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Abstract

Graphene is a 2-dimensional allotrope of carbon which has attracted a lot of interest since its dis-
covery in 2004. It has high electron mobility and small intrinsic spin-orbit-coupling, leading to long
spin persistence lengths. This makes it an interesting material for spintronics as it can be used as
a platform for spin-dependent defects. Its spin behaviour is almost completely determined by the
defects, which can be used to tune its properties.

The electronic transport properties of graphene are most commonly studied by Landauer-Büttiker
and Kubo-Greenwood methods. They both work well with the tight-binding model, which recovers
the electronic band structure of graphene correctly,  and they give results consistent with each
other. The difference between the two is that Landauer-Büttiker is more suitable for narrow rib-
bons, while Kubo-Greenwood performs better in wider systems.

In this thesis, a spinful version of the Kubo-Greenwood method is derived and then implemented
on top of an existing spinless version. The implementation is done with Nvidia CUDA and it runs
on graphics processing units. Different spin-dependent defects in graphene are used to test the
implementation and validate the method.

While the spinful version of the method is easy to implement, it turns out that it lacks the ability to
completely describe spin-flipping current. Spin-conserving conductivity is given correctly by the
method and spin polarization is proposed to describe the spin behavior better. Long-ranged scat-
terers are found to scatter spin more efficiently than they do charge and they are suggested to be
partly responsible for the experimentally found short spin relaxation times.

Keywords graphene, spin, Kubo-Greenwood, CUDA, GPU
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Tiivistelmä
Grafeeni on hiilen kaksiulotteinen allotrooppi,  joka löydettiin vuonna 2004. Sen elektroneilla on
suuri liikkuvuus ja pieni spin–rata-kytkentä, jonka ansiosta spinin relaksaatiopituus kasvaa huo-
mattavan suureksi. Grafeeni on erityisen kiinnostava materiaali spintroniikassa, jossa sitä voidaan
käyttää alustana spin-riippuville epäpuhtauksille. Sen spinin ominaisuudet ovat lähes täysin epä-
puhtauksien määrittelemät, joten spin käytöstä voidaan säätää niiden avulla.

Grafeenin johtavuusominaisuuksia tutkitaan yleensä joko Landauer-Büttiker- tai Kubo-Greenwood-
menetelmillä. Molemmat toimivat hyvin tiukan sidoksen mallin kanssa ja antavat keskenään vertai-
lukelpoisia tuloksia. Menetelmien erona ovat systeemit, joihin ne soveltuvat. Landauer-Büttiker toi-
mii  paremmin kapeammissa nauhoissa,  kun taas Kubo-Greenwood soveltuu hyvin leveämpiin,
täysin kaksiulotteisiin systeemeihin.

Tässä työssä johdetaan spinillinen versio Kubo-Greenwood-menetelmästä ja toteutetaan se aikai-
semman spinittömän version pohjalta.  Toteutus tehdään Nvidian CUDA-kielellä  ja sitä  voidaan
ajaa näytönohjaimilla. Toteutusta testataan erilaisilla spin-riippuvilla epäpuhtausmalleilla.

Spinillinen versio on helposti johdettavissa spinittömästä versiosta, mutta käy ilmi, ettei se kuvaa
täysin spinien välistä virtaa. Menetelmä antaa kuitenkin oikein spinin säilyttävän konduktiivisuuden
ja spinin polarisaatio osoittautuu paremmaksi ominaisuudeksi kuvaamaan spinin käytöstä. Tutki-
tuista epäpuhtauksista pitkän matkan sirottajat sirottivat spiniä suhteessa varaukseen eniten ja nii-
tä ehdotetaan osatekijäksi kokeissa havaittuihin lyhyisiin relaksaatiopituuksiin.

Avainsanat  grafeeni, spin, Kubo-Greenwood, GPU
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1 Introdu
tion

Spintroni
s is an emerging bran
h of ele
troni
s whi
h has gained mu
h attention over the

past few de
ades. It utilizes the spin degree of freedom of the ele
trons, whi
h enables a

mu
h wider range of 
omponents and devi
es [1, 2℄. Sin
e there are two kinds of 
urrents,

up and down polarized, it is in prin
iple possible to design a 
omponent that rea
ts in one

way to up 
urrent and in another to down 
urrent. This is relevant, for example, in logi


and memory 
omponents, whi
h 
an bene�t from having a se
ond degree of freedom or

even use the spin as their only state indi
ator [3℄. A good example of this is the giant mag-

netoresistan
e e�e
t (GMR) used in magneti
 memories, whi
h is based on the magneti


alignment of ferromagneti
 �lms [4℄.

Spin is an intrinsi
 property of ele
trons, similar to 
harge or mass. It is a relativisti
 e�e
t

arising from the Dira
 equation resembling angular momentum and most importantly,

it serves as a sour
e of magneti
 moment for ele
trons. In ferromagneti
 materials the

alignment of the moments is energeti
ally favoured and there is a net spin polarization.

When the net moment of a material is non-zero, magneti
 properties 
an be observed even

ma
ros
opi
ally.

Instead of having the whole material made of magneti
 atoms, it is possible to have mostly

non-magneti
 material with some magneti
 defe
ts in it [5, 6℄. This o�ers an interesting

system to study, sin
e even a small amount of defe
ts 
an make spin-dependent behaviour

arise[7, 8℄. This work mostly fo
uses on the spin polarization and 
ondu
tivity of graphene

with magneti
 defe
ts in it. Graphene provides an appealing platform for magneti
 de-

fe
ts be
ause it has small intrinsi
 spin-orbit 
oupling (SOC) [9, 10℄, whi
h means the

spin-behaviour is almost 
ompletely di
tated by the defe
ts in the system. Graphene also

possesses high ele
troni
al 
ondu
tivity and low s
attering rates, making it a promising

material for spintroni
s [11, 12℄.

The two main methods to model the ele
troni
 transport properties of graphene are the

Kubo-Greenwood (KG) [13, 14℄ and Landauer-Büttiker (LB)[15℄ formalisms. In this work

the fo
us is mostly on the Kubo-Greenwood, even though some 
omparisons will be done

between the two methods. Both of the methods work within the tight-binding model [16℄,

whi
h des
ribes the ele
troni
 properties of graphene relatively well. It predi
ts the band

stru
ture 
orre
tly near the zero energy and is not too bad either at higher energies [17℄.

Be
ause of its simple format, it serves as a good starting point also for modelling defe
ts

in graphene. Taking spin into a

ount in the model is not hard either [18℄, whi
h makes it

ideal for our uses.

When spin-dependent defe
ts are modelled, the orientation of their spin axis plays an

important role. If polarized 
urrent intera
ts with defe
t whi
h is aligned parallel or anti-

parallel with the polarization, the 
urrent retains its polarization. The defe
t will have

separate properties for both polarizations, but there will be no 
onne
tion between the spin


hannels. The situation be
omes mu
h more interesting when the defe
t axis is not aligned

with the polarization. This allows spin to �ip at the defe
t sites and makes the system

2



mu
h more 
ompli
ated, as it 
an no longer be modelled as two separate non-intera
ting

subsystems.

In addition to the defe
t alignment, the lo
ation of the defe
ts relative to ea
h other has

a major e�e
t on the properties, espe
ially in graphene [19℄. Graphene 
onsists of two

sublatti
es and depending on whether two defe
ts are on the same one or not will impa
t

the properties greatly in some 
ases [20, 21℄. Be
ause there are a lot of parameters regarding

the defe
ts, it may be hard to get a good overview of the average properties of 
ertain

defe
ts. Some interesting properties may be present only in a 
ertain 
on�guration and

some may only appear in highly randomized systems. Therefore, to get a good 
on
lusion

on what properties 
ertain defe
ts would have in a real world experiment, the averaging

of the defe
t properties should be done well. One way of doing this is to simulate larger

systems.

One downside of big simulations is the in
reased 
omputational e�ort. In the best 
ase s
e-

nario, the 
omputational time will in
rease linearly with respe
t to the number of atoms,

but even linear s
aling 
an take one only so far on its own. In pra
tise, all large s
ale

simulations require some kind of parallelization to make the simulation run in reasonable

time. Parallelization 
an be done on the CPU, on whi
h it is also relatively easy to imple-

ment. However, a good alternative to CPU implementation is the use of graphi
s pro
essing

units (GPUs). The GPUs have a vast amount of 
omputational power inside and when the

implementation is done 
orre
tly, they 
an rea
h impressive speedups over regular CPUs

[22, 23℄.

There are some limitations to the use of GPUs, however. Their ar
hite
ture is mu
h simpler


ompared to CPUs and they require a bit di�erent approa
h [24℄. One of the most important

fa
tors in the 
hoi
e between CPU and GPU is the arithmeti
 intensity of the 
al
ulation

being implemented [25℄. It is determined by the ratio between arithmeti
 operations and

the memory a

esses and the higher it is, the better the GPUs relative performan
e will

be. This is be
ause the internal memory GPUs have is slow and transferring data to the

GPU from the CPU memory is even slower [26℄. Doing every single 
al
ulation on the GPU

is usually not an option either be
ause they perform quite poorly in exe
uting sequential


ode. Getting the best performan
e usually requires 
areful analysis to identify the parts

whi
h bene�t most from being 
al
ulated on the GPU [27, 28℄.

The goal of this thesis is to derive and implement spinful version of the Kubo-Greenwood

method, starting from an existing spinless implementation [29℄ and test it on various spin-

dependent defe
ts. The method is linear-s
aling and it works really well even for larger

systems, as required. The original 
ode is written in CUDA C [30℄ and is optimized to run

on GPUs. The new implementation will also be written in CUDA. The fo
us in the 
al
u-

lations will be on the 
ondu
tivity and spin polarization of graphene with di�erent kinds of

spin-dependent potentials, but some attention is also given to graphene nanoribbons and

alternative defe
t models.
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Figure 1: (a) Real-spa
e (b) Re
ipro
al latti
es of graphene. Ve
tors a and b show the basis

ve
tors for both latti
es. (
) Band stru
ture of graphene 
al
ulated with TB and DFT.

2 Tight-binding model for spin-dependent defe
ts

The 
arbon atoms in graphene are arranged in a honey
omb latti
e as show in Fig. 1a. The

atoms are sp2-hybridized, whi
h means that three of the four valen
e ele
trons of ea
h atom

are used to form σ-bonds between neighbours and the fourth one is left to form a pz-type
orbital. Be
ause the σ-bonds are strong and have a low energy, all of the e�e
ts near the

Fermi level are 
aused by the pz-ele
trons. This justi�es the use of the tight-binding model,

for whi
h the basis fun
tions are lo
alized at ea
h atom site. The hopping tij = 〈ψi|Ĥ|ψj〉
between these basis fun
tions determines the 
oupling between ea
h pair of atoms. It is

usually su�
ient to 
onsider only a few of the nearest sites for ea
h atom, be
ause the

hoppings to further atoms go to zero relatively fast.

In graphene, the hoppings are usually taken up to the �rst or the third nearest neighbours.

The �rst neighbours des
ription is valid near the Fermi level, but it be
omes less a

urate

further in energy [31℄. The band stru
ture given by the 1st neighbour des
ription is 
om-

pletely symmetri
 in energy, a fa
t that is not supported by the ab initio 
al
ulations, as

shown by Fig. 1
. The 3rd neighbours however 
an re
over this behaviour and give a mu
h

more a

urate des
ription of the bands [32℄. The drawba
k is that it is more 
ompli
ated

to implement and the 
al
ulations take a lot longer. In our 
ase we are more interested in

the behaviour of the defe
ts and the 1st neighbour des
ription is enough for our needs.

For pristine graphene, the 1st neighbour tight binding Hamiltonian reads

Ĥ0 = t0
∑

〈i,j〉
|i〉〈j|, (1)

where the sum goes over pairs of neighbours 〈i,j〉. The pristine Hamiltonian 
an be used

as a starting point when we add defe
ts to the system by writing the total Hamiltonian as

a sum of Ĥ0 and the defe
t Hamiltonian Ĥd:

Ĥ = Ĥ0 + Ĥd. (2)
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The defe
t Hamiltonian 
an either modify the hoppings or add a lo
al potential. In either


ase, we need to 
onsider the alignment of the defe
ts' spin axis. The axis lies somewhere on

the Blo
h sphere and in a general 
ase 
an be di�erent for di�erent defe
t sites. Depending

on the type of the defe
ts, there 
ould be some 
orrelation between the defe
t axes but

at least in the dilute limit in the absen
e of magneti
 �eld, there should not be magneti


ordering between the defe
ts.

The defe
t Hamiltonian for a single site with spin dependent potential 
an be written as

Ĥd = |i〉〈i| ⊗ (U↑| ↑〉〈↑ |+ U↓| ↓〉〈↓ |) , (3)

where i is the index of the site and U↑,↓ are the potentials for ea
h spin [18℄. We 
hoose

the sample z-axis to be the referen
e dire
tion and rotate the spin ve
tors to this basis.

To do this, the defe
t Hamiltonian is written in terms of the average and di�eren
e of the

potentials:

Ĥd = |i〉〈i| ⊗
(

U↑ + U↓
2

I +
U↑ − U↓

2
σd
z

)

, (4)

where σd
z is the Pauli z-matrix in the defe
t basis [33℄. Rotation only applies to σd

z , whi
h

transforms into

σd
z =

[

cos(θ) e−iφ sin(θ)
eiφ sin(θ) − cos(θ)

]

(5)

where angles θ and φ refer to lo
ation of the defe
t on the Blo
h sphere. In 
ase of multiple

defe
ts, the Hamiltonian is a
quired by summing over all of the defe
t sites.

Defe
ts with spin dependent hoppings 
an be modelled almost identi
ally to the potential

defe
ts. Similar to potential defe
ts, we assume that ea
h spin has its own hopping strength

to the defe
t atom, denoted by t↑ and t↓. The only di�eren
e to Eq. 3 
omes from the fa
t

that a single defe
t site has multiple hoppings. To get the 
omplete defe
t Hamiltonian for

single site, we need to sum over all of the hoppings to and from the defe
t site:

Ĥd =
∑

〈i,j〉∈d
|i〉〈j| ⊗ (t↑| ↑〉〈↑ |+ t↓| ↓〉〈↓ |). (6)

In the 
ase of graphene 
onsidering only the nearest neighbours, there are 6 terms in this

sum. The same 
hanges 
an also be made to Eq. 4 to apply the spin rotation to the defe
t.

Be
ause potential and hoppings are the only parameters in the tight-binding model, these

two defe
t types 
an be 
ombined to model any defe
t rea
hable by tight-binding. Defe
ts

that are not lo
alized on atom sites may need di�erent summations than Equations 3 and

6, but the main idea remains the same. The defe
ts modellable by this method range from

simple mathemati
al defe
ts where potential or hoppings are 
hanged for a 
hosen number

of sites to 
omplex multi-site defe
ts originating from physi
al observations.
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3 Methods

3.1 Landauer-Büttiker formalism

The setting in the Landauer theory is to 
onsider a sample or devi
e 
onne
ted to reservoirs

through leads. Condu
tan
e is seen as a s
attering pro
ess, in whi
h ele
trons are inje
ted

through one lead to the devi
e, from whi
h they are s
attered ba
k to the reservoirs. The

method was generalized to multiple leads by Büttiker [34℄ and the 
urrent between leads i
and j 
an be written as

Ii,j =
2e

h

∫

Tj,ifi(ǫ)− Ti,jfj(ǫ)dǫ, (7)

where Ti,j is the transmission fun
tion or transmittan
e between the leads and fi(ǫ) is the
Fermi fun
tion for the 
orresponding reservoir [35℄. The Fermi fun
tions in the equation

impli
itly in
lude the e�e
t of the 
hemi
al potential in ea
h of the leads, whi
h 
ompli
ates

the 
al
ulation. However, most of the times it is enough to fo
us entirely on the transmission

fun
tions of the devi
e, sin
e they don't depend on the 
hemi
al potential. Additionally,

they gives an a

ess to the transport properties of the devi
e, sin
e 
ondu
tivity is dire
tly

proportional to it.

For pristine graphene, the 
al
ulation of the transmission fun
tion is easy, sin
e there is

no s
attering o

urring and the transmittan
e only depends on the number of transport

modes. The number of modes is determined by the band stru
ture and transmittan
e is

trivial to 
al
ulate on
e the band stru
ture is known. However, in the presen
e of defe
ts

the 
al
ulation is not as easy any more as s
attering o

urs in the devi
e area. An e�
ient

way of a

essing the transmittan
e is through the Green's fun
tion, de�ned as [36℄

G(EI −H) = I. (8)

The use of the tight-binding basis makes the Green's fun
tion dis
rete, making it rather

easy to 
al
ulate. There is a slight problem with the problem dimension, sin
e the leads

need to be 
onsidered semi-in�nite, making the matrix dimension in Eq. 8 in�nite, but

re
ursive 
al
ulation 
an be used to summarize the e�e
t of ea
h lead into simple �nite-

sized matri
es Σ 
alled self-energies of the leads [37℄. After writing the Eq. 8 in blo
k form,

it is possible to solve for the part of the Green's fun
tion GD, whi
h 
orresponds to the

devi
e area:

GD = (EI −HD − ΣL − ΣR)
−1 , (9)

with HD being the Hamiltonian of the devi
e area.

On
e the Green's fun
tions and self energies have been 
al
ulated, it's possible to pro
eed

to 
al
ulating the transmittan
e. By 
onsidering the s
attering in the devi
e, it's possible

to show that transmittan
e from one lead to another 
an be written as [15℄:

Ti,j = Tr

[

ΓiGDΓjG
†
D

]

, (10)

6



where Γi is a fun
tion des
ribing the 
oupling of lead j to the devi
e and is de�ned as

Γj = i
[

Σj − Σ†
j

]

. (11)

The spin-dependent properties are easy to 
al
ulate from Eq. 10. Instead of 
onsidering

a regular two-terminal setup where we inje
t 
urrent from one side of the devi
e and

measure from the other, it is possible to use a four-terminal setup in whi
h ea
h of the

two leads are repla
ed by two spin-polarized leads. Inje
tion of spin-polarized 
urrent 
an

then be thought as 
urrent from one lead to the other three, allowing the 
al
ulation of

spin-
onserving and spin-�ipping transmittan
es.

3.2 Spin-dependent 
ondu
tivity

The Kubo 
ondu
tivity for a system with eigenstates |n〉 
an be written as

σ(ω) =
π~e2

Ω

∑

m,n

|〈m|V̂x|n〉|2δ(Em − En − ~ω)
f(En)− f(Em)

~ω
, (12)

where En is the (eigen)energy of state n, V̂x is the velo
ity operator and f(E) is the Fermi

fun
tion [35℄. States |m〉 and |n〉 
orrespond to initial and �nal states of the system. We


an study the 
urrent from one spin 
hannel to another by proje
ting these states to the

initial and �nal spin 
hannels. This 
an be done with spin �lter operators σ̂↑ and σ̂↓, whi
h
behave as identity for one spin and as a zero for the other.

Denoting the initial spin by σ1 and the �nal spin by σ2, the 
ondu
tan
e between these

two 
an be written as:

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

〈m|σ̂1V̂ †
x σ̂2|n〉〈n|σ̂2V̂xσ̂1|m〉δ(Em − En − ~ω)

f(En)− f(Em)

~ω
. (13)

Instead of applying the operators σ̂ to the state ve
tors, we 
an apply them to V̂x, de�ning
us a new operator V̂σ̂ = σ̂2V̂xσ̂1. Also, the fun
tions outside of the inner produ
t don't have
operators in them, allowing us to move them inside:

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

〈m|V̂ †
σ̂ |n〉〈n|V̂σ̂

f(En)− f(Em)

~ω
δ(Em − En − ~ω)|m〉. (14)

The energy di�eren
e between |m〉 and |n〉 is equal to ~ω, whi
h means we 
an repla
e Em

inside the Fermi fun
tion with En + ~ω. On the other hand, Em is the eigenenergy of |m〉
and the relation Ĥ|m〉 = Em|m〉 
an be used to repla
e Em inside the delta fun
tion with

Ĥ . Also, δ(x) = δ(−x), giving us:

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

〈m|V̂ †
σ̂ |n〉〈n|V̂σ̂F (En)δ(En + ~ω − Ĥ)|m〉, (15)

7



where

f(En)−f(En+~ω)
~ω

has been repla
ed with F (En) to shorten the notation. To get rid

of En, another delta fun
tion 
an be brought inside the summation using the property

∫

δ(x− a)f(x)dx = f(a):

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

∫

dEδ(E − En)〈m|V̂ †
σ̂ |n〉〈n|V̂σ̂F (E)δ(E + ~ω − Ĥ)|m〉. (16)

Similar to what was done earlier, the delta fun
tion 
an be taken inside the inner produ
t

and En 
an be repla
ed with the Hamiltonian. This way the only referen
es to m and n
inside the summation are in the states, allowing us to re-order our expression:

σ(ω)σ1→σ2 =
π~e2

Ω

∫

dEF (E)
∑

m,n

〈m|V̂ †
σ̂ δ(E − Ĥ) (|n〉〈n|) V̂σ̂δ(E + ~ω − Ĥ)|m〉. (17)

Be
ause the ve
tors |n〉 form a 
omplete orthonormal basis,

∑

n |n〉〈n| = I. Likewise, we


an identify

∑

m〈m|Â|m〉 to be equal to TrÂ, giving us

σ(ω)σ1→σ2 =
π~e2

Ω

∫

dEF (E)Tr
{

V̂ †
σ̂ δ(E − Ĥ)V̂σ̂δ(E + ~ω − Ĥ)

}

. (18)

For DC 
urrent at zero temperature, the equation simpli�es to

σ(E)σ1→σ2 =
π~e2

Ω
Tr

{

V̂ †
σ̂ δ(E − Ĥ)V̂σ̂δ(E − Ĥ)

}

. (19)

One of the delta fun
tions 
an be written as a Fourier transform:

δ(E − Ĥ) =
1

2π~

∫ ∞

−∞
dtei(E−Ĥ)t/~. (20)

Be
ause eiEt/~
is just a number, we 
an move it freely. However, the se
ond delta fun
tion

allows us to repla
e E with Ĥ , giving us

σ(E)σ1→σ2 =
e2

2Ω

∫ ∞

−∞
dtTr

{

U †V̂ †
σ̂UV̂σ̂δ(E − Ĥ)

}

, (21)

where we have introdu
ed the time evolution operator U = e−iĤt/~
. Splitting the integral

into two parts and 
hanging variable t← −t for one of them allows us to write this as

σ(E)σ1→σ2 =
e2

Ω

∫ ∞

0

dtTr

{

V̂ †
σ̂ (t)V̂σ̂ + V̂ †

σ̂ V̂σ̂(t)

2
δ(E − Ĥ)

}

. (22)

The fun
tion we are taking the integral over 
an be re
ognized as the real part of the

auto
orrelation fun
tion of our spin velo
ity operator, de�ned as

Cvv(E,t) =
Tr

{

1
Ω
V̂ †
σ̂ (t)V̂σ̂δ(E − Ĥ)

}

Tr

{

1
Ω
δ(E − Ĥ)

} , (23)
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multiplied by the density of states

ρ(E) = Tr

{

1

Ω
δ(E − Ĥ)

}

. (24)

3.3 Comparison between spinful and spinless 
ases

For the spinless 
ase, we will get an almost identi
al formula for 
ondu
tivity. The only

di�eren
es are that we do not in
lude the spin-�ltering operators in the beginning and spin-

degenera
y gives a fa
tor of 2 in front of the equation. Without the �lters, we are left with

regular velo
ity operators. Also, from a pra
ti
al point of view, it is better to 
al
ulate the

running ele
tri
al 
ondu
tivity (REC) instead of taking the limit of time going to in�nity:

σ(E,t)GK =
2e2

Ω

∫ t

0

dt Tr

{

V̂ †(t)V̂ + V̂ †V̂ (t)

2
δ(E − Ĥ)

}

. (25)

The equation above is 
alled Green-Kubo formula be
ause it gives the 
ondu
tivity as an

integral of velo
ity auto
orrelation fun
tion [38℄. As with other Green-Kubo formulas, a


orresponding Einstein formula 
an be found by applying an integral. In this 
ase, the

derivative of mean squared displa
ement (MSD), de�ned as

∆X2(E,t) =
Tr

[

2
Ω
δ(E − Ĥ)(X̂(t)− X̂)2

]

Tr

[

2
Ω
δ(E − Ĥ)

] , (26)

is found to give the 
ondu
tivity:

σ(E,t)E = e2ρ(E)
d

2dt
∆X2(E,t). (27)

Cal
ulating the 
ondu
tivity from the Einstein relation is more a

urate be
ause di�eren-

tiation does not a

umulate error in the same way integration does. Therefore longer time

steps 
an be used, as the length now only a�e
ts the a

ura
y of time evolution. However,

in the more interesting spinful 
ase, a similar relation 
an only be found when there is no


oupling between the spins.

The 
ase with no 
oupling between the spins 
an be redu
ed to two spinless 
al
ulations, so

we assume for now that there is 
oupling between the spins, that is Ĥ↑↓ and Ĥ↓↑ are non-
zero. If the 
ondu
tivity should be a derivative of some operator X̃ squared, that operator

would have to be de�ned as

X̃(t) =

∫ t

0

V̂σ(t
′)dt′ + X̃(0) (28)

to give 
ondu
tivity 
onsistent with Eq. 22. If this equation in di�erentiated, we will have

d

dx

X̃(t) = V̂σ(t). (29)
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The right hand side of the equation is known:

V̂σ(t) = Û †σ2V̂xσ1Û

= Û †σ2[H,X ]σ1Û . (30)

On the other side, we 
an write the derivative of X̃ as a 
ommutator:

d

dx

X̃(t) = Û †[H, X̃ ]Û . (31)

Comparing these two equations, we require X̃ to ful�l the relation

[H, X̃] = σ̂2[H,X ]σ̂1. (32)

Let us 
onsider the 
ommutator of Ĥ with arbitrary operator Ô. Both of the operators 
an

be written in blo
k form: Ĥ =

[

H↑↑ H↑↓
H↓↑ H↓↓

]

and Ô =

[

A B
C D

]

. In terms of these blo
ks, the


ommutator be
omes:

[Ĥ, Ô] =

[

[H↑↑, A] +H↑↓C − BH↓↑ H↑↑B +H↑↓D − AH↑↓ − BH↓↓
H↓↑A+H↓↓C − CH↑↑ −DH↓↑ [H↓↓, D] +H↓↑B − CH↑↓

]

. (33)

The left hand side of Eq. 32 will have exa
tly the same form as this equation, while the

right hand side will be
ome

σ̂2[H,X ]σ̂1 =

[

[H↑↑, X ] +H↑↓X −XH↓↑ 0
0 0

]

, (34)

assuming σ1 = σ2 = σ↑. If we want X̃ to be same regardless of the system, it should not

depend on the Hamiltonian. Also, it is possible to 
hange diagonal blo
ks of the Hamiltonian

without altering the o�-diagonal part. These two 
onditions allow us to separate the terms


ontaining diagonal and o�-diagonal parts of the Hamiltonian, handling them as their own

equations. If we now 
ompare the diagonal blo
ks of Eq. 32, we will have

[H↑↑, X̃↑↑] +H↑↓X̃↓↑ − X̃↑↓H↓↑ = [H↑↑, X ] +H↑↓X −XH↓↑ (35)

and

[H↓↓, X̃↓↓] +H↓↑X̃↑↓ − X̃↓↑H↑↓ = 0. (36)

The diagonal part of the �rst equation gives us [H↑↑, X̃↑↑] = [H↑↑, X ] and the se
ond

equation gives us [H↓↓, X̃↓↓] = 0. If these 
onditions hold for any Hamiltonian, the only

solution is X̃↑↑ = X , X̃↓↓ = 0.

More 
onditions for X̃ 
an be found from the o�-diagonal blo
ks of Eq. 32. The o�-diagonal

parts of the Hamiltonian give us equation

H↑↓X̃↓↓ − X̃↑↑H↑↓ = 0. (37)
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However, we 
on
luded that X̃↓↓ = 0, whi
h means that X̃↑↑ should be zero as Ĥ↑↓ 6= 0.
This gives us a 
ontradi
tion and we 
annot �nd X̃ that would be universal a
ross all

systems. For ea
h given Ĥ, it will be possible to �nd X̃ from Eq. 32, but the result will not

be the same for di�erent systems. Another approa
h would be to sear
h for the Einstein

relation as a produ
t of two or more di�erent operators. This approa
h however leads to


ompli
ated derivative expressions and was not 
onsidered in this work.

Being only able to use the Green-Kubo de�nition of 
ondu
tivity 
auses some limitations

on the systems we 
an study. On top of the error in the time-evolution of the states, the

size of the time steps also a�e
ts the a

ura
y of the integral giving us an additional sour
e

of error. The la
k of Einstein relation also means that the mean square displa
ement be-

tween two 
hannels has to be 
al
ulated separately, be
ause it is required in the 
al
ulation

of 
ondu
tan
e, where some length s
ale has to be de�ned to get �nite results. The most


onvenient way of 
al
ulating the MSD is to numeri
ally integrate the spin-
hannel-spe
i�


VAC, be
ause it has been 
al
ulated to a

ess the 
ondu
tivity. Of 
ourse this again a

u-

mulates error if the used time step is too large and limits the time range available in the


al
ulation.

3.4 Spin transportation

In the Landauer-Büttiker formalism it is possible to de�ne both spin-
onserving and spin-

�ipping 
ondu
tan
e [39℄ be
ause it is linked to transmittan
e. Comparing the two spin-

transport 
al
ulation methods, it would seem obvious that setting the two spins in Eq. 23

to up and down would give us spin �ipping 
ondu
tivity. While this does give some results,

they 
annot be dire
tly 
ompared to the ones given by Landauer-Büttiker.

The most problemati
 part in de�ning the spin �ipping 
ondu
tivity this way is that it

fails to 
apture some, if not most, of the e�e
ts 
ausing spin to �ip. For example, spin

�ipping 
aused by potential defe
ts is not shown at all by this quantity. This is 
aused by

the de�nition of the velo
ity operator, V̂σ = i
~
σ̂2[H,X ]σ̂1. The problem be
omes apparent

when we write out the 
ommutator:

[H,X ] =
∑

〈m,n〉
(Xn −Xm)Hmn|m〉〈n|. (38)

If σ̂1 6= σ̂2, only one of the two o�-diagonal blo
ks in the operator between the �lters 
omes

out non-zero. However, in the 
ase of potential defe
ts, Xn = Xm and the surviving values

are zero even before we apply the spin �lter operators. Clearly the potential defe
ts 
ause

spin to �ip and this de�nition of spin �ipping 
urrent 
annot be 
omplete.

The la
k of spin �ipping 
urrent 
an be seen as a drawba
k of the tight-binding model:

the up and down sites are assumed to reside at the exa
t same lo
ations and when �ipping

o

urs between them, the lo
ation of the ele
tron stays the same. When the lo
ation

does not 
hange, there 
an be neither velo
ity nor 
ondu
tivity. However, there are also

di�eren
es between the two formalities and their perspe
tives to the s
attering events. The
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Kubo-Greenwood method fo
uses on the time evolution of wave pa
kets and des
ribes more

what happens at ea
h time step. Landauer-Büttiker on the other hand des
ribes the end

result of the s
attering event, dis
arding the details on how the �ipping o

urs.

3.5 Spin polarization

When s
attering is studied in a spinless 
ase, 
al
ulating the 
ondu
tivity often gives su�-


ient information. This is be
ause 
ondu
tivity is 
oupled to the mobility of the ele
trons

and there are no additional degrees of freedom. This is not ne
essarily the 
ase when spin is


onsidered. Depending on the system being studied, it is possible to have spin and 
harge

de
oupled [40℄ and both of them have to be 
he
ked to see how the defe
ts behave. Cal-


ulating the spin-polarized 
ondu
tivity is one way of doing this, but it takes into a

ount

both spin polarization and ele
tron mobility. It 
an be hard to distinguish between these

two just from the 
ondu
tivity and a way to study the amount of spin is required.

The simplest way of studying the behaviour of spin in the system is to look at the expe
-

tation value of spin �lter operators σ̂↑↓ given by tra
e over the state ve
tors at di�erent

times. This quantity gives us the total amount of spe
i�
 spin at ea
h time step. Another

possibility would be to look at the polarization, given by the expe
tation value of Pauli

z-matrix sz = σ̂↑ − σ̂↓. While both of these approa
hes des
ribe the total spin behaviour

quite well, they don't provide any information about what happens at di�erent energies.

To gain information about the energy, the tra
e has to be limited to states with 
ertain

energy. This 
an be done with a 
al
ulation similar to what we did with the 
ondu
tivity:

S(E,t) =
Tr

{

δ(E − Ĥ)sz(t)
}

Tr

{

δ(E − Ĥ)
} . (39)

The delta fun
tion proje
ts the states to 
ertain energy while the division by the density

of states ensures that the polarization stays normalized. Be
ause both 
ondu
tivity and

polarization 
an be 
al
ulated as fun
tion of time and energy, they 
an now be dire
tly


ompared to see if there is a 
onne
tion between spin and 
harge s
atterings.

Cal
ulating the energy proje
tion 
an be problemati
 sometimes be
ause it takes a lot of


omputational e�ort to get the delta fun
tion a

urate enough. Sometimes it is enough to

dis
ard the energy information and just look at the average behaviour of the quantities.

The easiest way of doing this is to 
al
ulate the time evolution of the probability density

of an initial state. If we know the expe
tation value of an operator for ea
h of the basis

states and the probability of being in these states, the expe
tation value of the operator is

simple to 
al
ulate:

〈Ô(t)〉 =
∑

i

ρi(t)〈ψi|Ô|ψi〉. (40)

It is straightforward to 
al
ulate the spin polarization when density is known be
ause the

expe
tation values 〈ψi|ŝz|ψi〉 are either 1 or -1, depending on whether the state ψi is up or
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down. Condu
tivity, on the other hand, is a bit tri
kier to 
al
ulate. In order to 
al
ulate

it, we need information about either the velo
ity or displa
ement of the ele
trons. The

problem is that we evolve the system as a whole and 
annot tra
k the density evolution for

individual sites. While we know the 
hange in density for ea
h site, we do not know where

it 
ame from or goes to.

This problem 
an be resolved by using a lo
alized initial state. We still don't know the exa
t

details of the density evolution, but sin
e the initial lo
ation is known, the displa
ement

from the initial lo
ation of the pa
ket 
an be 
al
ulated. The displa
ement for ea
h site


an be squared and inserted into Eq. 40 to get the MSD for the system. One slight problem

in this approa
h is the �nite size of the simulation area. The velo
ity of ballisti
 ele
trons

in graphene is so high that the boundaries are rea
hed relatively fast, after whi
h the

wave pa
ket is transferred to the opposing side due to the periodi
 boundary 
onditions.

Therefore the best results are gained by pla
ing the initial state to the 
enter of the system

and only 
onsidering the results from the time before the wave pa
ket hits the boundaries

for the �rst time. This way we don't have to worry about the fa
t that the displa
ement

is bounded by the size of the system.

4 Implementation

4.1 Numeri
al approximations

The implementation is mostly based on the pro
ess des
ribed in [29℄. There are three main

approximations that are required to a
hieve linear s
aling algorithm. The �rst one is to

repla
e the tra
e with a sum over random ve
tors and the two others are to approximate

the delta fun
tion and the time evolutions with a Chebyshev expansion.

The tra
e operation is de�ned as the sum of the diagonal elements of an operator. This

requires 
omputational e�ort s
aling as O(N2), be
ause the inner produ
t 〈ψ|Ô|ψ〉 has
to be 
al
ulated for ea
h ve
tor in the basis. To redu
e the s
aling to O(N), the tra
e is
repla
ed with a sum over random ve
tors:

Tr{Ô} ≈ 1

Nr

Nr−1
∑

i=0

〈ψi|Ô|ψi〉, (41)

where the ve
tors |ψi〉 are random-phase states, de�ned as 〈j|ψi〉 = eiφij
with φij being

random, independent numbers. These states sample the full spe
trum and it 
an be shown

that the expe
tation value of these inner produ
ts gives the tra
e [41℄. It 
an be shown

that the error of the estimate is O(1/
√
NrN), whi
h means that even a small number of

random ve
tors Nr 
an give a good estimate as long as N is large enough.

There is no analyti
al formula for the delta fun
tion, whi
h means it has to be approximated

numeri
ally. There are multiple di�erent methods of doing the approximation, su
h as the
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Lan
zos re
ursion method (LRM), the Fourier transform method (FTM) and the kernel

polynomial method (KPM). The method of 
hoi
e for this work is the KPM.

The kernel polynomial methods in
lude a wide range of te
hniques involving expansion of

a fun
tion in polynomial bases. In pra
ti
al implementations these expansions have to be

limited to �nite amount of basis fun
tions, whi
h 
auses bad behaviour, known as Gibbs

os
illation, to o

ur if the fun
tion being expanded is not ni
e enough. The solution is to

introdu
e a kernel fun
tion to the expansion, suppressing the os
illation.

The basis of 
hoi
e in our work is the set of Chebyshev polynomials, whi
h means a fun
tion


an be written as

f(x) =
1

π
√
1− x2

∞
∑

−∞
µnTn(x), (42)

where µn =
∫ 1

−1
f(x)Tn(x) and the Chebyshev polynomials Tn are de�ned re
ursively as

Tn(x) = 2xTn−1(x)− Tn(x) (43)

T−n = Tn, (44)

starting from T0(x) = 1 and T1(x) = x. In our 
ase the fun
tion we want to approximate

is a delta fun
tion, giving us µn = Tn(Ĥ). If we now insert Eq. 42 into 23, the velo
ity

auto
orrelation fun
tion be
omes

ρ(E)Cvv(E,t) =
1

πΩ
√
1− E2

∞
∑

n=0

(2− δn0)Tn(E)CV AC
n (t), (45)

where CV AC
n (t) are the Chebyshev moments for velo
ity auto
orrelation:

CV AC
n (t) ≈

∑

i

Re

{

〈ψi|V̂σ̂(t)†V̂σ̂Tn(Ĥ)|ψi〉
}

. (46)

Other quantities, su
h as the density of states and the mean square displa
ement, 
an also

be written in a similar fashion by repla
ing the velo
ity auto
orrelation fun
tion with a


orresponding expression in the Chebyshev moments.

The Gibbs os
illations arise in the trun
ation of the expansion when the fun
tion being ex-

panded is not 
ontinuously di�erentiable. Delta fun
tion is 
ertainly not smooth enough to

�t in this 
riterion, whi
h means that something has to be done to 
ounter the os
illations.

One way of doing this is to apply damping 
oe�
ients gn to the sum:

ρ(E)Cvv(E,t) ≈
1

πΩ
√
1−E2

Nm
∑

n=0

gn(2− δn0)Tn(E)CV AC
n (t). (47)

In this work the Ja
kson kernel is used, for whi
h

gn = (1− nα) cos(πnα) + α sin(πnα) cot(πα), (48)
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with α = 1/(Nm + 1).

The third approximation is 
onsidering the time evolution. The time evolution operator is

a matrix exponential and thus 
annot be applied exa
tly, ex
ept for spe
ial 
ases. To �nd

a numeri
al approximation for the evolution, we again use the Chebyshev polynomials to

expand the operator, whi
h be
omes

Û(∆t) ≈
Np−1
∑

m=0

(2− δn0)(∓i)mJm
(

∆t

~

)

Tm(Ĥ), (49)

where Jm are the Bessel fun
tions of the �rst kind. A similar formula 
an also be found for

the 
ommutator of the position operator and the time evolution operator, required in the


al
ulation of mean square displa
ement:

[X̂,Û(∆t)] ≈
Np−1
∑

m=0

(2− δn0)(∓i)mJm
(

∆t

~

)

[X̂, Tm(Ĥ)], (50)

At �rst glan
e the expansions look slightly di�erent 
ompared to the expansion used with

the delta fun
tion. This is however only a matter of de�nition of the basis: the sets {Tn(x)}
and

{

Tn(x)

π
√
1−x2

}

both form orthonormal basis and the di�eren
e in the expansions is only a

matter of 
hoi
e between these two.

Even though Eq. 46 is perfe
tly valid equation for the 
al
ulation of Chebyshev moments,

it's not a pra
ti
al one. The time evolution is in
luded in one of the velo
ity operators and


annot be applied e�
iently. To make the situation better, 
y
li
 properties of tra
e 
an

be used to write the equation in a more suitable form:

CV AC
n (t) ≈

∑

i

Re

{

〈ψi|Û(t)V̂σ̂Tn(Ĥ)Û †(t)V̂ †
σ̂ |ψi〉

}

. (51)

Writing the time evolution operators expli
itly makes it possible to apply them dire
tly

to the ve
tors, saving both 
omputation time and memory. To further redu
e the time

required for the 
al
ulation of time evolution, we use the property U(t+∆t) = U(t)U(∆t).
This allows us to use re
ursive formulas in the 
al
ulation:

〈ψi|Û(t+∆t)V̂σ̂ = 〈ψi|Û(t)Û(∆t)V̂σ̂ (52)

Û †(t+∆t)V̂ †
σ̂ |ψi〉 = Û †(∆t)Û †(t)V̂ †

σ̂ |ψi〉. (53)

Keeping 〈ψi|Û(t) and Û †(t)V̂ †
σ̂ |ψi〉 in memory after ea
h time step makes 
omputation of

the next step mu
h easier be
ause we 
an use the previous result to 
ompute the next one.

Be
ause of the similar form of the quantities being 
al
ulated, it is straightforward to

generalize the 
al
ulation of VAC to the others. The only di�eren
e between them is in the

Chebyshev moments and even they look quite similar. The easiest quantity to 
al
ulate is

the density of states be
ause it doesn't depend on time:

CDOS
n ≈

∑

i

〈ψi|Tn(Ĥ)|ψi〉. (54)
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The la
k of time dependen
e 
omes from the fa
t that Û is unitary and it also 
ommutes

with the delta fun
tion. The 
al
ulation of spin polarization is almost as easy. The only

di�eren
e is that we have sz in
luded and it does not 
ommute with the time evolution

operator:

CS
n (E,t) ≈

∑

i

〈ψi(t)|Tn(Ĥ)sz|ψi(t)〉. (55)

For the MSD, the pro
ess is a bit more 
ompli
ated as the time evolution 
annot be moved

next to the state ve
tors. We would like to end up with a symmetri
al form and the best

way to do so is to 
y
le the time evolution so that we end up with its 
ommutator with

the operator X̂ :

CMSD
n ≈

∑

i

〈ψi|[X̂, Û(t)]†Tn(Ĥ)[X̂, Û(t)]|ψi〉. (56)

Be
ause the expressions on either side of the Chebyshev polynomial are 
onjugates of ea
h

other, it is enough to 
al
ulate one of them. The 
al
ulation is made easier by using the

properties of time evolution and re-writing the 
ommutator:

[X̂, Û(t +∆t)]|ψi〉 = Û(∆t)[X̂, Û(t)]|ψi〉+ [X̂, Û(∆t)]Û (t)|ψi〉. (57)

This equation allows re
ursive 
al
ulation of the MSD, with the help of Eq. 50.

4.2 GPU a

eleration

The most 
omputationally intensive part of the Chebyshev expansion is the moment 
al
u-

lation, as it involves applying the Hamiltonian multiple times to states. The reason for good

performan
e of the GPUs lies in the relatively high arithmeti
 intensity of matrix-ve
tor

multipli
ation. Most of the algorithms used 
an be implemented on the GPU, minimizing

the amount of memory transfer to and from the GPU memory. In fa
t, the memory trans-

fers are only required during the initialization phase and when we return the 
al
ulated

Chebyshev moments ba
k to the CPU memory.

During the initialization phase, the Hamiltonian and the initial random state ve
tor are

transferred to the GPU. The Hamiltonian stays 
onstant for the whole duration of the


al
ulation and it is enough to transfer it only on
e. The random states are generated on

the CPU and as the 
al
ulation loops through multiple random states, we transfer the


urrent one at the beginning of ea
h loop. It might be slightly more e�
ient to generate

them on the GPU, but sin
e it takes only a fra
tion of the total 
omputational time, the

generation may as well be done on the CPU. Generating the initial state on the CPU is

slightly more �exible and allows di�erent initial states be generated more easily.

The most 
ru
ial part of the 
al
ulation is to implement the operations |ψout〉 = Ĥ|ψin〉
and ψout〉 = [Ĥ, X̂ ]|ψin〉 as e�
iently as possible, as the most time is spent on them in

the Chebyshev moment 
al
ulation. The elements of |ψout〉 are independent of ea
h other

during the matrix-ve
tor produ
t and it is natural to parallellize the 
al
ulation over the

elements of the output ve
tor. With GPU this is easily done by laun
hing threads equal
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to number of elements and letting ea
h thread 
al
ulate one element of the result. As

the number of threads is massive, the order in whi
h they a

ess memory will a�e
t the

performan
e greatly. This mostly 
on
erns the sparse Hamiltonian and there are two ways

of ordering its data in memory. For CPUs using sequential 
ode, the better way would

be that all data for single site are next to ea
h other and these blo
ks of data would be

ordered by the index of the sites. However, for GPUs it's better to group the data by their

neighbour index, su
h that all 0th neighbours 
ome �rst in the site index order, followed

by 1st neighbours and so on. This way 
onse
utive threads a

ess 
onse
utive data in the

memory, leading to more e�
ient use of memory [42℄.

The performan
e of the original GPU implementation has been studied to more extent in

[29℄. The overall speedup fa
tor 
ompared to a serial CPU implementation was reported

to be around 16. Even though this is mu
h smaller than speedup for some other 
ases [43℄,

it is still remarkable. Rea
hing this speed on CPUs would require a lot of e�ort be
ause in

the ideal 
ase, the number of required pro
essor 
ores would be 16. Typi
ally the frequen
y

of a pro
essor de
reases with in
reasing number of 
ores [44℄, 
ausing even higher number

of 
ores to be required to rea
h the same speed.

5 Results

To test the methods des
ribed above, graphene was 
hosen as the platform to 
ontain

the defe
ts in. It has little e�e
t on spin and its properties are well des
ribed by simple

tight-binding model, making it ideal material to test our implementation with.

Two di�erent samples were used in the testing. A 1000×1000 
ell with periodi
 boundary


onditions was used to model pristine graphene. The number of atoms was 
hosen large

enough to model an ideal graphene latti
e, while keeping the 
omputation time moderate.

Some tests were also run on a 65000×16 sample, simulating a zigzag nanoribbon. In the

latter 
ase the periodi
 boundary 
onditions were applied only in the longer of the two

dimensions.

5.1 Pristine Nanoribbons

If there are no spin s
attering defe
ts in the system, there should be no di�eren
es between

the results of spinful and spinless 
al
ulations. To 
on�rm this in our implementation, the


ondu
tan
e of pure graphene nanoribbon was 
al
ulated. The 
ondu
tan
e in graphene

nanoribbons is quantized and it should get values that are multiples of the 
ondu
tan
e

quantum

e2

h
[45℄.

The Landauer-Büttiker formalism is able to re
over the quantization easily, but Kubo-

Greenwood, whi
h we are using, requires some additional e�ort. Transport in pure graphene

is ballisti
, whi
h 
auses 
ondu
tivity to diverge. To get a �nite value for 
ondu
tan
e, a
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Figure 2: Total 
ondu
tan
e of 65000×16 graphene nanoribbon 
al
ulated using Landauer-
Büttiker formalism and both spinless and spinful versions of Kubo-Greenwood.

length s
ale has to be introdu
ed. A 
ommon way of doing this is to de�ne 
ondu
tan
e as

G(E) =
W

L(E,t)
σ(E,t), (58)

where W is the width of the system and L(E,t) is length 
al
ulated from MSD:

L(E,t) = 2
√

∆X2(E,t). (59)

Both L and σ are expe
ted to grow linearly in time during ballisti
 transport, whi
h means

G should 
onverge to a �nite value.

The 
al
ulated 
ondu
tan
e of the 65000×16 nanoribbon 
an be found in Figure 2. In addi-
tion to the implementation being tested, the 
ondu
tan
e has also been 
al
ulated using two

methods. The �rst one of them is a spinless implementation of Kubo-Greenwood formalism,

the 
ode upon whi
h our spinful Kubo-Greenwood has been built on. The se
ond one uses

non-equilibrium Green's fun
tions (NEGF) and is based on the Landauer-formalism. The

NEGF gives the smoothest result of the three be
ause it doesn't use sto
hasti
 methods

and 
an be regarded as an exa
t method within the tight-binding approximation.

All three methods show the quantized 
ondu
tan
e levels. The a
tual step-like behaviour is

ni
ely re
overed by the NEGF, for whi
h the 
ondu
tan
e is pre
isely an integer times the
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ondu
tan
e quantum. Both Kubo-Greenwood methods overshoot the 
ondu
tan
e near

the band edges, but they stabilize to the value give by NEGF further away from the edges.

This behaviour is expe
ted and it is 
aused by the singular behaviour of both DOS and

ele
tron velo
ity near the band edges. The spinful 
al
ulation agrees quite well with the

spinless one and the di�eren
es are mostly explained by the di�eren
e in the energy points

used in the 
al
ulation.

5.2 Spin-Dependent Potential in Nanoribbons

In our previous work [19℄ we studied nanoribbons with defe
ts whi
h had spin-dependent

potential on a single atom site. These systems have almost ballisti
 transport, having only

a small range of energy for ea
h spin that 
auses s
attering. The s
attering is strongest

when the defe
t is lo
ated on the edge of the ribbon and gets weaker as the defe
t is moved

towards the 
enter. An example of 
ondu
tivity for this kind of ribbon 
an be seen in

Figures 3a and 3b, where a single defe
t has been pla
ed on the edge and in the middle of

the ribbon. The potential has been 
hosen to be ±2 eV and the defe
t angle θ is set to 0,

giving no 
oupling between the spins.

The Kubo-Greenwood method would have trouble with the system used in 
al
ulating

these Figures, be
ause they have only one defe
t in them. The method is more suitable for

systems with uniform defe
t pla
ement as the random ve
tors sampling the system are more

likely to hit the defe
ts. Be
ause of this, the number of random ve
tors required for a single

defe
t site is too large and the 
omputational e�ort required is too mu
h. Instead, a system

with 0.01% defe
t 
on
entration was used to 
ompare the spin-dependent 
ondu
tivity. The

potential strength was still kept at ±2 eV and the angle θ at 0, but the defe
t pla
ement

was not restri
ted to the edges. The results are shown in Figures 3
.

Even though the results di�er from ea
h other, the main features are 
ommon for both of

the methods. The quantization of 
ondu
tan
e is still present, even though the defe
ts are


ausing the steps to smoothen out a bit. The pla
ement of the defe
t has major impa
t

on the results. When the defe
t is on the edge, the most interesting parts in the energy

spe
trum are at ±0.4 eV, where one of the spin 
hannels has a dip in 
ondu
tan
e, while

the other stays 
onstant. In the middle of the ribbon, the defe
t has almost no e�e
t on

the 
ondu
tan
e. For the Kubo-Greenwood 
al
ulation, the dips appear at the exa
t same

energies for both methods even though they are barely visible. The di�eren
es between the

methods 
an be explained by the di�erent systems from whi
h the results were obtained.

The randomization of the defe
t pla
ement 
auses the result to be average of the bulk and

edge 
ases and the depth of the dips is de
reased.

The same 
al
ulations were also done for a higher defe
t 
on
entration of 1%. This also gave

similar behaviour, where the 
ondu
tan
e has a dip near ±0.4 eV. However, the problem

with this system is that the transport be
omes di�usive and Equations 58 and 59 
annot

be used reliably any more. Instead of saturating to 
ertain level, the 
ondu
tan
e keeps on

de
reasing. No further analysis was done for the higher 
on
entration on
e the di�usivity
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Figure 3: Condu
tan
e of nanoribbon with defe
ts having a spin-dependent potential.

was dis
overed, but the lo
ation of the dips supports the results gained from the lower


on
entration.

The situation 
hanges slightly when the angle of the defe
ts is 
hanged to 90◦. The potential
is now a lo
al 
oupling between the spin 
hannels and both 
hannels now behave identi
ally.

The 
oupling allows spin to �ip and it is now meaningful to 
al
ulate the spin polarization

as a fun
tion of time, in addition to the 
ondu
tan
e. The defe
t phase φ is kept 
onstant

at 0◦ to keep the 
al
ulations simple.

A 
ondu
tan
e 
omparison between the two methods 
an be seen in Figure 4a. To make the


omparison better, there are now two defe
ts in the Landauer-Büttiker 
al
ulation and the

result has been averaged over multiple 
on�gurations. Also, the Landauer-Büttiker makes

it easy to de�ne spin-�ipping transmittan
e, whi
h is also shown in the �gure. For Kubo-

Greenwood, only the spin 
onserving 
ondu
tan
e was 
al
ulated and the shown data is

taken as an average between the 
ondu
tan
es of the two spins. The results 
onverge slowly

and taking the average allows to get a better result a bit faster.

The 
onserving 
ondu
tan
es agree quite well with ea
h other. There is still some noise in

the Kubo-Greenwood 
al
ulation, but the biggest dips are lo
ated at the same energies as

they are in the Landauer-Büttiker. Both methods also re
over the quantization quite well,

even though the defe
ts are already 
ausing the levels to deviate from the original step-like

stru
ture.

Sin
e Kubo-Greenwood 
annot 
al
ulate spin �ipping 
ondu
tan
e the same way Landauer-

Büttiker 
an, spin polarization was 
al
ulated instead. Figure 4b shows the amount of spin

polarization after 5 ps, starting from 
ompletely down-polarized initial state, for whi
h

S(E,0) = −1. An exponential fun
tion was �tted to the �rst 0.5 ps of the simulation for

ea
h energy and the inverse of the �tted time 
onstant is also shown in the �gure. The

�ipping 
ondu
tan
e 
al
ulated by the Landauer-Büttiker method is shown as a 
omparison

in the same �gure.

Between these three sets of data, there is most 
orrelation between the inverse of the time


onstant and the �ipping 
ondu
tan
e. Both of these two are peaked at the same energies
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Figure 4: Condu
tan
e, spin relaxation time, and spin polarization for potential defe
ts

in nanoribbons. Figure (a) shows a 
omparison between di�erent 
ondu
tan
es, while (b)

shows the spin polarization at t = 5 ps and the time 
onstant �tted for the �rst 0.5 ps of

the simulation. The �ipping 
ondu
tan
e in (b) is the same data as in (a), slightly s
aled

to give better 
omparison.

and behave roughly the same way between the peaks, the only ex
eption being the energies

near zero. The spin polarization on the other hand seems to behave exa
tly the opposite

way as it has minima at the same energies where the other two are peaked.

The seemingly di�erent results stem from the 
onsiderably di�erent behaviour of spin

polarization for di�erent energies. At the resonant energies of the defe
ts, the band edges

and ±0.4 eV, the polarization goes dire
tly to zero and the �ipping rate is fast right from

the start. As the polarization gets 
loser to zero, the rate slows down and there is barely

any os
illation. The non-resonant energies initially �ip the spin mu
h slower, as seen from

the inverse of the time 
onstant. The rate however in
reases with time and polarization

starts to os
illate around zero.

The energy range from -0.1 eV to 0.1 eV repli
ates the Landauer-Büttiker results the

worst, as there is barely any spin �ipping at E = 0, even though there should be some.

The peaks at ±0.09 eV roughly 
orrespond to the peaks in 
ondu
tan
e, but between them

the time 
onstant gets larger than it should. Its inverse behaves almost identi
ally to the

spin polarization, unlike in any other energy. This anomaly is most likely 
aused by the

band stru
ture near the Dira
 point. Be
ause the sample is a zigzag ribbon, there are

lo
alized edge states at E = 0. The lo
alization 
auses the quantities to go to zero, as the

ele
trons with these energies 
an not sample the system as well.

The edges have a big impa
t on the nanoribbons' results. Landauer-Büttiker shows largest

dips in the 
ondu
tan
e when the defe
ts are pla
ed on the edge and the edge states near

zero energy have been hard to rea
h using Kubo-Greenwood. To further analyse the edges,
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Figure 5: Condu
tan
e, spin polarization and inverse time 
onstant for ribbon with defe
ts

pla
ed on the edge.

the spin polarization and 
ondu
tan
e were 
al
ulated su
h that the defe
ts were only

pla
ed on the edges of the system. The results are shown in Figure 5.

The 
hange in the results is remarkable. The di�eren
e in 
ondu
tan
e between Landauer-

Büttiker and Kubo-Greenwood is now mu
h smaller, as the dips are 
learly visible also in

the Kubo 
al
ulation. Their magnitude is still not as large as in the Landauer 
al
ulation,

but 
ompared to the previous 
ase, they are now mu
h more visible. The di�erent defe
t

pla
ement also a�e
ted the Landauer-Büttiker results a bit. There is no longer anything

happening near E = 0 and only the energies ±0.4 eV and the band edges show deviation

from the step stru
ture.

Even more radi
al 
hanges 
an be seen in the spin polarization. The resonant energies at

±0.4 eV had already higher �ipping rate than other energies, but this time the inverse of the

time 
onstant is roughly 10 times larger than in the previous 
ase. The polarization at these

energies still behaves the same way, going dire
tly ba
k to zero and showing no os
illation.

In the higher energies the relaxation time doesn't 
hange mu
h and the di�eren
es are

mostly seen in the amount of spin polarization. This time most of the energy range doesn't

have any os
illation for the polarization, ex
ept for the energies around resonan
e. The

most 
urious 
hange however is the behaviour near zero. Instead of the linear, rather sharp

drop to zero, 1/τ and spin polarization tend to zero in a mu
h smoother way. Again, the


hanges are most likely 
aused by the edge states. The potential added to the edge sites

disrupts the state and di�eren
e in the behaviour 
an be expe
ted.
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Figure 6: (a) Condu
tivity for pure graphene and potential defe
ts at 
on
entrations of

0.01% and 1%. Condu
tan
es for pure graphene and low 
on
entration have been measured

at propagation length of 1000 nm, while the higher 
on
entration is taken from t = 0.6 ps.
(b) Condu
tivity as a fun
tion of time at di�erent energies for 1% 
on
entration.

5.3 Spin-Dependent Potential in Graphene

5.3.1 Spin 
onserving potential

Even though Kubo-Greenwood method produ
es 
orre
t results in the nanoribbons, it is

outperformed by the Landauer-Büttiker method. The geometry of the system 
auses the

results to 
onverge slowly, be
ause the long but narrow shape limits the amount of system

ea
h random ve
tor 
an sample. Another thing to 
onsider in the ribbons is the presen
e of

the edge states. Be
ause the zigzag edge states are lo
alized, the Kubo-Greenwood method

has trouble rea
hing them.

All of these problems 
an be avoided by moving to a 2-dimensional system. In regular

graphene we don't have to worry about the limitations given by the narrow system and

the la
k of edge states makes the 
al
ulation easier. This wide systems 
annot be rea
hed

by the Landauer-Büttiker method, as it s
ales 
ubi
ally with respe
t to the width of the

system, and Kubo-Greenwood be
omes better of the two methods. Taking graphene as a

platform for defe
ts makes it easier to look into intrinsi
 properties of the defe
ts. With

periodi
 boundary 
onditions, there is virtually no 
ontribution from edges and the large

system size further redu
es the �nite-size e�e
ts.

We start with the same potential defe
ts we used with the ribbons. To keep the results


omparable to the previous ones, the strength of the spin-dependent potential is kept the

same, at ±2 eV. We also start with the same defe
t 
on
entration of 0.01%, but this time

we also look into higher 
on
entrations in more detail.
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As seen in Figure 6a, the potential defe
ts do not a�e
t the 
ondu
tan
e mu
h in low


on
entrations. The 
ondu
tan
e is slightly smaller with defe
ts in the system, but the

overall behaviour stays the same in the shown energy range. The di�eren
e be
omes larger

at higher energies, but sin
e they are already outside of the valid range for tight-binding

approximation, they are not analysed further. As the 
on
entration goes up, the di�eren
e

be
omes apparent. While the transport is ballisti
 in the lower 
on
entration, this is no

longer the 
ase in the higher 
on
entration. The 
ondu
tivity does not diverge, but saturates

to some levels, depending on the energy. Be
ause of the saturation, there is no need to

measure the 
ondu
tivity at 
onstant length s
ale. In fa
t, the length at whi
h the other


ondu
tivities were measured, 1000 nm, was not rea
hed in the whole energy range by the

end of the simulation time, 2 ps. The longer simulation time required to rea
h this length

would make the simulation run 
onsiderably longer sin
e shorter time steps would have to

be used to minimize the error made in the time evolution.

The main observation from the behaviour of the potential defe
ts is that the 
ondu
tivity

be
omes asymmetri
 with respe
t to the zero energy. The two spin-
hannels are symmetri


to ea
h other, but inside ea
h of them the symmetry is broken. The 
ondu
tivity be
omes

smaller on the side at whi
h the potential is, for example in Figure 6a the up-
ondu
tivity

is smaller at negative energies when the potential strength for up-sites is -2 eV. The relative

di�eren
e is modest in the smaller 
on
entration, but it be
omes 
onsiderable in the larger


on
entration.

Figure 6b shows the time evolution of 
ondu
tivity at E = 0 eV and E = ±0.5 eV for the

higher 
on
entration of defe
ts. For E = ±0.5 eV the saturation is already seen, but at

zero energy, the maximum is not yet rea
hed. Longer simulation would be needed to see

whether the 
ondu
tan
e stays on the saturated level or starts de
aying. Be
ause of poor


onvergen
e, the simulation time had to be limited to a maximum of 2 ps, as 
onvergen
e

required more random ve
tors than usually. The problems with 
onvergen
e are 
aused by

the �u
tuations of the 
ondu
tivity, whi
h is seen in the diversity of the results 
al
ulated

using single random ve
tors. Some ve
tors behave almost ballisti
ally, while others show

behaviour with de
aying 
ondu
tan
e. When the average is taken over multiple random

ve
tors, the result be
omes di�usive and saturation is observed.

One way of improving the 
onvergen
e would be to use lesser amount of Chebyshev mo-

ments in the 
al
ulation. The results in Figure 6 were 
al
ulated with Nm = 3000, a

onsiderably high value. Higher number of moments ensures all features are 
aptured in

the results, but it also makes noise more signi�
ant. Lowering the amount would smoothen

the results with respe
t to energy and most of the energy range would see improvement in

the results. The problemati
 part is the energies near zero. As seen in Figure 6a, there is

a kink in 
ondu
tivity at the zero energy where the linear slopes meet ea
h other. If the

number of moments was de
reased, the 
ondu
tivity would behave smoothly also at zero.

This is unwanted behaviour as the 
ondu
tivity near zero would gain way too large value.

The e�e
t of the number of moments is studied more later.
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Figure 7: (a) Down-spin 
ondu
tivity for potential defe
ts in graphene with two di�erent

defe
t angles, both measured at t = 0.6 ps. (b) Spin polarization as a fun
tion of time at

E = 0.5 eV. Both �gures are for graphene with 1% 
on
entration of potential defe
ts.

5.3.2 Spin �ipping potential

The 
ondu
tan
e behaves a bit surprisingly when the defe
t angles are turned to π/2. Both
up and down 
ondu
tivities have the same value as expe
ted, but as seen in Figure 7a, the

value is smaller than either of the 
ondu
tivities in the θ = 0 
ase. This is 
onsiderably

di�erent behaviour than for the lower 
on
entration of defe
ts in nanoribbons, for whi
h

the 
onserving 
ondu
tan
e at θ = π/2 was mu
h more like average of the up and down


ondu
tan
es from θ = 0. The results of the �gure are 
al
ulated for 1% 
on
entration,

whi
h may explain the di�eren
e as the ribbons results were taken from 0.01%. Di�eren
es

in the 
harge 
arrier mobility do not a�e
t the results, be
ause the results are the same

regardless of whether the 
ondu
tivity is measured at 
onstant time or length. In any 
ase,

the 
oupling between up and down sites seems to be 
ausing more 
harge s
attering than

the 
orresponding spin-
onserving potential, leading to smaller 
ondu
tan
e.

When the spin polarization for 1% 
on
entration is 
al
ulated, it is now apparent that it

behaves as a damped os
illator, des
ribed by equation

S(t) = −e−t/τ cos(ωt), (60)

where τ is the time 
onstant for damping and ω is the angular frequen
y of the os
illa-

tion. As seen in Figure 7b, the polarization goes to zero quite fast, but a 
lear sinusoidal

os
illation is observed before that happens. This questions the exponential �t made to the

polarization in ribbons earlier. It is possible that the behaviour in the ribbons also follows

Eq. 60 instead of simple exponential de
ay, but sin
e the �t was then made only for the

beginning of the simulation with no present os
illation, the results should still be valid.
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Figure 8: (a, b)Fitting parameters ω (lower) and τ (upper) from Eq. 60 for potential defe
ts

with θ = π/2 and potential strength ±2 eV in graphene. The defe
ts 
on
entrations are

0.01% and 1%. (
) Spin pre
ession speed ω measured at E = 0 eV for di�erent potential

strengths. (d) Inverse of spin relaxation time τ measured at E = 1 eV. The solid bla
k

lines in last two �gures show linear and quadrati
 �ts to the data points.

Figure 8 shows the �tting parameters as a fun
tion of energy for both 0.01% and 1%


on
entrations of potential defe
ts in graphene. Unlike with the ribbons, there are no

resonant energies for the defe
ts where the behaviour would be spe
ial in some way. This

supports the observation that the resonant energies for ribbons were 
aused by the edge

states of the system. Edges have a mu
h smaller role in the graphene and periodi
 boundary


onditions make them even less important, fading away the possible small 
ontributions of

edge states.

When the results of the two 
on
entrations are 
ompared, their similarity is astounding.

The time 
onstants have 
ompletely di�erent magnitudes in the two systems, but their

behaviour is exa
tly the same. The smaller 
on
entration does have slightly more roughness

in the shape, but this is most likely 
aused by the slower os
illation in the system. When

there is barely any os
illation during the time for whi
h the �t is made, it is harder to do

the �t a

urately.
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Another 
urious observation is that the ratio between the results at ea
h energy is remark-

ably 
lose to 0.01, the ratio of the defe
t 
on
entrations. This suggests that both of the

(inverse) time 
onstants s
ale linearly with respe
t to the defe
t density. This behaviour is

also en
ountered with other similar spin-�ipping systems [46℄.

So far all of the potential defe
ts 
al
ulations have been made with the same potential

strength, ±2 eV. While this has given pretty good results, the e�e
t of di�erent potential

strengths should also be 
he
ked. To do this, the 
al
ulations were repeated while the

strength was varied from 0.5 eV to 2.5 eV. Spin polarization still shows damped os
illatory

behaviour throughout the whole range and both time 
onstants behave the same as a

fun
tion of energy. The values of the 
onstants at sele
ted energies 
an be seen in �gures

8
 and 8d. For ω the values are taken from E = 0 eV and for τ they are from E = 1 eV.

The time 
onstants seem to obey simple linear and quadrati
 s
aling, as seen from the �ts

done to the data. The linear s
aling of ω is expe
ted, as os
illation speed usually depends on

the energy di�eren
e between the two states between whi
h the os
illation is happening [47℄.

Sin
e we are 
ontrolling the potential for ea
h spin 
hannel, we are essentially 
hanging

their energies, leading to the linear s
aling. The quadrati
 behaviour of τ on the other

hand 
an be explained by the me
hanisms 
ausing spin s
attering. The two 
onventional

me
hanisms are 
alled Elliot-Yafet (EY) and Dyakonov-Perel (DP) [48℄. Both of them s
ale

the spin relaxation time as τs ∼ 1/∆2
with ∆ being the potential di�eren
e between spin


hannels [49, 50℄, explaining the observation. The dominant me
hanism of the two is usually

dis
riminated by the relative behaviour of τ and τp, the momentum relaxation time [51℄.

In our 
ase, we 
annot use this information to spe
ify the underlying me
hanism be
ause

the two relaxation times are un
oupled. Nevertheless, the fa
t that both me
hanisms have

a similar s
aling with respe
t to potential strength supports our results.

5.4 Adatom Plaquettes

The potential defe
ts studied in the previous se
tion should be 
onsidered purely as math-

emati
al defe
ts. While something similar 
ould be a
hieved with e.g. light adatoms on

top of the 
arbon atoms, the potential strength is quite strong for any viable real-world

defe
ts. Additionally, real world defe
ts will most likely a�e
t multiple sites and 
an be

more 
ompli
ated than simple spin-dependent potential on single sites.

One way to approa
h the more realisti
 spin relaxation methods is the so-
alled Rashba

�eld, whi
h 
an be seen in the tight-binding Hamiltonian as 
omplex spin-�ipping hoppings.

The Rashba Hamiltonian is given by

ĤR = iVR
∑

〈i,j〉
~z · (~s× ~dij)|i〉〈j|, (61)

where the sum goes over the nearest neighbours a�e
ted by the Rashba �eld, ~z is unit

ve
tor normal to the plane, ~s is ve
tor formed from Pauli matri
es and

~dij is unit ve
tor
along the bond between sites i and j. The Hamiltonian may seem a bit 
ompli
ated, but
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when written out in the spin basis, the terms being summed have a
tually quite simple

form

[

0 − cosφ+ i sin φ
cosφ+ i sinφ 0

]

, (62)

where φ is the angle between the bond and the x-axis. It is easy to see from this form that

the spin-�ipping hoppings have 
onstant magnitude, but their 
omplex phase depends on

the orientation of the bond.

It has been observed experimentally that Rashba �eld 
an be indu
ed by heavy adatoms,

su
h as gold, sitting in the hollow sites of graphene latti
e [52℄. This type of Rashba e�e
t

has been studied by van Tuan et al. [46℄. In the model they used, a gold adatom sitting in

the middle of graphene hexagon indu
es a Rashba �eld to the surrounding 
arbon sites. In

addition to the Rashba part, they also in
lude intrinsi
 spin-orbit 
oupling and a potential

shift asso
iated with the adatoms. The Hamiltonian used has the form

Ĥ = H0 +
2i√
3
VI

∑

〈〈i,j〉〉∈R
~s · (~dkj × ~dik)|i〉〈j|+HR − µ

∑

i∈R
|i〉〈i|, (63)

with R being the set of plaquettes next to the adatoms and 〈〈i,j〉〉 ∈ R denoting the next-

nearest hoppings within the plaquette. The intrinsi
 spin-orbit 
oupling 
an be written out

similar to what was done with the Rashba part and it simply indu
es a spin-dependent

2nd-nearest neighbour hopping within the plaquette. The hoppings be
ome ±i/
√
3VI and

there is no 
oupling between the opposing spins. The lo
al potential shift is needed be
ause

there is a lo
al 
harge redistribution due to the adatoms [53℄.

Our results for the spin behaviour agree qualitatively with the ones van Tuan et al. had

in their paper, as seen in Figure 9a. The spin relaxation time features an M-shaped 
urve

as a fun
tion of energy where the relaxation time in
reases quite smoothly when E = 0 is

approa
hed, until it 
ollapses to a minimum at the Dira
 point. The spin pre
ession time

on the other hand stays approximately 
onstant for the whole energy range. When the

results are looked into more 
arefully, there are however quite big di�eren
es. The biggest

di�eren
e is the magnitude of the spin relaxation time. In our 
al
ulations τ = 0.34 ps at

E = 0, a result whi
h still agrees quite well. The maximum at 0.1 eV, where τ = 4.3 ps,

on the other hand is 
ompletely di�erent from the τ = 0.8 ps at 0.2 eV reported by van

Tuan et al. Also, there is a slight kink at E = 0 in the spin pre
ession time not present in

their results.

The di�eren
e between the results is most likely explained by the di�erent approximation

of the delta fun
tion. In their supplementary material, the authors mention a thermal

broadening of 0.027 eV. Even though this gives a relatively good approximation for the

delta fun
tion, it is still way wider than the one used in our 
al
ulations, as seen in Figure

9b. The type of the broadening was not mentioned in the supplement and therefore both

Lorenzian and Gaussian distributions are drawn to 
ompare to our Chebyshev expansions

with Nm = 300, 500, 1000. Even though the number of moments in ea
h of the three 
ases

is small 
ompared to Nm = 3000 used in our other 
al
ulations, all of them feature a mu
h

sharper peak than either of the two distributions they are 
ompared to.
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Figure 9: (a,
-d)Spin relaxation and pre
ession times for 8% density of adatom plaquettes


al
ulated with di�erent amount of Chebyshev moments. (a)Nm = 3000 for both relaxation
(bla
k 
urve) and pre
ession (blue). (b-d) The amount of moments are 300 for light blue,

500 for orange, and 1000 for purple. (b) Approximations to delta fun
tion with the di�erent

amount of moments. The bla
k 
urve shows Lorenzian approximation with η = 0.027 eV

while the gray one shows Gaussian with σ = 0.027 eV.
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Figure 10: (a,b) Total 
ondu
tivity for 8% 
on
entration of adatom plaquettes measured

at 1 µm (blue), 5 ps (orange) and at 15 ps (inset) and pristine graphene at 1 µm (gray


urves). (
,d) Time-dependent di�usion 
oe�
ient at sele
ted energies. Figures (a) and (
)

are 
al
ulated with Nm=300 and (b) and (d) with Nm=1000.

The e�e
t ofNm is further investigated in Figures 9
 and 9d, whi
h show the spin relaxation

and pre
ession times 
al
ulated for the three 
ases 
onsidered in Figure 9b. As expe
ted

from the 
omparison between the delta fun
tion approximations, the 
ase with fewest

moments is 
losest to the results of van Tuan et al. The magnitude of τ is still too large

a
ross the whole energy range, but the shape is now fully 
onsistent with their results. TΩ
on the other hand behaves now mu
h more ni
ely as the kink at E = 0 has turned into a

smooth bump. Be
ause the approximations to the delta fun
tion are di�erent, the results


annot be expe
ted to be exa
tly the same, but they agree already quite well.

Another e�e
t of the number of moments 
an be seen in the 
urious behaviour of 
ondu
-

tivity near E = 0. During the �rst few pi
ose
onds of the simulation, there is a minimum

at zero in the 
ondu
tivity, as seen in Figure 10. However, on
e time passes on enough,

the depth of the minimum de
reases and it a
tually be
omes a maximum at long enough
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times. This is 
aused by the in
reased broadening of states over time as the peak at 0.3 eV

�lls in the minimum. The in
orre
t behaviour is highlighted by 
omparing the magnitude

of the 
ondu
tivity to pristine graphene in the same �gure. Pristine graphene should give

an upper bound for 
ondu
tivity for systems with defe
ts with them and in our 
ase we

have multiple times bigger 
ondu
tivity than that.

When the number of moments is in
reased, the 
orre
t behaviour is brought out. Figure 10b

shows the 
ondu
tivities at exa
t same times but with Nm=1000 instead of 300. This time

the states do not get wider in energy and the minimum at zero also keeps its shape as time

goes on. The results now also agree mu
h better with the 
ondu
tivity of pristine graphene.

The pristine 
ondu
tivity shown is 
al
ulated at 
onstant length, and the 
orresponding

plaquette 
ondu
tivity agrees quite well with it. The results with 
onstant time 
annot

be dire
tly 
ompared with the pristine 
ase, but they also agree quite mu
h better. They

follow the behaviour from the pristine 
ase mu
h more 
losely and the bigger magnitude

is fully explained by the di�erent point of measurement.

There is still some dis
repan
y in our results 
ompared to the ones by van Tuan et al.

A

ording to their 
al
ulations, the di�usion 
oe�
ient saturates at energies above 0.1 eV

at 8% defe
t density. This was not the 
ase in our results as D(t) keeps on in
reasing

for mu
h wider range of energy. The magnitudes of the 
oe�
ient is quite 
lose if our

Nm = 3000 result is 
ompared to theirs, but the behaviour is still a bit di�erent. Either

there is still some di�eren
e in the systems on mi
ros
opi
al level or the e�e
t of the

di�erent approximations of the delta fun
tion is even higher.

5.5 Charge Puddles

5.5.1 Constant sized puddles

Both of the potential defe
ts and adatom plaquettes 
onsidered earlier are very lo
al de-

fe
ts and 
an result in sharp 
hanges in the potential. Whereas this 
ould be a
hieved by

adatoms, too abrupt 
hanges in potential are not likely to be present in real systems. A

more realisti
 s
enario would be a defe
t whi
h spans over multiple sites and has smooth

behaviour for the potential. In this se
tion we parti
ularly fo
us on Gaussian-shaped 
harge

puddles, whi
h are des
ribed as

U(r) = Uσ
0 e

−r2/2r2
0 , (64)

where U0 is the potential strength at the 
enter of the puddle, lo
ated in the middle of some


arbon hexagon, r is the distan
e from the 
entre and r0 is the width of the puddle. The

potential strength is 
hosen separately for the spin 
hannels but the 
enter of the puddle

is the same for both of them. These puddles 
ould be 
aused for example by ripples in the

graphene sheet or a magneti
 substrate underneath the sample. The spin-dependen
y of the

potential might stem from ele
tron polarization of the puddle or ferromagneti
 properties

of the substrate. The numeri
 values used for the potentials are U↑
0 = 0.8 eV and U↓

0 = 0.6
eV. The defe
t angle is handled the same way it is done with the potential defe
ts.
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The potential strength de
ays to zero with these defe
ts quite rapidly and to ease the

forming of the Hamiltonian, a 
uto� radius is introdu
ed for ea
h puddle. The 
uto� is

implemented su
h that only the sites inside a re
tangular box 
entered at the defe
t site get

�nite values for the potential. The edges of the box are 
hosen su
h that the exponential


oe�
ient, e−r2/2r2
0
gets value 0.001 at the 
enter of ea
h side. Sites outside of this box will

gain zero 
ontribution from the parti
ular defe
t. The puddles are allowed to overlap and

the potential for a site is simply the sum over the 
ontributions from all defe
ts.

Be
ause of their mu
h larger nature, the amount of puddles we 
an pla
e in the system

is mu
h smaller than that of the single-site potential defe
ts. For example, a puddle with

r0 = 10 a0 
overs an area whi
h has roughly 240 atom sites. Therefore, 1% density of the

potential defe
ts would 
orrespond to puddle density of 0.005%. However, the strength

of the puddles gets mu
h weaker near the edges of the puddles and the 
ases with equal


overages 
annot be dire
tly 
ompared.

The behaviour of spin polarization with 
harge puddles depends greatly on whether the

potential strength is kept 
onstant for the puddles or is taken randomly from [−U0, U0],
as seen in Figure 11. When the potential is kept 
onstant, dampened os
illation is still

observed. This time, however, the behaviour is highly asymmetri
al with respe
t to the

Dira
 point. On one side of the point the os
illation is mu
h faster 
ompared to the other one

and the same side also dampens faster. The randomized potential on the other hand shows

no signs of os
illation. The behaviour is 
ompletely symmetri
al and the spin relaxation

time is longer than on either side of the Dira
 point in the 
onstant 
ase.

The di�eren
es between the two 
ases are mostly expe
ted. The magnitude in the 
onstant

strength puddles is U0, the endpoint of the potential interval from whi
h the randomized

strengths are taken. When the potential strength is randomized, the average magnitude of

potential is lower than the value used in the 
onstant 
ase, 
ausing the relaxation to take

longer. The symmetry follows from the fa
t that the randomized potential is taken from

-U0 to U0. Flipping the sign of the potential mirrors the results with respe
t to zero and

when average is taken over the di�erent potentials, there are equal amount of puddles with

opposing signs, leading to the symmetri
 result. The most 
urious di�eren
e is the la
k of

os
illations in the randomized 
ase. It seems that ea
h puddle with di�erent strength has

its own energy-dependent os
illation frequen
y. When there are multiple di�erent puddles

in the same system, the 
ompeting frequen
ies suppress ea
h other, leading to no os
illation

in the end.

The behaviour of the 
ondu
tivity for the 
harge puddles is di�erent from either of the

potential defe
ts or adatom plaquettes, as seen in Fig. 11d. Just like the other defe
t types,

σ has a minimum at E = 0, but instead of staying 
onstant or de
aying at higher energies,

this time σ behaves quadrati
ally near the zero energy. This is in a good agreement with

s
attering from 
harged impurities, for whi
h the 
ondu
tivity s
ales linearly as a fun
tion

of 
harge 
arrier density n [54℄. Be
ause n depends quadrati
ally on E, the 
ondu
tivity

s
ales as E2
explaining our observation. On the other hand, the linear 
ondu
tivity of

the potential defe
ts is explained by their mu
h shorter range. Short range s
atterers in
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Figure 11: (a) Spin polarization as a fun
tion of time for three energies with U↑
0 = 0.8

eV and U↓
0 = 0.6 eV. The dashed lines feature 
onstant potential while the solid lines

have it randomized. (b) Spin relaxation time for randomized (blue) and 
ontant (orange)

potentials. (
) Spin pre
ession time for the 
ontant potential. (d) 
ondu
tivity at t = 0.6
ps for randomized potential (blue) 
ompared to pristine graphene (bla
k) and potential

defe
ts (gray).

graphene have been shown to have 
onstant 
ondu
tivity [55℄ and is in agreement with our

results.

5.5.2 Puddles with varying size

In real experiments, it is likely that the size of the puddles in the system is not uniform.

In 
ase the potential is 
aused by a substrate, it might have rough surfa
e and a�e
t

the ele
tron distribution unevenly. Therefore, it is good to also randomize the width of

the puddles in addition to the potential strength. Having another parameter randomized


auses the 
onvergen
e to su�er slightly, but as seen from Figure 12, the results are still

reasonably good even with the same number of random ve
tors in the 
al
ulation as before.
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Figure 12: (a) Time 
onstant (b) Condu
tivity at t = 0.6 ps for puddles with randomized

width. The blue 
urves 
orrespond to maximum width of 10a0 and the orange ones to 15a0.
The bla
k line in (b) shows pristine graphene as a 
omparison.

The blue 
urve in Figure 12a shows the spin relaxation time when the puddle width is

randomized uniformly between 0 and 10a0, while keeping the other parameters the same

as before. With the ex
eption of the vi
inity of the zero energy, the behaviour is pretty

mu
h the same as before, with the time 
onstant slowly de
reasing with in
reasing energy.

Near zero, the behaviour however 
hanges drasti
ally. Instead of dropping sharply and then

forming a small peak at E = 0, the peak is now dominant and the drop in not nearly as

sharp. The orange 
urve in the same �gure shows the 
ase where the randomization is

taken over 0-15a0. Again, the zero energy shows slightly di�erent behaviour 
ompared to

the other 
ases, as there is a sharp drop and no peak at E = 0.

It seems that the peak at the zero energy is a feature originating from the smaller puddles

in the system. The 
ase with 
onstant r0 = 10a0 was shown in Fig. 11b and it had only a

small peak at E = 0. All of the puddles have smaller width than this in the randomization

and the smaller puddles have to be responsible for the larger peak. In the system where

randomization is taken from 0 to 15a0, it is basi
ally guaranteed to have at least some

puddles with r0 > 10a0 and it is enough to fade the peak away. It seems like the smaller

puddles are too steep for the E = 0 
harge 
arriers and sin
e they 
annot get into their

range, the amount of spin �ipping is redu
ed. Even a few larger puddles are enough to

enable spin �ipping near zero, as they have mu
h gentler slope and allow the 
harge 
arriers

to enter their area.

Outside of the zero-energy range, the results are quite expe
ted. The spin relaxation times

are a bit longer in the randomized 
ase 
ompared to the same non-randomized one. The

randomization 
auses the average puddle size to be smaller and it is natural that it takes

longer for the spin to relax. There is also not mu
h going on with the 
ondu
tivity. Both ran-

domized 
ases feature the same paraboli
 energy dependen
e seen in the non-randomized
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Figure 13: (a) Spin relaxation time s
aling as a fun
tion of puddle width. The two 
urves

are measured at E=0 (blue) and E=1 eV (orange). (b) Behaviour of the relaxation time for

di�erent puddle widths. The 
urves have been s
aled to �t into same �gure and only the

relative behaviour should be 
onsidered. All widths have unit of a0, the C-C bond length

in graphene.


ase and the magnitude of the 
ondu
tivity is not mu
h smaller than in pristine graphene.

With larger puddles the 
ondu
tivity is a bit smaller as there is larger area s
attering


harge, but it seems that the puddles do not s
atter 
harge signi�
antly.

To further address the e�e
t of the puddle size, the spin polarization was 
al
ulated with

multiple 
onstant puddle sizes. Figure 13a shows the behaviour of the time 
onstant versus

the puddle size. At E = 1 eV the behaviour is linear, suggesting a power law behaviour.

At E = 0 there are straight portions, but overall the 
urve is not linear. This is mostly

explained by the transition between the extremes seen in Figure 13b. In the small size

limit the relaxation in
reases inversely to the energy as zero is approa
hed, while the larger

puddles have de
reased relaxation near zero. Between these 
ases is a transition region,

whi
h was already seen earlier.

The behaviour of the relaxation time at E = 1 eV strongly suggests that there would be a

power law s
aling between it and the puddle width. To see if this is the 
ase for all energies,

a �tting to axb was done a
ross the 
al
ulated energy range. The �tting 
an be done in

multiple ways and the results 
an be seen in Figure 14. Perhaps the easiest way of doing

the �t is to take the logarithmi
 plot similar to Figure 13a and �t a straight line to the

data. Alternatively, it is possible to get a �t dire
tly for the power law by minimizing the

squared sum of fun
tion f(a,b) = τ − arb0 a
ross the puddle sizes r0 and the 
orresponding

spin relaxation times τ . The third method utilizes the same minimization of squared sum,

but instead of applying it dire
tly to the data, the inverse of the relaxation time is taken.

The reason behind the three di�erent ways of �tting is the di�erent weights they give to
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Figure 14: (a) The exponent b in the power law axb �tting as a fun
tion of energy. (b)

Sum of squared errors of the �ts. Blue 
urve shows dire
t �t, the orange one �t to inverse

relaxation time and the purple one a logarithmi
 �tting.

ea
h data point. The �t to logarithmi
 plot gives roughly an equal weight for ea
h point in

the data, while the dire
t �ts give more weight for their largest data points. For dire
t �t

these are the smaller puddles, sin
e they have longer relaxation time and for the inverse �t

more weight is given to the larger puddles. To measure the goodness of ea
h �t, a sum of

squared error (SSE) was 
al
ulated between the �t and the a
tual data points. To ensure

a fair 
omparison between the methods, the error was 
al
ulated on the logarithmi
 s
ale.

On a regular linear s
ale there is way too mu
h weight on the smallest puddles, sin
e their

relaxation time is few orders of magnitude larger 
ompared to the larger ones.

The results given by the �rst two methods agree reasonably well with ea
h other, as seen

in Figure 14. The exponent in the power law mostly varies between -3 and -4 and at the

zero energy it drops down even further. The zero-region however should not be taken too

seriously, sin
e the the transition mentioned earlier a�e
ts it the most. The third method

gives 
onsiderably di�erent results, as the exponent is roughly -2 with almost no energy

dependen
e. The di�eren
e might be 
aused by the �u
tuations that were present in the

larger puddles. The inverse time �tting gives the most weight for the largest puddles and

if they have ina

ura
y in their values, so will the �t done by the third method.

The sum of squared error suggests that the �rst method would be the best of the three.

It has the smallest error a
ross the whole energy range and it also has the smoothest

behaviour for the exponent. The method however bene�ts greatly from the way the SSE

was 
al
ulated. Sin
e the SSE is 
al
ulated in the logarithmi
 s
ale, it gives a natural

advantage for the �rst method, sin
e it already minimizes the SSE on the logarithmi
 s
ale

in the linear �t. If the SSE was 
al
ulated on linear s
ale, the �rst method would have

multiple orders of magnitude larger error be
ause it doesn't give nearly as mu
h weight

for the smallest puddles. In any 
ase, the �rst method seems to be the best in �nding the
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Figure 15: (a) S
aling of the (inverse) relaxation time as a fun
tion of 
harge puddle density.

(b) Slope of the linear �t as a fun
tion of energy. (inset) Sum of squared errors in the �t.

exponent 
orre
tly, even though the �t given by it might not be the best.

As a last result for the 
harge puddles, the s
aling of the spin relaxation time was also


al
ulated as a fun
tion of the puddle density. The results 
an be seen in Figure 15, where

the inverse of the relaxation time is shown against the density. With the ex
eption of

the zero energy, the inverse seems to be s
aling linearly with nearly 
onstant slope a
ross

the energy. The transition observed with the previous results seems to be a�e
ted by the

density, 
ausing deviation from the linear behaviour for zero energy. As seen in the error,

the �ts are really good a
ross the energy.

The linear s
aling is a quite reasonable result. If the puddles do not intera
t with ea
h

other, ea
h one will s
atter spin with the same rate assuming the 
harge 
arriers traverse

somewhat uniformly. In
reasing the number of puddles would then in
rease the number of

spin s
attering events linearly. The relaxation time is inversely proportional to the number

of spin s
attering events, whi
h means that the inverse also in
reases linearly. In high

enough 
on
entrations the puddles start to overlap and intera
t with ea
h other, but at

least in the range that was 
al
ulated, this was not yet the 
ase.

5.6 Charge 
arrier density evolution

In the absen
e of a good measure for spin �ipping 
ondu
tivity the spin polarization has

been so far the best way to des
ribe the spin behaviour. While it gives useful information

about the system, it doesn't address the transport properties as well as 
ondu
tivity or


ondu
tan
e would. One alternative way of looking into the transport properties is to


al
ulate the time-evolution of the wave fun
tion and see how the 
harge density evolves in

time. An espe
ially interesting 
ase is lo
alized initial state, sin
e it gives a way to measure

37



distan
e travelled by the wave pa
ket.

There are some te
hni
al problems when the density is 
al
ulated, espe
ially 
onsidering

the amount of data that is a
quired in the 
omputation. The system we have 
al
ulated

so far have had roughly million atoms in them. It takes roughly 16MB of memory to store

the density for one state ve
tor using double pre
ision numbers, as ea
h atom has separate

densities for both spins. Time evolution requires roughly 100 steps to 
al
ulate the density

a

urately enough for relevant time s
ales, whi
h means the amount of memory required to

store the evolution of one random state is in the order of gigabytes. A

urate 
al
ulations

require tens of random ve
tors and the amount of storage required be
omes too large to

handle.

The memory usage 
an be redu
ed by averaging the density over a few sites. For example

we 
an 
al
ulate the density over a grid of 10x10 squares, redu
ing the required memory

by a fa
tor of 100. This kind of box �lter is a basi
 operation on a GPU and it performs

really e�
iently. The averaging pro
ess de
reases the a

ura
y in lo
ation slightly, but in

small enough areas this does not matter.

So far most of the quantities have been 
al
ulated as a fun
tion of energy. When density is


onsidered, the energy is not as important and it 
an be dropped out of the 
al
ulations,

saving both 
omputational time and size of the output. Physi
ally the most relevant energy

range is the vi
inity of the Dira
 point and to fo
us the results to this area, the initial state


an be manipulated with imaginary time evolution. When operator e−τĤ2

is applied to

the state, the energy eigenstates are weighted with an exponential 
oe�
ient e−τE2

. After

renormalization, the higher energies vanish from the state and the relevant energy range

is left in. An illustration of how the DOS 
hanges is shown in Figure 16a.

The initial shape of the wave pa
ket was 
hosen to be Gaussian, similar to how the 
harge

puddles were de�ned. The width of the pa
ket was 
hosen to be 5 a0 and it was normalized

to the number of atoms in the system. The initial state might be slightly unphysi
al, sin
e

it 
orresponds to s
enario where every ele
tron of the system is in the same lo
ation, but

the dynami
s given by it should 
ome out 
orre
tly nevertheless as the intera
tion e�e
ts

are negle
ted. An example of the time evolution in the presen
e of 
harge puddles 
an be

seen in Figure 16b. The spreading happens quite fast and in the last snapshot, whi
h is

taken at t = 48 fs, the width of the pa
ket is already 10 nm. The hexagonal shape of the

spreading pa
ket is 
aused by the graphene latti
e and the la
k of ex
essive s
attering in

the system. The strength of the puddles is weak enough that the initial symmetry of the

pa
ket is retained, unlike in the presen
e of stronger defe
ts in higher density. For example

the potential defe
ts with strength of ±2 eV and 8% density 
ause the pa
ket to be
ome


ir
ular after the �rst 60 fs of the simulation. With the puddles, the hexagonal shape is

retained for the whole 2 ps of the simulation.

The Figure 16b also shows how similar the spins behave. The shape and size of the pa
ket

are identi
al as time passes on and the only di�eren
e is the amount of ea
h spin. Also,

the ratio between the spins stays quite uniform a
ross the system in the presen
e of 
harge

puddles as seen in Figure 17. When the average spin per
entages are 
ompared, their
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Figure 16: (a) The density of states after imaginary time evolution (blue) 
ompared to

regular DOS (bla
k) (b) Time evolution of the density of Gaussian shaped initial state in

the presen
e of 
harge puddles. The �rst line shows up-spin and the se
ond one down-spin.

The snapshots are taken from t = 0, 24 and 48 fs.

overall behaviour does not di�er mu
h from the lo
al ones, espe
ially in the later parts of

the simulation. After the �rst 0.1 ps of the simulation, both lo
al and global values are

pra
ti
ally the same and most of the interesting phenomena o

ur before that time. Up

until 0.05 ps, the density behaves smoothly for all of the points of measurement. After

that, the per
entage of the up spin drops fast with a strong dependen
e on the distan
e

from the 
enter. For the 
losest points, the per
entage starts to drop immediately, while

for the further points it takes mu
h longer to drop down.

The times at whi
h the drops o

ur roughly 
orrespond to the moments at whi
h the main

wave pa
ket passes the points of measurement. At t=0.05 ps the widest part of the pa
ket

has travelled 5.7 nm from the 
entre and at 0.1 ps the narrowest part has just passed

the 9 nm distan
e, at whi
h the furthest measurement was done. Be
ause of its hexagonal

symmetry, the wave pa
ket rea
hes the same lengths at slightly di�erent times, making the

passing a little longer event. The sudden drop in the per
entage of up spin when the main

pa
ket passes by suggests that there is a rather strong 
orrelation between the s
attering

of 
harge and spin. The �rst parts of the wave pa
ket that rea
h the points of measurement

are the fastest, whi
h means they 
annot have had many s
attering events on their way. The

per
entage of up spin in these parts is also larger than on average, whi
h means they also

have had less spin s
attering. The most of the down spin is 
arried by the main pa
ket and

as it passes the point of measurement, the down density in
reases drasti
ally. At the 0.1 ps

mark the wave pa
ket has almost rea
hed the whole system and after that, the behaviour

follows the average 
losely, as the density has more or less rea
hed the equilibrium.
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Figure 17: Per
entage of up spin density as a fun
tion of time at distan
es of 4.5 nm

(purple), 6.2 nm (orange) and 9.2 nm (blue) 
ompared to the overall density of up spin

(bla
k). (a) shows the results for 
harge puddles and (b) for potential defe
ts. The data

sets start from the moment when density be
omes large enough that it 
an be numeri
ally

distinguished from zero.

The potential defe
ts are mu
h stronger s
atterers and therefore their lo
al spin behaviour

di�ers quite mu
h from the global one. First of all, the wave pa
ket spreads a lot slower,

as seen from the later starting point of the data sets in Figure 17b. There is now a really

strong dependen
e on the point at whi
h the measurement is made. The amplitude of the

spin os
illation de
ays mu
h slower in the farther points and they also os
illate slightly

slower. This time the wave pa
ket rea
hes the whole system at t=0.12 ps, but there is still

some di�eren
e between the lo
al and global behaviours. It would seem that the stronger

potential defe
ts keep the di�erent parts of the system mu
h more separated, allowing

there to be di�erent behaviour at di�erent lo
ations.

The di�erent behaviour of spin is espe
ially well seen in the pro�les of up spin per
entage

shown in Figure 18. With 
harge puddles in the system, there are two levels of per
entages,

one 
loser to the 
enter and one further away. The 
loser one has slightly less per
entage of

up spin and between the two levels there is rather steep rise. The rise is most likely 
aused

by the main wave pa
ket passing the radius, as their lo
ations mat
h. The spin pro�le

stays quite uniform a
ross time, unlike with the potential defe
ts, for whi
h the pro�le


hanges in shape a lot as time passes. In prin
iple the behaviour is more or less similar to

the puddles as there is again two levels and a slope between them. This time however the

further level 
an get any values depending on time. It seems that, unlike with the 
harge

puddles, there is no 
oupling between the spin and 
harge s
attering as this time the faster

ele
trons undergo spin s
attering.
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Figure 18: Per
entage of up spin as a fun
tion of distan
e from the 
enter. The 
urves are

for t= 0, 0.02, 0.05, 0.08 and 0.1 ps, for blue, orange, yellow, purple and green, respe
tively.

Figure (a) is for 
harge puddles and (b) for 1% potential defe
ts.

6 Con
lusions

Spin-dependent transport properties of ele
trons in graphene were studied in this thesis.

The resear
h was done using the real-spa
e Kubo-Greenwood formalism, implemented on

graphi
s pro
essing units. A spin-dependent formulation was derived starting from Kubo


ondu
tivity and an implementation was 
reated on top of an existing spinless 
ode. The

implementation was �nally tested on various types of defe
ts embedded in graphene.

It turned out that the 
on
ept of spin-�ipping 
ondu
tivity is somewhat ill-de�ned. While

it 
an be de�ned in the Kubo-Greenwood formalism, this de�nition does not 
apture all

spin �ipping e�e
ts in the system, and in parti
ular the e�e
t of spin-dependent potential

is 
ompletely left out. This obviously does not agree with the Landauer-Büttiker formal-

ism, for whi
h �ipping 
ondu
tan
e 
an be de�ned. The di�eren
e 
omes from the di�er-

ent perspe
tives to the transport: in the Landauer-Büttiker formalism the 
ondu
tan
e is

a

essed through transmittan
e and is more or less related to ele
tri
 
urrent, while Kubo-

Greenwood fo
uses more on the density evolution whi
h is more related to the movement

of separate ele
trons. Within the mi
ros
opi
 view of Kubo-Greenwood formalism, it seems

that spin polarization provides a better measure to des
ribe spin �ipping.

In the ribbon geometry the results between Landauer-Büttiker and Kubo-Greenwood agree

surprisingly well 
onsidering the 
ompletely di�erent approa
hes. The spin-
onserving 
on-

du
tan
es are pra
ti
ally equal 
onsidering the numeri
al errors in the Kubo-Greenwood


al
ulation and the slightly di�erent systems. The spin �ipping behaviour also seems to be

similar in both formalisms, even though they measure it by di�erent means. The defe
ts

are a
tive at same energies, whi
h strongly suggests that both formalisms 
apture the same
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e�e
ts, albeit in a di�erent way. This is even more highlighted when the defe
ts are pla
ed

on the edges of the system, as they are mu
h more a
tive when pla
ed there.

The 
omparison between the two methods was limited to the ribbon geometry sin
e

Landauer-Büttiker 
annot handle wider systems nearly as e�
iently. Kubo-Greenwood

on the other hand has ex
ellent performan
e in wider systems. Even though the spin-part

of the implementation was not optimized for performan
e, the exe
ution times of the 
ode

were short enough that it was sensible to 
al
ulate enough random ve
tors and have the

results 
onverge. The 
onvergen
e depends on the system and in general the more defe
ts

there are in the system, the fewer ve
tors are required for 
onvergen
e.

Another important fa
tor in the 
al
ulation is the number of moments used in the Cheby-

shev expansion. Fewer moments allow smoother results and faster 
onvergen
e. This how-

ever 
omes at the expense of loss of energy resolution. Fewer moments mean that the

approximation of delta fun
tion be
omes worse and the states are spread to wider range of

energy. As seen with the adatom plaquettes, the spreading 
auses mu
h smoother behaviour

for peaked quantities and may result in large errors. In general, the number of moments

should be 
hosen as high as possible while keeping the 
omputational time reasonable.

Out of three defe
t types studied, the lo
al potential defe
ts are quite pure mathemati
al

defe
ts, sin
e it would be really hard to get potential with 2 eV strength on a single site

without altering the neighbouring sites. The adatom plaquettes on the other hand are

from the other end of the spe
trum and are perhaps the 
losest of the three to model real

world defe
ts. The 
harge puddles lie between the other two, as they have been observed

experimentally, but it is not known if the potential 
an be spin-dependent or not. From

these three defe
t types, the puddles provided the most interesting features at the studied

parameter ranges. Even though the used potential strength for the puddles is relatively

strong at 0.7 eV, they don't s
atter 
harge too mu
h as seen from its 
ondu
tivity 
ompared

to pristine graphene.

The puddles also feature an interesting transition in the behaviour of the zero energy range.

In the limit of large puddles, the zero energy has the fastest spin relaxation. As the puddle

width is de
reased, the relaxation time in
reases faster for the zero energy and eventually

higher energies relax the fastest. The transition is most likely 
aused by the pro�le of

the puddles. For larger puddles the potential rises over long distan
e and even zero energy

modes are allowed to enter their area. When the width gets smaller, their slope gets steeper

and steeper, eventually blo
king the entran
e to the puddles.

All in all, the implementation proved to be e�e
tive in studying the spin-dependent prop-

erties of graphene. The method should be easily extendable to all materials and defe
ts

that 
an be modelled with tight binding. It is slightly disappointing that the formalism


annot handle spin-�ipping 
ondu
tivity but spin polarization 
overs this weakness quite

well. The results for the spin polarization with the 
harge puddles suggest that long-range

s
atterers a�e
t spin mu
h more e�e
tively than they do 
harge. This might explain the

short spin lifetimes observed in the experiments even on high-quality samples [11, 56℄, if

the samples in the experiments have defe
ts similar to the studied 
harge puddles.
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