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A real-time acoustical beamforming system incorporating the cross pattern coher-
ence (CroPaC) post filtering method is implemented in this thesis. The real-time
implementation consists of a signal-independent beamformer that is used for spatial
discrimination of a sound field. The signal of the beamformer is post filtered by
modulating it with a parameter that is derived from the cross-spectrum of two
directional microphone signals. The post filter is implemented to enhance perfor-
mance of beamforming (increase in signal-to-noise ratio), because beamformers are
not efficient in environments with high level of reverberation.
The post filtering method has been previously implemented in MATLAB for
non-real-time use, and this system is the first real-time implementation of an
acoustical beamforming system utilizing it. The implementation is programmed
in the programming language C for the graphical signal processing program Max
developed by Cycling ’74. It utilizes a time-frequency domain processing, and
the spherical Fourier transform for a decomposition of a sound field into spheri-
cal harmonic signals. The implementation can be used with microphone arrays
with maximum of 32 microphone capsules, which are laid over rigid sphere with
uniform or nearly-uniform arrangements. The real-time implementation can be
utilized in many applications, which require algorithm to work in real-time, such
as teleconferencing and acoustical cameras.
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Tässä diplomityössä implementoidaan reaaliaikainen akustinen keilanmuodostusjär-
jestelmä signaalien väliseen koherenssiin perustuvalla (CroPaC) jälkisuodatuksella.
Reaaliaikaimplementaatio koostuu signaaliriippumattomasta keilanmuodostajasta,
jota käytetään äänikentän spatiaaliseen suodatukseen. Keilanmuodostajan sig-
naalia jälkisuodatetaan moduloimalla sitä parametrilla, joka johdetaan kahden
suuntamikrofonin signaalin välisestä koherenssista. Jälkisuodatus implementoidaan
keilanmuodostajan suorituskyvyn parantamiseksi (signaali-kohina-suhteen kasvu),
sillä keilanmuodostajat eivät ole tehokkaita kaiuntaisissa ympäristöissä.
Jälkisuodatusmetodi on aikaisemmin implementoitu MATLABissa
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signaalinprosessointityökalulle Max, jonka on kehittänyt Cycling ’74. Prosessointi
tapahtuu aika-taajuustasossa ja siinä hyödynnetään äänikentän dekompositiota
palloharmonisiin signaaleihin. Implementaatiota voidaan käyttää mikrofoni-
ryhmällä, jossa on korkeintaan 32 mikrofonikapselia, jotka on asetettu jäykän
pallon päälle tasavälein tai lähes tasavälein. Reaaliaikaimplementaatiota voidaan
hyödyntää lukuisissa sovelluksissa, jotka edellyttävät algoritmin reaaliaikaista
toimintaa, esimerkiksi puhelinkokouksissa ja akustisissa kameroissa.
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1 Introduction
Microphone arrays have been studied for several decades [1], but possibilities of
using them in real-time applications have increased more recently. Computational
processing power has increased enabling real-time processing of arrays with large
amounts of sensors, and also low cost and small size provided by the development of
the microphones arrays [2] has made them interesting. There are different types of
arrays such as linear, planar, and more recently cylindrical and spherical microphone
arrays.

A major application for microphone arrays is beamforming. It is a method
that exploits spatial discrimination of sound sources in space by concentrating the
directional beam on certain direction, while suppressing other sound sources coming
from other directions. For example speech signal could be recorded with this method
when a traffic noise is interfering from the other direction. By beamforming, the
speech signal is enhanced while the traffic noise is attenuated.

Beamformers have originally been developed for telecommunication use, such as
for radars, but later adapted to acoustics and further developed to deal with audio
related phenomena such as reverberation and noise [1]. Beamformers can be used
both for reception and transmission [3], but in this thesis only reception is discussed.
They can be used for speech enhancement and for source localization applications
[1]. For example, beamformers are used in hearing aids (speech enhancement) and in
acoustical cameras (source localization).

However, the problem with beamformers in acoustics is that their performance
suffers greatly in reverberant conditions and they do not suppress diffuse noise
sufficiently [4]. Because of this, different multichannel post filters have been developed
[5][6][7] to improve beamformer’s performance in real acoustical conditions, with
reverberation, and diffuse as well as incoherent noise [4].

The purpose of this master’s thesis is to implement an efficient real-time acous-
tic beamformer system that incorporates state-of-the-art cross pattern coherence
algorithm post filter. This algorithm has been previously implemented only in
non-real-time and it has never been tested in real-time. In the implementation, an
external is programmed in the programming language C for the graphical real-time
digital signal processing program Max (version 7) developed by Cycling ’74. Ad-
ditionally Max graphical patcher is implemented for real-time and non-real-time,
pre-recorded audio use of the external.

The external transforms multichannel microphone array signals to the time-
frequency domain and they are further transformed to the spherical harmonic domain
with the spherical Fourier transform. Signal-independent beamformers are calcu-
lated using spherical harmonic signals and a post filtering parameter is estimated
using a cross-spectrum based measure between two directional microphone signals.
Beamformer output is modulated with the post filtering parameter and the output
is inverse transformed to the time domain.

Chapters 2–4 describe the theory part of this study. Chapter 2 describes time-
frequency processing and different methods for time-frequency analysis, which are
based on the Fourier transform and filterbank summation. Chapter 3 goes through



2

spatial encoding with the spherical harmonic framework, calculation of the spherical
harmonic signals, and beamforming in the spherical harmonic domain. Post filtering
with the cross pattern coherence algorithm is being discussed in Chapter 4. The
implementation of the real-time acoustical beamformer system with the cross pattern
coherence post filter is described step by step in Chapter 5. The thesis is concluded
in Chapter 6.
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2 Time-frequency processing
Time-frequency analysis is frequency analysis that is conducted in short time windows
in audio applications. It is motivated by the fact that the auditory system of a
human works alike – the inner ear of a human divides broadband acoustic stimuli
into multiple narrowband neural signals. [8]

Time-frequency analysis is nowadays widely used in signal processing since it
provides a way to learn about variations in frequency content of a signal with time.
This is especially important with non-stationary signals such as audio signals. It
provides also a way to alter the spectral energy of a desired frequency band of the
signal much easier than time domain signal processing tools, such as finite impulse
response (FIR) or infinite impulse response (IIR) filters. Time-frequency processing
can be used in data compression, audio effects, and enhancement of audio quality [8].
For example, many perceptual audio signal coding techniques exploit information
about time-frequency (for example frequency resolution and temporal resolution)
hearing of humans to compress data bitrate, such as audio coding MPEG-1 Audio
Layer 3 (MP3) [8].

Time-frequency analysis methods can be divided into two different approaches:
the Fourier transform methods and filterbank summation methods. These two
different approaches are discussed and compared next in Section 2.1 and Section
2.2. The differences in the methods in terms of aliasing and other artefacts are
summarized in Table 1. The described methods are perfect reconstruction methods
which means that the signals are reconstructed with no added aliasing or phase
distortion [9] and near-perfect reconstruction methods which means the signals are
reconstructed with negligible or inaudible aliasing components [8].

Table 1: Aliasing and other artefacts that are introduced to different Fourier transform
based time-frequency transform methods and filterbank summation based time-
frequency transform methods. It is assumed that the Fourier transform methods
satisfy the COLA property and filterbank summation methods satisfy the prototype
filter criterion. These criteria are defined later in this chapter.

Artefacts
Analysis method Signal is altered Signal is not altered

Fourier transform
OLA wideband transients none
WOLA modulation none
afSTFT none none

Filterbank summation PQMF negligible none
CQMF none none

2.1 Fourier transform methods
Most conventional way for time-frequency analysis is the Fourier transform based
approach. Overlap-add (OLA) and weighted overlap-add (WOLA) methods are
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widely used short-time Fourier transform (STFT) analysis methods. These methods
are discussed next.

2.1.1 Short-time Fourier transform

OLA and WOLA STFT transforms are calculated as follows [8]:

X(k) =
N−1∑
n=0

wa(n)x(n)e−i2πkn/N , (1)

where wa(n) is the analysis windowing function, x(n) is the input signal, i is the
imaginary unit, k is a wave number, n is a sample index, and N is a sample window
length.

Inverse STFT transforms are calculated as follows [8]:

y(n) = 1
N
ws(n)

N−1∑
k=0

X(k)ei2πkn/N , (2)

where ws(n) is the synthesis windowing function and X(k) is the input signal. The
difference between OLA and WOLA is that OLA does not use a synthesis window
(ws(n) = 1), whereas WOLA does.

In practice STFT is calculated by applying a fast Fourier transform (FFT)
algorithm to a windowed frame [8], because FFT is much more efficient compared to
the discrete Fourier transform (DFT).

2.1.2 Window functions

In order to retain perfect reconstruction, the constant-overlap-add constraint (COLA)
(3) must be satisfied [10]. If it is not completely satisfied, aliasing and other artefacts
will be introduced in the signal. Depending on the application, these artefacts may
not be a problem. Such cases include for example spectrum analyzer [10], but when
signal quality is essential, the COLA property must be satisfied. The COLA property
[10]: ∑

N

wa(n−NR)ws(n−NR) = 1, (3)

where R is the hop size. There are multiple windowing functions that satisfy the
COLA property (3)[10], for OLA: rectangular window with no overlap (COLA(N))
and the Bartlett window with 50 % overlap COLA(N/2) satisfies the COLA property
[10]. Rectangular window with no overlap is the easiest solution for STFT transform
and it can perfectly reconstruct the signal. However, with overlap better temporal
resolution is obtained compared to no overlap. Better temporal resolution is needed
if the signal is altered in the time-frequency domain to avoid aliasing in adjacent
frequency bands. For WOLA, usually analysis and synthesis windows are chosen to
be same (wa = ws). Therefore the easiest way to construct analysis and synthesis
windows for WOLA STFT is to take square root of suitable non-negative OLA
window that satisfies the COLA property, for example root-Hamming or root-Hann.
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When using overlapping frames or zero-padding in the windowing, the transform is
said to be oversampled [8]. [10]

The COLA property ensures perfect reconstruction only when the signal is not
modified in the frequency domain. When the signal is modified in the frequency
domain, inverse transform does not reconstruct the signal completely [8]. It happens
because the signal might not be zero in the edges of a frame, which causes wideband
transients in the output signal [8]. This can be avoided by using a synthesis window
(WOLA) that truncates the outermost samples of the window to zero. However, with
the truncation, part of the data is lost [8] and the modulation effects [11] could be
introduced.

Because of the introduced artefacts when signals are altered, alias free STFT
has been introduced [11] that eliminates circular effects completely with the cost
of increased computational load. Circular effects are unwanted effects that occur
because of circular convolution, for example above-mentioned non-zero samples in
edges of the window. The main difference to conventional STFT method is that
the time-frequency processing multipliers are first preprocessed before multiplication
of transformed signal. First, multipliers are inverse transformed and delayed by
half of the frame. Then, the resultant is windowed and zero-padded. Next, it is
transformed back to the frequency domain and multiplied with the input signal that
is transformed to the time-frequency domain with STFT transform method. Last, the
resultant frequency domain signal is transformed back to the time-frequency domain.
In this method, synthesis windowing is not necessary. This method suppresses
circular convolution effects on altered signal completely when zero padded parts of
the windowed frame are at least same length as signal parts. [8]

Although completely alias free STFT is possible, it is computationally more
demanding than OLA and WOLA STFT methods. These methods however introduce
artefacts in the signal if the signal is modified in the frequency domain, and cannot
be used in applications where signal quality is important.

2.2 Filterbank summation methods
Filterbank based time-frequency analysis methods divide a broadband time domain
signal into multiple narrowband frequency domain signals by using an array of
band-pass filters [8]. Quadrature mirror filter (QMF) bank method is a widely used
modulation based filterbank summation time-frequency analysis method. Among
alias free STFT method, QMF methods are used when the signal is modified in the
frequency domain, and high sound quality with no added artefacts is desired. The
QMF methods are discussed next.

2.2.1 Quadrature mirror filterbank

Block diagram of a general K-channel quadrature mirror filter (QMF) bank is pre-
sented in Figure 1. Spectral resolution in this method depends on the amount of
channels or filters in the filterbank. The bandwidths of the filterbank bands are
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equal width and they are calculated as follows:

fs
2K , (4)

where K denotes the number of filters in the filterbank and fs denotes the sampling
frequency. First, in the analysis part, the signal is filtered with designed low-pass

↓K

x(n)
↓K

↓K

↑K

↑K

↑K

y(n)

TF-processing

ha
0

ha
1

ha
K − 1 hs

K − 1

hs
1

hs
0

Figure 1: General K-channel QMF filterbank block diagram.

FIR prototype filter hp(n) that is modulated with a real (5) or complex (6) [8]
modulation filter according to angular frequency ω to achieve band-pass filter for
certain frequency band for analysis hak(n) and synthesis hsk(n). Criterion for the
prototype filter is that the energy of adjacent frequency bands has to be preserved
and energy of non-adjacent frequency bands must be attenuated enough [12].

xmodR(n) = x(n) cos(ωn) (5)

xmodC(n) = x(n)eiωn (6)
After the filtering, the signal is downsampled by a factor of K. Downsampling needs
to be done to reduce complexity and redundancy of the processing. Because of this,
QMF filterbanks are said to be critically sampled. However, downsampling and
upsampling introduces aliasing components in adjacent frequency bands, but since
they have opposite phases compared to each other, the alias components interfere in
destructive manner and cancel each other. When using pseudo-quadrature mirror
filterbank (PQMF), the modulation filters are real and therefore alias occurs if the
signal is modified in the frequency domain. However, complex-quadrature mirror
filterbank (CQMF) uses complex valued modulation filter coefficients to cancel out
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this effect. Real valued filter coefficients produce negative frequencies to mirror on top
of positive frequency, whereas complex valued filters do not map negative frequencies.
Therefore they do not have aliasing in adjacent frequency bands although signals are
modified in the frequency domain. Because of the complex representation, CQMF is
oversampled by the factor of 2. The analysis filter responses for PQMF and CQMF
filterbanks are denoted in the equations 7 and 8 respectively. [8]

hak(n) = hp(n) cos
[
π

2K (2k + 1)
(
n− N

2 −
K

2

)]
(7)

hak(n) = hp(n)e[i
π

2K (2k+1)(n−N2 −K2 )] (8)
In the synthesis part, the signal is first upsampled by the factor of K, essentially
meaning addition of K − 1 zeros in between every sample. Then channels are syn-
thesized with synthesis filters hsk(n) and summed together to reconstruct the signal.
Non-adjacent frequency band alias components are filtered by the synthesis filter.
Because of the adjacent frequency band aliasing with real valued filter coefficients,
PQMF is called near-perfect reconstruction filterbank and CQMF perfect reconstruc-
tion filterbank. The synthesis filter responses for PQMF and CQMF filterbanks are
denoted in the equations 9 and 10 respectively. [8]

hsk(n) = hp(n) cos
[
π

2K (2k + 1)
(
n− N

2 + K

2

)]
(9)

hsk(n) = hp(n)e[i
π

2K (2k+1)(n−N2 +K
2 )] (10)

2.2.2 Tree-structured quadrature mirror filterbank

Tree-structure [9] of a filterbank (sub-sub-band filtering [8]) can be used to obtain
better spectral resolution in certain frequency bands. An example of general tree-
structured QMF filterbank is presented in Figure 2, where the lowest two frequency
bands are further filtered. In the Figure, sub-sub-bands are downsampled, but this
is not necessary always, since the computational difference may not be significant
depending on the application. Usual spectral resolution in QMF filterbanks is K = 64
[8]. The bandwidth of the frequency bands depends on K and sampling frequency
fs. Since QMF bands are equal bandwidth, this leads to bandwidth of 375 Hz with
sampling frequency fs = 48 kHz. This is more than enough for higher frequency
bands, but for lower frequency bands it is not sufficient. The reason for this is
that human hearing spectral resolution follows a logarithmic curve thus frequency
resolution is much higher at lower frequencies than at high frequencies [8]. Because of
this, tree-structured QMF filterbanks has bas used [13] in time-frequency processing
of audio signals. Equivalent rectangular bandwidths (ERB) [8] and Bark scale [14]
can be used to determine perceptually sufficient bandwidths for different frequency
regions.

Although same result can be obtained with CQMF filterbank and alias free
STFT transform method, major advantage over alias free STFT transform is that
frequency bandwidths can be non-uniformly divided when using tree-structured QMF
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filterbank, while STFT transform methods have always uniform frequency bands.
Because of this, QMF filterbank methods are more efficient compared to alias free
STFT transform methods when comparing perceptually sufficient time-frequency
processing methods.
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↓2

↓2

↓2ha
0,0,0

↓2

ha
1,0

ha
1,1

ha
0,0,1

x(n)

Figure 2: General tree-structured QMF filterbank block diagram.
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3 Spatial encoding
In real acoustical environments, sound sources have three-dimensional spatial char-
acteristics in addition to frequency content. These characteristics are for example
the direction of the sound and the size of the sound source [15]. Sound field consist
of direct sound coming from the direction of the sound source and reflections of it
with different phases. These reflections or reverberation depend on the propagation
path of the sound in the acoustical environment. For example, in ideal anechoic
conditions, there is only the direct sound, but no reflections. In spatial encoding, it is
desired to cover these spatial parameters. A microphone capsule captures sound over
time samples, whereas a microphone array samples the sound field both spatially
and temporally. Microphone array signals are encoded spatially with orthonormal
plane-wave decomposition of sound field. This thesis focuses on spatial encoding in
three dimensions.

Orthonormal plane-wave decomposition of a sound field is calculated with cylin-
drical harmonics in two-dimensional space and with spherical harmonics in three-
dimensional space. For two-dimensional decomposition, circular microphone arrays
are utilized, but in three-dimensional decomposition, a spherical microphone ar-
ray is required. Spherical harmonics are used in acoustics for example in spatial
sound recording, speech communication, sound field analysis, noise control, and
entertainment [16][17]. In this thesis, the spherical harmonic framework is used for
an acoustical beamforming system and later spherical harmonic signals are utilized
in post filtering (Chapter 4). Spherical harmonics have been studied a lot in the last
decades, and recently adapted to acoustics [17]. They have many advantages over the
spatial domain calculation and linear array processing, for example spherical harmon-
ics provide full three-dimensional rotation compared to linear array processing, and
signal processing in the spherical harmonic domain is more efficient than processing
in the spatial domain [17]. Section 3.1 defines required coordinate system in spatial
encoding, Section 3.2 explains how the spherical harmonic signals are calculated, and
Section 3.3 presents how different signal-independent beamformers are calculated in
the spherical harmonic domain.

3.1 Spherical coordinate system
In order to understand spatial encoding in the spherical harmonic framework, a
spherical coordinate system is described. The spherical coordinate system (r, ϕ, θ) is
illustrated in Figure 3 on top of the Cartesian coordinate system (x, y, z). Spherical
coordinates consist of a distance from the origin r ∈ (R ≥ 0), an azimuth angle
ϕ ∈ [0, 2π) describing the angle in the horizontal plane, and an elevation angle
θ ∈ [0, π] describing the angle in the vertical plane.

3.2 Calculation of spherical harmonic signals
Sound field can be decomposed as a sum of spherical harmonic signals. The spherical
harmonics are presented in Figure 4 up to the order 4. The zeroth order spherical
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r

ϕ x

y

z

θ

Figure 3: Spherical coordinate system. Adapted from [8].

harmonic present omnidirectional pattern, first order spherical harmonics present
dipole patterns, and further orders present more complex directional patterns. In
the Figure, yellow color on the patterns represents positive values and blue color
negative values.

This section is divided into two separate steps: first, the theory of the spherical
Fourier transform is presented, and then it is shown how the spherical harmonic
signals are obtained by sampling the sphere and applying a plane wave decomposition.
These signals can be calculated with the theoretical approach [17] or with the least
squares approach [18]. The least squares approach is commonly used in antenna
theory [7] and it has been adapted to acoustics [18]. The theoretical approach is
useful since it does not require any preliminary measurements, while least squares
approach does. However, measurement-based approach takes into consideration
microphone capsule misalignment and capsule mismatch, and therefore has better
performance compared to theoretical approach [18]. The theoretical approach is
presented in this thesis.

3.2.1 Spherical harmonics

The spherical harmonic transform or the spherical Fourier transform is defined over
two-dimensional sphere S2 as follows [19]:

plm(k, r) =
∫

Ω∈S2
p(k, r,Ω)Y m∗

l (Ω)dΩ, (11)

where p(k, r,Ω) is the sound pressure, k denotes a wave number, r and Ω = [ϕ, θ]
spherical coordinates, and Y m∗

l is the complex conjugate of the spherical harmonic
Y m
l . The inverse spherical Fourier transform is calculated as follows [19]:

p(k, r,Ω) =
∞∑
l=0

l∑
m=−l

plm(k, r)Y m
l (Ω). (12)
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Spherical harmonics are defined as follows [19]:

Y m
l (Ω) ≡

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimφ, (13)

where l ∈ R denotes order, m ∈ Z, |m| > l denotes mode, and Pm
l (x) is associated

Legendre polynomial function [17]:

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x), (14)

and Pl(x) is Legendre polynomial function. It can be calculated with Rodriques’
formula [17]:

Pl(x) = 1
2ll!

dl

dxl
(x2 − 1)l. (15)

If equation 14 and equation 15 are combined, associated Legendre polynomial function
for a degree of m ≥ 0 can be presented as:

Pm
l (x) = (−1)m

2ll! (1− x2)m/2 d
l+m

dxl+m
(x2 − 1)l, (16)

and for a negative degree of m as [17]:

P−ml (x) = (−1)m (l −m)!
(l +m)!P

m
l (x). (17)

Sound pressure on a sphere plm caused by single plane-wave coming from the direction
of (ϕ0, θ0) and amplitude A0(k) is calculated as follows [20]:

plm(k, r) = A0(k)bl(kr)Y m∗

l (ϕ0, θ0), (18)

where bl(kr) is the effect of radial dependency and scattering. It is caused by sound
field relation to the pressure on a sphere, and scattering is caused by sound field
scattering from the microphone array [17]. The effect attenuates certain frequencies
for different order spherical harmonic signals, and the effect needs to be equalized in
order to have a flat frequency response. bl for an open sphere with omnidirectional and
cardioid microphone capsules, and for a rigid sphere with omnidirectional microphone
capsules are defined as follows [16][17]:

bl(kr) =


4πil [jl(kr)] , open sphere, omni capsules
4πil

[
jl(kr)− ij

′
l(kr)

]
, open sphere, cardioid capsules

4πil
[
jl(kr)− j

′
l (kra)

h
(2)′
l

(kra)
h

(2)
l (kr)

]
, rigid sphere, omni capsules

 ,
(19)

where jl(x) is a spherical Bessel function of the first kind, h(2)
l (x) is a spherical Hankel

function of the second kind, and ′ denotes a derivative. A spherical Bessel function
of the first kind is calculated as follows [17]:

jl(x) = (−1)lxl
(

1
x

d

dx

)l sin (x)
x

. (20)
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A spherical Hankel function of the second kind is derived from a spherical Bessel
function of the first kind and of the second kind as follows [17]:

h
(2)
l (x) = jl(x)− iyl(x), (21)

where yl is a spherical Bessel function of the second kind [17]:

yl(x) = −(−1)lxl
(

1
x

d

dx

)l cos (x)
x

. (22)

If equations 20, 21, and 22 are combined, resultant of a spherical Hankel function of
the second kind is [17]:

h
(2)
l (x) = i(−1)lxl

(
1
x

d

dx

)l
e−ix

x
. (23)

The problem with equalization arises when bl(kr) has zero value in the audible
frequency range. In the open sphere case, bl has zeros regularly over the audible
frequency range because of the zeros in the spherical Bessel function of the first
kind (Figure 5) [18]. This can be avoided by using directive microphone capsules
in the array or omnidirectional capsules on a rigid sphere to add a scattering effect.
Although there are no zeros in these cases, the values are still relatively small in
lower frequency regions [18]. Because of the zeros, if broadband frequency response
is desired, only two latter array types are usable in practice.

kr

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

|j0|

|j1|

|j2|

|j3|

|j4|

Figure 5: Absolute value of a spherical Bessel function of the first kind |jl| for orders
l ∈ [0, 4].

Because equalizing directly with 1/bl(kr) leads to infinite amplification in fre-
quency regions where bl(kr) = 0, and in excessive noise amplification where bl(kr) ≈ 0,
the inverse radial filter has to be regularized to avoid it. Regularization of the inverse
radial filter can be done using for example the Tikhonov regularization method
[21][18]:

EQl(kr) = 1
bl,REG(kr) = b∗l (kr)

|bl(kr)|2 + β2
, (24)

where bl,REG(kr) denotes the regularized radial filter, EQl(kr) the regularized inverse
radial filter, and β a regularization parameter. The regularization parameter can be
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chosen so that it limits the amplification to certain level g in decibels, in a way that
takes the signal-to-noise ratio (SNR) increase provided by the array into account
[18]:

β2 =
1−

√
1− 10−g/10

Q

1 +
√

1− 10−g/10

Q

, (25)

where Q denotes number of microphone capsules in the array. Regularized and
non-regularized inverse filter coefficients are illustrated in Figure 6, where two differ-
ent regularization parameters are presented for the Eigenmike [22]: allowed gain of
g = 0dB and g = 20dB. The Eigenmike is a rigid nearly-uniform spherical micro-
phone array developed by mh acoustics LLC. These gain coefficients exceed allowed
values by 15 dB because the Eigenmike has the array gain of 10 · log10 (32) ≈ 15 dB.
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Figure 6: Absolute value of regularized inverse radial filter gain coefficients |EQl|
and non-regularized inverse filter coefficients |1/bl| for the Eigenmike [22] (rigid
microphone array). Allowed gain g in the first figure is 0 dB and in the second figure
20 dB.

3.2.2 Sampling the sphere

Because the number of microphone capsules, or discrete sampling points is limited in
practice, approximation of sound pressure function on the sphere is done. Different
sampling methods have been proposed in the literature: placing the sensors in equal-
angle arrangements, Gaussian arrangements, and (nearly-)uniform arrangements [17].
These samplings are illustrated in Figure 7. The sampling weights and the highest
perfectly reconstructable spherical harmonic order depend on the array sampling
method, as well as number of microphone capsules [17].
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Figure 7: Spherical microphone array arrangements that can reconstruct spherical
harmonic signals up to the order L = 4 illustrated: equal-angle (100 samples),
Gaussian (50 samples), and nearly-uniform (36 samples) [23].

Order limited spherical harmonics signals can be reconstructed as follows:

plm(k, r) ≈
Q∑
q=0

αqp(k, rq,Ωq)Y m∗

l (Ωq), (26)

where αq is sampling weight and p(k, rq,Ωq) is the pressure of the microphone capsule
q. When radial dependency and scattering is taken into account:

alm(k) ≈ EQl(kr)plm(k, r). (27)

The sampling weights for equal-angle (EA), Gaussian (G), and (nearly-)uniform
((N)U) arrangements are [17]:

αq =


2π

(L+1)2 sin (θq)
∑L
q̂=0

1
2q̂+1 sin ([2q̂ + 1]θq), q ∈ [0, 2L+ 1], EA

π
L+1

2(1−cos2 θq)
(L+2)2P 2

L+2(cos θq) , q ∈ [0, L], G
4π
Q
, (N)U

 , (28)

When choosing the sampling arrangement, one criterion is to find a sampling method
that can perfectly reconstruct spherical harmonic order L with the least number of
sampling points Q. For equal-angle, Gaussian, and (nearly-)uniform arrangements,
sampling criteria are [17][24]:

Q ≥


4(L+ 1)2, EA
2(L+ 1)2, G
≈ 1.5(L+ 1)2, (N)U

 , (29)

where the uniform sampling can perfectly reconstruct the highest order spherical
harmonic L with the least number of sampling points Q. The only way to construct
uniformly distributed array is to lay sampling points over convex regular polyhedron
or Platonic solid [17]:

L = bτ/2c, (30)
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where τ denotes τ -design of Platonic solid or regular convex polyhedron, and b·c is
floor function. However, since there are only 5 different Platonic solids (tetrahedron,
hexahedron, octahedron, dodecahedron, icosahedron), and the largest τ -design is 5,
only spherical harmonic order up to L = 2 can be perfectly reconstructed with uniform
sampling arrangement. Because of this, many nearly-uniform sampling arrangements
have been developed that can reconstruct higher order spherical harmonics with
negligible error [25]. For example τ -designs have been extended to τ = 12 [26],
therefore providing sampling method that can reconstruct spherical harmonics up to
the order L = 6 with equal sampling weights. An example of different arrangements
with different number of sample points that is needed to reconstruct equal order
is illustrated in Figure 7. The sampling in (nearly-)uniform cases is always more
efficient than in Gaussian sampling cases, but the lowest achievable Q is never under
(L+ 1)2 [26]. The lowest sampling criterion can be used with all arrangements, but if
it does not satisfy the sampling criterion of the arrangement, spatial aliasing occurs
[27]. When spatial aliasing occurs, higher order spherical harmonics are aliased to
lower order spherical harmonics [17].

Because of the least number of sampling points for the order L is desired, near-
uniform sampling methods are usually most suitable. However, (nearly-)uniform
arrangements are much complex, and they are much harder to construct compared
to other methods, but they have equal sampling weights. In addition, Gaussian and
equal-angle sampling can utilize FFT in the calculation of spherical Fourier transform
to improve calculation efficiency [25], since the elevation and azimuth coordinates
are equally distributed in two-dimensional plane.

3.3 Beamforming in spherical harmonic domain
One essential application of spherical harmonics is spatial filtering. Spatial filters
attenuate sound coming from the non-desired direction-of-arrival (DOA), and enhance
sound coming from the desired DOA. Beamforming is a simple way to perform
spatial filtering, and it is a method to separate signals interfering in the frequency
domain when the signals do not interfere spatially [3]. Calculating the beamformer
in the spherical harmonic domain offers several advantages: it is more efficient to
calculate beamformer in the spherical domain compared to the spatial domain since
there are usually more signals in the spatial domain compared to the spherical
harmonic domain. Also, it is simpler to calculate beamformers in the spherical
domain, because array configuration has to be always taken into account when
beamformer is calculated in the spatial domain. [17]

There are two different types of beamformers: signal-independent and signal-dependent.
In signal-independent beamforming, beamformer weights do not depend on the ar-
ray data, whereas signal-dependent beamformer uses known (statistically optimum
signal-dependent beamforming) or unknown (adaptive beamformer) second order
statistics (for example auto-spectral density) from the array data to generate opti-
mum beamformer weights, usually by steering nulls towards undesired DOA angles
[3]. In this thesis, three different signal-independent beamformers were implemented:
• Regular beamformer [17],
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• Minimum sidelobe beamformer (in-phase beamformer) [28], and

• Maximum directivity beamformer (Max re beamformer, beamformer that max-
imizes the energy in the look direction) [29].

The directional patterns of these beamformers are presented in Figure 8 where
the differences in the lobes are illustrated. Signal-independent beamformers are
computationally efficient and the beamformer weights can be calculated offline. The
differences to regular beamformer is defined by the size of mainlobe and sidelobes:
minimum sidelobe beamformer eliminates completely sidelobes, but increases the size
of mainlobe, while maximum directivity beamformer maximizes the directivity of
the beam, but does not decrease the size of sidelobes as much as minimum sidelobe
beamformer [18]. The choice of beamformer is essentially a trade off between the size
and gain of sidelobes’ and maximum directivity of the main lobe. The right selection
of the beamformer type depends highly on the application and sound field condition
where it is used. The directivity of the beamformer’s mainlobe can be made narrower
by increasing the orders of spherical harmonic signals. However, increasing the orders
increases the minimum sensor number and therefore more sensor channels need to
be processed.

The beamformer output in the frequency domain is calculated as follows [17]:

y(k) =
L∑
l=0

l∑
m=−l

w∗lm(k)plm(k, r), (31)

where w∗lm(k) denotes beamformer weights. Beamformer weights in axis-symmetric
[30] case can be calculated as follows [17]:

w∗lm(k) = dl(k)
bl(kr)

Y m
l (θl, φl), (32)

where (θl, φl) denotes the look direction and dl(k) is real valued axis-symmetric
weights. For example for regular beamformer, dl(k) = 1 [17]:

y(θl, φl) =
L∑
l=0

l∑
m=−l

plm(k, ra)
bl(kra)

Y m
l (θl, φl). (33)

Minumum sidelobe beamformer weight calculation has been presented in [28], and
maximum directivity beamformer weight calculation has been presented in [29].

There are two parameters that describe beamformer performance: directivity
index (DI) [31], and white noise gain (WNG) [31]. These parameters are dependent
on the choice of dl(k) [16]. DI gives the ratio between unity gain and overall average
gain, which is given in decibels. Essentially it measures SNR increase provided by
the beamformer. WNG denotes frequency dependent SNR improvement that array
provides compared to single sensor input. [17]

Beamformer spatial discrimination performance depends on microphone array
radius. If the sensors are arranged denser with a respect to a half wavelength, it is
said that the array has a large spatial aperture [3]. If the array is small, low frequency
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Figure 8: Different data independent beamformers for orders 1 to 4.

performance suffers. Secondly, if the array spacing is not dense enough compared to
wavelength, spatial aliasing occurs. This effect occurs because spherical harmonics
signals get deformed in higher frequencies. The spatial aliasing of the spherical array
can be calculated with an approximated equation [18] as follows:

fal = c

2rγ , (34)

where c denotes the speed of sound, r denotes the radius, and γ the angle between
two microphone capsules in the array.
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4 Cross pattern coherence algorithm
Although beamforming might be sufficient in ideal cases when using narrow enough
beamformers, reverberation and noise are present in real acoustical conditions. Acous-
tical beamformers do not perform properly in acoustically challenging situations
where diffuse noise and reverberation are present [32]. The reverberation increases
diffuseness of the sound field, therefore weakening the performance of the beam-
former. Beamformer diffuse noise suppression depends on the number of microphone
capsules, but coherence between sensors in low frequencies impairs the performance
[32]. Because of this, different post filters have been developed to enhance derever-
beration and noise attenuation of beamformer output [6][7], and they are also used
for dereverberation and noise attenuation of omnidirectional microphone signal [5].

4.1 Post filtering
Post filtering methods are mostly based on the use of coherence-based measures on
the microphone array signals, such as cross-spectral and auto-spectral densities [6].
Parameters derived from these measures are used to modulate either omnidirectional
or beamformer signal [6]. Zelinski’s method [5] assumes that noise is incoherent while
speech signal is correlated between microphone signals. However, especially when
using dense array configuration, noise correlation can be large between microphone
channels at low frequencies [6]. McCowan proposed improved method [6] for Zelinski’s
method by using known noise field coherence model, for example spherically isotropic
or cylindrically isotropic noise field model. Although these methods perform effectively
in high frequency region, they suffer from poor performance at low frequencies [32].

Such a post filtering method overcoming poor performance on low frequency noise
attenuation has been proposed [7] that also works with highly correlated noise. This
method is called cross pattern coherence algorithm (CroPaC) [7] and it has proven to
give better results for low frequency noise attenuation [7]. In addition, the method
performs additional spatial filtering. This method is described next in Section 4.2.

4.2 Cross pattern coherence post filter
The block diagram of acoustic beamformer incorporating CroPaC post filter is
presented in Figure 9. First, multi-channel time domain signal is transformed to
the time-frequency domain with STFT transform or filterbank summation method.
Second, microphone array signals are transformed to spherical harmonic signals with
the spherical Fourier transform, and the effect of the microphone array is inverse
filtered. Third, beamformer is calculated in the spherical harmonic framework, and
cross-spectrum between two spherical harmonic signals is calculated. The cross-
spectrum measure is normalized between [0, 1] to obtain unity gain in the look
direction. Since the measure introduces artefacts to the signal, the measure is
interpolated and spectral floor is added. Fourth, beamformer is modulated with the
obtained attenuation value, and in the end, the output signal is inverse transformed
back to the time domain. Time-frequency transform, spherical harmonic signal
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calculation, spherical harmonic beamforming, and inverse transform have been
described in the previous chapters. This section is divided into five subsections: cross-
spectrum calculation, spectral smoothing, spectral floor, synthesis, and performance.

TF

ITF

SH

BF

G

θ,φ α(k) λ(k)

frequency bin

Ĝ Ĝ +

Figure 9: Block diagram of the beamforming system incorporating CroPaC post
filter.

4.2.1 Cross-spectrum

The main principle of the CroPaC post filter lays on the cross-spectral density between
two different order spherical harmonic signals that have the same look direction.
Cross-spectral density is calculated as follows [7]:

Φblmbl̂m̂
(k, t) = E [a∗lm(k, t)al̂m̂(k, t)] , (35)

where a∗lm(k, t) is a complex conjugate of a spherical harmonic signal of order l and
mode m in the time-frequency domain, and al̂m̂(k, t) is correspondingly an another
spherical harmonic signal with the same look direction, but of another order. In
addition, k denotes a frequency band and t denotes a time index. The modulation gain
is the real valued part of the cross-spectral density normalized by the auto-spectral
densities of the spherical harmonic signals linked to used orders [7]:

Φblm(k, i) = E[|(alm)2(k, t)|]. (36)

The estimate is normalized in order to obtain unity gain in the look direction. For
example if the used orders are 1 and 2, normalization is calculated using all three
components of the order 1 (m ∈ [−1, 1]) summed with all five components of the
order 2 (m̂ ∈ [−2, 2]). After normalization, the estimate is half-wave rectified since
negative cross-correlation indicates that the sound is not coming from the look
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Figure 10: Resulting beampatterns from the multiplication of different real spherical
harmonics. Only positive and real valued part of the multiplication is considered.

direction. Therefore, real part of normalized cross-spectrum is calculated as follows
[7]:

G(k, t) = max

0,
C<[Φblmbl̂m̂

(k, t)]
M,−M∑
m

Φblm +
M̂,−M̂∑̂
m

Φbl̂m̂

, (37)

where M denotes maximum mode of the spherical harmonic order, < denotes real
valued part of the value, and C is a normalization multiplier. Since the sum of
energies in the denominator corresponds ideally to two omnidirectional signals, the
nominator is multiplied by C = 2 to obtain unity gain in the look direction. However,
this value depends on how the directional beampatterns have been derived, and in
practice the multiplier value need to be calculated offline using theoretical spherical
harmonics to get the exact normalization multiplier for the unity gain in the look
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direction. In the practical case, also noise is present and should be taken into account.
Resulting beampatterns from the multiplication of different order spherical harmonics
are presented in Figure 10. The beampatterns illustrated use orders of 1 to 4 thus
10 different patterns are illustrated.

4.2.2 Spectral smoothing

Because this algorithm introduces large variation in the modulation gain G value,
musical noise [33] is introduced to the signal. Musical noise is often described as a
bubbly-like, distracting artefact that is introduced by large steps in amplitude [7].
Because of this, spectral smoothing or interpolation is used to mitigate the effect [7]:

Ĝ(k, t) = (1− α(k))G(k, t) + α(k)Ĝ(k, t− 1), (38)

where α(k) ∈ [0, 1] is an interpolation value that can be frequency variant or invariant.
Applying more interpolation to low frequencies is important because by listening the
result, it can be noticed that low frequency musical noise is more audible than high
frequency musical noise. Therefore, more smoothing is needed for lower frequencies
than for higher frequencies. With less smoothing, better attenuation is achieved,
but sound quality is usually degraded because of audible musical noise. The α value
can also be calculated adaptively based on the SNR of the signal. This method
however assumes that SNR can be estimated accurately [34]. In addition, α has to
be truncated between [0, 1], because otherwise the interpolation would not be stable
[34]:

α(k, t) = 1
1 + ξ2(k, t) , (39)

where ξ is SNR. When SNR is large, α is near 0 and when SNR is low, α is near 1
[34].

4.2.3 Spectral floor

Since interpolation might not mitigate enough musical noise in challenging acoustical
conditions, additional spectral floor is applied. These conditions compromise for
example multiple simultaneous talkers and background noise. The spectral floor
defines the minimum value for the modulation gain G. It can be added frequency
dependently or independently as follows [7]:

Ĝ+(k, t) =
{
Ĝ(k, t), if Ĝ(k, t) ≥ λ(k)
λ(k), if Ĝ(k, t) < λ(k)

}
, (40)

where λ(k) ∈ [0, 1] is the spectral floor value. When the spectral floor value is 0, there
is no spectral floor and when the value is 1, beamformer output is not modulated at
all with CroPaC gain value. Spectral floor is always a trade off between attenuation
and sound quality [7]. If maximum attenuation is the main goal, spectral floor should
not be used, but if maximum sound quality is desired, spectral floor should be used.
If the goal is somewhere in between, optimal spectral floor value should be tuned
carefully with frequency dependent values according to acoustical conditions.
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4.2.4 Synthesis

Post-filtered signal is synthesized by modulating beamformer or omnidirectional
output with CroPaC value as follows [7]:

Y (k, t) = Ĝ+(k, t)y(k, t), (41)

where y(k, t) is the beamformer or omnidirectional microphone signal. The beam-
former can be any kind of beamformer, for example previously described signal-independent
beamformer or signal-dependent beamformer such as minimum variance distortion-
less response (MVDR) beamformer. Best spatial resolution with negligible noise is
achieved with cross-spectrum calculated from spherical harmonic signals of orders
l = L and l̂ = L − 1, where L is the maximum order that can be reconstructed
with the microphone array [7]. For example, if a spherical array with maximum
reconstructable order L = 3, best performance with inaudible noise is achieved by
using the spherical harmonic signals order of l = 3 and l̂ = 2 looking at the same
direction for cross-spectrum calculation.

4.2.5 Performance

CroPaC post filter output has been compared to McCowan post filter output in the
first version of CroPaC post filter system [7]. In this version, omnidirectional output
was modulated with CroPaC post filter calculated using least squares beamforming
with cylindrical microphone array consisting of 8 microphone capsules [7]. In this
experiment, CroPaC post filter outperformed McCowan post filter in most tests
[7]. Several improvements have been proposed to the algorithm: in the different
version of proposed CroPaC post filter [35], spherical harmonic framework with
spherical microphone array consisting of 8 microphone capsules was used. In this
version, MVDR beamformer output was modulated instead of omnidirectional output.
Experiment was conducted for this version where MVDR beamformer output was
compared to proposed algorithm using different reverberation values in simulated
test cases [35]. For higher reverberation times improvement was lower compared to
less reverberant acoustical conditions [35].

Taking into consideration of the above-mentioned test results, improvements on
noise cancellation and robustness on reverberation is evident in the CroPaC post filter
systems compared to other coherence-based post filtering methods. The performance
can be further improved by using optimized microphone array geometry and by
increasing the amount of microphone capsules in the array. Additionally, sidelobe
positions and sidelobe gain of the beamformer affects the performance of CroPaC
post filter system. [7]



24

5 Implementation
In this chapter, a real-time non-linear acoustic beamformer system based on the
CroPaC algorithm is implemented. The algorithm is implemented in the programming
language C as an external for graphical real-time signal processing programming
language Max (version 7) developed by Cycling ’74. Additionally a Max patcher
is implemented for using a real stream of audio from the Eigenmike [22] and from
other rigid spherical (nearly-)uniform microphone arrays or pre-recorded signals. By
using Max and the standard libraries of C, the resulting implementation has multi
operating system support and it works on Apple OS X and Microsoft Windows
operating systems that support Max.

This implementation proves that it is possible to implement efficient acoustical
beamforming system with the CroPaC post filter that can be used in real-time. This
implementation can be used for the research of the CroPaC post filter system by
easing tuning of the different parameters in real-time. Secondly, it is also possible to
research functionality of different microphone arrays with this implementation. This
kind of beamforming system could be utilized in various applications in the future
where efficient spatial discrimination along with effective dereverberation and diffuse
noise suppression is needed.

The implementation was tested informally in several acoustical cases in an anechoic
chamber and a listening room with reverberation time RT60 about 500ms. Five
different sound samples were recorded with the Eigenmike [22] in the listening room
for non-real-time demonstration of the implementation. All talkers were at 0 degree
of elevation angle and divided with 90 degree in azimuth angle. These five samples
were one talker, two talkers, three talkers, and two talkers with added low or high
level diffuse white noise.

In Section 5.1, the external and the patcher are presented. In Section 5.2, the
implementation decisions of the system are described step by step divided into
five related sections: time-frequency processing, spherical harmonics calculation,
beamforming, post filtering, and artefacts.

5.1 Max
Max is a graphical signal processing programming language meant for artists, edu-
cators, and researchers. It is used in the field of audio, visual media, and physical
computing [36]. The program comes with a software development kit (SDK) that
can be used to program third party externals in the programming language C. The
selection criteria for the platform was mainly the ability to process signals in real-time,
but there are also other platforms that fulfill the criterion such as Virtual Studio
Technology plugins and Pure Data graphical signal processing software.

The block diagram of the implemented acoustic beamformer system is presented
in Figure 11. The bottom side of the figure describes the external part of the
implementation and the upper side describes the patcher part of the implementation.
There are one multichannel audio input, keyboard or mouse and joystick input, and
multichannel output. The patcher is used to control the external with multiple
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parameters presented in the figure. These parameters are used for various adjustment
and control of the algorithm.

5.1.1 Max external

Max is a modular programming language. These modules are connected graphically
together with cords. The modules are called objects or externals and they have data
inlets and data outlets. The external implemented in this thesis has 32-channel audio
input and 3-channel output. Audio input channel number is 32, because external
was implemented to be used with the Eigenmike [22], but also lower amount of input
channels is supported. Output signals are omnidirectional signal output, beamformer
signal output, and post filtered beamformer output. In addition, the external takes
multiple control parameter values and arrays as an input. These control parameters
are presented in Figure 11. The parameters consist of:

• microphone array coordinates,

• microphone capsule amount,

• spherical harmonics regularization method and limitation values,

• post filter version,

• frequency dependent interpolation values,

• frequency dependent spectral floor values,

• beamformer type, and

• beamformer order.

These parameters are discussed next.

Spherical harmonics calculation block

First set of parameters consists of the microphone array data. In order to calculate
spherical harmonic signals for any microphone array, the microphone array data is
needed. The data consists of microphone capsule coordinates in spherical coordinate
system (r, θ, ϕ), where r denotes radius of the spherical microphone array in meters,
θ ∈ [0, π] denotes the elevation array of microphone capsules in radians, and ϕ ∈
[0, 2π) denotes the azimuth array of the microphone capsules in radians. In this
implementation, it is assumed that the microphone capsule positions have the same
radius as the array. The external supports up to 32-channel rigid spherical microphone
arrays that have (nearly-)uniform arrangement, because equal weighting is used.
However, less dense array can also be used, depending on how high order of spherical
harmonics is needed. Minimum number of microphone capsules is calculated with:

Q ≥ (L+ 1)2, (42)
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where Q denotes number of microphone capsules and L denotes order of the spherical
harmonics. For this implementation, order of the spherical harmonics must be equal
or greater than 1:

(1 + 1)2 ≤ 4. (43)

However, depending on the array arrangement and allowed amount of spatial aliasing,
the minimum capsule amount can also be higher. With more capsules than in (43),
better performance is achieved.

Rotation data is needed to be able to rotate the beamformers and perform spatial
filtering for different directions in space. The rotation of the beamformer is essential
in real-time applications, because the beam can be rotated in full three dimensions in
real-time. The external takes elevation value θROT ∈ [−90, 90] in degree and azimuth
ϕROT ∈ [−180, 180) value in degree as an input parameter.

Limitation data includes array that controls regularization parameters of the
inverse radial filters as well as the regularization method number. The limitation
data limits the self-noise amplification allowed for different order spherical harmonic
signals in order to inverse the effect of the array to the sound field.

The parameters are sent to the external in the following way:
1 prepend radius int [1]
2 prepend micsCount int [1]
3 prepend micsAzimuth float [ micsCount ]
4 prepend micsElevation float [ micsCount ]
5 prepend rotation int [2]
6 prepend limit int [5]
7 prepend regMethod int [1]

Beamformer calculation block

In order to use different signal-independent beamformers, the external takes beam-
former type and beamformer order as an input parameter. The external supports
three different beamformer types: regular beamformer, minimum sidelobe beam-
former, and maximum directivity beamformer. Since beamformers are formed by
mixing spherical harmonics signals with real weights, the order of the beamformer can
be modified from 1 to 4 depending on maximum spherical harmonic order supported
by the array. For example, generally to use order 1 beamformer, at least minumum
of 4 microphone capsules are needed, but for order 4, minimum of 25 capsules are
needed (42).

The parameters are sent to the external in the following way:
1 prepend type int [1]
2 prepend order int [1]

Post filtering block

Since the system consists of many different CroPaC cross-spectrum calculation
patterns, the external takes number of the cross-spectrum calculation pattern as
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an input. The external supports 10 different CroPaC patterns based on the cross-
spectrum between different spherical harmonic signals: Φblmbl̂m̂

, where l ∈ [0, 4] and
m ∈ [−l, l]. Use of the higher order CroPaC patterns is limited by the number of
microphone capsules available (42). For example with 4 capsules only Φb00b11 can be
used, but with at least 25 capsules, all 10 patterns can be used.

The parameters are sent to the external in the following way:
1 prepend CropacVersion int [1]

Interpolation and spectral floor calculation block

Post filtering usually results in the musical noise caused by too quick variation of the
post filter value estimates that are used to modulate a beamformer signal. Because
of this, frequency dependent interpolation or smoothing coefficients are needed. The
external takes an array of interpolation values α ∈ [0, 1] as an input. However, when
background noise and several talkers are present, interpolation might not decrease
musical noise enough. In this case, external takes spectral floor value array λ ∈ [0, 1]
as an input.

The parameters are sent to the external in the following way:
1 prepend interpolation float [133]
2 prepend spectralFloor float [133]

5.1.2 Max patcher

The structure of the patcher is described in Figure 11 and a screenshot of the user
interface of the patcher is presented in Figure 12. The user interface is controlled
with a keyboard and a mouse or optionally with a joystick. Only initial setups
are controlled by a mouse and a keyboard such as microphone array type, signal
selection, gain in, the order of beamformer, the type of beamformer, type of the
CroPaC pattern, regularization method, order dependent limitation values, frequency
dependent interpolation and frequency dependent or frequency independent spectral
floor. There is also preset selection, where all of these selections can be saved. By
clicking on different presets, many of the above-mentioned input parameters can be
changed at once. Some of the typical cases have been tuned in the real cases and these
parameters are predetermined. The joystick is added for easier control and increased
speed for constantly changed input parameters such as rotation. It is also utilized to
switch between output signals (post filtered beamformer signal, beamformer signal,
omnidirectional signal, microphone signal). Frequency independent spectral floor
can be controlled through the joystick’s lever and the system can be switched on or
off. This kind of setup provides better user experience compared to fully keyboard
and mouse provided control.

5.2 Implementation decisions
Many decisions on the implementation of acoustical beamforming system were made
during the process, because of different reasons, such as computational load and time
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Figure 12: Max patcher for the implemented external.

related issues. These implementation decisions are discussed next.

5.2.1 Time-frequency transform

The implementation uses filterbank summation based time-frequency transform
method. The type of the algorithm is 128-channel tree-structured PQMF filterbank.
It is used because it provides better temporal resolution with equal spectral resolution
compared to STFT transform methods. CQMF filterbank is by definition alias free,
while Fourier transform based methods require an extra step in the calculation to be
alias free. However, PQMF filterbank that is used here is not completely alias free,
but the level of aliasing is inaudible [37]. PQMF filterbank is chosen over CQMF
filterbank because it has real filter coefficients compared to complex coefficients,
which makes it more efficient in comparison.

The block diagram of this frequency transform method is presented in Figure
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13. The signal bands are divided in this implementation into 128 linearly uniform
frequency bands. The bandwidth is based on bark scale critical bands, but be-
cause the bandwidth is 187.5 Hz with sampling frequency of 48 kHz, the spectral
resolution is perceptually sufficient only above 1 kHz [14]. Because of this, the
lower frequency bands of 187,5. . . 750 Hz are each further filtered into two separate
frequency bands. According to bark scale, this is sufficient spectral resolution for the
acoustical beamforming system implemented in this thesis.

The PQMF filterbank C library used here can be found from GitHub [37], and it
can be used with the following commands:
1 afSTFTinit (&(h-> afHandle ), h->hopSize , h->inChannels , h->

outChannels , h->LDmode , h-> hybridMode );
2 afSTFTforward (h->afHandle , h->inTDtemp , h->inFD[i]);
3 afSTFTinverse (h->afHandle ,h->outFD[i], h-> inTDtemp );
4 afSTFTfree (h-> afHandle );

The parameters used in the implementation are following: hopSize = 128, inChannels ∈
[4, 32], outChannels = 3, LDmode = 0, and hybridMode = 1. LDmode denotes low delay
mode and hybridMode denotes tree-structure in low frequency bands extending the
total resolution to 133 frequency bands.

5.2.2 Spherical harmonics calculation

The spherical harmonic signal calculation in this implementation is based on the
theoretical approach. It provides more convenient way for real-time calculation
compared to the measurement based least squares approach where all the microphone
arrays have to be measured first. However, the least squares approach may give
more precise results, because real microphone arrays have imperfections such as
sensor misalignment, sensor noise levels, and sensor directivity problems. This
implementation supports spherical harmonics up to order L = 4 because it is
maximum order spherical harmonic that can be reconstructed with the Eigenmike
[22][27]. The code used to generate spherical harmonic weights is translated from
the advisor’s MATLAB code that is used for non-real-time calculation.

The code calculates spherical harmonic weights for rigid spherical arrays with
(nearly-)uniform arrangement. The code is divided into 3 functions:
1 void Y_gen( double *** Y_large , double rot_az_deg , double

rot_el_deg , float *azang , float *elang , int micsCount );
2 void complex2real ( double *** Y_large , double **Y, int micsCount );
3 void calculateRadialDependency ( double *** weightType , float *

limiterLevel , float radius );

The first function is used to calculate the complex spherical harmonic weights for
spherical rigid microphone array signals. This is also the function where rotation
is implemented. Rotation is performed by rotating the microphone array capsule
coordinates with rotation matrices as follows:

RROT = R0(R(χ)R(θ)R(ϕ))ᵀ, (44)

where (44), RROT denotes rotated microphone array in the Cartesian coordinates,
R0 denotes the initial, non-rotated microphone array in the Cartesian coordinates,
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and R(χ), R(θ), and R(ϕ) denotes the z-y-z rotation matrices for the Euler angles.
The initial microphone array (45) and the rotation matrices (46,47,48) are defined as
follows:

R0 =



x0 y0 z0

x1 y1 z1
... ... ...
xn yn zn

 (45)

R(χ) =


cos(χ) sin(χ) 0
− sin(χ) cos(χ) 0

0 0 1

 (46)

R(θ) =


cos(θ) 0 − sin(χ)

0 1 0
sin(θ) 0 cos(θ)

 (47)

R(ϕ) =


cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 , (48)

where χ = 0, θ is elevation rotation angle in radians, and ϕ is azimuth rotation angle
in radians. With χ = 0, R(χ) = diag(I), so therefore equation 44 simplifies to:

R0(R(θ)R(ϕ))ᵀ. (49)

This method of rotation is efficient and it is real valued. However, rotation errors
may be produced that depend on the microphone distribution in the array [38].

The second function translates complex spherical harmonic weights to real form
with the following relation:

Y m
l =


(−1)m

√
2=[Y |m|l ], m < 0

Y m
l , m = 0

(−1)m
√

2<[Y m
l ], m > 0

 , (50)

where < denotes the real valued part of the value, = denotes the imaginary part of
the value,

√
2 is the normalization multiplier, and (−1)m is the Condon-Shortley

phase convention [39].
The third function calculates the inversion coefficients and regularizes them

depending on the chosen regularization method and the regularization parameter.
The regularization parameters are applied order dependently to the regularization
method. The inversion coefficients are implemented for equalizing the array radial
dependency and the scattering effect. Additionally several auxiliary functions are
implemented since the standard C library does not include several functions that are
present in MATLAB, such as factorial function, coordinate conversion function for
converting coordinates from the Cartesian coordinates to the spherical coordinates



33

and back, the associated Legendre polynomial function, the spherical Bessel function
of the first kind, and the spherical Hankel function of the second kind. There are
libraries available for these calculations, but the libraries may not work in all operating
systems. The standard library is used to maintain operating system independency.
Also all the complex number calculations are calculated analytically and separated
to real and imaginary part. The reason is that it was found out that the C standard
library complex.h for complex number calculations is not efficient enough with the
current implementation of the system in order to run in real-time.

Additionally, precalculated spherical harmonic weights were tried during the
implementation process, but it was decided to calculate the weights in real-time
to obtain more flexible system that can utilize different microphones and different
input parameters without need to calculate the weights first offline. By calculat-
ing the weights offline, processing power may be conserved, but memory usage is
increased. Precalculated weights could be considered when single microphone array
and parameters are used or when less processing power is available.

5.2.3 Beamforming

It was decided to use signal-independent beamformers in the implementation. Signal-dependent
beamformers provide more attenuation than signal-independent beamformers. How-
ever, since they were not implemented because the increase of needed processing
power due to matrix calculations, it is unknown whether they will work in practical
system. The mixing weights of three different beamformers were calculated offline in
MATLAB and utilized in the implementation. This is convenient since the orders can
be changed in according to used array configuration. An example implementation is
provided below:
1 for(int time = 0; time < h->t; time ++) {
2 for(int freq =0; freq < 133; freq ++) {
3 h->outFD[time ][0]. re[freq] = (0.1410) * h->outFD[time ][3].

re[freq] + (0.2443) * h->outFD[time ][6]. re[freq ];
4 h->outFD[time ][0]. im[freq] = (0.1410) * h->outFD[time ][3].

im[freq] + (0.2443) * h->outFD[time ][6]. im[freq ];
5 }
6 }

This is the first order regular beamformer, where h->outFD[time][0] denotes beam-
former signal, h->outFD[time][3] spherical harmonic signal of order l = 0, h->outFD
[time][6] spherical harmonic signal of order l = 1 and mode m = 1 in each time
index. h->t is the size of frame and .re[freq] denotes real valued part and .im[freq]
imaginary part of each frequency bin.

5.2.4 Post filtering

Post filtering algorithm used in the implementation is the CroPaC algorithm. It
is used since it has proven to have high performance in low frequency attenuation
compared to other post filtering methods available [7]. An example of cross-spectrum
is calculated as follows:
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1 h->CS[time ][ freq ]=2.3851 * (h->outFD[time ][6]. re[freq] * h->
outFD[time ][11]. re[freq] + h->outFD[time ][6]. im[freq] * h->
outFD[time ][11]. im[freq ]);

where 6 is spherical harmonic signal of order l = 1 and mode m = 1, and 11 is
spherical harmonic signal of order l = 2, and mode m = 2. Cross-spectrum is
normalized with energies of spherical harmonic signals before modulation in order
to obtain unity gain at look direction (G ∈ [0, 1]). This ensures that post filter
would not affect the level of the signal. The spherical harmonic signal energies are
calculated as follows:
1 h->E[time ][sh][ freq] = powf(h->outFD[time ][sh].re[freq], 2) +

powf(h->outFD[time ][sh].im[freq], 2);

where sh denotes spherical harmonic signal. An example CroPaC gain value is then
calculated as follows:
1 for(int time = 0; time < h->t; time ++) {
2 for(int freq = 0; freq < 133; freq ++) {
3 h->G_new[time ][ freq] = (h->C[time ][ freq ]) / (h->E[time

][4][ freq] + h->E[time ][5][ freq] + h->E[time ][6][ freq]
+ h->E[time ][7][ freq] + h->E[time ][8][ freq] + h->E[time
][9][ freq] + h->E[time ][10][ freq] + h->E[time ][11][ freq
] + 1.0E -20);

4 }
5 }

where 4 . . . 6 denote the spherical harmonic signals of order l = 1 and mode m =
−1 . . . 1, 7 . . . 11 denote the spherical harmonic signals of order l = 2 and mode
m = −2 . . . 2, and 1.0E-20 is small value to prevent division by zero. This is
important since division by zero is undefined action and the program might crash if
it happens.

5.2.5 Artefacts

When beamformer signal is post filtered, musical noise is introduced because of quick
fluctuation of modulation gain. Two ways were implemented to reduce musical noise
enough to be inaudible. These parameters were chosen to be changed in real-time in
order to help tuning. First, frequency dependent interpolation is added:
1 if(time != 0)
2 Gvalue = (h-> interpolation [freq ]) * (h->G_new[time - 1][ freq

]) + (1.f - (h-> interpolation [freq ])) * (h->G_new[time ][
freq ]);

3 else //if first index -> have to use previous frame ’s last value
for interpolation

4 Gvalue = (h-> interpolation [freq ]) * (h->G_old [(h->t) - 1][
freq ]) + (1.f - (h-> interpolation [freq ])) * (h->G_new[time
][j]);

These values were decided to be manually tuned since SNR estimation is a computa-
tionally costly operation. After interpolation, spectral floor is added:
1 if(h->G_new[time ][ freq] < h-> spectralFloor [freq ])
2 h->G_new[time ][ freq] = h-> spectralFloor [freq ];
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In the original design of the CroPaC post filter [7], interpolation is frequency depen-
dent, but spectral floor is frequency independent. In this implementation, spectral
floor was implemented also to support frequency dependent spectral floor since it
was found out empirically that there is no need for spectral floor for all frequency
bands. Also where spatial aliasing occurs, use of post filter should be avoided, that is
to say, spectral floor should be raised to 1. When the Eigenmike [22] is used, spatial
aliasing occurs approximately at 7.3 kHz according to equation 34. Because this
implementation might attenuate low frequencies when using higher order CroPaC
patterns, spectral coloration is introduced and spectral floor should be added to raise
lower frequencies to obtain better sound quality.
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6 Conclusions and future work
The real-time non-linear acoustic beamforming system was implemented in this thesis.
The implementation was programmed in the C programming language for graphical
signal processing program Max (version 7) developed by Cycling ’74. The acoustic
beamforming system works in the time-frequency domain with signal-independent
beamforming and it incorporates state-of-the-art post filter based on cross pattern
coherence (CroPaC [7]). The post filter improves spatial attenuation as well as low
frequency denoising and dereverberation. The implementation is the first real-time
implementation of a CroPaC post filter, and it facilitates research on spatial filtering,
CroPaC post filtering, and parameter tuning. In addition, it allows the demonstration
of the post filter capabilities in real-time. The implementation is flexible, enabling
use of different spherical arrays with rigid uniform and near-uniform configuration.
The starting point for the implementation was the Eigenmike [22], since it can be
used for reconstructing high order spherical harmonic signals with relatively small
amount of microphones. Because of this, maximum supported microphone capsule
number is 32 and spherical harmonic order 4 [27].

During the implementation of the system, several implementation decisions were
made. Max was chosen since it is widely used in the field of audio signal processing
providing a well-documented SDK and programming language C is supported. A
time-frequency transform was chosen to be made with PQMF filterbank since it
provides efficient processing with inaudible aliasing. Compared to STFT methods,
filterbanks provide non-uniform frequency band division. If perceptually sufficient
STFT frequency bandwidth would be used, much more bands would be needed for
processing while higher spectral resolution in high frequencies would not provide any
additional information that would be beneficial. Complex QMF filterbank has no
aliasing, but PQMF is more efficient. Spherical arrays and spherical harmonic frame-
work was chosen over different configurations mainly since spherical configuration
provides full three dimensional rotation of the directional beams which is not possible
with other array types. Additionally spherical harmonics provide more flexible way
for beamforming. Spherical harmonics were calculated with the theoretical approach
instead of the least squares approach because it is not reasonable to measure all
the microphone arrays beforehand, when the implementation supports any kind of
array. However, the least squares approach may provide better result since the micro-
phone arrays may have imperfections in capsules and their positioning. Beamformers
were chosen as data independent since it provides a way to efficiently synthesize
beamforming by mixing spherical harmonic signals with real weights. Since spherical
harmonic beamforming is used, the array configuration does not have to be taken into
account. Because of this, beamformer weights can be calculated offline beforehand
to increase the efficiency of the system. The CroPaC post filter was chosen since
it has been proven to have better low noise attenuation performance compared to
other coherence-based post filtering methods.

In addition, user interface was programmed in Max for use of the external.
Real-time audio stream from the array as well as prerecorded, non-real-time audio
stream can be used in the user interface. It supports modifying all the control
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and tuning parameters in real-time with keyboard or mouse. Additionally the most
critical controls are implemented to support also use with joystick, for example the
rotation of the directional beam.

The implementation was tested informally in several real acoustical conditions for
verification. These test scenarios consisted of the department lab anechoic chamber
and the listening room, with reverberation time RT60 about 500ms. However, formal
perceptual evaluations were not conducted in this thesis and for future, the system
should be compared to previous CroPaC systems in [7], [34], and [35].

Although working efficient real-time system was implemented, several future
improvement ideas emerged during the implementation process, most of which are
calculation efficiency and attenuation performance related, such as optimization of
the code and optimal beamforming:

• Optimal beamformer such as linearly constrained minimum variance (LCMV)
beamfomer and especially the special case of LCMV, minimum variance distor-
tionless response (MVDR) beamformer.

• Optimization of the code. The most critical code parts to be optimized are
spherical harmonics calculation where all the weights are calculated again in
each frame, which is not necessary if the parameters do not change. Additionally
multiple thread calculation could be considered in order to share the workload
on multiple cores.

• Filterbank with higher spectral resolution in low frequency region. This
decreases temporal resolution because of increased frame size, but it might still
improve the performance of the post filter on low frequencies. More complex
tree-structures could be used to implement efficiently denser filterbank in low
frequencies.

• Least squares approach functionality to spherical harmonics calculation to
obtain better results with real arrays that might have imperfections such as
capsule positional error or angle error.

• Extend microphone array support. For example variable radii support,
open sphere with cardioid capsules support, and support for different shaped
arrays such as cylindrical and hemispherical arrays with different sampling
arrangements. Additionally support for any number of microphone capsules
and any order spherical harmonic signals could be added.

• Adaptive interpolation that adjusts with the SNR of the signal with no
need to manually find the best interpolation values for different situations [34].

• Optimal regularization for the inversion of radial dependency and scattering
caused by the array. Research about optimal regularization parameters and
method to obtain better low frequency performance when using higher order
beampatterns in cross-spectral density calculation.
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• Camera support for various applications, such as teleconferencing and security
monitoring. Also possibility to use with acoustical cameras, increasing spatial
resolution in low frequency bands compared to acoustical cameras used in
the industry. For example 3-D camera could be used along with spherical
microphone array.

• Spatial aliasing detection. Spectral floor could be increased automatically
above spatial aliasing frequency bands.

• Formal perceptual evaluation with the current implementation should
be conducted where this implementation is compared to previous CroPaC
implementations in [7], [34], and [35].
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