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Abstract

Graphene is a 2-dimensional allotrope of carbon which has attracted a lot of interest since its dis-
covery in 2004. It has high electron mobility and small intrinsic spin-orbit-coupling, leading to long
spin persistence lengths. This makes it an interesting material for spintronics as it can be used as
a platform for spin-dependent defects. Its spin behaviour is almost completely determined by the
defects, which can be used to tune its properties.

The electronic transport properties of graphene are most commonly studied by Landauer-Buttiker
and Kubo-Greenwood methods. They both work well with the tight-binding model, which recovers
the electronic band structure of graphene correctly, and they give results consistent with each
other. The difference between the two is that Landauer-Buttiker is more suitable for narrow rib-
bons, while Kubo-Greenwood performs better in wider systems.

In this thesis, a spinful version of the Kubo-Greenwood method is derived and then implemented
on top of an existing spinless version. The implementation is done with Nvidia CUDA and it runs
on graphics processing units. Different spin-dependent defects in graphene are used to test the
implementation and validate the method.

While the spinful version of the method is easy to implement, it turns out that it lacks the ability to
completely describe spin-flipping current. Spin-conserving conductivity is given correctly by the
method and spin polarization is proposed to describe the spin behavior better. Long-ranged scat-
terers are found to scatter spin more efficiently than they do charge and they are suggested to be
partly responsible for the experimentally found short spin relaxation times.

Keywords graphene, spin, Kubo-Greenwood, CUDA, GPU
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Tiivistelma

Grafeeni on hiilen kaksiulotteinen allotrooppi, joka l6ydettiin vuonna 2004. Sen elektroneilla on
suuri liilkkuvuus ja pieni spin-rata-kytkentd, jonka ansiosta spinin relaksaatiopituus kasvaa huo-
mattavan suureksi. Grafeeni on erityisen kiinnostava materiaali spintroniikassa, jossa sita voidaan
kayttaa alustana spin-riippuville epapuhtauksille. Sen spinin ominaisuudet ovat lahes taysin epé-
puhtauksien maarittelemat, joten spin kaytosta voidaan saataa niiden avulla.

Grafeenin johtavuusominaisuuksia tutkitaan yleensa joko Landauer-Bittiker- tai Kubo-Greenwood-
menetelmilla. Molemmat toimivat hyvin tiukan sidoksen mallin kanssa ja antavat keskendén vertai-
lukelpoisia tuloksia. Menetelmien erona ovat systeemit, joihin ne soveltuvat. Landauer-Buttiker toi-
mii paremmin kapeammissa nauhoissa, kun taas Kubo-Greenwood soveltuu hyvin leveampiin,
taysin kaksiulotteisiin systeemeihin.

Tassa tyodssa johdetaan spinillinen versio Kubo-Greenwood-menetelméasta ja toteutetaan se aikai-
semman spinittdman version pohjalta. Toteutus tehddan Nvidian CUDA-kielella ja sitd voidaan
ajaa naytonohjaimilla. Toteutusta testataan erilaisilla spin-riippuvilla epapuhtausmalleilla.

Spinillinen versio on helposti johdettavissa spinittémasta versiosta, mutta kay ilmi, ettei se kuvaa
taysin spinien valista virtaa. Menetelma antaa kuitenkin oikein spinin sailyttavan konduktiivisuuden
ja spinin polarisaatio osoittautuu paremmaksi ominaisuudeksi kuvaamaan spinin kaytosta. Tutki-
tuista epépuhtauksista pitkdn matkan sirottajat sirottivat spinia suhteessa varaukseen eniten ja nii-
t& ehdotetaan osatekijaksi kokeissa havaittuihin lyhyisiin relaksaatiopituuksiin.

Avainsanat grafeeni, spin, Kubo-Greenwood, GPU
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1 Introduction

Spintronics is an emerging branch of electronics which has gained much attention over the
past few decades. It utilizes the spin degree of freedom of the electrons, which enables a
much wider range of components and devices |1, 2|. Since there are two kinds of currents,
up and down polarized, it is in principle possible to design a component that reacts in one
way to up current and in another to down current. This is relevant, for example, in logic
and memory components, which can benefit from having a second degree of freedom or
even use the spin as their only state indicator [3]. A good example of this is the giant mag-
netoresistance effect (GMR) used in magnetic memories, which is based on the magnetic
alignment of ferromagnetic films [4].

Spin is an intrinsic property of electrons, similar to charge or mass. It is a relativistic effect
arising from the Dirac equation resembling angular momentum and most importantly,
it serves as a source of magnetic moment for electrons. In ferromagnetic materials the
alignment of the moments is energetically favoured and there is a net spin polarization.
When the net moment of a material is non-zero, magnetic properties can be observed even
macroscopically.

Instead of having the whole material made of magnetic atoms, it is possible to have mostly
non-magnetic material with some magnetic defects in it [5, 6]. This offers an interesting
system to study, since even a small amount of defects can make spin-dependent behaviour
arise|7, 8]. This work mostly focuses on the spin polarization and conductivity of graphene
with magnetic defects in it. Graphene provides an appealing platform for magnetic de-
fects because it has small intrinsic spin-orbit coupling (SOC) [9, 10|, which means the
spin-behaviour is almost completely dictated by the defects in the system. Graphene also
possesses high electronical conductivity and low scattering rates, making it a promising
material for spintronics [11, 12].

The two main methods to model the electronic transport properties of graphene are the
Kubo-Greenwood (KG) [13, 14] and Landauer-Biittiker (LB)[15] formalisms. In this work
the focus is mostly on the Kubo-Greenwood, even though some comparisons will be done
between the two methods. Both of the methods work within the tight-binding model [16],
which describes the electronic properties of graphene relatively well. It predicts the band
structure correctly near the zero energy and is not too bad either at higher energies [17].
Because of its simple format, it serves as a good starting point also for modelling defects
in graphene. Taking spin into account in the model is not hard either [18], which makes it
ideal for our uses.

When spin-dependent defects are modelled, the orientation of their spin axis plays an
important role. If polarized current interacts with defect which is aligned parallel or anti-
parallel with the polarization, the current retains its polarization. The defect will have
separate properties for both polarizations, but there will be no connection between the spin
channels. The situation becomes much more interesting when the defect axis is not aligned
with the polarization. This allows spin to flip at the defect sites and makes the system



much more complicated, as it can no longer be modelled as two separate non-interacting
subsystems.

In addition to the defect alignment, the location of the defects relative to each other has
a major effect on the properties, especially in graphene [19]. Graphene consists of two
sublattices and depending on whether two defects are on the same one or not will impact
the properties greatly in some cases [20, 21|. Because there are a lot of parameters regarding
the defects, it may be hard to get a good overview of the average properties of certain
defects. Some interesting properties may be present only in a certain configuration and
some may only appear in highly randomized systems. Therefore, to get a good conclusion
on what properties certain defects would have in a real world experiment, the averaging
of the defect properties should be done well. One way of doing this is to simulate larger
systems.

One downside of big simulations is the increased computational effort. In the best case sce-
nario, the computational time will increase linearly with respect to the number of atoms,
but even linear scaling can take one only so far on its own. In practise, all large scale
simulations require some kind of parallelization to make the simulation run in reasonable
time. Parallelization can be done on the CPU, on which it is also relatively easy to imple-
ment. However, a good alternative to CPU implementation is the use of graphics processing
units (GPUs). The GPUs have a vast amount of computational power inside and when the

implementation is done correctly, they can reach impressive speedups over regular CPUs
[22, 23].

There are some limitations to the use of GPUs, however. Their architecture is much simpler
compared to CPUs and they require a bit different approach [24]. One of the most important
factors in the choice between CPU and GPU is the arithmetic intensity of the calculation
being implemented [25]. It is determined by the ratio between arithmetic operations and
the memory accesses and the higher it is, the better the GPUs relative performance will
be. This is because the internal memory GPUs have is slow and transferring data to the
GPU from the CPU memory is even slower [26]. Doing every single calculation on the GPU
is usually not an option either because they perform quite poorly in executing sequential
code. Getting the best performance usually requires careful analysis to identify the parts
which benefit most from being calculated on the GPU [27, 28|.

The goal of this thesis is to derive and implement spinful version of the Kubo-Greenwood
method, starting from an existing spinless implementation [29] and test it on various spin-
dependent defects. The method is linear-scaling and it works really well even for larger
systems, as required. The original code is written in CUDA C [30] and is optimized to run
on GPUs. The new implementation will also be written in CUDA. The focus in the calcu-
lations will be on the conductivity and spin polarization of graphene with different kinds of
spin-dependent potentials, but some attention is also given to graphene nanoribbons and
alternative defect models.



Figure 1: (a) Real-space (b) Reciprocal lattices of graphene. Vectors a and b show the basis
vectors for both lattices. (¢) Band structure of graphene calculated with TB and DFT.

2 Tight-binding model for spin-dependent defects

The carbon atoms in graphene are arranged in a honeycomb lattice as show in Fig. 1a. The
atoms are sp?>-hybridized, which means that three of the four valence electrons of each atom
are used to form o-bonds between neighbours and the fourth one is left to form a p.-type
orbital. Because the o-bonds are strong and have a low energy, all of the effects near the
Fermi level are caused by the p.-electrons. This justifies the use of the tight-binding model,
for which the basis functions are localized at each atom site. The hopping t;; = (| H |1);)
between these basis functions determines the coupling between each pair of atoms. It is
usually sufficient to consider only a few of the nearest sites for each atom, because the
hoppings to further atoms go to zero relatively fast.

In graphene, the hoppings are usually taken up to the first or the third nearest neighbours.
The first neighbours description is valid near the Fermi level, but it becomes less accurate
further in energy [31]. The band structure given by the 1st neighbour description is com-
pletely symmetric in energy, a fact that is not supported by the ab initio calculations, as
shown by Fig. 1c. The 3rd neighbours however can recover this behaviour and give a much
more accurate description of the bands [32]. The drawback is that it is more complicated
to implement and the calculations take a lot longer. In our case we are more interested in
the behaviour of the defects and the 1st neighbour description is enough for our needs.

For pristine graphene, the 1st neighbour tight binding Hamiltonian reads

H0:t02|i><j|a (1)
(3,5)

where the sum goes over pairs of neighbours (7,7). The pristine Hamiltonian can be used
as a starting point when we add defects to the system by writing the total Hamiltonian as
a sum of H, and the defect Hamiltonian H:

H = Hy+ H,. (2)
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The defect Hamiltonian can either modify the hoppings or add a local potential. In either
case, we need to consider the alignment of the defects’ spin axis. The axis lies somewhere on
the Bloch sphere and in a general case can be different for different defect sites. Depending
on the type of the defects, there could be some correlation between the defect axes but
at least in the dilute limit in the absence of magnetic field, there should not be magnetic
ordering between the defects.

The defect Hamiltonian for a single site with spin dependent potential can be written as

Hy=1i)(il @ (U] DY |+ U DD, (3)

where i is the index of the site and U; | are the potentials for each spin [18]. We choose
the sample z-axis to be the reference direction and rotate the spin vectors to this basis.
To do this, the defect Hamiltonian is written in terms of the average and difference of the

potentials:
. o U+ U Uy —-U
fa=1iil e (5 S Bor), ()

where ¢ is the Pauli z-matrix in the defect basis [33]. Rotation only applies to o¢, which

transforms into ) 4 in(0)
d_ cos e '’ sin
7z = L“’ﬁ sin(9) - 008(9)] ()

where angles 6 and ¢ refer to location of the defect on the Bloch sphere. In case of multiple
defects, the Hamiltonian is acquired by summing over all of the defect sites.

Defects with spin dependent hoppings can be modelled almost identically to the potential
defects. Similar to potential defects, we assume that each spin has its own hopping strength
to the defect atom, denoted by ¢; and ¢;. The only difference to Eq. 3 comes from the fact
that a single defect site has multiple hoppings. To get the complete defect Hamiltonian for
single site, we need to sum over all of the hoppings to and from the defect site:

Hy= Y 1)1 @ (I T+l DD (6)

(i,5)€d

In the case of graphene considering only the nearest neighbours, there are 6 terms in this
sum. The same changes can also be made to Eq. 4 to apply the spin rotation to the defect.

Because potential and hoppings are the only parameters in the tight-binding model, these
two defect types can be combined to model any defect reachable by tight-binding. Defects
that are not localized on atom sites may need different summations than Equations 3 and
6, but the main idea remains the same. The defects modellable by this method range from
simple mathematical defects where potential or hoppings are changed for a chosen number
of sites to complex multi-site defects originating from physical observations.



3 Methods

3.1 Landauer-Biittiker formalism

The setting in the Landauer theory is to consider a sample or device connected to reservoirs
through leads. Conductance is seen as a scattering process, in which electrons are injected
through one lead to the device, from which they are scattered back to the reservoirs. The
method was generalized to multiple leads by Biittiker [34] and the current between leads i

and j can be written as
2e
l;; = W /Tj,z‘fz'(@ — T fi(€)de, (7)

where T; ; is the transmission function or transmittance between the leads and f;(e) is the
Fermi function for the corresponding reservoir [35]. The Fermi functions in the equation
implicitly include the effect of the chemical potential in each of the leads, which complicates
the calculation. However, most of the times it is enough to focus entirely on the transmission
functions of the device, since they don’t depend on the chemical potential. Additionally,
they gives an access to the transport properties of the device, since conductivity is directly
proportional to it.

For pristine graphene, the calculation of the transmission function is easy, since there is
no scattering occurring and the transmittance only depends on the number of transport
modes. The number of modes is determined by the band structure and transmittance is
trivial to calculate once the band structure is known. However, in the presence of defects
the calculation is not as easy any more as scattering occurs in the device area. An efficient
way of accessing the transmittance is through the Green’s function, defined as [36]

G(EI—H)=1. (8)

The use of the tight-binding basis makes the Green’s function discrete, making it rather
easy to calculate. There is a slight problem with the problem dimension, since the leads
need to be considered semi-infinite, making the matrix dimension in Eq. 8 infinite, but
recursive calculation can be used to summarize the effect of each lead into simple finite-
sized matrices X called self-energies of the leads [37]. After writing the Eq. 8 in block form,
it is possible to solve for the part of the Green’s function GGp, which corresponds to the
device area:

Gp=(El-Hp—%,—%g) ", (9)
with Hp being the Hamiltonian of the device area.

Once the Green’s functions and self energies have been calculated, it’s possible to proceed
to calculating the transmittance. By considering the scattering in the device, it’s possible
to show that transmittance from one lead to another can be written as [15]:

Ty =T [LGplyGh) (10)
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where I'; is a function describing the coupling of lead j to the device and is defined as
r=i|% -3 (11)

The spin-dependent properties are easy to calculate from Eq. 10. Instead of considering
a regular two-terminal setup where we inject current from one side of the device and
measure from the other, it is possible to use a four-terminal setup in which each of the
two leads are replaced by two spin-polarized leads. Injection of spin-polarized current can
then be thought as current from one lead to the other three, allowing the calculation of
spin-conserving and spin-flipping transmittances.

3.2 Spin-dependent conductivity

The Kubo conductivity for a system with eigenstates |n) can be written as

heo )

whe?

o(w) = > [m|Valn) Po(Ey — B, — hw)

5 (12)

where E, is the (eigen)energy of state n, V, is the velocity operator and f(E) is the Fermi
function [35]. States |m) and |n) correspond to initial and final states of the system. We
can study the current from one spin channel to another by projecting these states to the
initial and final spin channels. This can be done with spin filter operators o4 and |, which
behave as identity for one spin and as a zero for the other.

Denoting the initial spin by o7 and the final spin by o5, the conductance between these
two can be written as:

2

m,n

f(En) — f(En)
hew '

(13)

Instead of applying the operators ¢ to the state vectors, we can apply them to I};, defining
us a new operator Vz = d5V,61. Also, the functions outside of the inner product don’t have
operators in them, allowing us to move them inside:

Ey) — f(En)
hw 0

2
)7 = TS ] ) ] 7

(B, — E, — hw)|m). (14)

m,n

The energy difference between |m) and |n) is equal to fw, which means we can replace F,,
inside the Fermi function with FE, + fiw. On the other hand, E,, is the eigenenergy of |m)
and the relation H|m) = E,,|m) can be used to replace L, inside the delta function with
H. Also, 6(z) = 6(—=x), giving us:

mhe?

o(w) 7 = == Y (Vi |n) (n|Va F(En)(E, + hw — H)lm), (15)

m,n



where W has been replaced with F(FE,) to shorten the notation. To get rid

of E,, another delta function can be brought inside the summation using the property
[ (2 — a)f(a)dz = f(a):

o(w)7r772 = “?; > / dES(E — E,)(m|V]|n)(n|V,F(E)d(E + hw — H)|m).  (16)

Similar to what was done earlier, the delta function can be taken inside the inner product
and F, can be replaced with the Hamiltonian. This way the only references to m and n
inside the summation are in the states, allowing us to re-order our expression:

whe?

Q

U(w)01—>02 —

/dEF(E) > (m|VIS(E — H) (In)(n]) Va6 (E + hw — H)[m). ~ (17)
Because the vectors |n) form a complete orthonormal basis, ) |n)(n| = I. Likewise, we
can identify > (m|A|m) to be equal to TrA, giving us

()17 — W?)@Q / dEF(E)Tt {V; S(E — HYV;6(E + hw — ﬁ)} . (18)

For DC current at zero temperature, the equation simplifies to

o1 —0 ﬂ-h62 St N T ~
o(B)7 7% = T Ty {vﬁa(E — H)V,8(E — H)} . (19)
One of the delta functions can be written as a Fourier transform:
A 1 o0 ) -
S(E—H)=— [ dteE-Htn 20
(B =5 [ e (20)
Because e'Z/" is just a number, we can move it freely. However, the second delta function

allows us to replace E with H, giving us

2 00
o(E) 70 = 26_9/ dtTr {UTV;UV&(S(E - Iff)} , (21)

—00
where we have introduced the time evolution operator U = e—tHt/h, Splitting the integral
into two parts and changing variable ¢ <— —t for one of them allows us to write this as

e © /Ooo . {v;u)v& +VAVa(0) 5 g g)}_ (22)

Q 2

The function we are taking the integral over can be recognized as the real part of the
autocorrelation function of our spin velocity operator, defined as

Tr {éf/; (OVs8(E — ﬁ)}

Tr{%é(E— H)}

va<Eat) - (23)
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multiplied by the density of states

p(E) =Tr {éé(E - ﬁ])} : (24)

3.3 Comparison between spinful and spinless cases

For the spinless case, we will get an almost identical formula for conductivity. The only
differences are that we do not include the spin-filtering operators in the beginning and spin-
degeneracy gives a factor of 2 in front of the equation. Without the filters, we are left with
regular velocity operators. Also, from a practical point of view, it is better to calculate the
running electrical conductivity (REC) instead of taking the limit of time going to infinity:

o(Et)%E = %62 /t dt Tr { ViRV + VTV@)&(E - Iff)} . (25)

2

The equation above is called Green-Kubo formula because it gives the conductivity as an
integral of velocity autocorrelation function [38]. As with other Green-Kubo formulas, a
corresponding Einstein formula can be found by applying an integral. In this case, the
derivative of mean squared displacement (MSD), defined as

T [26(F - B)(X(t) - X)’]

AX*(Et) = . - : (26)
Tr [55(3 - H)]
is found to give the conductivity:
o(E)E = ezp(E)QithXQ(E,t). (27)

Calculating the conductivity from the Einstein relation is more accurate because differen-
tiation does not accumulate error in the same way integration does. Therefore longer time
steps can be used, as the length now only affects the accuracy of time evolution. However,
in the more interesting spinful case, a similar relation can only be found when there is no
coupling between the spins.

The case with no coupling between the spins can be reduced to two spinless calculations, so
we assume for now that there is coupling between the spins, that is ﬁu and ﬁ“ are non-
zero. If the conductivity should be a derivative of some operator X squared, that operator
would have to be defined as

t
X(t) = / V, (¢ dt" + X (0) (28)
0
to give conductivity consistent with Eq. 22. If this equation in differentiated, we will have
d -~ N
—X(t) = V,(1). 29
—X(1) =V, (1) (29)



The right hand side of the equation is known:

A~

Vo’(t) = UTCTQ‘A/J;CHU
= Ufoy[H, X]onU. (30)

On the other side, we can write the derivative of X as a commutator:

d%f((t) = U'[H, X]U. (31)

Comparing these two equations, we require X to fulfil the relation

[H, X] = 65[H, X]6;. (32)

Let us consider the commutator of H with arbitrary operator O. Both of the operators can

be written in block form: H = [ZTT HN] and O = [é g] . In terms of these blocks, the

commutator becomes:

H,0] = [Hy, Al + Hy C — BH 4 HuB + Hy D — AHy — BH, _ (33)
’ HiTA—i_HHC_CHTT_DHiT [HH,D]—FHJTB—CH'N

The left hand side of Eq. 32 will have exactly the same form as this equation, while the

right hand side will become

&5[H, X]61 = (34)

[Hyp, X]+ Hy X — X Hyy 0}
0 0]’

assuming o, = oy = oy. If we want X to be same regardless of the system, it should not
depend on the Hamiltonian. Also, it is possible to change diagonal blocks of the Hamiltonian
without altering the off-diagonal part. These two conditions allow us to separate the terms
containing diagonal and off-diagonal parts of the Hamiltonian, handling them as their own
equations. If we now compare the diagonal blocks of Eq. 32, we will have

[Hyt, X + Hyy Xpp — Xy Hyy = [Hep, X]+ Hy X — XHy, (35)
and
[Hyp, X+ Hyp Xqy — XypHyy = 0. (36)

The diagonal part of the first equation gives us [Hyy, X11] = [Hpp, X] and the second
equation gives us [H|, X||] = 0. If these conditions hold for any Hamiltonian, the only
solution is X4 = X, X, = 0.

More conditions for X can be found from the off-diagonal blocks of Eq. 32. The off-diagonal
parts of the Hamiltonian give us equation

Hy X,y — XyrHy, = 0. (37)

10



However, we concluded that Xu = 0, which means that XTT should be zero as ﬁN # 0.
This gives us a contradiction and we cannot find X that would be universal across all
systems. For each given [:I, it will be possible to find X from Eq. 32, but the result will not
be the same for different systems. Another approach would be to search for the Einstein
relation as a product of two or more different operators. This approach however leads to
complicated derivative expressions and was not considered in this work.

Being only able to use the Green-Kubo definition of conductivity causes some limitations
on the systems we can study. On top of the error in the time-evolution of the states, the
size of the time steps also affects the accuracy of the integral giving us an additional source
of error. The lack of Einstein relation also means that the mean square displacement be-
tween two channels has to be calculated separately, because it is required in the calculation
of conductance, where some length scale has to be defined to get finite results. The most
convenient way of calculating the MSD is to numerically integrate the spin-channel-specific
VAC, because it has been calculated to access the conductivity. Of course this again accu-
mulates error if the used time step is too large and limits the time range available in the
calculation.

3.4 Spin transportation

In the Landauer-Biittiker formalism it is possible to define both spin-conserving and spin-
flipping conductance [39] because it is linked to transmittance. Comparing the two spin-
transport calculation methods, it would seem obvious that setting the two spins in Eq. 23
to up and down would give us spin flipping conductivity. While this does give some results,
they cannot be directly compared to the ones given by Landauer-Biittiker.

The most problematic part in defining the spin flipping conductivity this way is that it
fails to capture some, if not most, of the effects causing spin to flip. For example, spin
flipping caused by potential defects is not shown at all by this quantity. This is caused by
the definition of the velocity operator, V, = %&2 [H,X]61. The problem becomes apparent
when we write out the commutator:

[HX] =) (Xy = X)) Hyp|m) (n]. (38)

(m,n)

If 61 # G4, only one of the two off-diagonal blocks in the operator between the filters comes
out non-zero. However, in the case of potential defects, X,, = X,,, and the surviving values
are zero even before we apply the spin filter operators. Clearly the potential defects cause
spin to flip and this definition of spin flipping current cannot be complete.

The lack of spin flipping current can be seen as a drawback of the tight-binding model:
the up and down sites are assumed to reside at the exact same locations and when flipping
occurs between them, the location of the electron stays the same. When the location
does not change, there can be neither velocity nor conductivity. However, there are also
differences between the two formalities and their perspectives to the scattering events. The
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Kubo-Greenwood method focuses on the time evolution of wave packets and describes more
what happens at each time step. Landauer-Biittiker on the other hand describes the end
result of the scattering event, discarding the details on how the flipping occurs.

3.5 Spin polarization

When scattering is studied in a spinless case, calculating the conductivity often gives suffi-
cient information. This is because conductivity is coupled to the mobility of the electrons
and there are no additional degrees of freedom. This is not necessarily the case when spin is
considered. Depending on the system being studied, it is possible to have spin and charge
decoupled [40] and both of them have to be checked to see how the defects behave. Cal-
culating the spin-polarized conductivity is one way of doing this, but it takes into account
both spin polarization and electron mobility. It can be hard to distinguish between these
two just from the conductivity and a way to study the amount of spin is required.

The simplest way of studying the behaviour of spin in the system is to look at the expec-
tation value of spin filter operators &4 given by trace over the state vectors at different
times. This quantity gives us the total amount of specific spin at each time step. Another
possibility would be to look at the polarization, given by the expectation value of Pauli
z-matrix s, = o4 — 0,. While both of these approaches describe the total spin behaviour
quite well, they don’t provide any information about what happens at different energies.

To gain information about the energy, the trace has to be limited to states with certain
energy. This can be done with a calculation similar to what we did with the conductivity:

Tr{a(E - f])sz(t)}
Tr {5(E - Iff)} '

S(Et) = (39)

The delta function projects the states to certain energy while the division by the density
of states ensures that the polarization stays normalized. Because both conductivity and
polarization can be calculated as function of time and energy, they can now be directly
compared to see if there is a connection between spin and charge scatterings.

Calculating the energy projection can be problematic sometimes because it takes a lot of
computational effort to get the delta function accurate enough. Sometimes it is enough to
discard the energy information and just look at the average behaviour of the quantities.
The easiest way of doing this is to calculate the time evolution of the probability density
of an initial state. If we know the expectation value of an operator for each of the basis
states and the probability of being in these states, the expectation value of the operator is
simple to calculate:

(O()) = Zm(t) (il Oly). (40)

It is straightforward to calculate the spin polarization when density is known because the
expectation values (1;|3,|¢;) are either 1 or -1, depending on whether the state 1; is up or
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down. Conductivity, on the other hand, is a bit trickier to calculate. In order to calculate
it, we need information about either the velocity or displacement of the electrons. The
problem is that we evolve the system as a whole and cannot track the density evolution for
individual sites. While we know the change in density for each site, we do not know where
it came from or goes to.

This problem can be resolved by using a localized initial state. We still don’t know the exact
details of the density evolution, but since the initial location is known, the displacement
from the initial location of the packet can be calculated. The displacement for each site
can be squared and inserted into Eq. 40 to get the MSD for the system. One slight problem
in this approach is the finite size of the simulation area. The velocity of ballistic electrons
in graphene is so high that the boundaries are reached relatively fast, after which the
wave packet is transferred to the opposing side due to the periodic boundary conditions.
Therefore the best results are gained by placing the initial state to the center of the system
and only considering the results from the time before the wave packet hits the boundaries
for the first time. This way we don’t have to worry about the fact that the displacement
is bounded by the size of the system.

4 Implementation

4.1 Numerical approximations

The implementation is mostly based on the process described in [29]. There are three main
approximations that are required to achieve linear scaling algorithm. The first one is to
replace the trace with a sum over random vectors and the two others are to approximate
the delta function and the time evolutions with a Chebyshev expansion.

The trace operation is defined as the sum of the diagonal elements of an operator. This
requires computational effort scaling as O(N?), because the inner product (1)|O[t)) has
to be calculated for each vector in the basis. To reduce the scaling to O(N), the trace is
replaced with a sum over random vectors:

Np—1

T} ~ 5 3 (O, (1)

where the vectors [1);) are random-phase states, defined as (j|¢;) = €%y with ¢;; being
random, independent numbers. These states sample the full spectrum and it can be shown
that the expectation value of these inner products gives the trace [41]. It can be shown
that the error of the estimate is O(1/y/N,N), which means that even a small number of
random vectors /N, can give a good estimate as long as NV is large enough.

There is no analytical formula for the delta function, which means it has to be approximated
numerically. There are multiple different methods of doing the approximation, such as the
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Lanczos recursion method (LRM), the Fourier transform method (FTM) and the kernel
polynomial method (KPM). The method of choice for this work is the KPM.

The kernel polynomial methods include a wide range of techniques involving expansion of
a function in polynomial bases. In practical implementations these expansions have to be
limited to finite amount of basis functions, which causes bad behaviour, known as Gibbs
oscillation, to occur if the function being expanded is not nice enough. The solution is to
introduce a kernel function to the expansion, suppressing the oscillation.

The basis of choice in our work is the set of Chebyshev polynomials, which means a function
can be written as
Zun n (42)

where p,, = fjl f(z)T,,(x) and the Chebyshev polynomials 7;, are defined recursively as

fx) =

T 1—:52

To(z) = 22T, 1 (x) — T, (2) (43)
T, =T, (44)

starting from Ty(x) = 1 and T (z) = x. In our case the function we want to approximate
is a delta function, giving us p, = T,,(H). If we now insert Eq. 42 into 23, the velocity
autocorrelation function becomes

p(E)Cw(E t) = (B)C (1), (45)

1
WQ\/I—EQZ a

where CV4Y(t) are the Chebyshev moments for velocity autocorrelation:
CYA9(t) S~ Re { (il V(&) VT (A6 } (46)

Other quantities, such as the density of states and the mean square displacement, can also
be written in a similar fashion by replacing the velocity autocorrelation function with a
corresponding expression in the Chebyshev moments.

The Gibbs oscillations arise in the truncation of the expansion when the function being ex-
panded is not continuously differentiable. Delta function is certainly not smooth enough to
fit in this criterion, which means that something has to be done to counter the oscillations.
One way of doing this is to apply damping coefficients g,, to the sum:

E va E,t n - Unl CVAC 47
p<><>m@2g 5w T (E)CY (1), (47
In this work the Jackson kernel is used, for which

gn = (1 — na) cos(mna) + asin(mna) cot(ma), (48)
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with a = 1/(N,,, + 1).

The third approximation is considering the time evolution. The time evolution operator is
a matrix exponential and thus cannot be applied exactly, except for special cases. To find
a numerical approximation for the evolution, we again use the Chebyshev polynomials to
expand the operator, which becomes

80 = 3 2 ) Fi)" o (5 ) Tl D) (49)

where J,, are the Bessel functions of the first kind. A similar formula can also be found for
the commutator of the position operator and the time evolution operator, required in the

calculation of mean square displacement:
Np—1 At
RO~ Y@= 8" (5 T (50)

m=0

At first glance the expansions look slightly different compared to the expansion used with
the delta function. This is however only a matter of definition of the basis: the sets {T},(x)}

™/ 1—x2
matter of choice between these two.

and { I () } both form orthonormal basis and the difference in the expansions is only a

Even though Eq. 46 is perfectly valid equation for the calculation of Chebyshev moments,
it’s not a practical one. The time evolution is included in one of the velocity operators and
cannot be applied efficiently. To make the situation better, cyclic properties of trace can
be used to write the equation in a more suitable form:

) ~ Y Re (WU OV T.(HNDT (V) } (51)

Writing the time evolution operators explicitly makes it possible to apply them directly
to the vectors, saving both computation time and memory. To further reduce the time
required for the calculation of time evolution, we use the property U(t+ At) = U(t)U(At).
This allows us to use recursive formulas in the calculation:

(iU (¢ + At)Vs = (iU (U (AL)V; (52)

Ut (t+ AV |en) = UTN(AOTT () V] [v). (53)

Keeping (1;|U(t) and UT(t)V|1;) in memory after each time step makes computation of
the next step much easier because we can use the previous result to compute the next one.

Because of the similar form of the quantities being calculated, it is straightforward to
generalize the calculation of VAC to the others. The only difference between them is in the
Chebyshev moments and even they look quite similar. The easiest quantity to calculate is
the density of states because it doesn’t depend on time:

CrO% m Y (il Tu(H)leb). (54)
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The lack of time dependence comes from the fact that U is unitary and it also commutes
with the delta function. The calculation of spin polarization is almost as easy. The only
difference is that we have s, included and it does not commute with the time evolution
operator:

CR(E) = Y (i) T (H)s:|0i(2)). (55)

i

For the MSD, the process is a bit more complicated as the time evolution cannot be moved
next to the state vectors. We would like to end up with a symmetrical form and the best
way to do so is to cycle the time evolution so that we end up with its commutator with
the operator X:

Gl = Z(%I[K U (H)[X, U(#)][2)- (56)

Because the expressions on either side of the Chebyshev polynomial are conjugates of each
other, it is enough to calculate one of them. The calculation is made easier by using the
properties of time evolution and re-writing the commutator:

(X, Ut + AD)lws) = UAO[X, UW)][s) + [X, U(AD]U (#)[2). (57)

This equation allows recursive calculation of the MSD, with the help of Eq. 50.

4.2 GPU acceleration

The most computationally intensive part of the Chebyshev expansion is the moment calcu-
lation, as it involves applying the Hamiltonian multiple times to states. The reason for good
performance of the GPUs lies in the relatively high arithmetic intensity of matrix-vector
multiplication. Most of the algorithms used can be implemented on the GPU, minimizing
the amount of memory transfer to and from the GPU memory. In fact, the memory trans-
fers are only required during the initialization phase and when we return the calculated
Chebyshev moments back to the CPU memory.

During the initialization phase, the Hamiltonian and the initial random state vector are
transferred to the GPU. The Hamiltonian stays constant for the whole duration of the
calculation and it is enough to transfer it only once. The random states are generated on
the CPU and as the calculation loops through multiple random states, we transfer the
current one at the beginning of each loop. It might be slightly more efficient to generate
them on the GPU, but since it takes only a fraction of the total computational time, the
generation may as well be done on the CPU. Generating the initial state on the CPU is
slightly more flexible and allows different initial states be generated more easily.

The most crucial part of the calculation is to implement the operations [1,,;) = H |tin)
and Ypy) = [ﬁ,Xme) as efficiently as possible, as the most time is spent on them in
the Chebyshev moment calculation. The elements of |t,,;) are independent of each other
during the matrix-vector product and it is natural to parallellize the calculation over the
elements of the output vector. With GPU this is easily done by launching threads equal
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to number of elements and letting each thread calculate one element of the result. As
the number of threads is massive, the order in which they access memory will affect the
performance greatly. This mostly concerns the sparse Hamiltonian and there are two ways
of ordering its data in memory. For CPUs using sequential code, the better way would
be that all data for single site are next to each other and these blocks of data would be
ordered by the index of the sites. However, for GPUs it’s better to group the data by their
neighbour index, such that all Oth neighbours come first in the site index order, followed
by 1st neighbours and so on. This way consecutive threads access consecutive data in the
memory, leading to more efficient use of memory [42].

The performance of the original GPU implementation has been studied to more extent in
[29]. The overall speedup factor compared to a serial CPU implementation was reported
to be around 16. Even though this is much smaller than speedup for some other cases [43],
it is still remarkable. Reaching this speed on CPUs would require a lot of effort because in
the ideal case, the number of required processor cores would be 16. Typically the frequency
of a processor decreases with increasing number of cores [44], causing even higher number
of cores to be required to reach the same speed.

5 Results

To test the methods described above, graphene was chosen as the platform to contain
the defects in. It has little effect on spin and its properties are well described by simple
tight-binding model, making it ideal material to test our implementation with.

Two different samples were used in the testing. A 1000x 1000 cell with periodic boundary
conditions was used to model pristine graphene. The number of atoms was chosen large
enough to model an ideal graphene lattice, while keeping the computation time moderate.
Some tests were also run on a 65000x16 sample, simulating a zigzag nanoribbon. In the
latter case the periodic boundary conditions were applied only in the longer of the two
dimensions.

5.1 Pristine Nanoribbons

If there are no spin scattering defects in the system, there should be no differences between
the results of spinful and spinless calculations. To confirm this in our implementation, the
conductance of pure graphene nanoribbon was calculated. The conductance in graphene
nanoribbons is quantized and it should get values that are multiples of the conductance
quantum % [45].

The Landauer-Biittiker formalism is able to recover the quantization easily, but Kubo-
Greenwood, which we are using, requires some additional effort. Transport in pure graphene
is ballistic, which causes conductivity to diverge. To get a finite value for conductance, a
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Figure 2: Total conductance of 65000x 16 graphene nanoribbon calculated using Landauer-
Biittiker formalism and both spinless and spinful versions of Kubo-Greenwood.

length scale has to be introduced. A common way of doing this is to define conductance as
w

G(F) = Et 58
() = Zool ). (58)
where W is the width of the system and L(E,t) is length calculated from MSD:

L(Et) = 2/AX2(E ). (59)

Both L and o are expected to grow linearly in time during ballistic transport, which means
G should converge to a finite value.

The calculated conductance of the 65000x 16 nanoribbon can be found in Figure 2. In addi-
tion to the implementation being tested, the conductance has also been calculated using two
methods. The first one of them is a spinless implementation of Kubo-Greenwood formalism,
the code upon which our spinful Kubo-Greenwood has been built on. The second one uses
non-equilibrium Green’s functions (NEGF) and is based on the Landauer-formalism. The
NEGF gives the smoothest result of the three because it doesn’t use stochastic methods
and can be regarded as an exact method within the tight-binding approximation.

All three methods show the quantized conductance levels. The actual step-like behaviour is
nicely recovered by the NEGF, for which the conductance is precisely an integer times the
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conductance quantum. Both Kubo-Greenwood methods overshoot the conductance near
the band edges, but they stabilize to the value give by NEGF further away from the edges.
This behaviour is expected and it is caused by the singular behaviour of both DOS and
electron velocity near the band edges. The spinful calculation agrees quite well with the
spinless one and the differences are mostly explained by the difference in the energy points
used in the calculation.

5.2 Spin-Dependent Potential in Nanoribbons

In our previous work [19] we studied nanoribbons with defects which had spin-dependent
potential on a single atom site. These systems have almost ballistic transport, having only
a small range of energy for each spin that causes scattering. The scattering is strongest
when the defect is located on the edge of the ribbon and gets weaker as the defect is moved
towards the center. An example of conductivity for this kind of ribbon can be seen in
Figures 3a and 3b, where a single defect has been placed on the edge and in the middle of
the ribbon. The potential has been chosen to be +2 eV and the defect angle 6 is set to 0,
giving no coupling between the spins.

The Kubo-Greenwood method would have trouble with the system used in calculating
these Figures, because they have only one defect in them. The method is more suitable for
systems with uniform defect placement as the random vectors sampling the system are more
likely to hit the defects. Because of this, the number of random vectors required for a single
defect site is too large and the computational effort required is too much. Instead, a system
with 0.01% defect concentration was used to compare the spin-dependent conductivity. The
potential strength was still kept at +2 eV and the angle 6 at 0, but the defect placement
was not restricted to the edges. The results are shown in Figures 3c.

Even though the results differ from each other, the main features are common for both of
the methods. The quantization of conductance is still present, even though the defects are
causing the steps to smoothen out a bit. The placement of the defect has major impact
on the results. When the defect is on the edge, the most interesting parts in the energy
spectrum are at +0.4 eV, where one of the spin channels has a dip in conductance, while
the other stays constant. In the middle of the ribbon, the defect has almost no effect on
the conductance. For the Kubo-Greenwood calculation, the dips appear at the exact same
energies for both methods even though they are barely visible. The differences between the
methods can be explained by the different systems from which the results were obtained.
The randomization of the defect placement causes the result to be average of the bulk and
edge cases and the depth of the dips is decreased.

The same calculations were also done for a higher defect concentration of 1%. This also gave
similar behaviour, where the conductance has a dip near +0.4 eV. However, the problem
with this system is that the transport becomes diffusive and Equations 58 and 59 cannot
be used reliably any more. Instead of saturating to certain level, the conductance keeps on
decreasing. No further analysis was done for the higher concentration once the diffusivity
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Figure 3: Conductance of nanoribbon with defects having a spin-dependent potential.

was discovered, but the location of the dips supports the results gained from the lower
concentration.

The situation changes slightly when the angle of the defects is changed to 90°. The potential
is now a local coupling between the spin channels and both channels now behave identically.
The coupling allows spin to flip and it is now meaningful to calculate the spin polarization
as a function of time, in addition to the conductance. The defect phase ¢ is kept constant
at 0° to keep the calculations simple.

A conductance comparison between the two methods can be seen in Figure 4a. To make the
comparison better, there are now two defects in the Landauer-Biittiker calculation and the
result has been averaged over multiple configurations. Also, the Landauer-Biittiker makes
it easy to define spin-flipping transmittance, which is also shown in the figure. For Kubo-
Greenwood, only the spin conserving conductance was calculated and the shown data is
taken as an average between the conductances of the two spins. The results converge slowly
and taking the average allows to get a better result a bit faster.

The conserving conductances agree quite well with each other. There is still some noise in
the Kubo-Greenwood calculation, but the biggest dips are located at the same energies as
they are in the Landauer-Biittiker. Both methods also recover the quantization quite well,
even though the defects are already causing the levels to deviate from the original step-like
structure.

Since Kubo-Greenwood cannot calculate spin flipping conductance the same way Landauer-
Biittiker can, spin polarization was calculated instead. Figure 4b shows the amount of spin
polarization after 5 ps, starting from completely down-polarized initial state, for which
S(E,0) = —1. An exponential function was fitted to the first 0.5 ps of the simulation for
each energy and the inverse of the fitted time constant is also shown in the figure. The
flipping conductance calculated by the Landauer-Biittiker method is shown as a comparison
in the same figure.

Between these three sets of data, there is most correlation between the inverse of the time
constant and the flipping conductance. Both of these two are peaked at the same energies
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Figure 4: Conductance, spin relaxation time, and spin polarization for potential defects
in nanoribbons. Figure (a) shows a comparison between different conductances, while (b)
shows the spin polarization at t = 5 ps and the time constant fitted for the first 0.5 ps of
the simulation. The flipping conductance in (b) is the same data as in (a), slightly scaled
to give better comparison.

and behave roughly the same way between the peaks, the only exception being the energies
near zero. The spin polarization on the other hand seems to behave exactly the opposite
way as it has minima at the same energies where the other two are peaked.

The seemingly different results stem from the considerably different behaviour of spin
polarization for different energies. At the resonant energies of the defects, the band edges
and 0.4 eV, the polarization goes directly to zero and the flipping rate is fast right from
the start. As the polarization gets closer to zero, the rate slows down and there is barely
any oscillation. The non-resonant energies initially flip the spin much slower, as seen from
the inverse of the time constant. The rate however increases with time and polarization
starts to oscillate around zero.

The energy range from -0.1 eV to 0.1 eV replicates the Landauer-Biittiker results the
worst, as there is barely any spin flipping at £ = 0, even though there should be some.
The peaks at +0.09 eV roughly correspond to the peaks in conductance, but between them
the time constant gets larger than it should. Its inverse behaves almost identically to the
spin polarization, unlike in any other energy. This anomaly is most likely caused by the
band structure near the Dirac point. Because the sample is a zigzag ribbon, there are
localized edge states at £ = (0. The localization causes the quantities to go to zero, as the
electrons with these energies can not sample the system as well.

The edges have a big impact on the nanoribbons’ results. Landauer-Biittiker shows largest
dips in the conductance when the defects are placed on the edge and the edge states near
zero energy have been hard to reach using Kubo-Greenwood. To further analyse the edges,
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Figure 5: Conductance, spin polarization and inverse time constant for ribbon with defects
placed on the edge.

the spin polarization and conductance were calculated such that the defects were only
placed on the edges of the system. The results are shown in Figure 5.

The change in the results is remarkable. The difference in conductance between Landauer-
Biittiker and Kubo-Greenwood is now much smaller, as the dips are clearly visible also in
the Kubo calculation. Their magnitude is still not as large as in the Landauer calculation,
but compared to the previous case, they are now much more visible. The different defect
placement also affected the Landauer-Biittiker results a bit. There is no longer anything
happening near £/ = 0 and only the energies £0.4 eV and the band edges show deviation
from the step structure.

Even more radical changes can be seen in the spin polarization. The resonant energies at
+0.4 eV had already higher flipping rate than other energies, but this time the inverse of the
time constant is roughly 10 times larger than in the previous case. The polarization at these
energies still behaves the same way, going directly back to zero and showing no oscillation.
In the higher energies the relaxation time doesn’t change much and the differences are
mostly seen in the amount of spin polarization. This time most of the energy range doesn’t
have any oscillation for the polarization, except for the energies around resonance. The
most curious change however is the behaviour near zero. Instead of the linear, rather sharp
drop to zero, 1/7 and spin polarization tend to zero in a much smoother way. Again, the
changes are most likely caused by the edge states. The potential added to the edge sites
disrupts the state and difference in the behaviour can be expected.
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Figure 6: (a) Conductivity for pure graphene and potential defects at concentrations of
0.01% and 1%. Conductances for pure graphene and low concentration have been measured
at propagation length of 1000 nm, while the higher concentration is taken from ¢ = 0.6 ps.
(b) Conductivity as a function of time at different energies for 1% concentration.

5.3 Spin-Dependent Potential in Graphene
5.3.1 Spin conserving potential

Even though Kubo-Greenwood method produces correct results in the nanoribbons, it is
outperformed by the Landauer-Biittiker method. The geometry of the system causes the
results to converge slowly, because the long but narrow shape limits the amount of system
each random vector can sample. Another thing to consider in the ribbons is the presence of
the edge states. Because the zigzag edge states are localized, the Kubo-Greenwood method
has trouble reaching them.

All of these problems can be avoided by moving to a 2-dimensional system. In regular
graphene we don’t have to worry about the limitations given by the narrow system and
the lack of edge states makes the calculation easier. This wide systems cannot be reached
by the Landauer-Biittiker method, as it scales cubically with respect to the width of the
system, and Kubo-Greenwood becomes better of the two methods. Taking graphene as a
platform for defects makes it easier to look into intrinsic properties of the defects. With
periodic boundary conditions, there is virtually no contribution from edges and the large
system size further reduces the finite-size effects.

We start with the same potential defects we used with the ribbons. To keep the results
comparable to the previous ones, the strength of the spin-dependent potential is kept the
same, at £2 eV. We also start with the same defect concentration of 0.01%, but this time
we also look into higher concentrations in more detail.
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As seen in Figure 6a, the potential defects do not affect the conductance much in low
concentrations. The conductance is slightly smaller with defects in the system, but the
overall behaviour stays the same in the shown energy range. The difference becomes larger
at higher energies, but since they are already outside of the valid range for tight-binding
approximation, they are not analysed further. As the concentration goes up, the difference
becomes apparent. While the transport is ballistic in the lower concentration, this is no
longer the case in the higher concentration. The conductivity does not diverge, but saturates
to some levels, depending on the energy. Because of the saturation, there is no need to
measure the conductivity at constant length scale. In fact, the length at which the other
conductivities were measured, 1000 nm, was not reached in the whole energy range by the
end of the simulation time, 2 ps. The longer simulation time required to reach this length
would make the simulation run considerably longer since shorter time steps would have to
be used to minimize the error made in the time evolution.

The main observation from the behaviour of the potential defects is that the conductivity
becomes asymmetric with respect to the zero energy. The two spin-channels are symmetric
to each other, but inside each of them the symmetry is broken. The conductivity becomes
smaller on the side at which the potential is, for example in Figure 6a the up-conductivity
is smaller at negative energies when the potential strength for up-sites is -2 eV. The relative
difference is modest in the smaller concentration, but it becomes considerable in the larger
concentration.

Figure 6b shows the time evolution of conductivity at £ = 0 eV and E = 0.5 eV for the
higher concentration of defects. For £ = +0.5 eV the saturation is already seen, but at
zero energy, the maximum is not yet reached. Longer simulation would be needed to see
whether the conductance stays on the saturated level or starts decaying. Because of poor
convergence, the simulation time had to be limited to a maximum of 2 ps, as convergence
required more random vectors than usually. The problems with convergence are caused by
the fluctuations of the conductivity, which is seen in the diversity of the results calculated
using single random vectors. Some vectors behave almost ballistically, while others show
behaviour with decaying conductance. When the average is taken over multiple random
vectors, the result becomes diffusive and saturation is observed.

One way of improving the convergence would be to use lesser amount of Chebyshev mo-
ments in the calculation. The results in Figure 6 were calculated with N,, = 3000, a
considerably high value. Higher number of moments ensures all features are captured in
the results, but it also makes noise more significant. Lowering the amount would smoothen
the results with respect to energy and most of the energy range would see improvement in
the results. The problematic part is the energies near zero. As seen in Figure 6a, there is
a kink in conductivity at the zero energy where the linear slopes meet each other. If the
number of moments was decreased, the conductivity would behave smoothly also at zero.
This is unwanted behaviour as the conductivity near zero would gain way too large value.
The effect of the number of moments is studied more later.
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Figure 7: (a) Down-spin conductivity for potential defects in graphene with two different
defect angles, both measured at ¢t = 0.6 ps. (b) Spin polarization as a function of time at
E = 0.5 eV. Both figures are for graphene with 1% concentration of potential defects.

5.3.2 Spin flipping potential

The conductance behaves a bit surprisingly when the defect angles are turned to 7/2. Both
up and down conductivities have the same value as expected, but as seen in Figure 7a, the
value is smaller than either of the conductivities in the § = 0 case. This is considerably
different behaviour than for the lower concentration of defects in nanoribbons, for which
the conserving conductance at § = 7/2 was much more like average of the up and down
conductances from # = 0. The results of the figure are calculated for 1% concentration,
which may explain the difference as the ribbons results were taken from 0.01%. Differences
in the charge carrier mobility do not affect the results, because the results are the same
regardless of whether the conductivity is measured at constant time or length. In any case,
the coupling between up and down sites seems to be causing more charge scattering than
the corresponding spin-conserving potential, leading to smaller conductance.

When the spin polarization for 1% concentration is calculated, it is now apparent that it
behaves as a damped oscillator, described by equation

S(t) = —e /7 cos(wt), (60)

where 7 is the time constant for damping and w is the angular frequency of the oscilla-
tion. As seen in Figure 7b, the polarization goes to zero quite fast, but a clear sinusoidal
oscillation is observed before that happens. This questions the exponential fit made to the
polarization in ribbons earlier. It is possible that the behaviour in the ribbons also follows
Eq. 60 instead of simple exponential decay, but since the fit was then made only for the
beginning of the simulation with no present oscillation, the results should still be valid.
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Figure 8: (a, b)Fitting parameters w (lower) and 7 (upper) from Eq. 60 for potential defects
with 6§ = 7/2 and potential strength +2 eV in graphene. The defects concentrations are
0.01% and 1%. (c) Spin precession speed w measured at ' = 0 eV for different potential
strengths. (d) Inverse of spin relaxation time 7 measured at £ = 1 eV. The solid black
lines in last two figures show linear and quadratic fits to the data points.

Figure 8 shows the fitting parameters as a function of energy for both 0.01% and 1%
concentrations of potential defects in graphene. Unlike with the ribbons, there are no
resonant energies for the defects where the behaviour would be special in some way. This
supports the observation that the resonant energies for ribbons were caused by the edge
states of the system. Edges have a much smaller role in the graphene and periodic boundary
conditions make them even less important, fading away the possible small contributions of
edge states.

When the results of the two concentrations are compared, their similarity is astounding.
The time constants have completely different magnitudes in the two systems, but their
behaviour is exactly the same. The smaller concentration does have slightly more roughness
in the shape, but this is most likely caused by the slower oscillation in the system. When
there is barely any oscillation during the time for which the fit is made, it is harder to do
the fit accurately.
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Another curious observation is that the ratio between the results at each energy is remark-
ably close to 0.01, the ratio of the defect concentrations. This suggests that both of the
(inverse) time constants scale linearly with respect to the defect density. This behaviour is
also encountered with other similar spin-flipping systems [46].

So far all of the potential defects calculations have been made with the same potential
strength, +2 eV. While this has given pretty good results, the effect of different potential
strengths should also be checked. To do this, the calculations were repeated while the
strength was varied from 0.5 eV to 2.5 eV. Spin polarization still shows damped oscillatory
behaviour throughout the whole range and both time constants behave the same as a
function of energy. The values of the constants at selected energies can be seen in figures
8c and 8d. For w the values are taken from E = 0 eV and for 7 they are from F =1 eV.

The time constants seem to obey simple linear and quadratic scaling, as seen from the fits
done to the data. The linear scaling of w is expected, as oscillation speed usually depends on
the energy difference between the two states between which the oscillation is happening [47].
Since we are controlling the potential for each spin channel, we are essentially changing
their energies, leading to the linear scaling. The quadratic behaviour of 7 on the other
hand can be explained by the mechanisms causing spin scattering. The two conventional
mechanisms are called Elliot-Yafet (EY) and Dyakonov-Perel (DP) [48]. Both of them scale
the spin relaxation time as 7, ~ 1/A? with A being the potential difference between spin
channels [49, 50|, explaining the observation. The dominant mechanism of the two is usually
discriminated by the relative behaviour of 7 and 7,, the momentum relaxation time [51].
In our case, we cannot use this information to specify the underlying mechanism because
the two relaxation times are uncoupled. Nevertheless, the fact that both mechanisms have
a similar scaling with respect to potential strength supports our results.

5.4 Adatom Plaquettes

The potential defects studied in the previous section should be considered purely as math-
ematical defects. While something similar could be achieved with e.g. light adatoms on
top of the carbon atoms, the potential strength is quite strong for any viable real-world
defects. Additionally, real world defects will most likely affect multiple sites and can be
more complicated than simple spin-dependent potential on single sites.

One way to approach the more realistic spin relaxation methods is the so-called Rashba
field, which can be seen in the tight-binding Hamiltonian as complex spin-flipping hoppings.
The Rashba Hamiltonian is given by

ﬁR:iVRZg'(gx di) i) (il, (61)
(i,3)
where the sum goes over the nearest neighbours affected by the Rashba field, 2’ is unit

vector normal to the plane, 5 is vector formed from Pauli matrices and d;; is unit vector
along the bond between sites ¢ and j. The Hamiltonian may seem a bit complicated, but
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when written out in the spin basis, the terms being summed have actually quite simple
form
0 —cos ¢+ isin ¢
cos ¢ + isin @ 0 ’
where ¢ is the angle between the bond and the x-axis. It is easy to see from this form that
the spin-flipping hoppings have constant magnitude, but their complex phase depends on
the orientation of the bond.

(62)

It has been observed experimentally that Rashba field can be induced by heavy adatoms,
such as gold, sitting in the hollow sites of graphene lattice [52|. This type of Rashba effect
has been studied by van Tuan et al. [46]. In the model they used, a gold adatom sitting in
the middle of graphene hexagon induces a Rashba field to the surrounding carbon sites. In
addition to the Rashba part, they also include intrinsic spin-orbit coupling and a potential
shift associated with the adatoms. The Hamiltonian used has the form

21 L, S . N
—\/g‘/[ E 8- (dij x dig) 1) (j| + Hr — p E |3) (], (63)
((3,5))ER i€R

with R being the set of plaquettes next to the adatoms and ((7,j)) € R denoting the next-
nearest hoppings within the plaquette. The intrinsic spin-orbit coupling can be written out
similar to what was done with the Rashba part and it simply induces a spin-dependent
2nd-nearest neighbour hopping within the plaquette. The hoppings become +i/ V3V and
there is no coupling between the opposing spins. The local potential shift is needed because
there is a local charge redistribution due to the adatoms [53].

H=Hy+

Our results for the spin behaviour agree qualitatively with the ones van Tuan et al. had
in their paper, as seen in Figure 9a. The spin relaxation time features an M-shaped curve
as a function of energy where the relaxation time increases quite smoothly when £ = 0 is
approached, until it collapses to a minimum at the Dirac point. The spin precession time
on the other hand stays approximately constant for the whole energy range. When the
results are looked into more carefully, there are however quite big differences. The biggest
difference is the magnitude of the spin relaxation time. In our calculations 7 = 0.34 ps at
E = 0, a result which still agrees quite well. The maximum at 0.1 eV, where 7 = 4.3 ps,
on the other hand is completely different from the 7 = 0.8 ps at 0.2 eV reported by van
Tuan et al. Also, there is a slight kink at £ = 0 in the spin precession time not present in
their results.

The difference between the results is most likely explained by the different approximation
of the delta function. In their supplementary material, the authors mention a thermal
broadening of 0.027 eV. Even though this gives a relatively good approximation for the
delta function, it is still way wider than the one used in our calculations, as seen in Figure
9b. The type of the broadening was not mentioned in the supplement and therefore both
Lorenzian and Gaussian distributions are drawn to compare to our Chebyshev expansions
with N, = 300, 500, 1000. Even though the number of moments in each of the three cases
is small compared to NV, = 3000 used in our other calculations, all of them feature a much
sharper peak than either of the two distributions they are compared to.
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Figure 9: (a,c-d)Spin relaxation and precession times for 8% density of adatom plaquettes
calculated with different amount of Chebyshev moments. (a) IV,,, = 3000 for both relaxation
(black curve) and precession (blue). (b-d) The amount of moments are 300 for light blue,
500 for orange, and 1000 for purple. (b) Approximations to delta function with the different
amount of moments. The black curve shows Lorenzian approximation with n = 0.027 eV
while the gray one shows Gaussian with ¢ = 0.027 eV.
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Figure 10: (a,b) Total conductivity for 8% concentration of adatom plaquettes measured
at 1 pum (blue), 5 ps (orange) and at 15 ps (inset) and pristine graphene at 1 um (gray
curves). (c¢,d) Time-dependent diffusion coefficient at selected energies. Figures (a) and (c)
are calculated with N,,=300 and (b) and (d) with N,,=1000.

The effect of V,, is further investigated in Figures 9c and 9d, which show the spin relaxation
and precession times calculated for the three cases considered in Figure 9b. As expected
from the comparison between the delta function approximations, the case with fewest
moments is closest to the results of van Tuan et al. The magnitude of 7 is still too large
across the whole energy range, but the shape is now fully consistent with their results. Tq
on the other hand behaves now much more nicely as the kink at £ = 0 has turned into a
smooth bump. Because the approximations to the delta function are different, the results
cannot, be expected to be exactly the same, but they agree already quite well.

Another effect of the number of moments can be seen in the curious behaviour of conduc-
tivity near K = 0. During the first few picoseconds of the simulation, there is a minimum
at zero in the conductivity, as seen in Figure 10. However, once time passes on enough,
the depth of the minimum decreases and it actually becomes a maximum at long enough
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times. This is caused by the increased broadening of states over time as the peak at 0.3 eV
fills in the minimum. The incorrect behaviour is highlighted by comparing the magnitude
of the conductivity to pristine graphene in the same figure. Pristine graphene should give
an upper bound for conductivity for systems with defects with them and in our case we
have multiple times bigger conductivity than that.

When the number of moments is increased, the correct behaviour is brought out. Figure 10b
shows the conductivities at exact same times but with N,,—1000 instead of 300. This time
the states do not get wider in energy and the minimum at zero also keeps its shape as time
goes on. The results now also agree much better with the conductivity of pristine graphene.
The pristine conductivity shown is calculated at constant length, and the corresponding
plaquette conductivity agrees quite well with it. The results with constant time cannot
be directly compared with the pristine case, but they also agree quite much better. They
follow the behaviour from the pristine case much more closely and the bigger magnitude
is fully explained by the different point of measurement.

There is still some discrepancy in our results compared to the ones by van Tuan et al.
According to their calculations, the diffusion coefficient saturates at energies above 0.1 eV
at 8% defect density. This was not the case in our results as D(t) keeps on increasing
for much wider range of energy. The magnitudes of the coefficient is quite close if our
N,,, = 3000 result is compared to theirs, but the behaviour is still a bit different. Either
there is still some difference in the systems on microscopical level or the effect of the
different approximations of the delta function is even higher.

5.5 Charge Puddles
5.5.1 Constant sized puddles

Both of the potential defects and adatom plaquettes considered earlier are very local de-
fects and can result in sharp changes in the potential. Whereas this could be achieved by
adatoms, too abrupt changes in potential are not likely to be present in real systems. A
more realistic scenario would be a defect which spans over multiple sites and has smooth
behaviour for the potential. In this section we particularly focus on Gaussian-shaped charge
puddles, which are described as

Ur)y=Uge 178, (64)

where Uy is the potential strength at the center of the puddle, located in the middle of some
carbon hexagon, r is the distance from the centre and r( is the width of the puddle. The
potential strength is chosen separately for the spin channels but the center of the puddle
is the same for both of them. These puddles could be caused for example by ripples in the
graphene sheet or a magnetic substrate underneath the sample. The spin-dependency of the
potential might stem from electron polarization of the puddle or ferromagnetic properties
of the substrate. The numeric values used for the potentials are Ug = 0.8 ¢V and U& =0.6
eV. The defect angle is handled the same way it is done with the potential defects.
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The potential strength decays to zero with these defects quite rapidly and to ease the
forming of the Hamiltonian, a cutoff radius is introduced for each puddle. The cutoff is
implemented such that only the sites inside a rectangular box centered at the defect site get
finite values for the potential. The edges of the box are chosen such that the exponential
coefficient, e="*/2"0 gets value 0.001 at the center of each side. Sites outside of this box will
gain zero contribution from the particular defect. The puddles are allowed to overlap and
the potential for a site is simply the sum over the contributions from all defects.

Because of their much larger nature, the amount of puddles we can place in the system
is much smaller than that of the single-site potential defects. For example, a puddle with
ro = 10 ag covers an area which has roughly 240 atom sites. Therefore, 1% density of the
potential defects would correspond to puddle density of 0.005%. However, the strength
of the puddles gets much weaker near the edges of the puddles and the cases with equal
coverages cannot be directly compared.

The behaviour of spin polarization with charge puddles depends greatly on whether the
potential strength is kept constant for the puddles or is taken randomly from [—Uy, U],
as seen in Figure 11. When the potential is kept constant, dampened oscillation is still
observed. This time, however, the behaviour is highly asymmetrical with respect to the
Dirac point. On one side of the point the oscillation is much faster compared to the other one
and the same side also dampens faster. The randomized potential on the other hand shows
no signs of oscillation. The behaviour is completely symmetrical and the spin relaxation
time is longer than on either side of the Dirac point in the constant case.

The differences between the two cases are mostly expected. The magnitude in the constant
strength puddles is Uy, the endpoint of the potential interval from which the randomized
strengths are taken. When the potential strength is randomized, the average magnitude of
potential is lower than the value used in the constant case, causing the relaxation to take
longer. The symmetry follows from the fact that the randomized potential is taken from
-Uy to Uy. Flipping the sign of the potential mirrors the results with respect to zero and
when average is taken over the different potentials, there are equal amount of puddles with
opposing signs, leading to the symmetric result. The most curious difference is the lack of
oscillations in the randomized case. It seems that each puddle with different strength has
its own energy-dependent oscillation frequency. When there are multiple different puddles
in the same system, the competing frequencies suppress each other, leading to no oscillation
in the end.

The behaviour of the conductivity for the charge puddles is different from either of the
potential defects or adatom plaquettes, as seen in Fig. 11d. Just like the other defect types,
o has a minimum at F = 0, but instead of staying constant or decaying at higher energies,
this time o behaves quadratically near the zero energy. This is in a good agreement with
scattering from charged impurities, for which the conductivity scales linearly as a function
of charge carrier density n [54]. Because n depends quadratically on E, the conductivity
scales as E? explaining our observation. On the other hand, the linear conductivity of
the potential defects is explained by their much shorter range. Short range scatterers in
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Figure 11: (a) Spin polarization as a function of time for three energies with Ul =08
eV and U = 0.6 eV. The dashed lines feature constant potential while the solid lines
have it randomized. (b) Spin relaxation time for randomized (blue) and contant (orange)
potentials. (¢) Spin precession time for the contant potential. (d) conductivity at ¢ = 0.6
ps for randomized potential (blue) compared to pristine graphene (black) and potential
defects (gray).

graphene have been shown to have constant conductivity [55] and is in agreement with our
results.

5.5.2 Puddles with varying size

In real experiments, it is likely that the size of the puddles in the system is not uniform.
In case the potential is caused by a substrate, it might have rough surface and affect
the electron distribution unevenly. Therefore, it is good to also randomize the width of
the puddles in addition to the potential strength. Having another parameter randomized
causes the convergence to suffer slightly, but as seen from Figure 12, the results are still
reasonably good even with the same number of random vectors in the calculation as before.
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Figure 12: (a) Time constant (b) Conductivity at ¢ = 0.6 ps for puddles with randomized
width. The blue curves correspond to maximum width of 10ay and the orange ones to 15ay.
The black line in (b) shows pristine graphene as a comparison.

The blue curve in Figure 12a shows the spin relaxation time when the puddle width is
randomized uniformly between 0 and 10ag, while keeping the other parameters the same
as before. With the exception of the vicinity of the zero energy, the behaviour is pretty
much the same as before, with the time constant slowly decreasing with increasing energy.
Near zero, the behaviour however changes drastically. Instead of dropping sharply and then
forming a small peak at £ = 0, the peak is now dominant and the drop in not nearly as
sharp. The orange curve in the same figure shows the case where the randomization is
taken over 0-15a¢. Again, the zero energy shows slightly different behaviour compared to
the other cases, as there is a sharp drop and no peak at £ = 0.

It seems that the peak at the zero energy is a feature originating from the smaller puddles
in the system. The case with constant ry = 10ag was shown in Fig. 11b and it had only a
small peak at £ = 0. All of the puddles have smaller width than this in the randomization
and the smaller puddles have to be responsible for the larger peak. In the system where
randomization is taken from 0 to 15ag, it is basically guaranteed to have at least some
puddles with rq > 10ay and it is enough to fade the peak away. It seems like the smaller
puddles are too steep for the £ = 0 charge carriers and since they cannot get into their
range, the amount of spin flipping is reduced. Even a few larger puddles are enough to
enable spin flipping near zero, as they have much gentler slope and allow the charge carriers
to enter their area.

Outside of the zero-energy range, the results are quite expected. The spin relaxation times
are a bit longer in the randomized case compared to the same non-randomized one. The
randomization causes the average puddle size to be smaller and it is natural that it takes
longer for the spin to relax. There is also not much going on with the conductivity. Both ran-
domized cases feature the same parabolic energy dependence seen in the non-randomized
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Figure 13: (a) Spin relaxation time scaling as a function of puddle width. The two curves
are measured at E=0 (blue) and E=1 eV (orange). (b) Behaviour of the relaxation time for
different puddle widths. The curves have been scaled to fit into same figure and only the
relative behaviour should be considered. All widths have unit of ag, the C-C bond length
in graphene.

case and the magnitude of the conductivity is not much smaller than in pristine graphene.
With larger puddles the conductivity is a bit smaller as there is larger area scattering
charge, but it seems that the puddles do not scatter charge significantly.

To further address the effect of the puddle size, the spin polarization was calculated with
multiple constant puddle sizes. Figure 13a shows the behaviour of the time constant versus
the puddle size. At E = 1 eV the behaviour is linear, suggesting a power law behaviour.
At E = 0 there are straight portions, but overall the curve is not linear. This is mostly
explained by the transition between the extremes seen in Figure 13b. In the small size
limit the relaxation increases inversely to the energy as zero is approached, while the larger
puddles have decreased relaxation near zero. Between these cases is a transition region,
which was already seen earlier.

The behaviour of the relaxation time at £ = 1 eV strongly suggests that there would be a
power law scaling between it and the puddle width. To see if this is the case for all energies,
a fitting to ax® was done across the calculated energy range. The fitting can be done in
multiple ways and the results can be seen in Figure 14. Perhaps the easiest way of doing
the fit is to take the logarithmic plot similar to Figure 13a and fit a straight line to the
data. Alternatively, it is possible to get a fit directly for the power law by minimizing the
squared sum of function f(a,b) = 7 — arf across the puddle sizes ry and the corresponding
spin relaxation times 7. The third method utilizes the same minimization of squared sum,

but instead of applying it directly to the data, the inverse of the relaxation time is taken.

The reason behind the three different ways of fitting is the different weights they give to
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Figure 14: (a) The exponent b in the power law ax® fitting as a function of energy. (b)
Sum of squared errors of the fits. Blue curve shows direct fit, the orange one fit to inverse
relaxation time and the purple one a logarithmic fitting.

each data point. The fit to logarithmic plot gives roughly an equal weight for each point in
the data, while the direct fits give more weight for their largest data points. For direct fit
these are the smaller puddles, since they have longer relaxation time and for the inverse fit
more weight is given to the larger puddles. To measure the goodness of each fit, a sum of
squared error (SSE) was calculated between the fit and the actual data points. To ensure
a fair comparison between the methods, the error was calculated on the logarithmic scale.
On a regular linear scale there is way too much weight on the smallest puddles, since their
relaxation time is few orders of magnitude larger compared to the larger ones.

The results given by the first two methods agree reasonably well with each other, as seen
in Figure 14. The exponent in the power law mostly varies between -3 and -4 and at the
zero energy it drops down even further. The zero-region however should not be taken too
seriously, since the the transition mentioned earlier affects it the most. The third method
gives considerably different results, as the exponent is roughly -2 with almost no energy
dependence. The difference might be caused by the fluctuations that were present in the
larger puddles. The inverse time fitting gives the most weight for the largest puddles and
if they have inaccuracy in their values, so will the fit done by the third method.

The sum of squared error suggests that the first method would be the best of the three.
It has the smallest error across the whole energy range and it also has the smoothest
behaviour for the exponent. The method however benefits greatly from the way the SSE
was calculated. Since the SSE is calculated in the logarithmic scale, it gives a natural
advantage for the first method, since it already minimizes the SSE on the logarithmic scale
in the linear fit. If the SSE was calculated on linear scale, the first method would have
multiple orders of magnitude larger error because it doesn’t give nearly as much weight
for the smallest puddles. In any case, the first method seems to be the best in finding the
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Figure 15: (a) Scaling of the (inverse) relaxation time as a function of charge puddle density.
(b) Slope of the linear fit as a function of energy. (inset) Sum of squared errors in the fit.

exponent correctly, even though the fit given by it might not be the best.

As a last result for the charge puddles, the scaling of the spin relaxation time was also
calculated as a function of the puddle density. The results can be seen in Figure 15, where
the inverse of the relaxation time is shown against the density. With the exception of
the zero energy, the inverse seems to be scaling linearly with nearly constant slope across
the energy. The transition observed with the previous results seems to be affected by the
density, causing deviation from the linear behaviour for zero energy. As seen in the error,
the fits are really good across the energy.

The linear scaling is a quite reasonable result. If the puddles do not interact with each
other, each one will scatter spin with the same rate assuming the charge carriers traverse
somewhat uniformly. Increasing the number of puddles would then increase the number of
spin scattering events linearly. The relaxation time is inversely proportional to the number
of spin scattering events, which means that the inverse also increases linearly. In high
enough concentrations the puddles start to overlap and interact with each other, but at
least in the range that was calculated, this was not yet the case.

5.6 Charge carrier density evolution

In the absence of a good measure for spin flipping conductivity the spin polarization has
been so far the best way to describe the spin behaviour. While it gives useful information
about the system, it doesn’t address the transport properties as well as conductivity or
conductance would. One alternative way of looking into the transport properties is to
calculate the time-evolution of the wave function and see how the charge density evolves in
time. An especially interesting case is localized initial state, since it gives a way to measure
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distance travelled by the wave packet.

There are some technical problems when the density is calculated, especially considering
the amount of data that is acquired in the computation. The system we have calculated
so far have had roughly million atoms in them. It takes roughly 16MB of memory to store
the density for one state vector using double precision numbers, as each atom has separate
densities for both spins. Time evolution requires roughly 100 steps to calculate the density
accurately enough for relevant time scales, which means the amount of memory required to
store the evolution of one random state is in the order of gigabytes. Accurate calculations
require tens of random vectors and the amount of storage required becomes too large to
handle.

The memory usage can be reduced by averaging the density over a few sites. For example
we can calculate the density over a grid of 10x10 squares, reducing the required memory
by a factor of 100. This kind of box filter is a basic operation on a GPU and it performs
really efficiently. The averaging process decreases the accuracy in location slightly, but in
small enough areas this does not matter.

So far most of the quantities have been calculated as a function of energy. When density is
considered, the energy is not as important and it can be dropped out of the calculations,
saving both computational time and size of the output. Physically the most relevant energy
range is the vicinity of the Dirac point and to focus the results to this area, the initial state
can be manipulated with imaginary time evolution. When operator e ™H” ig applied to
the state, the energy eigenstates are weighted with an exponential coefficient e~ "2, After
renormalization, the higher energies vanish from the state and the relevant energy range
is left in. An illustration of how the DOS changes is shown in Figure 16a.

The initial shape of the wave packet was chosen to be Gaussian, similar to how the charge
puddles were defined. The width of the packet was chosen to be 5 a¢ and it was normalized
to the number of atoms in the system. The initial state might be slightly unphysical, since
it corresponds to scenario where every electron of the system is in the same location, but
the dynamics given by it should come out correctly nevertheless as the interaction effects
are neglected. An example of the time evolution in the presence of charge puddles can be
seen in Figure 16b. The spreading happens quite fast and in the last snapshot, which is
taken at t = 48 fs, the width of the packet is already 10 nm. The hexagonal shape of the
spreading packet is caused by the graphene lattice and the lack of excessive scattering in
the system. The strength of the puddles is weak enough that the initial symmetry of the
packet is retained, unlike in the presence of stronger defects in higher density. For example
the potential defects with strength of £2 eV and 8% density cause the packet to become
circular after the first 60 fs of the simulation. With the puddles, the hexagonal shape is
retained for the whole 2 ps of the simulation.

The Figure 16b also shows how similar the spins behave. The shape and size of the packet
are identical as time passes on and the only difference is the amount of each spin. Also,
the ratio between the spins stays quite uniform across the system in the presence of charge
puddles as seen in Figure 17. When the average spin percentages are compared, their
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Figure 16: (a) The density of states after imaginary time evolution (blue) compared to
regular DOS (black) (b) Time evolution of the density of Gaussian shaped initial state in
the presence of charge puddles. The first line shows up-spin and the second one down-spin.
The snapshots are taken from ¢ = 0, 24 and 48 fs.

overall behaviour does not differ much from the local ones, especially in the later parts of
the simulation. After the first 0.1 ps of the simulation, both local and global values are
practically the same and most of the interesting phenomena occur before that time. Up
until 0.05 ps, the density behaves smoothly for all of the points of measurement. After
that, the percentage of the up spin drops fast with a strong dependence on the distance
from the center. For the closest points, the percentage starts to drop immediately, while
for the further points it takes much longer to drop down.

The times at which the drops occur roughly correspond to the moments at which the main
wave packet passes the points of measurement. At t=0.05 ps the widest part of the packet
has travelled 5.7 nm from the centre and at 0.1 ps the narrowest part has just passed
the 9 nm distance, at which the furthest measurement was done. Because of its hexagonal
symmetry, the wave packet reaches the same lengths at slightly different times, making the
passing a little longer event. The sudden drop in the percentage of up spin when the main
packet passes by suggests that there is a rather strong correlation between the scattering
of charge and spin. The first parts of the wave packet that reach the points of measurement
are the fastest, which means they cannot have had many scattering events on their way. The
percentage of up spin in these parts is also larger than on average, which means they also
have had less spin scattering. The most of the down spin is carried by the main packet and
as it passes the point of measurement, the down density increases drastically. At the 0.1 ps
mark the wave packet has almost reached the whole system and after that, the behaviour
follows the average closely, as the density has more or less reached the equilibrium.
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Figure 17: Percentage of up spin density as a function of time at distances of 4.5 nm
(purple), 6.2 nm (orange) and 9.2 nm (blue) compared to the overall density of up spin
(black). (a) shows the results for charge puddles and (b) for potential defects. The data
sets start from the moment when density becomes large enough that it can be numerically
distinguished from zero.

The potential defects are much stronger scatterers and therefore their local spin behaviour
differs quite much from the global one. First of all, the wave packet spreads a lot slower,
as seen from the later starting point of the data sets in Figure 17b. There is now a really
strong dependence on the point at which the measurement is made. The amplitude of the
spin oscillation decays much slower in the farther points and they also oscillate slightly
slower. This time the wave packet reaches the whole system at t=0.12 ps, but there is still
some difference between the local and global behaviours. It would seem that the stronger
potential defects keep the different parts of the system much more separated, allowing
there to be different behaviour at different locations.

The different behaviour of spin is especially well seen in the profiles of up spin percentage
shown in Figure 18. With charge puddles in the system, there are two levels of percentages,
one closer to the center and one further away. The closer one has slightly less percentage of
up spin and between the two levels there is rather steep rise. The rise is most likely caused
by the main wave packet passing the radius, as their locations match. The spin profile
stays quite uniform across time, unlike with the potential defects, for which the profile
changes in shape a lot as time passes. In principle the behaviour is more or less similar to
the puddles as there is again two levels and a slope between them. This time however the
further level can get any values depending on time. It seems that, unlike with the charge
puddles, there is no coupling between the spin and charge scattering as this time the faster
electrons undergo spin scattering.
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Figure 18: Percentage of up spin as a function of distance from the center. The curves are
for t— 0, 0.02, 0.05, 0.08 and 0.1 ps, for blue, orange, yellow, purple and green, respectively.
Figure (a) is for charge puddles and (b) for 1% potential defects.

6 Conclusions

Spin-dependent transport properties of electrons in graphene were studied in this thesis.
The research was done using the real-space Kubo-Greenwood formalism, implemented on
graphics processing units. A spin-dependent formulation was derived starting from Kubo
conductivity and an implementation was created on top of an existing spinless code. The
implementation was finally tested on various types of defects embedded in graphene.

It turned out that the concept of spin-flipping conductivity is somewhat ill-defined. While
it can be defined in the Kubo-Greenwood formalism, this definition does not capture all
spin flipping effects in the system, and in particular the effect of spin-dependent potential
is completely left out. This obviously does not agree with the Landauer-Biittiker formal-
ism, for which flipping conductance can be defined. The difference comes from the differ-
ent perspectives to the transport: in the Landauer-Biittiker formalism the conductance is
accessed through transmittance and is more or less related to electric current, while Kubo-
Greenwood focuses more on the density evolution which is more related to the movement
of separate electrons. Within the microscopic view of Kubo-Greenwood formalism, it seems
that spin polarization provides a better measure to describe spin flipping.

In the ribbon geometry the results between Landauer-Biittiker and Kubo-Greenwood agree
surprisingly well considering the completely different approaches. The spin-conserving con-
ductances are practically equal considering the numerical errors in the Kubo-Greenwood
calculation and the slightly different systems. The spin flipping behaviour also seems to be
similar in both formalisms, even though they measure it by different means. The defects
are active at same energies, which strongly suggests that both formalisms capture the same
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effects, albeit in a different way. This is even more highlighted when the defects are placed
on the edges of the system, as they are much more active when placed there.

The comparison between the two methods was limited to the ribbon geometry since
Landauer-Biittiker cannot handle wider systems nearly as efficiently. Kubo-Greenwood
on the other hand has excellent performance in wider systems. Even though the spin-part
of the implementation was not optimized for performance, the execution times of the code
were short enough that it was sensible to calculate enough random vectors and have the
results converge. The convergence depends on the system and in general the more defects
there are in the system, the fewer vectors are required for convergence.

Another important factor in the calculation is the number of moments used in the Cheby-
shev expansion. Fewer moments allow smoother results and faster convergence. This how-
ever comes at the expense of loss of energy resolution. Fewer moments mean that the
approximation of delta function becomes worse and the states are spread to wider range of
energy. As seen with the adatom plaquettes, the spreading causes much smoother behaviour
for peaked quantities and may result in large errors. In general, the number of moments
should be chosen as high as possible while keeping the computational time reasonable.

Out of three defect types studied, the local potential defects are quite pure mathematical
defects, since it would be really hard to get potential with 2 eV strength on a single site
without altering the neighbouring sites. The adatom plaquettes on the other hand are
from the other end of the spectrum and are perhaps the closest of the three to model real
world defects. The charge puddles lie between the other two, as they have been observed
experimentally, but it is not known if the potential can be spin-dependent or not. From
these three defect types, the puddles provided the most interesting features at the studied
parameter ranges. Even though the used potential strength for the puddles is relatively
strong at 0.7 eV, they don’t scatter charge too much as seen from its conductivity compared
to pristine graphene.

The puddles also feature an interesting transition in the behaviour of the zero energy range.
In the limit of large puddles, the zero energy has the fastest spin relaxation. As the puddle
width is decreased, the relaxation time increases faster for the zero energy and eventually
higher energies relax the fastest. The transition is most likely caused by the profile of
the puddles. For larger puddles the potential rises over long distance and even zero energy
modes are allowed to enter their area. When the width gets smaller, their slope gets steeper
and steeper, eventually blocking the entrance to the puddles.

All in all, the implementation proved to be effective in studying the spin-dependent prop-
erties of graphene. The method should be easily extendable to all materials and defects
that can be modelled with tight binding. It is slightly disappointing that the formalism
cannot, handle spin-flipping conductivity but spin polarization covers this weakness quite
well. The results for the spin polarization with the charge puddles suggest that long-range
scatterers affect spin much more effectively than they do charge. This might explain the
short spin lifetimes observed in the experiments even on high-quality samples [11, 56/, if
the samples in the experiments have defects similar to the studied charge puddles.
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