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Abstract:  

Visual mental imagery and visual short term memory are often assumed to play similiar roles. There 
are many evidence showing that they both involve visual cortical neurons which encode incoming 
sensory information. On the cognitive level it has been explained in terms of the visual cache, which 
is nvolved in the maintenance of visual short term memory and imagery content. Even though 
menatl imagery and visual short term memroy may share cogntive resources, they are nevertheless 
two distinct psychological processes that can be dissociated behaviorally. In this study, we wanted to 
see if those two processes diverges in early visual cortex. To be able to do it, we used transcranial 
magnetic stimualtion as a probe of visual cortical activation state. Experiment consists of three 
diffrent blocks: VSTM alone, mental imagery alone and concurrent VSTM and imagery. The 
concurrent condition was carried out to understand how imagery and VSTM might interact when 
they are engaged simultaneously.  
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1. Introduction 

 

Studies on visual cognition have focused extensively on two main cognitive 

abilities: visual short-term memory (VSTM), which is a subdivision of the visuo-

spatial working memory (Baddeley and Hitch, 1974; Baddeley, 2001), and visual 

mental imagery.  

Visual mental imagery and visual short-term memory are often considered as 

one ability due to a rising number of evidence showing the overlap of their 

neural bases at the level of the early visual cortex (Sparing et al., 2002; Slotnick 

et al., 2005; see e.g. Postle, 2006 for review,; Serences et al, 2009; Harrison & 

Tong, 2009; Van de Ven et al, 2012; Albers et al., 2013). Also, at cognitive level, 

Logie (1995) suggests that both are maintained at the level of the visual cache, 

a subcomponent of the visuo-spatial working memory.  

At cognitive process, VSTM and mental imagery have been shown to 

differentially affect the encoding of internal input (Saad & Silvanto 2013), and 

dynamic visual noise to impair visual imagery generation but not short term 

memory (Quinn & McConnell, 1996; Andrade et al., 2002; Zimmer and Speiser, 

2002). Therefore though mental imagery and visual short term memory share 

neural resources however they remain two distinct psychological processes 

that can be dissociated behaviorally.  

Here we wanted to investigate whether transcranial magnetic stimulation 

(TMS) will dissociate metal imagery and VSTM during the maintenance phase 

when applied at the EVC. To attain this aim we used repetetive transcranial 

magnetic stimualtion (rTMS).  

Transcranial magnetic stimulation has been used before to investigate both 

VSTM and mental imagery when applied at EVC. In details, Cattaneo et al. 
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(2009) compared the functional contribution of EVC in short-term memory 

retention and visual mental imagery at different delays of the retention. They 

showed that TMS pulses applied at later phase of the retention affect both 

processes.  

  

The experiment detailed in this thesis is based on two main Experiments; 

Experiment 1 assesses VSTM and mental imagery when each was processed 

alone. Experiment 2 assesses VSTM and mental imagery when both were 

conducted simultaneously. This study was conducted at Aalto TMS laboratory 

located at Aalto University in Espoo, Finland. 
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2. Background  

2.1 CEREBRAL CORTEX 

 

The cerebral cortex is constituted of two hemispheres. The surface area of the 

human cerebral cortex is about 2,200 to 2,400 square centimeters due to its 

folded nature as about two thirds of its volume is confined within the depths of 

the sulci (Michael et al., 2009). The cyto-archtecture of the cerebral cortex 

consists of six layered structure called neocortex and of two principal types of 

neurons: the stellate cells receive sensory input and process information on a 

local level. These cells have different shapes, and sizes. As to the Pyramidal 

cells, which are more numerous, their axons have extensive local collaterals. 

They widespread as they leave the cortex to form connections with other parts 

of the central nervous system. The number of synapses on a pyramidal neuron 

is estimated to be between 1,000 to 10,000. 

 

The cerebral hemispheres have been defined in terms of lobes (Figure 1). These 

lobes have a variety of functional roles in the neural processing. The four lobes 

are: the frontal, the parietal, the temporal, and the occipital lobe. The frontal 

lobe plays major role in planning, memorizing, mood regulation emotions, and 

voluntary motor function. The parietal lobe is located posterior to the central 

sulcus and anterior to the occipital lobe. It receives and integrates general 

sensory information such as taste and some visually processed information. 

The temporal lobe is located lateral and ventral to the Sylvian fissure. It plays a 

major role in the primary and the secondary processing of auditory stimuli, 

smell, learning, and memory. The occipital lobe is located in the posterior part 

of the cortex and act as the primary visual center of brain. This thesis will 
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mainly develop information visually processed as it investigates the neuronal 

correlates of their maintenance phase at EVC. 

 

 

 

Fig.1 Division of cerebral cortex 

  

2.2 VISUAL SYSTEM  

 

The decoding of Visual information based on external input undergoes 

different steps. Starting from retinal input, traveling through the central visual 

system, till reaching the EVC.  

 

2.2.1 THE EYE 

The journey of a visual input starts at the level of the eye. The eye is located in 

the front part of the orbit.  
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Fig.2 The conformation of eye. (Adapted from www.illuminationstudios.com) 

 

It is constituted by three layers: the sclera, the choroid, and the retina. The 

sclera, also referred to as the cornea, is thick, rigid and opaque. The cornea 

protects the inner structures of the eye. The front of the cornea forms the 

sclera which is thinner and transparent. The outer layer of the sclera is 

composed of the epithelium and the conjunctiva. When the light passes 

through the cornea it undergoes refraction that is why it acts as a lens focusing 

the light. The most inner layer of the eye is the retina. It consists of 10 layers; it 

is transparent and sensitive to light. The retina is composed of photoreceptor, 

interneurons, bipolar cells, horizontal cells, and ganglion cells. The 

photoreceptors are divided into two types, rods and cons cells. The rods are 

located throughout the retina, but greater number is located on the fringes. 

They are not sensitive to colors, but allow the perception of shapes and 

movement in low light vision or scotopic vision. The highest density of cons 

cells occurs in the macula in the central part of the retina, thus corresponding 

to the sharpest vision. Cones are found at the fovea level, which is the area of 

the retina that perceives the central visually presented information. The light 

http://illuminationstudios.com/archives/146/eye-anatomy


15 

energy received by the photoreceptors is converted into electrical signal that is 

readable by the brain. The size of the receptive field of retinal ganglion cell 

depends on the area of the retina from which they emerge. The farther away 

from the fovea the larger the receptive fields. The peripheral regions of the 

retina receive input from a higher number of photoreceptors causing higher 

sensitivity to low levels of light. On the other hand, the fovea receives less 

input from the photoreceptors, making it more sensitive to high spatial 

frequencies. Ganglion cells have a center surround organization. There are 

three main types of ganglion cell: magnocellular (M), parvocellular (P) and 

koniocellular (non-M, non-P or K). Information goes from the rod and cone 

through bipolar cells to ganglion cells, which axons form the optic nerve. 

 

Fig.3 The pathway of visual system. Light fall on the retina and create a 

photochemical reaction in the roads and cones at the back of the retina. The 

reaction then continues to the bipolar cells, the ganglion cells and eventually to 

the optic nerve.  
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2.2.2 THE CENTRAL VISUAL SYSTEM  

  

Optic nerves, from both eyes, meet at the optic chiasm and become the two 

optical pathways. Which differ with respect to where they terminate at the 

subcortex level. These include the lateral geniculate nucleus in the thalamus, 

the superior colliculus in the brainstem, and the suprachiasmatic nucleus in the 

hypothalamus. The superior colliculus retains the retinotopic map and is 

responsible for tracking eye-movements and for spatial orientation. 

The optic pathways connect the optic chiasm to the lateral geniculate nucleus, 

creating geniculostriate pathway which is the final projection to the visual 

cortex. 

At the level of LGN, ganglion cells, innervated by cones, transmit the signal to 

the parvocellular to the dorsal LGN layers (layers 3-6). This pathway is 

responsible for the transmission of fine grain; color visual information from the 

central regions is transmitted to primary visual cortex layer 4C-β (Livingstone & 

Hubel, 1988, Casagrande & Kaas, 1994 for review). Ganglion cells innervated by 

rods transmit the signal to the Magnocelluar layers (layer 1 and 2) at the 

ventral LGN.  These M neurons are characterized by sensitivity to high contrast, 

and motion. The M neurons send the signal to the  primary visual cortex layer 

4C- α (Livingstone & Hubel, 1988, Casagrande & Kaas, 1994 for review). A third 

less documented LGN cell class are the Koniocellular cells. 
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2.2.3 THE OCCIPITAL LOBE AND EARLY VISUAL AREAS 

 

The occipital lobe, known as the visual cortex, form the posterior pole of the 

cerebral hemispheres, and is lying in the back of the skull. The occipital lobe is 

separated from the parietal lobe by the parieto-occipital sulcus. The visual 

cortex is divided into three major landmarks: calcarine sulcus, lingual gyrus and 

fusiform gyrus. The whole occipital lobes are divided into nine different visual 

areas, named V1, V2, V3, VP, V3a V4d, V4v, DP and MT/V5. V1 also known as 

primary visual cortex, which receives the largest input from the lateral 

geniculate nucleus and project that information to other levels. V2 is the 

secondary visual cortex, projects information to higher levels and acts as an 

output to the parietal lobe (visual guidance of movements), the inferior 

temporal lobe (object perception), and the  temporal sulcus (visuospatial 

functions). Information about color and shapes are transmitted from V1 to V4. 

Information from area V1 and V2, about motion, goes to V5. Finally, 

information about the shape of object motion travels from V1, V2 to V3. 

 

 

 

As the main aim in the thesis is the early visual cortex, I will therefore detail 

the primary visual cortex.  

V1 is located at the medial surface of the cerebral hemispheres and is 

extending slightly onto the posterior hemispheric pole. The average number of 

neurons in the adult human primary visual cortex, in each hemisphere, has 

been estimated to140 million approximately (Leuba & Kraftsik, Anatomy and 

Embryology, 1994). The visual cortex is constituted by six layers (1, 2 layers are 

magnocellular and 3,4,5,6 are parvocelluar see figure 4). At the level of these 
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layers resides the staring process of the cortical coding of visual features such 

as color, luminance, spatial frequency, orientation, and motion. There are three 

types of cells or neurons in the Primary Visual Cortex (V1): Simple Cells which 

Respond to bars of light. Complex Cells which Respond to line orientation in or 

out of its excitatory/ inhibitory zone and Hyper Complex Cells which respond to 

moving corners or angles. In the center of every layer we can find blobs 

interlayer with interblobs. The blob contains color sensitive double opponent 

cells with circular surround receptive field. Blob cells contain single eye 

information and interblobs contain mixed information from both eyes 

(Livingstone & Hubel, 1988).  

From V1 information is transmitted to two primary pathways called the dorsal 

stream and the ventral stream: The dorsal stream begins with V1, goes through 

visual area V2, and then reaches the dorsomedial area, MT and to the posterior 

parietal cortex. As to the ventral stream it begins at V1 levels goes through V2, 

V4, and reaches the inferior temporal cortex.  

 

 

Fig.4 The structure of primary visual cortex. Adapted from Livingstone 

(Livingstone & Hubel, 1988) 
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V1 has a very well-defined map of the spatial information in vision. The 

correspondence between a given location in V1 and the subjective visual field is 

very precise. A large portion of V1 is mapped at the fovea level. (Tai Sing Lee, 

2003). Visually retained information will be processed by the working memory. 

 

 

 

 

Fig.5 Visual input travel from eye to LGN and then to early visual cortex located 

in the occipital lobe. Adapted from Polyak (1957) 

 

 

2.3 WORKING MEMORY 
 

We are in need in our day to day life to keep some information in our memory 

for short term: i.e., remembering phone numbers names, doing some basic 

math. These are simple tasks that we are faced with on a daily basis. However, 

some difficulties might arise when faced with more complicated tasks. to 

illustrate: remembering directions, map and specific driving instructions 

requires beside holding information in mind, performing some cognitive 

operation such as following cues and overcoming instantaneous obstacles. 
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These short term mental storage and the cognitive manipulation that is 

bestowed upon retained information well define the working memory.  

The very first distinction between short-term (primary memory) and long-term 

(secondary memory) memory was introduced by the American psychologist 

William James in 1890. He suggested, that in primary memory information is 

stored and available to conscious inspections at any time (“an object of primary 

memory is thus not brought back; as it is never lost” W. James, 1890). On the 

other hand, secondary memory is a storage system where information cannot 

be retrieved without ongoing cognitive process. In 1956, the classical finding by 

Miller, stated in “The Magical Number Seven, Plus or Minus Two” paper, 

showed that people have a limited ability in receiving  processing and recalling 

information (G. Miller, 1956). In his experiment, he shows that subjects are 

able to store in a short-term memory about seven items. Therefore he 

suggested that single items can be grouped into chunks. With this new concept, 

Miller highlighted that the short-term storage capacity is expandable. Brown 

and Peterson requested from their (Brown, 1958; Peterson & Brown, 1959) 

participants to recall trigrams (meaningless three-consonant syllables) after 

different intervals. To prevent rehearsal, they were asked to simultaneously 

count backwards until seeing a red light. The results revealed that the longer 

the delay, the less number of trigrams was recalled.  This experiment showed 

that short- term memory has limited time span and is different from long- term 

memory in terms of duration. An additional differentiation between short and 

long term memory was proposed by Atkinson and Shiffrin (Atkinson & Shiffrin, 

1968). In their model (referred to as the multistore model) short term-memory 

serves as a pathway by which information can gain access to long-term 

memory. On the basis of the Atkinson & Shiffrin model, Baddeley and Hitch 

(1974) developed a more detailed system that better explained the working 
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memory system. In their first experiment, they asked people to make true-false 

decisions about spatially arrayed letters. On trial by trial basis participants were 

asked to repeat all digits that were shown on the screen (between 6 and 8 

digits). The results showed that subjects did not do more errors when 

simultaneously they were holding digit strings in short-term and counting 

backwards. This suggested that there exist multiple systems for working 

memory which are coordinated by the central executive mechanism. The 

original formulation of Baddeley’s model consists of three different 

components: 

- Central executive – key component, limited capacity, deals with 

cognitively demanding tasks 

- The visuospatial sketchpad – limited capacity, storage of visual and 

spatial information 

- The phonological loop – limited capacity, preserve order in which words 

are presented 

In 2001 Baddeley added a fourth component: the episodic buffer: 

- Episodic buffer – limited capacity, deals with and binds information from 

different modalities. 

 

Fig.6  Baddeley model of working memory. Adapted Baddeley, 2000. 

 



22 

The central executive is the most important component of working memory. It 

has no storage capacity.  

Baddeley (1996) identified after a set of experiments the functions that 

describe the central executive:  switching of retrieval plans, timesharing in 

dual-task studies, selective attention, and temporary activation of long-term 

memory. 

According to Baddeley (1986, 1990) the phonological loop is described as a 

passive and time limited storage of auditory based material. It is believed, that 

it is located in the left hemisphere of the brain (Logie et al., 2003). The 

Phonological loop is divided into two components: the phonological store and 

the articulatory rehearsal mechanism. Basically, the length of the word has a 

meaning. Thus the ability to reproduce a sequence of words is higher with 

short words than longer ones (Baddeley et al., 1975). This suggests that the 

capacity of the phonological loop is determined by the temporal duration, and 

that the memory span is determined by the rate of rehearsal. 

The visuospatial sketchpad is the second slave storage system.  It is believed to 

be located in the right hemisphere of the brain.  It holds visual and spatial 

information for a short period of time. At this point, it is worth to mention the 

work done by Logie (1995). Logie proposed two components of visuo-spatial 

working memory: the visual cache, and the inner scribe. The visual cache is a 

passive store which is responsible for the storage of visual information like 

color and form. The second component, inner scribe, is described as more 

active system. It is responsible for dealing with spatial and movement 

information and rehearses information and transfers information in the visual 

cache to the central executive ((Beschin et al., 1997; Smith & Jonides, 1997). 
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The episodic buffer is controlled by the central executive through the medium 

of conscious awareness and it acts as a system which integrates information 

from a range of sources into a single coherent memory experience (Baddeley & 

Wilson, 2002). The capacity of the episodic buffer is limited; however it also 

acts as an extra storage mechanism to back up other storage areas. 

 

 

 

 

2.4 VISUAL SHORT TERM MEMORY 
 

Quite often perceived information is store in a short-term format, this process 

is referee to as visual short-term memory (VSTM; Phillips, 1974; Phillips & 

Christie, 1977). VSTM representations are resistant to minor distractor; in the 

sense that they survive eye movements, and eye blinks.  VSTM is a short-term, 

active store for visual information that has not yet been encoded into long-

term memory (Baddeley, 1986). These representations are formed very quickly 

and are capacity limited (Baddeley,1986; Baddeley & Logie, 1999) areas  which 

are believed to be essential to the VSTM consists of occipitotemporal, frontal, 

prefrontal and parietal cortex, the anterior cingulate and the basal ganglia. 

HaxEby and collaborators performed an experiment using functional magnetic 

resonance, to investigate the human neural system of visual working memory 

(Haxeby et al., 2000). In their study, Subjects performed spatial and face 

memory tasks. Different areas were activated during stimulus presentation and 

memory delays. Whereas the Inferior frontal gyrus, posterior middle frontal 

gyrus, anterior middle frontal gyrus showed higher activation during memory 

delays and reaction to face stimuli, the anterior region showed stronger 

http://www.scholarpedia.org/article/eye_movements
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memory maintenance related activity. Prefrontal cortex was activated 

throughout all memory tasks.  

Sneve et al, (2011) found that BOLD (blood oxygen level dependent)  activity at  

V1 level, during delayed match-to-sample task  and within a memory masking 

set up of varying spatial frequencies was  weaker when performances were 

impaired by the presence of the mask stimuli. These weaker responses were 

observed in regions that were engaged in the retention of visual information.  

Additional studies on visual short term memory revealed that the amount of 

stored information that follows a briefly viewed image, is very small. Sperling 

(1960) found that observers could remember only 4 letters on average, 

regardless of how long they viewed different sized matrices of letters. In 

another experiment, Luck & Vogel (1997) found that only four integrated 

objects, such as colored boxes, are retained during change detection tasks.  

However, Alvarez and Cavanagh (2004) suggested that the capacity of VSTM is 

not limited by the number of objects, but by information load. In their study 

they used a change detection paradigm by presenting six different stimulus 

types: colors, letters, Chinese characters, random polygons, shaded cubes, and 

Snodgrass drawings (Snodgrass & Vanderwart, 1980). The capacity of VSTM 

varied for each stimulus type. They concluded that the greater the 

informational load, the less information can be retained in visual short term 

memory. Luria et al., measured the capacity of visual short term memory for 

simple and complex stimuli. Thus, they presented either colored squares or 

random polygons to subjects. Participants were instructed to memorize the 

stimulus that was cued by an arrow, and judge whether the memory and the 

test array were identical. The results revealed that more resources and efforts 

were employed when maintaining complex objects. 
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2.5 MENTAL IMAGERY 

 

One of the pioneering works that studied the role of imagery in thinking was 

conducted by Sir Francis Galton in 1883. In Galton’s “breakfast-table 

questionnaire” he asked subjects to think about their breakfast table and 

imagine it in front of their mind’s eye. What was most commonly report is a 

“mental vision.”(Bruno Laeng & Unni Sulutvedt, 2013). 

 A pioneering classical work by Perky (1910) will shed more light on mental 

imagery processes. Perky  asked her subjects to look at the fixation point on a 

screen and visualize various objects, such as a tomato (red), a book (blue), a 

leaf (green), a banana (deep yellow), an orange (orange), or a lemon (light 

yellow).Perky was projecting a very dim image of those objects onto the 

screen. None of the Perky’s subjects realized that on the screen was an actual 

picture. Some subjects expressed surprise at finding themselves imagining a 

banana “upright” rather than the horizontally oriented when describing these 

pictures. 

 

Years later during Kosslyn’s investigation (1973), participants had to study 

picture of items. Presented pictures had three easily distinguished parts: two 

ends and the middle. Subjects afterwards were asked to generate mental 

images of items and then to look for a particular part of pictured item.  

Kosslyn’s investigating led to the conclusion that More complex forms require 

more time to image (Kosslyn, 1988) and the response time is affected by the 

spatial nature if images. Based on many of these experiments Kosslyn 

suggested different stages of mental imagery process.  
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Thus, after mental image generation, it is stored into topographically organized 

area. This organized area is called visual buffer and it is located in the early 

visual cortex (Kosslyn, 1980, 1994; Kosslyn & Thompson, 2003; Kosslyn et al., 

2006). The second step involves transferring the content from visual buffer into 

the visual cache. The main task for the visual cache is to allow the process of 

encoding and maintaining of short-term visual representations and mentally 

generated images (Logie 1995). In the third step is for the interpretation of 

memorized objects’ features and spatial properties (Kosslyn et al., 2001). The 

last step of the process is described as transformation and manipulation, such 

as mental rotation (Shepard & Cooper, 1982) or reconstruction of images 

(Reisberg & Logie, 1993). 

 In 1985, Farah conducted two experiments which explore the relation 

between the representational structures activated by visual imagery and visual 

perception (Farah, 1985). During the first experiment, subjects were asked to 

imagine on the screen either the letter H or T. Once they formed clear image, 

they pressed a button that caused two squares flash one after the other. One 

of them had a target letter (either an H or T). Subject’s task was to indicate if 

the letter was on the first or on the second square. In the second experiment, 

subjects had the same task with three main differences: the imagery cues were 

different, trials were not subject-initiated and there were a larger number of 

conditions. The result showed that participants were more accurate in 

perceiving a real stimulus after that they have imagined the stimulus. Farah 

concluded, that imagery and perception share common structures.  

 

In 1989 Finke’s proposed five principles of visual Imagery: 

1) Mental imagery is often implicitly encoded.  That means that information 

is encoded unconsciously. 
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2) Mental imagery is equivalent to perception. The same area is activated 

when we create a mental image and when we perceive visual stimuli. 

3) Mental imagery is spatially equivalent. The spatial organization of the 

elements of mental image is arranged in similar fashion to the real space. 

4) Mental image is transformational equivalent. Manipulation of mental 

images is similar to manipulation of real objects (i.e., the rotation of 

objects to fit to the main picture (Shepard and Metzler, 1971)). 

5) Mental image is structural equivalence. The structure of mental images is 

similar to structure of real object. As it was mention above, larger objects 

take more time to be mentally created and look over them. 

 

 

Ganis et al. (2004) used functional magnetic resonance (fMRI) to see if there is 

a difference in activation in areas, between perception and imagery. 

Participants were asked to either close their eyes and visualize an object or 

observe faint drawings of objects. They additionally, were asked to judge some 

aspect of the drawing. The Results showed that many areas of brain were 

activated during both conditions.  Figure 7, shows a common overall pattern of 

activation. 
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Fig.7 Brain scan from work done by Ganis et al. 2004. A) Response from frontal 

lobe. The lack of colour on last picture shows that activation was the same in 

imagery and perception condition. B) Response from temporal cortex. 

Activation in brain for perception and imagery was same as previous. C) 

Response from the back. It is visible that response in the perception condition 

was greater than in imagery condition.  
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3. Transcranial Magnetic Stimualtion 

 

3.1 SHORT HISTORY OF TRANSCRANIAL MAGNETIC STIMULATION 

 

The technique of transcranial magnetic stimulation is based on the 

phenomenon of electromagnetic induction, first described by Michael Faraday 

in 1831 (Jalinous, R. Guide to Magnetic Stimulation. The Magstim Company 

Limited, spring Gardens, UK, 1995). If a very brief, but strong electric current is 

passed through a coil of wire it generates a changing magnetic field, which in 

turn induces a current in an adjacent wire circuit or volume conductor 

(Faraday’s law).  D’Arsonval in 1896 was the first to place subjects head inside a 

powerful magnetic coil (110V, 30A, 42Hz) to produce phosphenes, vertigo and 

syncope. (D’Arsonval 1896) Few years later in 1902, Beer showed in his work 

that phosphenes could be produced by applying a magnetic field to region 

responsible for vision. In 1965, Bicford and Fremming for the first time used 

magnetic pulses of 2-3T to twitch skeletal muscle.  In 1985 Baker constructed 

the first modern TMS with his colleagues. The Sheffield group conducted for 

the first time stimulation over the motor cortex. This technique was painful; 

however, they recorded twitches in hand muscles for about 25 ms (Barker et 

al., 1985). Since 1985, magnetic stimulator technology has remained mostly 

unchanged. Whereas early research used circular coils, today devices are 

usually equipped also with a figure-eight (double or butterfly) coil proposed by 

Ueno. It is estimated that stimulation of figure eight coil reach up to 5mm 

below the coil and cover an area of 6cm approximately. 

Repetitive TMS delivers trains of stimuli at 1-50 Hz. rTMS was first produced by 

Cadwell Laboratories in 1988. Some types of coil uses also a forced air flow to 

cool the surface of the coil, so it can be used for long trains of pulses. 
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Fig.8 Two types of TMS coil: circular coil on the left and figure eight on the 

right. 

 

 

3.2 PHSICS OF TRANSCRANIAL MAGNETIC STIMULATION 
 

To produce induced responses at the level of cortical neuronal population, the 

induced field must differ across the cell membrane. Therefore the axon has to 

be bent across the electrical field or the field must traverse an unbent axon 

(Ruohonen & Ilmoniemi, 1999). Neurons can be excited by externally applying a 

time-varying electromagnetic field. In TMS, excitation is achieved by driving 

intense pulses of current I(t) through a coil located above the head. The source 

of activation is the electric field E induced in the tissue, obtained from 

Faraday’s law: 

     
  

  
 

 

Where E is the electric field in cortex and B is the magnetic field produced by 

the coil, given by the Biot- Savart law: 
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Where the permeability of vacuum, C is the path of the coil windings and dl is 

the differential length of the coil. The high voltage electronic switch is crucial 

for creating the very short pulse. The induced E is strongest near the coil and 

typically stimulates a cortical area of a few centimeters in diameter. 

 

 

 

Fig.9 Representation of macroscopic and microscopic response of TMS. 

Adapted from Ruohonen (1998) 

 

TMS pulses cause coherent firing of neurons in the stimulated area as well as 

changed firing due to synaptic input. The stored energy is transferred to the 

coil in approximately 0.1 ms and then returned to the instrument to reduce coil 

heating. Biphasic or polyphasic pulses are less accurate and produce more click 

noise and heat. The brief and strong discharge current of up to 5,000-8,000 

amps flowing through the stimulating coil generates a magnetic pulse with a 
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fast rise time (0.1 ms) and slower decay (up to 1 ms), and a peak magnetic field 

power of 1.5-4 Tesla.  

There are two main types of coils: circular coil and the figure-eight coil. Circular 

coils are usually about 8cm in diameter. Coil with radius R, the magnetic field 

along a line perpendicular to the coil and through its center is proportional to  

 

  
  

            
 

 

 

where z is the distance from the coil along the central axis. The site where 

stimulation occurs in this type of coil is at places around the loop. Figure-eight 

coil consist of two circular coils joint to each other in the same plane. This 

configuration has the effect of narrowing and decreasing in strength toward 

the apex. 

 

3.3 SINGLE PULSE TMS AND REPETITIVE TMS 

 

There are two available types of stimulation: single-pulse TMS and repetitive 

TMS. Both of them generate trains of stimuli at 1-60Hz. In single-pulse TMS, 

monophasic, biphasic or polyphasic stimulation (Fig.10), are delivered 

nonrythmically not more than once every few second (Wassermann 1998). This 

form is usually used for physiological research or diagnostic purpose. A single 

pulse is of value in producing a temporary lesion used to investigate attention, 

plastic visual detection, and evoking motor system responses. 
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Fig.10 The waveforms of monophasic, biphasic and polypasic stimulation. 

Monophasic stimulation is used for rapid rate stimulator, produce less heat and 

noise and increase stimulus accuracy compering to other. Biphasic stimulation 

has short efficient pulse, produces more noise and is not as accurate as 

monophasic. It is best in use of studying brain connectivity. Polyphasic 

stimulation is very efficient but produces a lot of noise and heat. 

 

Repetitive TMS uses short bursts at a high inner frequency interleaved by short 

pauses of no stimulation. There are two types of frequencies used in repetitive 

TMS: fixed and modulated frequencies. In fixed frequency, every pulse in a 

train has the same power output and intervals lasting from 20ms up to 

1000ms. This type of modulation is useful in the therapeutic application. In 

modulated frequency, the power and intervals can varied from 1ms to 1000ms 

and are selected in 1/10ms steps. Modulated frequency is used in more 

complicated cortical investigation. Repetitive TMS produces longer-lasting 

effects which persist after the initial period of stimulation. rTMS can increase or 

decrease the excitability of the corticospinal tract depending on the intensity of 

stimulation, coil orientation and frequency.  Lower frequencies of rTMS in the 

1Hz range can suppress excitability of the motor cortex while 20Hz stimulation 
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trains seem to lead to a temporary increase in cortical excitability (Pascual-

Leone A, 1998). 

 

3.4 SPATIAL RESOLUTION OF TMS 

 

An exact spatial resolution of the TMS cannot be measured in mm or cm 

because the effect depends on the initial activity of neurons in the stimulated 

region of interest (Silvanto et al., 2007) stimulation intensity (McKeefry et al., 

2008) and stimulation frequency (Huang et al., 2005). Mapping the visual and 

motor cortex are good examples of TMS spatial resolution.  Kammer (1999) 

showed phosphenes, which were elicited with a resolution of 1-2 degrees of 

visual angle are equivalent to 10-20mm of cortex. Coil Displacement as small as 

1cm along the scalps surface can shift the perceived retinal location of 

phosphenes (Walsh & Cowey, 2000; Cowey, 2005).Furthermore, muscles in the 

motor cortex ,which are segregated by as little as 1 to 2 cm on the cortex, can 

selectively be stimulated (Brasil-Nero et al. 1992; Wassermann et al. 1992; 

Singh et al. 1997). The spatial resolution of TMS is highly dependent upon the 

shape of the stimulating coil and the temporal resolutions of TMS are variable 

and depended upon the stimulation parameters.  

 

 

3.5 WHAT ARE PHOSPHENES? 

 

When applied at EVC TMS induces phosphenes or illusionary flashes of light.  

However, the determination of phosphene threshold may not be obtainable in 

most of the subjects, and often requires the use of repetitive pulse stimulation 

(Ray et al., 1998; Boroojerdi et al., 2000). Phosphenes are considered as the 

electrophysiological equivalent to the induced muscle twitches caused by TMS 
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(T. Kammer et al., 2005).  Phosphenes are usually stationary and they appear to 

be very brief flashes of light grey or white colour. The shape of phosphene may 

be different across subjects. Some describe phosphenes as straight or curved 

lines, while others perceive regular patches (Kammer, 1999). People who are 

blind also can see phosphenes. In 1755, Charles Le Roy stimulated a blind 

patient through the retina and cortex. The patient reported vivid phopsphenes 

yet blind. The brain structure which is involved in the generation of 

phosphenes is the primary visual cortex. 

 

 

3.6 EFECT OF TRANSCRANIAL MAGNETIC STIMULATION OVER THE VISUAL 

CORTEX 
 

As noted above, TMS applied over the occipital cortex can induce the 

perception of flashes of light called phosphene (Arsene d’Arsonval, 1910; 

Thompson, 1910; Ray et al., 1998; Kammer, 1999; Boroojerdi et al., 2000; T. 

Kammer et al., 2005,). 

In Mulckhuyse et al. experiment (2011), participants were asked to perform a 

spatial cueing orientation discrimination task. During the experiment, single 

pulse TMS was applied, below phosphene threshold, before the stimulus onset. 

The results showed that TMS facilitated the visual processing for orientation 

targets and for luminance cues. Romei et al. (2008a) stimulated the visual 

cortex to induce phosphenes in the absence of any visual confound. 

Participants were blindfolded and were asked to report whether they 

perceived phosphenes. The Results demonstrated a reduced alpha-band 

activity in posterior sites contra lateral to the occipital TMS side, suggesting 

location-specific enhanced visual cortex excitability. Additionally, TMS affected 

the influence of working memory on visual search (Soto et al., 2012). Soto and 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866482/#B45
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colleagues applied TMS at the early visual cortex. TMS was found to enhance 

search performance on valid trials relative to invalid cueing trials.  

 

Cattaneo et al. (2009) compared the functional contribution of EVC in short-

term memory retention and visual mental imagery at different moments in 

time. The author showed that tms applied at the beginning of the retention 

interval over the early visual cortex increased reaction time for memory trial, 

but not for imagery. However, TMS pulses applied later, affected both 

processes.  

Also, TMS over the early visual cortex has been shown to impair performance 

in visual imagery tasks, thus implicating this region in imagery processes 

(Kosslyn et al., 1999b). 

 

3.7 SAFETY OF TRANSCRANIAL MAGNETIC STIMULATION 
 

Safety issues are very important during usage of TMS. That is why, every 

participant is required to fill in some screening forms (Fig 11). TMS studies 

cannot be conducted with participants who suffered from stroke or brain 

trauma, have surgical clips or have a pacemaker. Women who are pregnant 

also should not participate in TMS experiments.  

The strong magnetic field pulse produced by the TMS coil can induce large 

voltages in nearby wires and electronic devices. Such as implants and can also 

result in displacement of some small metallic implants in the head (Rossi et al. 

2009) 

Possible side effects of TMS when the participant is not well screened are: 

Seizure induction – rare in use of low frequency rTMS and more possible in 

high frequency rTMS 
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Transient headache, local pain – possible in single pulse TMS and paired pulse 

TMS but quite often in use of low frequency rTMS and high frequency rTMS  

Transient hearing changes – possible in all types of used TMS 

 

It is recommended that subjects use approved hearing protection (earplugs), 

people with cochlear implants should not receive TMS. For some people rTMS 

might be painful. It depends on the intensity, frequency, placement of TMS, 

and individual susceptibility. In the majority of patients, all types of pain 

disappear after some period of time. 

 

 

 

Fig.11 Safety screening questionnaire from TMS laboratory in Aalto University.  
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4. Neuronaviagation 

 

Neuronavigation technique allows precision at desired stimulated areas.  Thus data are 

recorded in real time using an ultrasound based position measurement system. The system 

consists of several circular trackers attached to the special bound placed on the head, on a 

digitizing pen and on the TMS coil. The measurement of the relative spatial position of these 

senders in 3d space is based on the travel time of the transmitted ultrasonic pulses. The first 

step consists of the creation of a local spatial coordinate system, which is a possible via the 

digital pen. The nasion and two pre auricular points from the subject head are used to define 

the real world central coordinate system. The same anatomical landmarks are also identified 

in the MRI scan of the subject. After this step, the movement of TMS coil is also visible on 

the screen. 

 

 

5. Experiment 

 

5.1 PARTICIPANTS 

 

In the 2 experiments 23 subjects were recruited, from which nine were females 

(mean age 25 years old). All of them had normal vision. All were naive to the 

aim of the study and provided written informed consent in agreement with the 

Declaration of Helsinki and approved by the ethics committee of the Hospital 

District of Helsinki and Uusimaa.  
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5.2 STIMULI 

 

Participants were seated in front of the monitor and asked to memorize and 

judge stimuli. The stimuli were displayed in the center of the monitor on a grey 

background from a viewing distance of 57 cm. All stimuli were sinusoidal 

luminance-modulated gratings with a diameter of 5 degrees of visual angle and 

were generated with custom-made software in Matlab. Gratings were vertically 

oriented and the spatial frequency was 1.44 cycles/degree. The memory and 

the imagery cues had a Michelson contrast of 0.2, 0.3, 0.4 and 0.5. Worth 

noticing is the fact that the difference between test cue and imagery/memory 

cue was +/- 0.06 or 0.09, were +/- 0.06 is associated with difficult level of 

dissociation and +/-0.09 with easy level of dissociation. A mask, black circle of 

the same diameter as stimuli appeared at main cue offset.  

The display monitor was 22-inch screen with 1600x1200 pixel resolution. The 

software used to control both the task and stimuli was the E-prime v2.0 

(Psychology Software Tools Inc., Pittsburgh, USA; 

http://www.pstnet.com/eprime.cfm). 

 

5.3 D-PRIME MEASURE  

 

D’ analysis is bias-free statistics. Researchers are using d’ because it allows 

testing weak or small effects which might otherwise be hard to detect. It allows 

psychologists to test the sensitivity of subjects in experiments that might be 

strongly influenced by belief, guess or chance.  

 

http://www.pstnet.com/eprime.cfm
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5.4 EXPERIMENTAL SESSIONS 

 

There were two different experiments. The first one was conducted to examine 

VSTM and imagery when each was conducted separately. For VSTM 

assessment participants were instructed to hold the cue contrast in memory, 

without using imagery throughout the trial. At the end of the trial, they were 

required to judge whether the test cue was of lower or higher contrast than 

the original memory cue. For the imagery assessment participants were asked 

to form a mental image of the original imagery cue and hold it in the mind’s 

eye until asked to perform the discrimination task, where the individualized 

mental image contrast was compared to the test cue.  

In the second experiment, VSTM and imagery were used simultaneously. 

Subjects were asked to form mental imagery and hold the cue in memory at 

the same time. At the end of the cue, they were informed whether memory or 

imagery would be assessed.  

 

In experiment number 1, VSTM alone block and imagery alone block were run 

(See fig.12). Every condition consists of 2 blocks of 32 trials which were run for 

both TMS conditions (Early Visual Cortex, Sham). In experiment 2 (See fig. 13), 

concurrent VSTM and imagery were run in 4 blocks of 32 trials for both TMS 

conditions. The order of experiments and condition was counterbalanced. 
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Fig.12 Timeline of the first experiment. At the start of each trial, participants 

were presented with a cue. The task involved maintaining the contrast of the 

grating by holding it in memory and/or forming a conscious mental image of it 

and maintaining it throughout the maintenance period. TMS pulse train was 

applied 2.5 sec after the onset of the maintenance period. At the end of each 

trial, participants were asked to judge the test cue contrast relative to 

VSTM/imagery content (i.e. is the test cue of lower or higher contrast).  The 

timeline on the left presents the assessment of memory cue. The timeline on 

the right shows the assessment of imagery cue.  
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Fig.13 Timeline of the second experiment. At the start of each trial, participants 

were presented with a cue. The task involved maintaining the contrast of the 

grating by holding it in memory and simultaneously forming a conscious mental 

image of it and maintaining it throughout the maintenance period. TMS pulse 

train was applied 2.5 sec after the onset of the maintenance period. After the 

delay participants were informed either memory for the original memory cue 

would be assessed, or they should perform the contrast discrimination task 

relative to their conscious mental image.  

 

5.5 GENERAL PROCEDURE 

 

Prior to experiment 1 participants were instructed either to hold the cue in 

memory (VSTM condition) (Silvanto and Soto, 2011) or to form a mental image 

of the cue (imagery condition) (Keogh and Pearson, 2011; Slotnick et al., 2012; 

D’anguilli et al., 2013). At the very beginning of the experiment subject were 

presented with a fixation point to focus their attention at the center of the 
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monitor, which lasted for 1 second. Afterwards the main cue which is a 

contrast grating was displayed for 300ms and the task for the subjects was to 

keep it in memory or/and to form mental image. The Michelson contrast of the 

memory/imagery cue was either 0.2, 0.3, 0.4, or 0.5, and was always vertical. 

The mask (black circle) was presented to participants for 100ms to avoid any 

afterimage. The next step of the procedure was the delay of 4seconds during 

which TMS train pulse was executed after 2.5 seconds. At the end of the trial, 

every participants had to assess whether the test cue presented at the end had 

lower (press 1) or higher (press 2) contrast in comparison to their own memory 

or imagery of the cue. 

 

5.6 TMS STIMULATION AND SITE LOCALIZATION 
 

rTMS biphasic pulses were delivered using a Magstim rapid2 (Magstim super 

Rapid Plus, Magstim company, UK) using a figure-of-eight 70-mm aired cooled 

coil. The coil was held using a custom-made magic-arm and placed tangentially 

on the skull. There were nine participants who did not perceive phosphenes 

during experiment. For this group the the TMS coil was placed 2 cm above the 

inion and 0.5 cm laterally on the right hemisphere (Campana et al, 2002). For 

subjects who perceived phospehnes, the coil position was slightly moved from 

the original coordinates (Pascual-Leone and Walsh, 2001). For Sham TMS, the 

coil with foam was placed 2cm above the central parieto-occipital (POz) region. 

Before the experiment, every participant had his phosphene threshold 

specified. The calculation was made via modified binary search paradigm 

(MOBS, Tyrrell & Owens, 1988). During each session, phosphene was not 

reported by any of the subjects. Half of the participant had their MRI scans, 

which helped in more precise placement of TMS coil in the vicinity of the 
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calcarine sulcus via the neuro-navigation system. Pulse train consisting of five 

pulses was applied at 10 Hz (Ashbrige et al, 1997; Campana et al, 2002, 2006; 

Muggleton et al, 2003; Saad and Silvanto; 2013a). In order to allow the 

production of undisturbed generation of mental image as well as to avoid the 

risks of train pulse overlapping with test cues there was a need to establish a 

proper time window in the course of this experimental procedure. Therefore 

TMS was applied at 2.5 sec of the maintenance. In first experiment, each of the 

4 conditions (EVC TMS-VSTM; EVC TMS-Imagery; Sham TMS-VSTM; Sham TMS-

Imagery) was run in a unique block of 32 trials.  In second experiment each of 

the 2 conditions (Mixed EVC-TMS; Mixed Sham-TMS) was run in 2 blocks each 

of 32 trials.  

 

5.7 QUESTIONNARE ASSESSING TASK STRATEGY 

 

The final phase of the experiment was the questionnaire which helped 

inquiring subjects’ cognitive strategies. 

The questions were as follows: For VSTM: “Please describe in detail how you 

memorized the original cue; what strategy or process did you follow until asked 

to judge your memory of the cue” 

For imagery: “Please describe in detail how you formed the mental image and 

what strategy or process did you follow until asked to judge your image of the 

cue?”  

For Condition 3: “Where you able to memorize and make a mental image of the 

main cue? Please describe in detail how you memorized the memory/imagery 

cue and made a mental image of it; what mental strategy or process did you 

follow until asked to judge your memory/imagery of the cue? “ 
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The outcome of the provided questionnaire resulted in exclusion of five 

participants. According to their answers, two of subjects were using improper 

maintenance process, which resulted in not using imagery when it was 

required. Another three participants used the same maintenance process in 

every session they took part in. The rest of the participants (n=18) reported 

having followed task instructions.  

 

6. Results 

6.1 OVERALL EFFECTS OF VSTM AND IMAGERY ON SENSITIVITY 
 

Figure 14 and figure 15 shows the mean (n=18) sensitivity (d´) for VSTM and 

imagery as a function of TMS site and difficulty level. Initially an ANOVA was 

carried out into which all independent variables were entered. This 2x2x2x2 

ANOVA, with task (imagery or VSTM), condition type (alone or concurrent), 

TMS site (EVC or sham), and difficulty (easy or difficult) revealed a main effect 

of difficulty (F (1,14) = 59.32; p < 0.001), and a 2-way interaction between 

condition type and TMS (F (1,14) = 11.06; p = 0.005). None of the other main 

effects or interactions was significant. 

The post-hoc comparisons were carried out. In these t-tests we collated the 

data across tasks (Imagery, VTSM) and the difficulty levels (easy or difficult) as 

neither factor was involved in significant interactions in the ANOVA. These 

pairwise comparisons revealed that, in the alone condition, EVC-TMS enhanced 

the sensitivity relative to sham (t (17) = -4.43; p < 0.000); in contrast, in the 

concurrent session, EVC-TMS did not modulated the sensitivity relative to sham 

(t (17) = 0.24; p = 0.81).  
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To check if baseline performances of the tasks were modified across condition 

type we conducted a 2x2x2 ANOVA in which we entered condition type (alone 

or mixed), task (VSTM or imagery), and difficulty level as independent variable. 

This revealed a significant effect of difficulty level (F (1,14) = 14.08; p = 0.002). 

However, no other main effect or interaction was significant effect was found 

(highest p-value 0.35). 

In summary, EVC-TMS enhanced the sensitivity of both VSTM and imagery 

when conducted separately. In contrast, TMS had no impact on sensitivity in 

the mixed condition. The baseline performance level of imagery and VSTM did 

not differ, and was not modulated by the task (i.e. alone or concurrent). 

 

 

 

Fig. 14  A) VSTM condition. B) Imagery condition. Graphs present 

sensitivity (d’) as a function of TMS site and contrast difficulty level (mean 

n=18). Notice: for sensitivity error bars indicate +/- SEM from which between-

subjects variance has been removed. 
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Fig.15 A) VSTM concurrent condition. B) Imagery concurrent condition. Graphs 

present sensitivity (d’) as a function of TMS site and contrast difficulty level 

(mean n=18). Notice: for sensitivity error bars indicate +/- SEM from which 

between-subjects variance has been removed. 

 

6.2 OVERALL EFFECTS OF TMS ON REACTION TIME 

 

Three participants were removed due to performances of 3SD above the mean; 

therefore the reaction times analysis was conducted on 15 participants. Figure 

16 and figure 17 shows the mean (n=15) median reaction time during VSTM 

and imagery conditions as a function of TMS site and contrast difficulty level.   

We initially carried out an ANOVA into which all independent variables were 

entered. This 2x2x2x2 ANOVA, with task (imagery or VSTM), condition type 

(alone or concurrent), TMS site (EVC or sham), and contrast difficulty (easy or 

difficult) revealed a main effect of condition type (F (1,13) = 26.61; p < 0.001), 

difficulty level (F (1,13) = 17.50; p= 0.001), a 2-way interactions between Task 

and TMS site (F (1,13) = 9.5; p = 0.009), and a 2-way interactions between 

difficulty level and TMS site (F (1,13) = 8.64; p = 0.01). None of the other main 

effects or interactions were significant. 

As task was interacting with TMS site, we conducted separate ANOVAs for each 

task selectively in order to investigate these effects. For VSTM, we conducted a 
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2x2x2 ANOVA with condition type (alone or concurrent), TMS site (EVC or 

sham), and contrast difficulty (easy or difficult). This revealed a main effect of 

condition type (F (1,13) = 26.4; p < 0.001), difficulty level (F (1,13) = 5.8; p= 

0.031), and TMS site (F (1,13) = 9.23; p = 0.009). None of the interactions were 

significant. The main effect of TMS indicates that TMS induced a slowing down 

of RTs for VSTM. 

For imagery, we conducted a 2x2x2 ANOVA with condition type (alone or 

concurrent), TMS site (EVC or sham), and contrast difficulty (easy or difficult). 

This revealed only a main effect of condition type (F (1,14) = 28.5; p < 0.001). 

None of the other interactions were significant. Thus TMS had no effect on RTs 

for imagery. 

In sum, these results show that TMS applied at EVC increased reaction times 

relative to Sham in the VSTM task.  No such effect was found for imagery. 

  

 

Fig.16  A) VSTM condition. B) Imagery condition. Graphs show median reaction 

time (ms) as a function of TMS site versus contrast difficulty level (mean n=15) 

for VSTM and imagery. Notice: reaction time the Error bars indicate SDs from 

which between-subjects variance has been removed (Loftus and Masson, 

1994). 
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Fig.17 A) VSTM concurrent condition. B) Imagery concurrent condition. Graphs 

show median reaction time (ms) as a function of TMS site versus contrast 

difficulty level (mean n=15) for concurrent VSTM and concurrent imagery. 

Notice: for reaction time the Error bars indicate SDs from which between-

subjects variance has been removed (Loftus and Masson, 1994). 
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7. Discussion 

The aim of this study was to see if TMS applied at the EVC will dissociate visual 

short term memory and imagery neural bases.  

TMS applied over the early visual cortex during VSTM alone condition 

increased the sensitivity of VSTM and the reaction time in both alone and 

simultaneous experiments. During the imagery alone condition, TMS 

stimulation also increased the sensitivity of imagery. However, there was no 

influence on the reaction time. The sensitivity enhancement found during 

experiment 1 is coherent with previous finding done by Kosslyn et al. (2006) 

and Cattaneo et al. (2009). In experiment 2 VSTM and imagery condition, TMS 

pulses had not effect on the sensitivity of participants. 

How can these differential effects are explained. Sensitivity is a measure based 

on the accuracy recall, it therefore represents the inspection of the mental 

representation, in other words how clear and accurate my representation of 

the main cue is. The reaction time measure reflects the time that is required in 

order to reach these representations.  

thus whereas mental imagery is a process requiring continuous update and 

effort to keep hold of the image, VSTM retention requires less efforts. In line 

with the state decency theory (Silvanto et al., 2007), the state of the neuronal 

population implicated in the RT for VSTM were less active compared to the 

mental imagery one and thus susceptible to TMS.   

In summary, we indicated that TMS had a differential impact on the reaction 

times of VSTM and imagery, dissociating these processes at the level of the 

early visual cortex. While the current literature often emphasizes the visual 

cortical overlap in neural resources for VSTM and imagery, our study 

demonstrates that differences between these two cognitive functions exist at 

the level of the visual representations. 
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What can be concluded from the results is that imagery and VSTM were 

differentially affected by TMS, demonstrating that their neural bases do differ 

at the level of early visual cortex. The specific nature of these differences 

requires further study. 
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