structures and writes is to compressed, serialized file on disk, where it should
be distributed to servers. Servers time to time checks modifications to their local
copy and will load it to memory if it detects newer version of ring. As ring builder
has clever way to rebuild rings, so servers with only slightly old version will only
have one replicate in wrong location. [43]

Ring is structured in three parts. First structure has list of devices, where every
list object is dictionary with following keys:

– id (int)

– zone (int)

– weight (float)

– ip (string)

– port (int)

– device (string)

– metadata (string)
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This information can be used to locate physical storage devices in cluster. Second
structure contains array of arrays, where there are one array for each replica. Internal
arrays have the same length as there are partitions in ring. These arrays maps
partitions to devices for all replicates. And last there are partition Swift value, used
to modify default MD5 hash result. [43]

Ring builder needs cluster specific ring file with the ring information and additional
information so it can update rings based on this file information. If ring file is lost
it will mean that the ring have to be totally rebuild, which means that all data in
cluster will be relocated.

There can be multiple object rings in one Swift cluster. This will allow that
not all objects need to have same replication strategy. And because object rings
specifies replication multiple rings are needed to enable multi replication strategy
in one cluster. Those object rings can also have different devices so that container
which needs fast data access can use drives with SSD and container with archive
data can have hard drives with erasure coding to handle it data. [50]

Data policies are determined on container level so that many container can use
the same policy, but once container is created with specified policy it can not be
changed. If client wants to change container policy then only way is to make a new
container with wanted policies and copy all data from old container. [50]

Handoff partitions are partitions in the Swift ring used to store data while some
storage nodes are down. [48] So handoff partition is temporary storage that can be
used to store any data during failure. Once old node have become up again or the
ring is rebuild and the data is now located to working node the data is copied from
the handoff node to correct node and after it the handoff copy can be removed. Then
the handoff partition goes back to free handoff pool where it can be again assigned
to new partitions if storage nodes go down.

4.1.3 Object, Container and Account servers

Object servers are simple servers responsible for save, read and delete objects stored
to its local drive. Objects are stored in binary file format and metadata will be
stored in files extended attributes (xattrs). So Swift requires underlying file system
to support xattrs. [48]

Data is stored with version information to ensure that in any case newest data
will be loaded. When data is deleted it is marked with tombstone, which is considered
as file version, so that replication can not bring old version back due failure scenario.
[48]

The container servers store listings of objects in containers. It does not store
any information about object data or location. All those listings are stored in sqlite
database. In data base is also stored information how many objects are in the
container and how much storage space the container uses. Account server is similar
as the container server but it stores listings of containers. [48]
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4.1.4 Zones

Purpose of zones is to enable robust data distribution. Zones can be used to divide
different failure zones from each other, so that when the data is replicated it will be
located as widely as possible so that cluster can survive from big failures without
losing any data.

Zones have a hierarchy so that largest are regions, then zones, then servers, and
last drives. So when replication is planned, different replicates are stored in to
different zones starting distribution from regions and going to smaller and smaller
zones. Administrator can specify how zone borders goes. For example all server
racks behind the same power line can be specified to be in same zone. [45]

4.2 Scalability

Cluster can be scaled in different ways in Swift. If number of proxies are increased
ability to handle requests increases and if storage node count is increased then storage
capacity grows as well as throughput. [57] However, all factors are needed to be
increased when systems, otherwise unscaled parts can become bottlenecks. This
strategy also gives flexibility as if query count is high but relatively low throughput
is needed on storage nodes side it is only needed to grow the proxy node count to
handle load.

4.3 Data replication

Swift is eventual consistent storage system. This approach will keep writing latencies
low no matter how big system will grow. Client writing data will only need to wait
approval from node where it is writing the data. Drawback will be that other clients
can see the old state until replication is done if they are using a different node. [47]

In Swift, replication is not made on object level, but there are partitions which
contains stored data, account and container databases. These collections of different
objects are replicated as one whole part to different zones.

Replication is kept synchronous by replicators which continuously examine each
partition for differences between different copies. Replicators will use hashes, that
are made for all directories in partition to determine if data have been changed and
is needed to be replicated. If modifications occurs the newest modifications will
be resynced to other replicas. Only modified directories will be copied to another
replicates and all changes in one partition will be send in once, which will reduce
TCP overhead what could occur if many small TCP connections would be made.
Replicators also handles the cleaning of tombstones, so it will ensure that when
tombstones are removed then all old copies of object have been removed from entire
system. [48]

For containers and accounts there is different replication strategy than objects.
As data is stored in database the whole database synchronization can be checked
with low-cost hash comparison. If difference have been found replicator will share
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records added since last sync point. Sync point is last point when data bases have
been known to be in sync so only records after it have to be checked. However, if
whole database is missing then it is copied from another node with rsync(1). [49]

Swift replication strategy has bottleneck when number of object on one storage
node increases over 1000 objects with three times replication. This is caused by
periodical multi casting all objects to replicate servers to ensure consistency. So
when number for broadcast objects increase over 1000 the network overhead starts to
be massive and also the synchronization delay increases due high number of messages
need to be send during multi casting.[53]

4.4 Consistency

Swift is eventual consistent object storage so it can not promise same view for all
clients about current objects. However, Swift will promise to be consistent after time
periodic known as consistency window [49].

This behaviour does not cause problems if objects are once written to storage
and after it read. Then there is inconsistency only before the consistency window
have been closed. This strategy also allows keeping low write latencies even different
replicates have been distributed to different continents, as only the node where data
is written need to ACK user.

4.5 Docker integration

Swift uses rest API for managing objects and containers. Modifications in Swift
require always full rewriting of objects [51]. Therefore Object Storage is most suitable
for data which is written once and modifications on those objects will require updating
the whole object. Examples of this kind of objects are images and videos. Also Swift
Rest API is one of supported Docker Registry storage back ends and can therefore
be used for storing all Docker images in a cluster own Docker Registry [37].

Drawback of rest API is that storage interface have to be integrated in application
or another service need to copy local object from local disk to Object Storage.
However, the integration of Object Storage in application is straightforward.

Strength of Swift is that it can be used in multi data center solutions as the
replication will not increase latency for user as it is done background and replication
consistency is achieved after specific time window. Swift can be also be forced to
make replicates to different data center, which can lower latency as client can read
object from closest replica. This will also improve data resiliency as even losing one
data center will not delete any data as at least one replica is on another data center.
So for bigger dockerized clouds with multiple data center with need of cloud wide
shared objects the Swift Object Storage is considerable option.
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4.6 Hardware requirements

For all type of servers in Swift is recommended to have dual quad core processors.
However, only the proxy server is really CPU intensive as all data is flowing thought
them. Object, container and account servers should have 8 to 12 GB of RAM.
Whereas for proxy server the RAM is not so important. [46]

Networking should construct from private and public networks where in private
network is only for cluster internal communication and public network is only con-
nected to proxy server. Network bandwidth should be from 1Gbits/s to 10Gbits/s.
[46]
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5 Ceph Object Storage
Ceph is a highly reliable distributed storage cluster with self-management and healing
features. Ceph is designed to not have any single point of failure as any resource can
be replicated on the fly.

Ceph cluster has three different storage solutions, Block Storage, Object Storage
and file system, which can be running in same cluster simultaneously [9]. This chapter
will only cover Ceph Object Storage and Block Storage. The CephFS distributed file
system will be left outside of this scope.

5.1 RADOS Architecture

Ceph cluster is based on RADOS (Reliable Autonomic Distributed Object Store).
Base components in the Ceph are Object Storage daemons (see OSD Section 5.1.4),
Ceph monitors (see Section 5.1.5) and Ceph metadata servers, which is only used in
CephFS and will not be covered in this work.

Object mapping is not made with distributed mapping, but locations can be
calculated by using pseudo random CRUSH algorithm (see Section 5.1.1) and the
global cluster map. The cluster map is maintained by Ceph monitors, which votes at
current cluster map using Paxos protocol, that will ensure that modifications can be
only made if majority of monitors agree the modification.

5.1.1 CRUSH Algorithm

CRUSH-algorithm (Controlled Replication Under Scalable Hashing) is pseudo random
placing algorithm designed to remove need of centralized system to store and retrieve
object locations in cluster. However, the CRUSH need current state of cluster to be
able to calculate responsible OSD for the data. [1]

Also replication placement is done based on CRUSH. In cluster map (see at
Section 5.1.2) can be determined how different failure domains are divided so CRUSH
is able to calculate correct replicate placements by using this information. [1]

As CRUSH pseudo randomly distributes objects over the cluster it is crucial that
all OSDs have some free space, as if even one OSD would be full it could cause
situation where the CRUSH would place a new object in it and write would fail as
there would be no free space. So in the Ceph all writes are prevented as long as even
one OSD is full.

5.1.2 Cluster map

The Cluster map contains five different maps:

– Monitor map

– OSD map
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– PG map

– CRUSH map

– MDS map

The monitor map contains information about all cluster monitors including
monitors positions, addresses and ports. The OSD map has a list of OSDs and
their statuses. The PG map has list of placement groups, their statuses and usage
statistics. The MDS map is for metadata servers information. [9]

The CRUSH map itself has four main sections. First section of lists Object
Storage devices which should mapped to OSDs. Second section contains bucket types
which includes buckets which are used in CRUSH hierarchy (i.e. row, rack, host
etc.). Third section list what host machines are in which bucket type. Last section
determines the rules how buckets are selected. [4]

Each map contains iterative history of map modifications and indexes, so that
map user can determine if it’s local version of the map is out dated and needs to
be update. If old and newer maps iterative histories overlap, the old map can be
updated using only information from the newer map. Otherwise the user with older
map needs to request newest map from monitor. [9]

5.1.3 Placement Groups

In Ceph all objects are mapped to placement groups (PG). This approach will make
object tracking and replicating less expensive to compute as smallest trackable items
in cluster are PGs. To balance cluster there should be about 100 PGs per OSD
divided by replica count rounded up to nearest power of two. Rounding is optional,
but it will ensure that all groups are approximately same size and this will help
balancing load in the cluster. [6] In Figure 5 can be seen that objects are mapped to
PGs which are then written to OSDs.

When scaling the cluster size, also the PG count should be adjusted, but if size
is converted directly from one power of two to another, this would cause that half of
the data should be replaced to new locations and cause huge performance drop in
the cluster. To smooth this transaction it is possible to increase PG size in steps so
that the object replacement can be distributed over longer time periodic. [2, p88]
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Figure 5: Placement group

5.1.4 Ceph OSD Daemon

Objects in Ceph cluster are stored in a flat namespace and every object has cluster
widely unique ID to identify objects. Additionally for ID every object has data
section where actual object data is stored and objects metadata in key/value pairs.
Semantics of the metadata can be competitively be specified by Ceph client. [9]

When the Ceph client writes to OSD the replication will be done simultaneously
by that OSD, according to replication rules. As in default configurations there will
be two copies of every object, so when client writes to OSD, it will write same object
to specific a OSD, determined by the CRUSH. The client will get acknowledgement
for successful operation only after all OSDs where the object is written have informed
about successful write. [9]

Journaling is used in OSD for two main reasons. First it will increase performance
and latency for small writes, as the sequential journal write is only needed for
retuning successful write for the client. It also gives ability to collect multiple
object modification together and make only one bigger commit to the storage disk.
Another advantage is increased consistency as the compound operations can be made
atomically. Because changes are written to the journal, in case of failure the daemon
can replay its journal to get the storage disk synchronized. [13]

In Ceph context journaling means that all modifications for objects are written
to ring buffer file in serialized format. With serialized writing can be accomplice
faster writing speed.

Storing the actual data to disk OSDs uses ext4, btrfs (B-tree file system) or XFS
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file systems. The XFS is currently most recommended due its excellent stability, but
btrfs will take its place when it will be proved to be stable. [12] In early stages Ceph
used own EBOFS (Extent and B-tree based Object File System) [2, p162], but it
was discontinued in later versions.

OSDs can use a cache to increase performance for most busiest files. There are
two different cache types, if caching is used at all. First option is the writeback
cache, where all read and write operations the data is added to the cache so that
most recently assessed data is always in the cache. This will be suitable for mutable
data as the data is updated in the cache. Time to time the cache will be flushed
to the disk to apply changes. Second option is read-only cache where data is only
loaded to cache when data is read. Now if objects are modified after they are loaded
to the cache they will not be updated in the cache. So this option should be only
used for the immutable data. [14]

In a big cluster, network problems are common and storage cluster should be
able to detect errors and change it behavior based on the errors.That is why, OSD
has heartbeat functionality which test connections to related OSDs.

By default OSDs send heartbeat messages with 6 second intervals and if another
OSD will not answer for the heartbeat after certain time interval it will be marked
as down by that OSD and one of monitors will be informed about it. When the
monitor have got three times the OSD down message it will mark that OSD down
and the cluster map will be updated. Not only OSDs send messages to each other
but they also report their status to monitors within specified intervals. And if the
OSD have not been reported it status for monitor in that specified time interval it
will be removed from the cluster map. [11]

OSD can delay reads until write operation is done to disk if there is concurrently
reader and writer on same object. With this approach the Ceph can keep data
consistency even the OSD breaks during writing operation. As read will be made
only after data have been written to disk, it ensures that all data given to client is
on the disk. It will cause some latency to readers, but it is quite uncommon to have
concurrent reads and writes for the same data. [2, p77]

5.1.5 Ceph Monitor

When the client need to write or read the data from the Ceph cluster it will need
copy of the cluster map. It can be queried from one of Ceph monitors, which are
responsible for keeping the cluster map updated. Map consensus is maintained with
the Paxos protocol that will ensure that only when majority of monitors end up in
consensus about map data, then changes to cluster map can be accepted. [9]

Monitors manages OSD, PG, monitor and MDS maps and they also provides
authentication and logging services. All of these are in the same Paxos, so changes in
any of them will trigger new Paxos round, but it will also gives ability get combine
group of changes to one Paxos round. The data of the cluster map is stored to
key/value database in every monitor. Those databases are only updated after
successful Paxos round so all monitors will have synchronized databases. [5]

Changes to the cluster map will not be broadcast to OSDs but OSDs them self will
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distribute it along messages are send. So if another OSD communicates with another
OSD and finds out that it has older version of the cluster map it will automatically
load the newer version from this another OSD. Meaning all changes are not needed
to be applied to all OSDs if it wont affect them. [5]

All decisions needs majority of monitors to agree. The cluster will need at least
three or more monitors before any redundancy can be provided. In order to get
best efficiency, cluster should have odd number of monitors, because even number of
monitors will just increase number of monitors but not the number of failed monitors
cluster can handle.

Figure 6: Monitor cluster state management.

Figure 6 shows architecture how reads and changes for ceph cluster maps are
done. All data in Ceph monitors are stored in local key/value database. As all
monitors have their own copy of that data structure it is important that all changes
in it have to be globally accepted by majority. So when any of monitors need to
change any data it will start new Paxos round and only after successful round all
monitors can write changes to their local databases.
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5.2 Ceph Object Storage Architecture

Ceph Object Storage is based on three different parts:

– Object gateway

– Monitor

– Object storage daemon (OSD)

The monitor and OSD are base part of the Ceph RADOS cluster. Object gateways
are providing the API interface for clients to access and manipulate object stored
in cluster. They also keep track of object buckets so that client can search objects
stored to the Object Storage. More information about these parts can be found in
following subsections, where each part will be covered in more detail.

When objects are stored to Object Storage, the Gateway will make mapping from
client object to RADOS objects, so that header of file is one RADOS object and
actual data is stripped to multiple objects. Client objects are stored in buckets so
that the client can search for the object from the bucket. [10]

In Ceph Object Storage there can be multiple underlying Ceph RADOS clusters.
All RADOS clusters in Ceph Object Storage share the same namespace so that there
can not be two different objects with same name in different RADOS clusters. Object
Storage objects can be written to any of those clusters. However, if object is written
to one cluster it can be only read from there. So if request is made to wrong cluster
it will be automatically redirected to the correct one. [10]
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Figure 7: Ceph architecture. Load balancer is optional and will be external for Ceph

cluster. OSDs are Ceph Object Storage daemons.

In Figure 7 are shown in high level the Ceph architecture in the Object Storage.
Object Storage client will communicate directly to one object gateway or communica-
tion can go through external load balancer, which will select gateway. There gateway
will communicate to the Ceph storage cluster. The actual cluster has group of OSDs
(see Section 5.1.4) and odd number of monitors. Gateways will directly read and
write RADOS objects to Ceph cluster. The cluster usually has at least two network
interfaces where one is public network used by different Ceph clients and monitors
to communicate each other and to OSDs. The another network is just for OSDs for
moving objects from one OSD to another due replication or data replacement.

5.2.1 Ceph Object Gateway

Ceph object gateway is used by client for accessing Ceph Object Storage using either
Amazon S3 or Swift APIs. Both APIs can be used simultaneously, for example one
client writes object using S3 API and another reads it with Swift API. The object
gateway have been built on top of the RADOS gateway, mainly just adding those
third party API interfaces. The object gateway is also responsible for the storing
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information how stored objects are mapped to RADOS objects, as the RADOS it
self will not store any object mapping.

Object Storage maps client object to RADOS objects so that a single RADOS
object will be used as the object head, containing the object metadata, it will be
followed with the actual data which will be stripped to multiple RADOS objects
if it will not fit in one RADOS object. These objects are then mapped to buckets
specified by client. [15] By default buckets are single RADOS object which can cause
performance issues if bucket is under heavy load or it has thousands or millions
of objects stored in it. However, is it also possible to strip it to multiple RADOS
objects to divide load. [15]

In data deletion of object or bucket, it will only mark it for removal, but data
stays readable until it is purged. Admin should periodically run cleaning script to
purge removed data. [10]

5.3 Ceph Block Storage Architecture

Ceph Block Storage (RBD) can be used with librbd or Linux rbd kernel module.
The Ceph block device do not make difference for the usability from user perspective.
The Ceph Block device uses underlying Ceph RADOS to store data in cluster and
manage data replication. With this design there is no need for redesigning replication
and data placement as existing RADOS can be used to help in it.

Ceph block device will not store any data on system, excluding possible caches.
This will ensure that no data will be lost if data have been reported to be successfully
written to disk. So even in situation where a system with mounted Ceph block
device crashes or connectivity is lost, all saved data is in the cluster. This makes
possible that the same block can be remounted to another host and block usage can
be continued.

The librbd supports also write caching [16], which can break the philosophy that
the data is never stored to the client side. The writecache can cause situation where
data have not been written to cluster and if crash occurs before writes are flushed.
However, write cache can increase RBD performance it selection between performance
and data safety.

RBD supports snapshot so that it is possible to make snapshot of mounted block
device. This is made possible by the RADOS watch notify messaging system. So
that the one which is making snapshot can inform other about it. Informing others
is important as snapshots means that all those snapshotted objects are now write
protected. So any further writes have to go in copy-on-write manner, so that new
objects are created when data is modified.

To operate block devices every RBD pool have following object types, where first
four are metadata objects and last type is the actual data.
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– rbd_directory

– rbd_children

– rbd_id. < image_name >

– rbd_header . < image_id >

– rbd_object. < pefix_ < id >>

In rbd_directory store all name to id and vice versa information about all images
in that pool. rbd_children object is store information whit images has clones. It
will be used in situations where the image is tried to be deleted and before deletion
have to be checked if any other image is cloned from this one. They can have shared
objects and those dependencies have to be solved before deletion. Metadata object
rbd_id. < image_name > is created for every image and it is used to map user
defined name to real object id. All images have also rbd_header . < image_id >
metadata object which has all information for the operating image. It has unique
prefix used for naming images data objects, image size, list of snapshots and snapshot
metadata and last locks held on image. [16]

Actual image data is stored in rbd_object. < pefix_ < id >> RADOS objects.
All data objects starts with same prefix and are numbered in increasing order as they
seen in image by the user. Every data object has the same size and by default the
configurations object size is defined to be 4MB as it is optimized size for accessing
data in spinning disks [16]. Reason for uniform objects size is that it will reduce load
variance of OSD which is important for the Ceph as even one full OSD will prevent
any further writes to cluster [16]. Since the RADOS random object replacement for
different size object could cause one OSD to get more bigger objects than others and
cause it become full significantly earlier than others.

Snapshots can be made for any image in any time even if the image is in use.
However, all I/O to the image should be stopped during snapshot to ensure the data
consistency. [17] Snapshots are read-only and have copy-on-write behaviour so that if
image is snapshoted any further writes will need to copy modified objects and make
modifications to those new copies. Snapshot metadata is stored to the RBD header
as mentioned previously. In every write, the list of snapshots is send so that writer
is able to copy newest snapshot object and apply changes on that or if object have
already been modified then changes can be made directly to that object.

As client using the image have to be able to know if the image have been
snapshotted every client will use the RADOS watch-notify implementation to watch
header object for changes [17]. When client makes a snapshot from image all clients
watching that header will be notified [16].

5.4 Scalability

Ceph is designed to be easy to scale out by adding more hardware to cluster. RADOS
throughput will scale linearly when adding new OSDs to cluster as long as network
will not be saturated. [2, p. 148]
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When adding new OSDs to Ceph cluster, number of PGs should be checked if it
is suitable for that number of OSDs. Every time when a OSD is removed or added to
the cluster, some data distribution will be done either to keep the number of replicas
correct or to keep object distribution even. When scaling up number of monitors
should not be increased excessively as all working monitors are voting for the cluster
map changes and changes can be done only after majority of monitors have accepted
voting. High number of monitors will make voting more complex and cause higher
latencies. Also number of monitor should be odd to get best performance, as even
number of monitors will just add one monitor without giving any benefits.

When scale of the Object Storage cluster grows, it can be practical to use multiple
Ceph RADOS clusters instead only one. Clusters can be divided to different regions,
when they do not share object data or they can be on different zones to increase
durability. For every region there should be one master zone which will handle all
write requests and slave zones will only be used for reading.

Between regions it is possible to make requests to any of object gateways, if
requested object is located to in another region the client will be redirected to correct
cluster hosting that object.

5.5 Data replication

Ceph can use different data replication rules for replication. The default replication
rule is to save object and one additional copy of it. It can be other n-way replications
or rules can have more specific definitions as three way replication so that data
should be stored to two different data center. Also erasure coding is possible, but it
will require more CPU resources than simple data cloning. Replication in the Ceph
id made on pool level which enables different replication strategies for different pools.
The whole cluster does not need to use the same replication strategy. [7]

When the client writes a data to the Ceph, it will be written to the node and this
node will simultaneously write data to replicas and when write has been ended. The
client will be informed success only after all copies have also reported success. In
bigger system this can cause latencies if some replicas has higher latency. Different
replication methods can also affect to write latencies. Client will get message about
successful write after all replicas are written to their OSDs. Meaning that write
latency is always determined by the slowest OSD part of the write.

5.6 Docker integration

Ceph Object Storage behaves similar to Swift so it also fits only for objects what
should be written and modified as whole. Ceph design of delaying ACK for client
until all replicates are finished write causes increasing delays as latency depends on
slowest replicate. Then if different Ceph cluster parts would be in different data
center it could cause high latencies and therefore lower throughput of whole cluster.
So Ceph cluster should be located in only one data center. And therefore integrating
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Ceph to multi data center dockerized cloud can need some design decisions how data
is transferred from one cluster to another.

However, with Ceph Object Storage it is possible make multi data center storage
as one Object Storage can be using multiple Ceph cluster for storing data. However,
objects can only be stored in one Ceph cluster and replication is done inside that
cluster. So even client accessing one data center is able to access all objects in Object
Storage, objects located in another Ceph cluster in another data center can have
higher latency as the query is needed to be done to that data center.

Ceph Block Storages are a really suitable for storing data in dockerized cloud
if data is needed only by one client by time. As blocks can only be allocated for
one client at time. However, one block can be cloned for multiple clients, but all
modifications for that blocks are only visible for that client. Also the one data
center limitation is applied to Block Storages due to the replication latency. Also
as clients of Ceph Block Storage needs to be in same local network as client will be
communicating directly to OSDs.

Strengths of Ceph Block Storage are that it can be mounted as any storage device,
data is immediately stored and replicated to Ceph cluster and moving block from
one host to another needs only remounting device on the new host and no data is
needed to be transferred between host. So it fits fluently with containerized cloud
where all resources should be flexible and never fixed to specific host machines.

5.7 Consistency

Ceph is always consistent storage system. It promises that when the ACK have been
send back to the client, data is then stored to all replicas. [2, p. 130-132] Ceph also
delays reads to objects if there is ongoing write operation to that RADOS object as
long as the whole write have been accomplished [2, p. 142]. This ensures that data
is always newest version of object and all clients will get same result no matter from
which replicate the data is fetched.

In Ceph Object Storage objects are always consistent and objects are always read
as whole even if they are simultaneously rewritten. This is made possible by making
all Object Storage objects immutable and the object header is rewritten only after
the object data and meta data have been added to storage [15]. When clients reads
object that other client is rewriting it can read the old object as long as the object
header have not been modified. When object header is modified it will be pointing
to new data and as header is always only one RADOS object it is ensured to be
hanged in all replicates simultaneously.

5.8 Hardware requirements

Different Ceph services need different resources for running fluently. OSDs will
need minimum of two cores per daemon as they are constantly doing CPU intensive
calculating of CRUSH-algorithm for the data replacement. In normal operation
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OSDs are able to survive with only 500MB of RAM. However, in recovery they will
need about 1GB of memory per 1TB of disk space. [8]

Monitors are much lighter as they only maintain the cluster map and do not need
to make any CPU intensive tasks so single core it enough for them. However, as they
should be able to give the cluster map in fast manner it should be kept all times in
the memory so at least 1GB of RAM is required. [8]

For networking there should be at least two network interface controllers (NIC)
connected to OSDs and one for monitor and gateway. OSDs would use one private
NIC for data replication and another would be used as the public network for clients
to communicate with OSDs. Network bandwidth for public network should be at
least 1Gbits/s and the private network should have 10Gbits/s. [8]

The private OSD network should have higher bandwidth that the public network
as writes will cause double traffic to the private network due to replication. Of
course different replication strategies will cause different network load. However,
in case of hard disk failure all data stored to that disk should be then replaced to
new OSDs. So it is realistic that over 2TB of data is needed to be moved through
network. It would take with 1Gbits/s network over four hours to accomplish it and
with 10Gbits/s network time is reduced to under half an hour.
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6 Testing setup
In this section will be discussed how actual tests where planed and setup for testing
performance of systems. To be able to get reliable results it is important that tested
systems have as equal configurations as possible and underlying hardware and VMs
is same for both systems.

The test environment was first tested on Oracle VirtualBox virtual machines in
local laptop before creating the real Openstack test environment. This was possible
due Docker machine and Swarm which hide underlying virtualization structure so
that for software both installations where similar. This allowed more efficient resource
usage as only real test needed to be running in the Openstack system and functionality
testing could be done in the local installation.

Test environment have been deployed on single OpenStack server with 32 vCPU
and 63GB of RAM and with 314GB of disk space. Both Ceph and Swift are deployed
in Docker containers running in Docker Swarm. Base image for VMs in Openstack
was selected Ubuntu 14.04 cloud as most tools have been tested in Ubuntu 14.04
environment. Especially COSBench Object Storage benchmarking tool has some
issues on different distributions of Linux and even with different version of Ubuntu.
So to simplify deployment all virtual servers had same Linux image installed on
them.

The high level architecture of the test cluster is shown in Figure 8. The Swarm
cluster part contains six virtual machines where five of them are computational
nodes where actual containers will run and last one is running the keystore based on
Consul distributed database for distributing Swarm global state and configurations
for computational nodes. These five VMs each have 2 virtual core, 4GB of RAM
and 40GB of disk space. The keystore VM has only one core and 2GB of RAM.

For networking first idea was to use Docker Swarm own overlay [22] network
driver as it has own DNS server for container discovery. So that no hard coded
IPs would have been needed. However, turned out that it has quite low maximum
data transfer capacity and the whole cluster could use only about 60MB/s network
bandwidth, which would limit in best case cluster write speed to 20MB/s in only
traffic going to storage nodes would go through Docker overlay network. And for read
speed it would be limited to that 60MB/s. Those bandwidths where unacceptable as
single VM to VM connection was capable of 900MB/s bandwidth. (more information
at subsection 6.2). Because that all Swarm containers where using directly their host
VM networking stack.
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Figure 8: Openstack test environment virtual machine architecture. Network is

divided for all VMs so that simultaneously connections will affect bandwidths.

6.1 Disk performance testing

Disk performance where benchmarked with flexible I/O tester [54], from now on fio.
Following command where ran to execute test for single test case:

f i o −−name=t e s t −−f i l ename=t e s t −−randrepeat=1 −−i o eng in e=l i b a i o
−−d i r e c t=1 −−s i z e=1G −−gtod_reduce=1 −−iodepth=64
−−r eadwr i t e=randrw −−rwmixread=20 −−bs=4k

In command the first row of command file location and name are set, then random
seed for all runs is set to be same in all runs and last disk I/O engine is selected. On
second row direct flag will remove cache from use then the size is just size of test file.
Flag gtod_reduce reduces time stamp querying to 0.4% so it would not cause high
CPU usage and possibly interference with measurement. Last on that row iodepth
will set how many parallel file access are kept on file. In last row accessing is set
random for both read and writing. Then read-write ration percent is set, so that 20
means 20% of reading and 80% writing. Last flag determines the block size used in
accessing.
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Figure 9: Virtual machine hard disk performance test. File on disk where random

accessed with simultaneously read and write operations with 80% to 20% division.

In Figure 9 we can see that disk reading can get over 600MB/s for 1MB file size
and writing is then limited to 130MB/s. From these figures three times replication
should get to 43 MB/s as most likely limiting factor is disk write speed. For reading
the speed can be even higher than disk speed as storage systems will be using cache.
Over decade difference between accessing 4KB blocks compared to 1MB blocks is
normal behaviour for random accessing.

6.2 Network performance testing

Testing network performance was used Iperf software. It have been designed to test
maximum bandwidth of IP network using TCP or UDP protocols [56]. It also allows
multiple simultaneously connections ran same time for both receiving and sending
[56].

The network is tested between all VMs used in test excluding the keystore VM as
it will have only small amount of traffic. In the test all expect two links reached a bit
over 7Gbits/s (900MB/s) repeatable bandwidth. The one odd connection between
two data VMs was randomly 4Gbits/s and other times 7Gbits/s. With the another
connection bandwidth was only 3.3Gbits/s (about 400MB/s) in all tests. These
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connections where only between nodes where storage services ran. So it can only
partially limit the maximum replication throughput.

Second phase of the network testing was to simulate traffic caused by reading
objects from Object Storages and writing it to them. Reading is simple to simulate
as all nodes storing data will be streaming data to the gateway which will sends
it to load VM. In Image 10 can be seen how write and read simulations will
be configured. There arrow tip shows direction of stream and presents single or
bidirectional depending if it has one or two tips. In writing situation the load VM
makes one stream to the gateway which makes two streams for storage nodes. And
both storage nodes make again two steams to other nodes to simulate replication
writing. Those streams are selected as worst case so that nodes have uneven load
distribution. In the real system all nodes should be getting evenly traffic, but these
benchmarks should only give some rough estimates about network limits.

Figure 10: In left side of image is shown data streaming directions when simulating

traffic while writing to Object Storage. Right side are stream directions when

simulating reading from Object Storage.

For starting docker containers following command was ran:

docker run −d −e c on s t r a i n t : node==master −−name a1 \
−p 5001:5001 moutten/ i p e r f

There −e constraint : node == master flag will select the responsible swarm node
what in this case was the master node. After it the container is named with cluster
widely unique name and then −p is used to map host port to container port. In this
case it is just straight one to one mapping. Last moutten/iperf is just the name of
the Docker image. The image will be automatically loaded to host from the Docker
Hub if it is not found locally.

Test where ran so that in each VM had one container with Iperf server running
in it. Test where executed with script which started Iperf clients on each node
as specified in the test scenario. All clients did not start exactly same time, but
test reliability where checked by starting clients multiple times in different order
and running test for 60 seconds at time. All links behaved similar and different
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start sequences did not change results. Also those two links with lower performance
behaved similar as all other so those links most likely have only something that limits
only the maximum throughput.

The network overall performance was that a single node could get average 2.5Gbit-
s/s bandwidth in and out simultaneously. However, sum of all connection throughputs
in network was in around 15-20Gbits/s depending how many simultaneously connec-
tions where in network.

Results will only give simple view of the network performance as they simplify
a lot how the real traffic would be behaving. Like in the gateway situation it can
be getting more traffic in that sending what would not be happening in real system
as it can only pass so much traffic as gets and is able to send. However, reason
for benchmarking the network is just to be able to detect if the network is limiting
factory in the test environment. So based on these test can be said that the network
is able to handle at least 3Gbits/s (almost 400MB/s) object reading traffic and about
2.5Gbits/s (300MB/s) writing traffic.

6.3 Setup for Swift cluster

In the Swift cluster there was one gateway server and four storage nodes. Each
storage node has account, container and object servers running in one container.
This approach will ensure good load distribution and easy scalability, as adding new
storage nodes will increase count of all storage server types. Account and container
servers are quite light services so they can be running along the more heavily used
object servers.

The cluster setup starts by creating five identical containers to five different VMs
in the Swarm cluster. Those containers base image is modified version of all-in-one
Swift docker container [52], so that wanted services can be started after container
start. All containers uses directly their host VM networking stack to keep network
configurations as simple as possible.

When all five containers are started and finished initialization proses, their IP
addresses can be collected for ring building script. The script is copied to the gateway
container were it is executed. Then finished ring files are copied to all storage nodes.

Last node specific configuration files are copied to responding nodes and based
on those configurations node can start correct services. After all nodes have started
all needed services the storage cluster is now fully functional and it can be started to
be used for testing.

6.4 Setup for Ceph cluster

Ceph setup was as similar as possible to Swift setup. This approach would reduce
possible errors caused by different configurations. Main difference is that Ceph OSDs
all have own journal disk mounted to RAM. Reason for using RAM mounted disk
was that if Ceph would have used the disk to store journal it would have halved
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disk write throughput as there would be six simultaneous writes as Swift would only
make three simultaneous writes.

Fast journal virtual disk should only cause distorting to short writes as Ceph can
write journal as long as disk is able to flush the same data to disk. In test every test
configuration would be written 120 seconds where small 100MB journal will be easily
filled and write speed is limited to the disk and Ceph algorithm performance and
other factors.

The Ceph cluster has four OSDs, one monitor and one RADOS gateway. All
OSDs are installed in Docker containers located in different VMs so that VM internal
networking would not have effect on results. The both monitor and gateway are in
same container running on different VM than any of OSDs. Mapping one VM to one
container will ensure similar resource distribution for all nodes as every VM have
individual resources, excluding the hard drive which is shared between all VMs as
the host server only has one disk.

Ceph containers used in this work are modified versions of Ceph official demo
container [18]. Setuping Ceph cluster starts by starting the monitor-gateway node.
After it four identical OSD containers are started on different VMs in Swarm cluster.
The monitor-gateway node has generated the Ceph configuration files in start up.
Those configurations are copied for all OSDs so that they can be communicating
with the monitor and by that way join in the cluster.

After all OSDs have copies of configurations, each of those will initialize their
file systems for storage and journal. In this section there was some race conditions
in Ceph which caused the OSD process to turn in to zombie and consuming 100%
CPU. Then only way to rescue situation was to restart that VM and construct the
OSD again and try if the file system construction succeed that time.

Once all OSDs have file systems working they can be added to CRUSH map and
joined to cluster. Now the RADOS part of Ceph cluster is fully functional and Ceph
RBD blocks could be created and used. To enable Ceph Object Storage user for
Swift API needed to be created and after it the Object Storage Swift API was fully
functional.

6.5 Test configuration for testing Object Storage

Intel COSBench benchmarking tool was used for all object storage tests in this paper.
It have been designed for testing performance of various Object Storages. It has one
controller which distributes load among driver nodes based on test configurations. It
also provides web based graphical user interface for test result monitoring. Those
drivers are just load generators and test setup can have multiple of them, but at least
one is needed. In this test setup the storage cluster capacity was so low that multiple
drivers would not have changed results as one driver was enough for saturating test
system single hard disk.

As both Ceph and Swift supports Swift API it was used as the API interface in
both systems. So changing from Ceph to Swift only required changing the API path
from Ceph path /auth/swif /v1 to swift /auth/v1 .0 to be able to run tests.
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The clusters will be tested with different read write ratios. All tests used one
object size at a time so that test started with smallest object size of 4KB and
continued increasing power of two intervals to 1MB object size. There were 10
parallel workers loading the Object Storage in each test. In test cases there were
2500 objects which were divided to 50 containers with each having 50 objects. In
combined read and write test object ids where divided so that objects which are
read where in range of 1 to 25 and written objects where with ids of 26 to 50. So no
single object where simultaneously read and written.

With objects size of 10M and 100M there were only 5 containers with 10 object
in each container. They were similarly, as small objects, divided to two groups from
object id 1 to 5 and 6 to 10. Reason for limiting big objects to only 50 object was
that disk space would not allowed to write 2500 objects size of 100MB on disk as it
would have needed 750GB of disk space with all three replicas.

Also one test scenario was to load cluster with Ziphian distributed random read
accessing as it is quite common for data accessing [55]. But as COSbench allows only
access percentages for objects and object ranges the Ziphian distribution is divided
to ten different sequences.

The first object gets 12% of all traffic then second object to fifth gets 6, 4, 3 and
2 percent respectively. Then next 150 objects group gets 38%, second 150 objects
group gets 18%, third 350 objects group gets 9%, fourth 650 objects group gets 5%
and lastly 1250 objects group gets the last 3% of the load. The five first objects are
included in the last 1250 object group. However, single object in last group gets only
0.0024% so this overlapping will not have any affect in final results as the rounding
errors in are many times greater than the added load to those objects.

6.6 Test configuration for Block Storage

Block Storage should act as any mounted volume so it will be benchmarked with fio
which was used previously for validating the VM disk performance. The mounted
Ceph RBD size is defined to be 4GB and it will be using 12GB of disk space as rbd
pool was configured to have three times replication. The RBD block was mounted
to same load VM where COSBench was running, so that it has similar environment
as Object Storage tests had. Kernel module rbd will be used to map the Ceph block
to the file system. After mapping the block to the VM and initializing EXT4 file
system on it. Then block was mounted to selected directory and Block Storage was
ready for using.

Following test cases where ran for the Block Storage:

– Read-only (2GB file)

– Write-only (1GB file)

– Write 80% and Read 20% (1GB file)

All test cases where repeated with different block sizes starting from 4KB and
increasing it power of two steps to 1MB block size. Data assessing will be random
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over the whole test file. Read test has bigger file size as reading is so much faster so
test will run only couple of seconds and results are not so reliable. Also tests where
ran on three different environments. First test ran on natively on VMs disk, to see
actual disk performance. After it same test where ran on the RBD mounded to VM
and RBD linked to the Docker container.

It could have been possible that Docker container would have mounted RBD
block inside itself, but it would have needed container to have full access to VM
devices what would basically means same as VM mounting directly the RBD on
disk. As same kernel modules does the mounting. And it is not good practice to
give container full access to host devices as the container could then fault the whole
system if some critical errors occur.

While testing read-only performance of RBD in the Docker container found out
that some measurements got better results than from the native disk. It should not
be possible as test in VM mounted RBD got similar results as native disk. So most
likely some sort of caching in the Docker container where done as results were better.
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7 Test results
This section introduces all test results made for benchmarking Object and Block
Storages. All Object Storage test were ran for both Ceph and Swift using same the
test arrangements and configurations as described in Sections 6.3 and 6.4. In couple
of tests there was problem that cluster storage space ran out. This caused inaccurate
test results for write tests with 10MB and 100MB objects as over 90% writes failed.

Solution for this problem was to reinstall the Swarm cluster as it could be done in
under half an hour. There most time consuming task was to rebuild needed Docker
images to all host VMs as this setup does not have own Docker repository for storing
build images.

The reason for losing storage space over time was most likely caused by Docker
volumes and images. In some cases Docker do not remove volumes linked to container
when the container is removed. Then those ghost volumes just consumes disk space.
Also when building new images old unnecessary image layers will stay in hard disk of
host. There is scripts to remove all stored volumes and Docker images from machine
but those usually really slow and unreliable.

After the Swarm cluster rebuild performance was quickly retested for possible
change in cluster performance. However, no difference in host’s performance was
found by comparing results for previous measurements. Also some Object Storage
test where ran for comparison of previous cluster. All the test gave similar results as
with previous cluster so testing cloud be continued and all remaining test could be
ran without further problems.
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7.1 Object Storage test

Figure 11 shows read only performance of Swift and Ceph Object Storages. For
reading have been used Zipfian distribution for emulating common object storage
usage where only few objects get most of the queries. There can be seen that Ceph
has over 5 times throughput compared to Swift when accessing 8KB objects. However,
with 100MB objects the difference have been decreased to 1.8 times throughput for
Ceph. With under 128KB objects average throughput difference is 4.6 times for
Ceph. With bigger objects the average difference was 2.8 for Ceph.

 1

 10

 100

 1000

 16  64  256  1024  4096  16384  65536

T
hr

ou
gh

pu
t (

M
B

/s
)

Object size (KB)

Ceph
Swift

Figure 11: Object Storage read only test results with Zipfian distributed accessing.

Single point in graph presents one test run.
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Figure 12: Random access writes evenly distributed over all objects in Object Storage.

Figure 12 shows the write-only performance of both Object Storages. With
objects from 8KB to 128KB throughput difference was 1.6 times better for Ceph
compared to Swift throughput. From 256KB to 1M objects the difference was 1.4
times for Ceph. However, with 10MB and 100MB objects Swift got 1.7 times better
throughput compared to Ceph.
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Figure 13: Random access reads and writes evenly distributed over all objects in

Object Storage. From all operations 80% are reads and rest 20% are write operations.

In read heavy test read-write ration was 80% to 20% reading and writing respec-
tively. From Figure 13 it can be seen that Ceph has average 2.6 times throughput
compared to Swift when object size was from 8KB to 128KB. For bigger objects the
average difference decreases to 1.4 times throughput for Ceph.
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Figure 14: Random access reads and writes evenly distributed over all objects in

Object Storage. From all operations 20% are reads and rest 80% are write operations.

Write heavy test read-write ratio was 20% to 80% reading and writing respectively.
Figure 14 shows that average throughput difference was 1.7 times for Ceph when
objects where 8KB to 128KB. For 256KB objects to 100MB objects the average
difference was 1.2 for Ceph. With 100MB objects both system suffered lowered read
throughput and for Swift only 78% operations where successful. There where not
obvious reason for this behaviour and Ceph had always 100% success rate.
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Figure 15: Approximated hard disk throughput of Swift and Ceph Object Stor-

ages when performing random access writes to the storage. Other three lines are

representing the disk behaviour when loaded from VM.

Figure 15 shows how Ceph and Swift should be using the disk on write situation
as three times replication will triple writes on the disk. The light blue curve
is for comparison what would be the limiting factor of VMs hard disk if objects
where written as that size of blocks. However, objects have some metadata and
other factors what will effect on throughput efficiency of writing objects to storage
compared to writing them directly on the disk. Other two lines are disk sequential
write throughputs of VM hard disk. Violet line represent single sequential writer
and dark blue line represent combined throughput of four parallel sequential writers.
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7.2 Block Storage tests

Figure 16 shows difference in write throughput between VM hard disk and Ceph
RBD. Due the three times replication RBD can even theoretically achieve one third
of the throughput of the disk. However, at red dotted line shows approximated disk
throughput what RBD was actually using to achieving its throughput. Comparing
the VM disk throughput and RBD approximated throughput can be seen that RBD
achieves 88.5% of the throughput of VM disk.
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Figure 16: Block Storage write capacity compared to VM disk. The red line shows

how much data in RBD have to write to disk because three times replication.
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Figure 17: Read only performance for both VM disk and RBD. Read file was only

2GB cause limited disk space in test system.

In Figure 17 are compared read performances of VM disk, Ceph RBD in VM
and Ceph RBD in Docker container. Main trend in this figure is that there is no
significant difference between different configurations. However, the whole test block
size was only 2GB and with bigger block sizes it meant that the test took only
couple of second to execute so most likely some level caching was causing this high
performance.
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Figure 18: Mixed random access write (80%) and read (20%) results to RBD.

Compared performance between RBD and VM disk.

In Figure 18 Ceph RBD performance with write heavy load is shown. Load is
distributed so that 80% of operations to storage was write operations and 20% where
read operations. Again the RBD throughput is about one third of disk throughput
due the replication.

The approximated throughput of RBD have been directly calculated so that RBD
throughput is just multiplied with three. Even read operations will not cause three
times traffic the are not excluded from calculation as the test setup is limiting read
throughput to be 20% of the whole throughput. Then if throughput of writes would
increase it would also mean that throughput of reads should also increase. When
compensating the replication the average throughput efficiency of RBD compared to
VM disk was 92.2%.
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Figure 19: Random accessing write heavy testing (80% write and 20% read ration) on

RBD directly mounted on VM compared to RBD block linked in Docker container.

In Figure 19 shows comparison in throughput between RBD block mounded
in VM and RBD block linked to Docker container, when load is mix of 20% read
operations and 80% of write operations. This test was made to show if there where
any throughput reduction caused by linking RBD volume to Docker container. As
the average difference between RBD in VM and it linked to Docker container was
only under 1% can be said that it is inside natural variation.
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8 Test results analysis
It can be concluded that Ceph has better over all performance especially with small
objects. In bigger objects Swift gets closer to Ceph performance and in the big objects
read-only test Swift was even faster. However, Ceph gives strong data consistency
and it provides both Object Storage and Block Storage in the same packet.

In Figure 20 relative performance of Swift when Ceph is normalized to one is
shown. There can be seen that difference between Sift and Ceph is constant form 8KB
objects to 64KB objects. Then with bigger Swift starts to reach Ceph performance.
Still winning Ceph only with write-only test with 10MB and 100MB object sizes.
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Figure 20: Relative performance of Swift when Ceph is normalized to 1.0.

The reason for the better performance of Ceph with writes with small objects
is most likely related on its journalling strategy where everything is first written
sequentially to the journal and every few seconds data from the journal is constructed
to bigger writes what are then flushed to disk. Whereas in Swift every write is single
write to disk which causes inefficiency on writing.

However, with bigger object Swift approach of writing objects sequentially to
storages node, and not splitting them to many smaller objects as Ceph does, can
partially explain why Swift reaches Ceph performance with bigger objects. By splitting
Ceph causes many small random writes to disk which makes write operations less
efficient. However, if There would be multiple hard disk this approach would also
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distribute load more evenly over OSDs.
The big difference with small objects reading should not be related on journalling

as it is only used for writing. So it is most likely related on how efficiently Ceph and
Swift are handling queries. Cause Ceph have been written on C++ it should have
many times greater performance than Swift as Swift is written on python.

Results in this thesis can not be straightly be scaled to bigger systems as there
where only one hard disk so throughput had to be divided among all storage nodes.
Also sharing hard drive caused more seeks on the disk as simultaneously access from
multiple nodes. However, both systems had same configurations so characteristics
should be similar in bigger installations.

In Block Storage side Ceph RBD showed good efficiency compared to VM hard
disk. However, the test where made only using relatively small blocks which caused
some unreliability on the results as internal caches can cause result to show better
performance. Even in all test the Linux file system caches where bypassed the
Ceph OSDs could cache most of the block content to their memory and give better
throughput than with bigger blocks or with multiple users.
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9 Summary and Conclusion
All three tested storage solutions are suitable solutions as persistent storage solutions
for dockerized cloud. However, nature of data will have great impact on which
storage solution will be most beneficial or should there be multiple storages in use
for different type of data.

Objects Storages are used with rest API and they are generally suitable for
data which is written once and read many times or if the whole object is needed
to be any case rewritten as objects storages do not allow partial writes on objects.
Whereas Block Storage has better support for small writes and its is easier to be
integrated with legacy applications as it behaves as any storage device. However,
Blocks Storages will not support multiple simultaneously users.

When selecting between Swift or Ceph Object Storages the scale of cloud should
be estimated and what kind of workload the storage needs to be handling. If cluster
will be running in multiple data centers the Swift could be more straightforward
solution as single Swift cluster can be running in multiple data centers. Whereas
Ceph cluster is only efficient when it runs in one data center as write latency increases
if latency between replicas increases. However, Ceph Object Storage can use multiple
Ceph clusters so that every data center has own Ceph cluster where local objects are
stored. This approach increases latency when client and object which client need are
in different data center as all replicas are in that one Ceph cluster.

Administrator side of different system is also quite different as Ceph can auto-
matically add and remove OSDs from cluster as they fail and recover. Whereas with
Swift administrator have to manually remove storage nodes from cluster and update
ring files in all nodes. However Swift has temporary storages for data of failed node
so that object has always correct amount of replicates even some storage nodes would
have failed.

Block Storages are straightforward storage service for applications as it can be
used as any storage device. In Docker it is possible to mount block device on host
and link it in container. Application inside container will not see any difference
between linked block device and normal docker volume. When container have to be
moved from one host to another the block device can be mounted on that new host
and again linked to container.

This behaviour gives good data resilience as data is always stored in Ceph storage
cluster so no data will be lost in case of host machine failure. However, drawback of
Ceph Block Storage is that it can only have one client at time using it. This means
that block device can not be used as such as a data sharing service. If data is need to
be shared the application have to handle sharing or it has sharing service beside it.

In tests Ceph Object Storage showed better performance compared to Swift. Only
test case where Swift outperformed Ceph was in write only test with 10MB and
100MB objects. Generally Ceph has 1.7 to 2.6 times throughput compared to Swift
when object size was from 8KB to 128KB. With bigger object Ceph throughput was
from 1.2 to 1.4 times Swift throughput.

Block Storage test showed that Ceph has high efficiency of using disk throughput
capacity. While writing, the Ceph Block Storage was able to utilize 88.5% disk
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throughput compared to VM disk. On reading side no difference were found. However,
the test block was only 2GB which caused read to be cached, even Linux file system
cache was by passed. Also test showed that linking block to Docker container will not
cause significant difference on disk throughput compared if block was used directly
on host where it was mounted.

Conclusion based on tests and resources was that Ceph is always better option
if Cluster is running only in one data center or applications and their data can be
located in only one data center. Also it has more advanced fault recovery and supports
both object and block storage. However, if objects are needed simultaneously in
multiple data centers, Swift can be a better solution as it is able to distribute replicas
to different data center without performance losses.
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