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Abstract

Graphene is a 2-dimensional allotrope of carbon which has attracted a lot of interest since its dis-
covery in 2004. It has high electron mobility and small intrinsic spin-orbit-coupling, leading to long
spin persistence lengths. This makes it an interesting material for spintronics as it can be used as
a platform for spin-dependent defects. Its spin behaviour is almost completely determined by the
defects, which can be used to tune its properties.

The electronic transport properties of graphene are most commonly studied by Landauer-Büttiker
and Kubo-Greenwood methods. They both work well with the tight-binding model, which recovers
the electronic band structure of graphene correctly,  and they give results consistent with each
other. The difference between the two is that Landauer-Büttiker is more suitable for narrow rib-
bons, while Kubo-Greenwood performs better in wider systems.

In this thesis, a spinful version of the Kubo-Greenwood method is derived and then implemented
on top of an existing spinless version. The implementation is done with Nvidia CUDA and it runs
on graphics processing units. Different spin-dependent defects in graphene are used to test the
implementation and validate the method.

While the spinful version of the method is easy to implement, it turns out that it lacks the ability to
completely describe spin-flipping current. Spin-conserving conductivity is given correctly by the
method and spin polarization is proposed to describe the spin behavior better. Long-ranged scat-
terers are found to scatter spin more efficiently than they do charge and they are suggested to be
partly responsible for the experimentally found short spin relaxation times.

Keywords graphene, spin, Kubo-Greenwood, CUDA, GPU
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Tiivistelmä
Grafeeni on hiilen kaksiulotteinen allotrooppi,  joka löydettiin vuonna 2004. Sen elektroneilla on
suuri liikkuvuus ja pieni spin–rata-kytkentä, jonka ansiosta spinin relaksaatiopituus kasvaa huo-
mattavan suureksi. Grafeeni on erityisen kiinnostava materiaali spintroniikassa, jossa sitä voidaan
käyttää alustana spin-riippuville epäpuhtauksille. Sen spinin ominaisuudet ovat lähes täysin epä-
puhtauksien määrittelemät, joten spin käytöstä voidaan säätää niiden avulla.

Grafeenin johtavuusominaisuuksia tutkitaan yleensä joko Landauer-Büttiker- tai Kubo-Greenwood-
menetelmillä. Molemmat toimivat hyvin tiukan sidoksen mallin kanssa ja antavat keskenään vertai-
lukelpoisia tuloksia. Menetelmien erona ovat systeemit, joihin ne soveltuvat. Landauer-Büttiker toi-
mii  paremmin kapeammissa nauhoissa,  kun taas Kubo-Greenwood soveltuu hyvin leveämpiin,
täysin kaksiulotteisiin systeemeihin.

Tässä työssä johdetaan spinillinen versio Kubo-Greenwood-menetelmästä ja toteutetaan se aikai-
semman spinittömän version pohjalta.  Toteutus tehdään Nvidian CUDA-kielellä  ja sitä  voidaan
ajaa näytönohjaimilla. Toteutusta testataan erilaisilla spin-riippuvilla epäpuhtausmalleilla.

Spinillinen versio on helposti johdettavissa spinittömästä versiosta, mutta käy ilmi, ettei se kuvaa
täysin spinien välistä virtaa. Menetelmä antaa kuitenkin oikein spinin säilyttävän konduktiivisuuden
ja spinin polarisaatio osoittautuu paremmaksi ominaisuudeksi kuvaamaan spinin käytöstä. Tutki-
tuista epäpuhtauksista pitkän matkan sirottajat sirottivat spiniä suhteessa varaukseen eniten ja nii-
tä ehdotetaan osatekijäksi kokeissa havaittuihin lyhyisiin relaksaatiopituuksiin.

Avainsanat  grafeeni, spin, Kubo-Greenwood, GPU
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1 Introdution

Spintronis is an emerging branh of eletronis whih has gained muh attention over the

past few deades. It utilizes the spin degree of freedom of the eletrons, whih enables a

muh wider range of omponents and devies [1, 2℄. Sine there are two kinds of urrents,

up and down polarized, it is in priniple possible to design a omponent that reats in one

way to up urrent and in another to down urrent. This is relevant, for example, in logi

and memory omponents, whih an bene�t from having a seond degree of freedom or

even use the spin as their only state indiator [3℄. A good example of this is the giant mag-

netoresistane e�et (GMR) used in magneti memories, whih is based on the magneti

alignment of ferromagneti �lms [4℄.

Spin is an intrinsi property of eletrons, similar to harge or mass. It is a relativisti e�et

arising from the Dira equation resembling angular momentum and most importantly,

it serves as a soure of magneti moment for eletrons. In ferromagneti materials the

alignment of the moments is energetially favoured and there is a net spin polarization.

When the net moment of a material is non-zero, magneti properties an be observed even

marosopially.

Instead of having the whole material made of magneti atoms, it is possible to have mostly

non-magneti material with some magneti defets in it [5, 6℄. This o�ers an interesting

system to study, sine even a small amount of defets an make spin-dependent behaviour

arise[7, 8℄. This work mostly fouses on the spin polarization and ondutivity of graphene

with magneti defets in it. Graphene provides an appealing platform for magneti de-

fets beause it has small intrinsi spin-orbit oupling (SOC) [9, 10℄, whih means the

spin-behaviour is almost ompletely ditated by the defets in the system. Graphene also

possesses high eletronial ondutivity and low sattering rates, making it a promising

material for spintronis [11, 12℄.

The two main methods to model the eletroni transport properties of graphene are the

Kubo-Greenwood (KG) [13, 14℄ and Landauer-Büttiker (LB)[15℄ formalisms. In this work

the fous is mostly on the Kubo-Greenwood, even though some omparisons will be done

between the two methods. Both of the methods work within the tight-binding model [16℄,

whih desribes the eletroni properties of graphene relatively well. It predits the band

struture orretly near the zero energy and is not too bad either at higher energies [17℄.

Beause of its simple format, it serves as a good starting point also for modelling defets

in graphene. Taking spin into aount in the model is not hard either [18℄, whih makes it

ideal for our uses.

When spin-dependent defets are modelled, the orientation of their spin axis plays an

important role. If polarized urrent interats with defet whih is aligned parallel or anti-

parallel with the polarization, the urrent retains its polarization. The defet will have

separate properties for both polarizations, but there will be no onnetion between the spin

hannels. The situation beomes muh more interesting when the defet axis is not aligned

with the polarization. This allows spin to �ip at the defet sites and makes the system
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muh more ompliated, as it an no longer be modelled as two separate non-interating

subsystems.

In addition to the defet alignment, the loation of the defets relative to eah other has

a major e�et on the properties, espeially in graphene [19℄. Graphene onsists of two

sublatties and depending on whether two defets are on the same one or not will impat

the properties greatly in some ases [20, 21℄. Beause there are a lot of parameters regarding

the defets, it may be hard to get a good overview of the average properties of ertain

defets. Some interesting properties may be present only in a ertain on�guration and

some may only appear in highly randomized systems. Therefore, to get a good onlusion

on what properties ertain defets would have in a real world experiment, the averaging

of the defet properties should be done well. One way of doing this is to simulate larger

systems.

One downside of big simulations is the inreased omputational e�ort. In the best ase se-

nario, the omputational time will inrease linearly with respet to the number of atoms,

but even linear saling an take one only so far on its own. In pratise, all large sale

simulations require some kind of parallelization to make the simulation run in reasonable

time. Parallelization an be done on the CPU, on whih it is also relatively easy to imple-

ment. However, a good alternative to CPU implementation is the use of graphis proessing

units (GPUs). The GPUs have a vast amount of omputational power inside and when the

implementation is done orretly, they an reah impressive speedups over regular CPUs

[22, 23℄.

There are some limitations to the use of GPUs, however. Their arhiteture is muh simpler

ompared to CPUs and they require a bit di�erent approah [24℄. One of the most important

fators in the hoie between CPU and GPU is the arithmeti intensity of the alulation

being implemented [25℄. It is determined by the ratio between arithmeti operations and

the memory aesses and the higher it is, the better the GPUs relative performane will

be. This is beause the internal memory GPUs have is slow and transferring data to the

GPU from the CPU memory is even slower [26℄. Doing every single alulation on the GPU

is usually not an option either beause they perform quite poorly in exeuting sequential

ode. Getting the best performane usually requires areful analysis to identify the parts

whih bene�t most from being alulated on the GPU [27, 28℄.

The goal of this thesis is to derive and implement spinful version of the Kubo-Greenwood

method, starting from an existing spinless implementation [29℄ and test it on various spin-

dependent defets. The method is linear-saling and it works really well even for larger

systems, as required. The original ode is written in CUDA C [30℄ and is optimized to run

on GPUs. The new implementation will also be written in CUDA. The fous in the alu-

lations will be on the ondutivity and spin polarization of graphene with di�erent kinds of

spin-dependent potentials, but some attention is also given to graphene nanoribbons and

alternative defet models.

3



a
1

a
2

(a)

b
1

b
2

�
M

K-

K+

(b)

K
+

Γ M K
-

E
 (

eV
)

-10

-5

0

5

10

15
3NN TB
1NN TB
DFT

()

Figure 1: (a) Real-spae (b) Reiproal latties of graphene. Vetors a and b show the basis

vetors for both latties. () Band struture of graphene alulated with TB and DFT.

2 Tight-binding model for spin-dependent defets

The arbon atoms in graphene are arranged in a honeyomb lattie as show in Fig. 1a. The

atoms are sp2-hybridized, whih means that three of the four valene eletrons of eah atom

are used to form σ-bonds between neighbours and the fourth one is left to form a pz-type
orbital. Beause the σ-bonds are strong and have a low energy, all of the e�ets near the

Fermi level are aused by the pz-eletrons. This justi�es the use of the tight-binding model,

for whih the basis funtions are loalized at eah atom site. The hopping tij = 〈ψi|Ĥ|ψj〉
between these basis funtions determines the oupling between eah pair of atoms. It is

usually su�ient to onsider only a few of the nearest sites for eah atom, beause the

hoppings to further atoms go to zero relatively fast.

In graphene, the hoppings are usually taken up to the �rst or the third nearest neighbours.

The �rst neighbours desription is valid near the Fermi level, but it beomes less aurate

further in energy [31℄. The band struture given by the 1st neighbour desription is om-

pletely symmetri in energy, a fat that is not supported by the ab initio alulations, as

shown by Fig. 1. The 3rd neighbours however an reover this behaviour and give a muh

more aurate desription of the bands [32℄. The drawbak is that it is more ompliated

to implement and the alulations take a lot longer. In our ase we are more interested in

the behaviour of the defets and the 1st neighbour desription is enough for our needs.

For pristine graphene, the 1st neighbour tight binding Hamiltonian reads

Ĥ0 = t0
∑

〈i,j〉
|i〉〈j|, (1)

where the sum goes over pairs of neighbours 〈i,j〉. The pristine Hamiltonian an be used

as a starting point when we add defets to the system by writing the total Hamiltonian as

a sum of Ĥ0 and the defet Hamiltonian Ĥd:

Ĥ = Ĥ0 + Ĥd. (2)
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The defet Hamiltonian an either modify the hoppings or add a loal potential. In either

ase, we need to onsider the alignment of the defets' spin axis. The axis lies somewhere on

the Bloh sphere and in a general ase an be di�erent for di�erent defet sites. Depending

on the type of the defets, there ould be some orrelation between the defet axes but

at least in the dilute limit in the absene of magneti �eld, there should not be magneti

ordering between the defets.

The defet Hamiltonian for a single site with spin dependent potential an be written as

Ĥd = |i〉〈i| ⊗ (U↑| ↑〉〈↑ |+ U↓| ↓〉〈↓ |) , (3)

where i is the index of the site and U↑,↓ are the potentials for eah spin [18℄. We hoose

the sample z-axis to be the referene diretion and rotate the spin vetors to this basis.

To do this, the defet Hamiltonian is written in terms of the average and di�erene of the

potentials:

Ĥd = |i〉〈i| ⊗
(

U↑ + U↓
2

I +
U↑ − U↓

2
σd
z

)

, (4)

where σd
z is the Pauli z-matrix in the defet basis [33℄. Rotation only applies to σd

z , whih

transforms into

σd
z =

[

cos(θ) e−iφ sin(θ)
eiφ sin(θ) − cos(θ)

]

(5)

where angles θ and φ refer to loation of the defet on the Bloh sphere. In ase of multiple

defets, the Hamiltonian is aquired by summing over all of the defet sites.

Defets with spin dependent hoppings an be modelled almost identially to the potential

defets. Similar to potential defets, we assume that eah spin has its own hopping strength

to the defet atom, denoted by t↑ and t↓. The only di�erene to Eq. 3 omes from the fat

that a single defet site has multiple hoppings. To get the omplete defet Hamiltonian for

single site, we need to sum over all of the hoppings to and from the defet site:

Ĥd =
∑

〈i,j〉∈d
|i〉〈j| ⊗ (t↑| ↑〉〈↑ |+ t↓| ↓〉〈↓ |). (6)

In the ase of graphene onsidering only the nearest neighbours, there are 6 terms in this

sum. The same hanges an also be made to Eq. 4 to apply the spin rotation to the defet.

Beause potential and hoppings are the only parameters in the tight-binding model, these

two defet types an be ombined to model any defet reahable by tight-binding. Defets

that are not loalized on atom sites may need di�erent summations than Equations 3 and

6, but the main idea remains the same. The defets modellable by this method range from

simple mathematial defets where potential or hoppings are hanged for a hosen number

of sites to omplex multi-site defets originating from physial observations.
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3 Methods

3.1 Landauer-Büttiker formalism

The setting in the Landauer theory is to onsider a sample or devie onneted to reservoirs

through leads. Condutane is seen as a sattering proess, in whih eletrons are injeted

through one lead to the devie, from whih they are sattered bak to the reservoirs. The

method was generalized to multiple leads by Büttiker [34℄ and the urrent between leads i
and j an be written as

Ii,j =
2e

h

∫

Tj,ifi(ǫ)− Ti,jfj(ǫ)dǫ, (7)

where Ti,j is the transmission funtion or transmittane between the leads and fi(ǫ) is the
Fermi funtion for the orresponding reservoir [35℄. The Fermi funtions in the equation

impliitly inlude the e�et of the hemial potential in eah of the leads, whih ompliates

the alulation. However, most of the times it is enough to fous entirely on the transmission

funtions of the devie, sine they don't depend on the hemial potential. Additionally,

they gives an aess to the transport properties of the devie, sine ondutivity is diretly

proportional to it.

For pristine graphene, the alulation of the transmission funtion is easy, sine there is

no sattering ourring and the transmittane only depends on the number of transport

modes. The number of modes is determined by the band struture and transmittane is

trivial to alulate one the band struture is known. However, in the presene of defets

the alulation is not as easy any more as sattering ours in the devie area. An e�ient

way of aessing the transmittane is through the Green's funtion, de�ned as [36℄

G(EI −H) = I. (8)

The use of the tight-binding basis makes the Green's funtion disrete, making it rather

easy to alulate. There is a slight problem with the problem dimension, sine the leads

need to be onsidered semi-in�nite, making the matrix dimension in Eq. 8 in�nite, but

reursive alulation an be used to summarize the e�et of eah lead into simple �nite-

sized matries Σ alled self-energies of the leads [37℄. After writing the Eq. 8 in blok form,

it is possible to solve for the part of the Green's funtion GD, whih orresponds to the

devie area:

GD = (EI −HD − ΣL − ΣR)
−1 , (9)

with HD being the Hamiltonian of the devie area.

One the Green's funtions and self energies have been alulated, it's possible to proeed

to alulating the transmittane. By onsidering the sattering in the devie, it's possible

to show that transmittane from one lead to another an be written as [15℄:

Ti,j = Tr

[

ΓiGDΓjG
†
D

]

, (10)
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where Γi is a funtion desribing the oupling of lead j to the devie and is de�ned as

Γj = i
[

Σj − Σ†
j

]

. (11)

The spin-dependent properties are easy to alulate from Eq. 10. Instead of onsidering

a regular two-terminal setup where we injet urrent from one side of the devie and

measure from the other, it is possible to use a four-terminal setup in whih eah of the

two leads are replaed by two spin-polarized leads. Injetion of spin-polarized urrent an

then be thought as urrent from one lead to the other three, allowing the alulation of

spin-onserving and spin-�ipping transmittanes.

3.2 Spin-dependent ondutivity

The Kubo ondutivity for a system with eigenstates |n〉 an be written as

σ(ω) =
π~e2

Ω

∑

m,n

|〈m|V̂x|n〉|2δ(Em − En − ~ω)
f(En)− f(Em)

~ω
, (12)

where En is the (eigen)energy of state n, V̂x is the veloity operator and f(E) is the Fermi

funtion [35℄. States |m〉 and |n〉 orrespond to initial and �nal states of the system. We

an study the urrent from one spin hannel to another by projeting these states to the

initial and �nal spin hannels. This an be done with spin �lter operators σ̂↑ and σ̂↓, whih
behave as identity for one spin and as a zero for the other.

Denoting the initial spin by σ1 and the �nal spin by σ2, the ondutane between these

two an be written as:

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

〈m|σ̂1V̂ †
x σ̂2|n〉〈n|σ̂2V̂xσ̂1|m〉δ(Em − En − ~ω)

f(En)− f(Em)

~ω
. (13)

Instead of applying the operators σ̂ to the state vetors, we an apply them to V̂x, de�ning
us a new operator V̂σ̂ = σ̂2V̂xσ̂1. Also, the funtions outside of the inner produt don't have
operators in them, allowing us to move them inside:

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

〈m|V̂ †
σ̂ |n〉〈n|V̂σ̂

f(En)− f(Em)

~ω
δ(Em − En − ~ω)|m〉. (14)

The energy di�erene between |m〉 and |n〉 is equal to ~ω, whih means we an replae Em

inside the Fermi funtion with En + ~ω. On the other hand, Em is the eigenenergy of |m〉
and the relation Ĥ|m〉 = Em|m〉 an be used to replae Em inside the delta funtion with

Ĥ . Also, δ(x) = δ(−x), giving us:

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

〈m|V̂ †
σ̂ |n〉〈n|V̂σ̂F (En)δ(En + ~ω − Ĥ)|m〉, (15)

7



where

f(En)−f(En+~ω)
~ω

has been replaed with F (En) to shorten the notation. To get rid

of En, another delta funtion an be brought inside the summation using the property

∫

δ(x− a)f(x)dx = f(a):

σ(ω)σ1→σ2 =
π~e2

Ω

∑

m,n

∫

dEδ(E − En)〈m|V̂ †
σ̂ |n〉〈n|V̂σ̂F (E)δ(E + ~ω − Ĥ)|m〉. (16)

Similar to what was done earlier, the delta funtion an be taken inside the inner produt

and En an be replaed with the Hamiltonian. This way the only referenes to m and n
inside the summation are in the states, allowing us to re-order our expression:

σ(ω)σ1→σ2 =
π~e2

Ω

∫

dEF (E)
∑

m,n

〈m|V̂ †
σ̂ δ(E − Ĥ) (|n〉〈n|) V̂σ̂δ(E + ~ω − Ĥ)|m〉. (17)

Beause the vetors |n〉 form a omplete orthonormal basis,

∑

n |n〉〈n| = I. Likewise, we

an identify

∑

m〈m|Â|m〉 to be equal to TrÂ, giving us

σ(ω)σ1→σ2 =
π~e2

Ω

∫

dEF (E)Tr
{

V̂ †
σ̂ δ(E − Ĥ)V̂σ̂δ(E + ~ω − Ĥ)

}

. (18)

For DC urrent at zero temperature, the equation simpli�es to

σ(E)σ1→σ2 =
π~e2

Ω
Tr

{

V̂ †
σ̂ δ(E − Ĥ)V̂σ̂δ(E − Ĥ)

}

. (19)

One of the delta funtions an be written as a Fourier transform:

δ(E − Ĥ) =
1

2π~

∫ ∞

−∞
dtei(E−Ĥ)t/~. (20)

Beause eiEt/~
is just a number, we an move it freely. However, the seond delta funtion

allows us to replae E with Ĥ , giving us

σ(E)σ1→σ2 =
e2

2Ω

∫ ∞

−∞
dtTr

{

U †V̂ †
σ̂UV̂σ̂δ(E − Ĥ)

}

, (21)

where we have introdued the time evolution operator U = e−iĤt/~
. Splitting the integral

into two parts and hanging variable t← −t for one of them allows us to write this as

σ(E)σ1→σ2 =
e2

Ω

∫ ∞

0

dtTr

{

V̂ †
σ̂ (t)V̂σ̂ + V̂ †

σ̂ V̂σ̂(t)

2
δ(E − Ĥ)

}

. (22)

The funtion we are taking the integral over an be reognized as the real part of the

autoorrelation funtion of our spin veloity operator, de�ned as

Cvv(E,t) =
Tr

{

1
Ω
V̂ †
σ̂ (t)V̂σ̂δ(E − Ĥ)

}

Tr

{

1
Ω
δ(E − Ĥ)

} , (23)
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multiplied by the density of states

ρ(E) = Tr

{

1

Ω
δ(E − Ĥ)

}

. (24)

3.3 Comparison between spinful and spinless ases

For the spinless ase, we will get an almost idential formula for ondutivity. The only

di�erenes are that we do not inlude the spin-�ltering operators in the beginning and spin-

degeneray gives a fator of 2 in front of the equation. Without the �lters, we are left with

regular veloity operators. Also, from a pratial point of view, it is better to alulate the

running eletrial ondutivity (REC) instead of taking the limit of time going to in�nity:

σ(E,t)GK =
2e2

Ω

∫ t

0

dt Tr

{

V̂ †(t)V̂ + V̂ †V̂ (t)

2
δ(E − Ĥ)

}

. (25)

The equation above is alled Green-Kubo formula beause it gives the ondutivity as an

integral of veloity autoorrelation funtion [38℄. As with other Green-Kubo formulas, a

orresponding Einstein formula an be found by applying an integral. In this ase, the

derivative of mean squared displaement (MSD), de�ned as

∆X2(E,t) =
Tr

[

2
Ω
δ(E − Ĥ)(X̂(t)− X̂)2

]

Tr

[

2
Ω
δ(E − Ĥ)

] , (26)

is found to give the ondutivity:

σ(E,t)E = e2ρ(E)
d

2dt
∆X2(E,t). (27)

Calulating the ondutivity from the Einstein relation is more aurate beause di�eren-

tiation does not aumulate error in the same way integration does. Therefore longer time

steps an be used, as the length now only a�ets the auray of time evolution. However,

in the more interesting spinful ase, a similar relation an only be found when there is no

oupling between the spins.

The ase with no oupling between the spins an be redued to two spinless alulations, so

we assume for now that there is oupling between the spins, that is Ĥ↑↓ and Ĥ↓↑ are non-
zero. If the ondutivity should be a derivative of some operator X̃ squared, that operator

would have to be de�ned as

X̃(t) =

∫ t

0

V̂σ(t
′)dt′ + X̃(0) (28)

to give ondutivity onsistent with Eq. 22. If this equation in di�erentiated, we will have

d

dx

X̃(t) = V̂σ(t). (29)
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The right hand side of the equation is known:

V̂σ(t) = Û †σ2V̂xσ1Û

= Û †σ2[H,X ]σ1Û . (30)

On the other side, we an write the derivative of X̃ as a ommutator:

d

dx

X̃(t) = Û †[H, X̃ ]Û . (31)

Comparing these two equations, we require X̃ to ful�l the relation

[H, X̃] = σ̂2[H,X ]σ̂1. (32)

Let us onsider the ommutator of Ĥ with arbitrary operator Ô. Both of the operators an

be written in blok form: Ĥ =

[

H↑↑ H↑↓
H↓↑ H↓↓

]

and Ô =

[

A B
C D

]

. In terms of these bloks, the

ommutator beomes:

[Ĥ, Ô] =

[

[H↑↑, A] +H↑↓C − BH↓↑ H↑↑B +H↑↓D − AH↑↓ − BH↓↓
H↓↑A+H↓↓C − CH↑↑ −DH↓↑ [H↓↓, D] +H↓↑B − CH↑↓

]

. (33)

The left hand side of Eq. 32 will have exatly the same form as this equation, while the

right hand side will beome

σ̂2[H,X ]σ̂1 =

[

[H↑↑, X ] +H↑↓X −XH↓↑ 0
0 0

]

, (34)

assuming σ1 = σ2 = σ↑. If we want X̃ to be same regardless of the system, it should not

depend on the Hamiltonian. Also, it is possible to hange diagonal bloks of the Hamiltonian

without altering the o�-diagonal part. These two onditions allow us to separate the terms

ontaining diagonal and o�-diagonal parts of the Hamiltonian, handling them as their own

equations. If we now ompare the diagonal bloks of Eq. 32, we will have

[H↑↑, X̃↑↑] +H↑↓X̃↓↑ − X̃↑↓H↓↑ = [H↑↑, X ] +H↑↓X −XH↓↑ (35)

and

[H↓↓, X̃↓↓] +H↓↑X̃↑↓ − X̃↓↑H↑↓ = 0. (36)

The diagonal part of the �rst equation gives us [H↑↑, X̃↑↑] = [H↑↑, X ] and the seond

equation gives us [H↓↓, X̃↓↓] = 0. If these onditions hold for any Hamiltonian, the only

solution is X̃↑↑ = X , X̃↓↓ = 0.

More onditions for X̃ an be found from the o�-diagonal bloks of Eq. 32. The o�-diagonal

parts of the Hamiltonian give us equation

H↑↓X̃↓↓ − X̃↑↑H↑↓ = 0. (37)
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However, we onluded that X̃↓↓ = 0, whih means that X̃↑↑ should be zero as Ĥ↑↓ 6= 0.
This gives us a ontradition and we annot �nd X̃ that would be universal aross all

systems. For eah given Ĥ, it will be possible to �nd X̃ from Eq. 32, but the result will not

be the same for di�erent systems. Another approah would be to searh for the Einstein

relation as a produt of two or more di�erent operators. This approah however leads to

ompliated derivative expressions and was not onsidered in this work.

Being only able to use the Green-Kubo de�nition of ondutivity auses some limitations

on the systems we an study. On top of the error in the time-evolution of the states, the

size of the time steps also a�ets the auray of the integral giving us an additional soure

of error. The lak of Einstein relation also means that the mean square displaement be-

tween two hannels has to be alulated separately, beause it is required in the alulation

of ondutane, where some length sale has to be de�ned to get �nite results. The most

onvenient way of alulating the MSD is to numerially integrate the spin-hannel-spei�

VAC, beause it has been alulated to aess the ondutivity. Of ourse this again au-

mulates error if the used time step is too large and limits the time range available in the

alulation.

3.4 Spin transportation

In the Landauer-Büttiker formalism it is possible to de�ne both spin-onserving and spin-

�ipping ondutane [39℄ beause it is linked to transmittane. Comparing the two spin-

transport alulation methods, it would seem obvious that setting the two spins in Eq. 23

to up and down would give us spin �ipping ondutivity. While this does give some results,

they annot be diretly ompared to the ones given by Landauer-Büttiker.

The most problemati part in de�ning the spin �ipping ondutivity this way is that it

fails to apture some, if not most, of the e�ets ausing spin to �ip. For example, spin

�ipping aused by potential defets is not shown at all by this quantity. This is aused by

the de�nition of the veloity operator, V̂σ = i
~
σ̂2[H,X ]σ̂1. The problem beomes apparent

when we write out the ommutator:

[H,X ] =
∑

〈m,n〉
(Xn −Xm)Hmn|m〉〈n|. (38)

If σ̂1 6= σ̂2, only one of the two o�-diagonal bloks in the operator between the �lters omes

out non-zero. However, in the ase of potential defets, Xn = Xm and the surviving values

are zero even before we apply the spin �lter operators. Clearly the potential defets ause

spin to �ip and this de�nition of spin �ipping urrent annot be omplete.

The lak of spin �ipping urrent an be seen as a drawbak of the tight-binding model:

the up and down sites are assumed to reside at the exat same loations and when �ipping

ours between them, the loation of the eletron stays the same. When the loation

does not hange, there an be neither veloity nor ondutivity. However, there are also

di�erenes between the two formalities and their perspetives to the sattering events. The
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Kubo-Greenwood method fouses on the time evolution of wave pakets and desribes more

what happens at eah time step. Landauer-Büttiker on the other hand desribes the end

result of the sattering event, disarding the details on how the �ipping ours.

3.5 Spin polarization

When sattering is studied in a spinless ase, alulating the ondutivity often gives su�-

ient information. This is beause ondutivity is oupled to the mobility of the eletrons

and there are no additional degrees of freedom. This is not neessarily the ase when spin is

onsidered. Depending on the system being studied, it is possible to have spin and harge

deoupled [40℄ and both of them have to be heked to see how the defets behave. Cal-

ulating the spin-polarized ondutivity is one way of doing this, but it takes into aount

both spin polarization and eletron mobility. It an be hard to distinguish between these

two just from the ondutivity and a way to study the amount of spin is required.

The simplest way of studying the behaviour of spin in the system is to look at the expe-

tation value of spin �lter operators σ̂↑↓ given by trae over the state vetors at di�erent

times. This quantity gives us the total amount of spei� spin at eah time step. Another

possibility would be to look at the polarization, given by the expetation value of Pauli

z-matrix sz = σ̂↑ − σ̂↓. While both of these approahes desribe the total spin behaviour

quite well, they don't provide any information about what happens at di�erent energies.

To gain information about the energy, the trae has to be limited to states with ertain

energy. This an be done with a alulation similar to what we did with the ondutivity:

S(E,t) =
Tr

{

δ(E − Ĥ)sz(t)
}

Tr

{

δ(E − Ĥ)
} . (39)

The delta funtion projets the states to ertain energy while the division by the density

of states ensures that the polarization stays normalized. Beause both ondutivity and

polarization an be alulated as funtion of time and energy, they an now be diretly

ompared to see if there is a onnetion between spin and harge satterings.

Calulating the energy projetion an be problemati sometimes beause it takes a lot of

omputational e�ort to get the delta funtion aurate enough. Sometimes it is enough to

disard the energy information and just look at the average behaviour of the quantities.

The easiest way of doing this is to alulate the time evolution of the probability density

of an initial state. If we know the expetation value of an operator for eah of the basis

states and the probability of being in these states, the expetation value of the operator is

simple to alulate:

〈Ô(t)〉 =
∑

i

ρi(t)〈ψi|Ô|ψi〉. (40)

It is straightforward to alulate the spin polarization when density is known beause the

expetation values 〈ψi|ŝz|ψi〉 are either 1 or -1, depending on whether the state ψi is up or
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down. Condutivity, on the other hand, is a bit trikier to alulate. In order to alulate

it, we need information about either the veloity or displaement of the eletrons. The

problem is that we evolve the system as a whole and annot trak the density evolution for

individual sites. While we know the hange in density for eah site, we do not know where

it ame from or goes to.

This problem an be resolved by using a loalized initial state. We still don't know the exat

details of the density evolution, but sine the initial loation is known, the displaement

from the initial loation of the paket an be alulated. The displaement for eah site

an be squared and inserted into Eq. 40 to get the MSD for the system. One slight problem

in this approah is the �nite size of the simulation area. The veloity of ballisti eletrons

in graphene is so high that the boundaries are reahed relatively fast, after whih the

wave paket is transferred to the opposing side due to the periodi boundary onditions.

Therefore the best results are gained by plaing the initial state to the enter of the system

and only onsidering the results from the time before the wave paket hits the boundaries

for the �rst time. This way we don't have to worry about the fat that the displaement

is bounded by the size of the system.

4 Implementation

4.1 Numerial approximations

The implementation is mostly based on the proess desribed in [29℄. There are three main

approximations that are required to ahieve linear saling algorithm. The �rst one is to

replae the trae with a sum over random vetors and the two others are to approximate

the delta funtion and the time evolutions with a Chebyshev expansion.

The trae operation is de�ned as the sum of the diagonal elements of an operator. This

requires omputational e�ort saling as O(N2), beause the inner produt 〈ψ|Ô|ψ〉 has
to be alulated for eah vetor in the basis. To redue the saling to O(N), the trae is
replaed with a sum over random vetors:

Tr{Ô} ≈ 1

Nr

Nr−1
∑

i=0

〈ψi|Ô|ψi〉, (41)

where the vetors |ψi〉 are random-phase states, de�ned as 〈j|ψi〉 = eiφij
with φij being

random, independent numbers. These states sample the full spetrum and it an be shown

that the expetation value of these inner produts gives the trae [41℄. It an be shown

that the error of the estimate is O(1/
√
NrN), whih means that even a small number of

random vetors Nr an give a good estimate as long as N is large enough.

There is no analytial formula for the delta funtion, whih means it has to be approximated

numerially. There are multiple di�erent methods of doing the approximation, suh as the
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Lanzos reursion method (LRM), the Fourier transform method (FTM) and the kernel

polynomial method (KPM). The method of hoie for this work is the KPM.

The kernel polynomial methods inlude a wide range of tehniques involving expansion of

a funtion in polynomial bases. In pratial implementations these expansions have to be

limited to �nite amount of basis funtions, whih auses bad behaviour, known as Gibbs

osillation, to our if the funtion being expanded is not nie enough. The solution is to

introdue a kernel funtion to the expansion, suppressing the osillation.

The basis of hoie in our work is the set of Chebyshev polynomials, whih means a funtion

an be written as

f(x) =
1

π
√
1− x2

∞
∑

−∞
µnTn(x), (42)

where µn =
∫ 1

−1
f(x)Tn(x) and the Chebyshev polynomials Tn are de�ned reursively as

Tn(x) = 2xTn−1(x)− Tn(x) (43)

T−n = Tn, (44)

starting from T0(x) = 1 and T1(x) = x. In our ase the funtion we want to approximate

is a delta funtion, giving us µn = Tn(Ĥ). If we now insert Eq. 42 into 23, the veloity

autoorrelation funtion beomes

ρ(E)Cvv(E,t) =
1

πΩ
√
1− E2

∞
∑

n=0

(2− δn0)Tn(E)CV AC
n (t), (45)

where CV AC
n (t) are the Chebyshev moments for veloity autoorrelation:

CV AC
n (t) ≈

∑

i

Re

{

〈ψi|V̂σ̂(t)†V̂σ̂Tn(Ĥ)|ψi〉
}

. (46)

Other quantities, suh as the density of states and the mean square displaement, an also

be written in a similar fashion by replaing the veloity autoorrelation funtion with a

orresponding expression in the Chebyshev moments.

The Gibbs osillations arise in the trunation of the expansion when the funtion being ex-

panded is not ontinuously di�erentiable. Delta funtion is ertainly not smooth enough to

�t in this riterion, whih means that something has to be done to ounter the osillations.

One way of doing this is to apply damping oe�ients gn to the sum:

ρ(E)Cvv(E,t) ≈
1

πΩ
√
1−E2

Nm
∑

n=0

gn(2− δn0)Tn(E)CV AC
n (t). (47)

In this work the Jakson kernel is used, for whih

gn = (1− nα) cos(πnα) + α sin(πnα) cot(πα), (48)
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with α = 1/(Nm + 1).

The third approximation is onsidering the time evolution. The time evolution operator is

a matrix exponential and thus annot be applied exatly, exept for speial ases. To �nd

a numerial approximation for the evolution, we again use the Chebyshev polynomials to

expand the operator, whih beomes

Û(∆t) ≈
Np−1
∑

m=0

(2− δn0)(∓i)mJm
(

∆t

~

)

Tm(Ĥ), (49)

where Jm are the Bessel funtions of the �rst kind. A similar formula an also be found for

the ommutator of the position operator and the time evolution operator, required in the

alulation of mean square displaement:

[X̂,Û(∆t)] ≈
Np−1
∑

m=0

(2− δn0)(∓i)mJm
(

∆t

~

)

[X̂, Tm(Ĥ)], (50)

At �rst glane the expansions look slightly di�erent ompared to the expansion used with

the delta funtion. This is however only a matter of de�nition of the basis: the sets {Tn(x)}
and

{

Tn(x)

π
√
1−x2

}

both form orthonormal basis and the di�erene in the expansions is only a

matter of hoie between these two.

Even though Eq. 46 is perfetly valid equation for the alulation of Chebyshev moments,

it's not a pratial one. The time evolution is inluded in one of the veloity operators and

annot be applied e�iently. To make the situation better, yli properties of trae an

be used to write the equation in a more suitable form:

CV AC
n (t) ≈

∑

i

Re

{

〈ψi|Û(t)V̂σ̂Tn(Ĥ)Û †(t)V̂ †
σ̂ |ψi〉

}

. (51)

Writing the time evolution operators expliitly makes it possible to apply them diretly

to the vetors, saving both omputation time and memory. To further redue the time

required for the alulation of time evolution, we use the property U(t+∆t) = U(t)U(∆t).
This allows us to use reursive formulas in the alulation:

〈ψi|Û(t+∆t)V̂σ̂ = 〈ψi|Û(t)Û(∆t)V̂σ̂ (52)

Û †(t+∆t)V̂ †
σ̂ |ψi〉 = Û †(∆t)Û †(t)V̂ †

σ̂ |ψi〉. (53)

Keeping 〈ψi|Û(t) and Û †(t)V̂ †
σ̂ |ψi〉 in memory after eah time step makes omputation of

the next step muh easier beause we an use the previous result to ompute the next one.

Beause of the similar form of the quantities being alulated, it is straightforward to

generalize the alulation of VAC to the others. The only di�erene between them is in the

Chebyshev moments and even they look quite similar. The easiest quantity to alulate is

the density of states beause it doesn't depend on time:

CDOS
n ≈

∑

i

〈ψi|Tn(Ĥ)|ψi〉. (54)
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The lak of time dependene omes from the fat that Û is unitary and it also ommutes

with the delta funtion. The alulation of spin polarization is almost as easy. The only

di�erene is that we have sz inluded and it does not ommute with the time evolution

operator:

CS
n (E,t) ≈

∑

i

〈ψi(t)|Tn(Ĥ)sz|ψi(t)〉. (55)

For the MSD, the proess is a bit more ompliated as the time evolution annot be moved

next to the state vetors. We would like to end up with a symmetrial form and the best

way to do so is to yle the time evolution so that we end up with its ommutator with

the operator X̂ :

CMSD
n ≈

∑

i

〈ψi|[X̂, Û(t)]†Tn(Ĥ)[X̂, Û(t)]|ψi〉. (56)

Beause the expressions on either side of the Chebyshev polynomial are onjugates of eah

other, it is enough to alulate one of them. The alulation is made easier by using the

properties of time evolution and re-writing the ommutator:

[X̂, Û(t +∆t)]|ψi〉 = Û(∆t)[X̂, Û(t)]|ψi〉+ [X̂, Û(∆t)]Û (t)|ψi〉. (57)

This equation allows reursive alulation of the MSD, with the help of Eq. 50.

4.2 GPU aeleration

The most omputationally intensive part of the Chebyshev expansion is the moment alu-

lation, as it involves applying the Hamiltonian multiple times to states. The reason for good

performane of the GPUs lies in the relatively high arithmeti intensity of matrix-vetor

multipliation. Most of the algorithms used an be implemented on the GPU, minimizing

the amount of memory transfer to and from the GPU memory. In fat, the memory trans-

fers are only required during the initialization phase and when we return the alulated

Chebyshev moments bak to the CPU memory.

During the initialization phase, the Hamiltonian and the initial random state vetor are

transferred to the GPU. The Hamiltonian stays onstant for the whole duration of the

alulation and it is enough to transfer it only one. The random states are generated on

the CPU and as the alulation loops through multiple random states, we transfer the

urrent one at the beginning of eah loop. It might be slightly more e�ient to generate

them on the GPU, but sine it takes only a fration of the total omputational time, the

generation may as well be done on the CPU. Generating the initial state on the CPU is

slightly more �exible and allows di�erent initial states be generated more easily.

The most ruial part of the alulation is to implement the operations |ψout〉 = Ĥ|ψin〉
and ψout〉 = [Ĥ, X̂ ]|ψin〉 as e�iently as possible, as the most time is spent on them in

the Chebyshev moment alulation. The elements of |ψout〉 are independent of eah other

during the matrix-vetor produt and it is natural to parallellize the alulation over the

elements of the output vetor. With GPU this is easily done by launhing threads equal
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to number of elements and letting eah thread alulate one element of the result. As

the number of threads is massive, the order in whih they aess memory will a�et the

performane greatly. This mostly onerns the sparse Hamiltonian and there are two ways

of ordering its data in memory. For CPUs using sequential ode, the better way would

be that all data for single site are next to eah other and these bloks of data would be

ordered by the index of the sites. However, for GPUs it's better to group the data by their

neighbour index, suh that all 0th neighbours ome �rst in the site index order, followed

by 1st neighbours and so on. This way onseutive threads aess onseutive data in the

memory, leading to more e�ient use of memory [42℄.

The performane of the original GPU implementation has been studied to more extent in

[29℄. The overall speedup fator ompared to a serial CPU implementation was reported

to be around 16. Even though this is muh smaller than speedup for some other ases [43℄,

it is still remarkable. Reahing this speed on CPUs would require a lot of e�ort beause in

the ideal ase, the number of required proessor ores would be 16. Typially the frequeny

of a proessor dereases with inreasing number of ores [44℄, ausing even higher number

of ores to be required to reah the same speed.

5 Results

To test the methods desribed above, graphene was hosen as the platform to ontain

the defets in. It has little e�et on spin and its properties are well desribed by simple

tight-binding model, making it ideal material to test our implementation with.

Two di�erent samples were used in the testing. A 1000×1000 ell with periodi boundary

onditions was used to model pristine graphene. The number of atoms was hosen large

enough to model an ideal graphene lattie, while keeping the omputation time moderate.

Some tests were also run on a 65000×16 sample, simulating a zigzag nanoribbon. In the

latter ase the periodi boundary onditions were applied only in the longer of the two

dimensions.

5.1 Pristine Nanoribbons

If there are no spin sattering defets in the system, there should be no di�erenes between

the results of spinful and spinless alulations. To on�rm this in our implementation, the

ondutane of pure graphene nanoribbon was alulated. The ondutane in graphene

nanoribbons is quantized and it should get values that are multiples of the ondutane

quantum

e2

h
[45℄.

The Landauer-Büttiker formalism is able to reover the quantization easily, but Kubo-

Greenwood, whih we are using, requires some additional e�ort. Transport in pure graphene

is ballisti, whih auses ondutivity to diverge. To get a �nite value for ondutane, a
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Figure 2: Total ondutane of 65000×16 graphene nanoribbon alulated using Landauer-
Büttiker formalism and both spinless and spinful versions of Kubo-Greenwood.

length sale has to be introdued. A ommon way of doing this is to de�ne ondutane as

G(E) =
W

L(E,t)
σ(E,t), (58)

where W is the width of the system and L(E,t) is length alulated from MSD:

L(E,t) = 2
√

∆X2(E,t). (59)

Both L and σ are expeted to grow linearly in time during ballisti transport, whih means

G should onverge to a �nite value.

The alulated ondutane of the 65000×16 nanoribbon an be found in Figure 2. In addi-
tion to the implementation being tested, the ondutane has also been alulated using two

methods. The �rst one of them is a spinless implementation of Kubo-Greenwood formalism,

the ode upon whih our spinful Kubo-Greenwood has been built on. The seond one uses

non-equilibrium Green's funtions (NEGF) and is based on the Landauer-formalism. The

NEGF gives the smoothest result of the three beause it doesn't use stohasti methods

and an be regarded as an exat method within the tight-binding approximation.

All three methods show the quantized ondutane levels. The atual step-like behaviour is

niely reovered by the NEGF, for whih the ondutane is preisely an integer times the
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ondutane quantum. Both Kubo-Greenwood methods overshoot the ondutane near

the band edges, but they stabilize to the value give by NEGF further away from the edges.

This behaviour is expeted and it is aused by the singular behaviour of both DOS and

eletron veloity near the band edges. The spinful alulation agrees quite well with the

spinless one and the di�erenes are mostly explained by the di�erene in the energy points

used in the alulation.

5.2 Spin-Dependent Potential in Nanoribbons

In our previous work [19℄ we studied nanoribbons with defets whih had spin-dependent

potential on a single atom site. These systems have almost ballisti transport, having only

a small range of energy for eah spin that auses sattering. The sattering is strongest

when the defet is loated on the edge of the ribbon and gets weaker as the defet is moved

towards the enter. An example of ondutivity for this kind of ribbon an be seen in

Figures 3a and 3b, where a single defet has been plaed on the edge and in the middle of

the ribbon. The potential has been hosen to be ±2 eV and the defet angle θ is set to 0,

giving no oupling between the spins.

The Kubo-Greenwood method would have trouble with the system used in alulating

these Figures, beause they have only one defet in them. The method is more suitable for

systems with uniform defet plaement as the random vetors sampling the system are more

likely to hit the defets. Beause of this, the number of random vetors required for a single

defet site is too large and the omputational e�ort required is too muh. Instead, a system

with 0.01% defet onentration was used to ompare the spin-dependent ondutivity. The

potential strength was still kept at ±2 eV and the angle θ at 0, but the defet plaement

was not restrited to the edges. The results are shown in Figures 3.

Even though the results di�er from eah other, the main features are ommon for both of

the methods. The quantization of ondutane is still present, even though the defets are

ausing the steps to smoothen out a bit. The plaement of the defet has major impat

on the results. When the defet is on the edge, the most interesting parts in the energy

spetrum are at ±0.4 eV, where one of the spin hannels has a dip in ondutane, while

the other stays onstant. In the middle of the ribbon, the defet has almost no e�et on

the ondutane. For the Kubo-Greenwood alulation, the dips appear at the exat same

energies for both methods even though they are barely visible. The di�erenes between the

methods an be explained by the di�erent systems from whih the results were obtained.

The randomization of the defet plaement auses the result to be average of the bulk and

edge ases and the depth of the dips is dereased.

The same alulations were also done for a higher defet onentration of 1%. This also gave

similar behaviour, where the ondutane has a dip near ±0.4 eV. However, the problem

with this system is that the transport beomes di�usive and Equations 58 and 59 annot

be used reliably any more. Instead of saturating to ertain level, the ondutane keeps on

dereasing. No further analysis was done for the higher onentration one the di�usivity
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Figure 3: Condutane of nanoribbon with defets having a spin-dependent potential.

was disovered, but the loation of the dips supports the results gained from the lower

onentration.

The situation hanges slightly when the angle of the defets is hanged to 90◦. The potential
is now a loal oupling between the spin hannels and both hannels now behave identially.

The oupling allows spin to �ip and it is now meaningful to alulate the spin polarization

as a funtion of time, in addition to the ondutane. The defet phase φ is kept onstant

at 0◦ to keep the alulations simple.

A ondutane omparison between the two methods an be seen in Figure 4a. To make the

omparison better, there are now two defets in the Landauer-Büttiker alulation and the

result has been averaged over multiple on�gurations. Also, the Landauer-Büttiker makes

it easy to de�ne spin-�ipping transmittane, whih is also shown in the �gure. For Kubo-

Greenwood, only the spin onserving ondutane was alulated and the shown data is

taken as an average between the ondutanes of the two spins. The results onverge slowly

and taking the average allows to get a better result a bit faster.

The onserving ondutanes agree quite well with eah other. There is still some noise in

the Kubo-Greenwood alulation, but the biggest dips are loated at the same energies as

they are in the Landauer-Büttiker. Both methods also reover the quantization quite well,

even though the defets are already ausing the levels to deviate from the original step-like

struture.

Sine Kubo-Greenwood annot alulate spin �ipping ondutane the same way Landauer-

Büttiker an, spin polarization was alulated instead. Figure 4b shows the amount of spin

polarization after 5 ps, starting from ompletely down-polarized initial state, for whih

S(E,0) = −1. An exponential funtion was �tted to the �rst 0.5 ps of the simulation for

eah energy and the inverse of the �tted time onstant is also shown in the �gure. The

�ipping ondutane alulated by the Landauer-Büttiker method is shown as a omparison

in the same �gure.

Between these three sets of data, there is most orrelation between the inverse of the time

onstant and the �ipping ondutane. Both of these two are peaked at the same energies
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Figure 4: Condutane, spin relaxation time, and spin polarization for potential defets

in nanoribbons. Figure (a) shows a omparison between di�erent ondutanes, while (b)

shows the spin polarization at t = 5 ps and the time onstant �tted for the �rst 0.5 ps of

the simulation. The �ipping ondutane in (b) is the same data as in (a), slightly saled

to give better omparison.

and behave roughly the same way between the peaks, the only exeption being the energies

near zero. The spin polarization on the other hand seems to behave exatly the opposite

way as it has minima at the same energies where the other two are peaked.

The seemingly di�erent results stem from the onsiderably di�erent behaviour of spin

polarization for di�erent energies. At the resonant energies of the defets, the band edges

and ±0.4 eV, the polarization goes diretly to zero and the �ipping rate is fast right from

the start. As the polarization gets loser to zero, the rate slows down and there is barely

any osillation. The non-resonant energies initially �ip the spin muh slower, as seen from

the inverse of the time onstant. The rate however inreases with time and polarization

starts to osillate around zero.

The energy range from -0.1 eV to 0.1 eV repliates the Landauer-Büttiker results the

worst, as there is barely any spin �ipping at E = 0, even though there should be some.

The peaks at ±0.09 eV roughly orrespond to the peaks in ondutane, but between them

the time onstant gets larger than it should. Its inverse behaves almost identially to the

spin polarization, unlike in any other energy. This anomaly is most likely aused by the

band struture near the Dira point. Beause the sample is a zigzag ribbon, there are

loalized edge states at E = 0. The loalization auses the quantities to go to zero, as the

eletrons with these energies an not sample the system as well.

The edges have a big impat on the nanoribbons' results. Landauer-Büttiker shows largest

dips in the ondutane when the defets are plaed on the edge and the edge states near

zero energy have been hard to reah using Kubo-Greenwood. To further analyse the edges,
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Figure 5: Condutane, spin polarization and inverse time onstant for ribbon with defets

plaed on the edge.

the spin polarization and ondutane were alulated suh that the defets were only

plaed on the edges of the system. The results are shown in Figure 5.

The hange in the results is remarkable. The di�erene in ondutane between Landauer-

Büttiker and Kubo-Greenwood is now muh smaller, as the dips are learly visible also in

the Kubo alulation. Their magnitude is still not as large as in the Landauer alulation,

but ompared to the previous ase, they are now muh more visible. The di�erent defet

plaement also a�eted the Landauer-Büttiker results a bit. There is no longer anything

happening near E = 0 and only the energies ±0.4 eV and the band edges show deviation

from the step struture.

Even more radial hanges an be seen in the spin polarization. The resonant energies at

±0.4 eV had already higher �ipping rate than other energies, but this time the inverse of the

time onstant is roughly 10 times larger than in the previous ase. The polarization at these

energies still behaves the same way, going diretly bak to zero and showing no osillation.

In the higher energies the relaxation time doesn't hange muh and the di�erenes are

mostly seen in the amount of spin polarization. This time most of the energy range doesn't

have any osillation for the polarization, exept for the energies around resonane. The

most urious hange however is the behaviour near zero. Instead of the linear, rather sharp

drop to zero, 1/τ and spin polarization tend to zero in a muh smoother way. Again, the

hanges are most likely aused by the edge states. The potential added to the edge sites

disrupts the state and di�erene in the behaviour an be expeted.
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Figure 6: (a) Condutivity for pure graphene and potential defets at onentrations of

0.01% and 1%. Condutanes for pure graphene and low onentration have been measured

at propagation length of 1000 nm, while the higher onentration is taken from t = 0.6 ps.
(b) Condutivity as a funtion of time at di�erent energies for 1% onentration.

5.3 Spin-Dependent Potential in Graphene

5.3.1 Spin onserving potential

Even though Kubo-Greenwood method produes orret results in the nanoribbons, it is

outperformed by the Landauer-Büttiker method. The geometry of the system auses the

results to onverge slowly, beause the long but narrow shape limits the amount of system

eah random vetor an sample. Another thing to onsider in the ribbons is the presene of

the edge states. Beause the zigzag edge states are loalized, the Kubo-Greenwood method

has trouble reahing them.

All of these problems an be avoided by moving to a 2-dimensional system. In regular

graphene we don't have to worry about the limitations given by the narrow system and

the lak of edge states makes the alulation easier. This wide systems annot be reahed

by the Landauer-Büttiker method, as it sales ubially with respet to the width of the

system, and Kubo-Greenwood beomes better of the two methods. Taking graphene as a

platform for defets makes it easier to look into intrinsi properties of the defets. With

periodi boundary onditions, there is virtually no ontribution from edges and the large

system size further redues the �nite-size e�ets.

We start with the same potential defets we used with the ribbons. To keep the results

omparable to the previous ones, the strength of the spin-dependent potential is kept the

same, at ±2 eV. We also start with the same defet onentration of 0.01%, but this time

we also look into higher onentrations in more detail.
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As seen in Figure 6a, the potential defets do not a�et the ondutane muh in low

onentrations. The ondutane is slightly smaller with defets in the system, but the

overall behaviour stays the same in the shown energy range. The di�erene beomes larger

at higher energies, but sine they are already outside of the valid range for tight-binding

approximation, they are not analysed further. As the onentration goes up, the di�erene

beomes apparent. While the transport is ballisti in the lower onentration, this is no

longer the ase in the higher onentration. The ondutivity does not diverge, but saturates

to some levels, depending on the energy. Beause of the saturation, there is no need to

measure the ondutivity at onstant length sale. In fat, the length at whih the other

ondutivities were measured, 1000 nm, was not reahed in the whole energy range by the

end of the simulation time, 2 ps. The longer simulation time required to reah this length

would make the simulation run onsiderably longer sine shorter time steps would have to

be used to minimize the error made in the time evolution.

The main observation from the behaviour of the potential defets is that the ondutivity

beomes asymmetri with respet to the zero energy. The two spin-hannels are symmetri

to eah other, but inside eah of them the symmetry is broken. The ondutivity beomes

smaller on the side at whih the potential is, for example in Figure 6a the up-ondutivity

is smaller at negative energies when the potential strength for up-sites is -2 eV. The relative

di�erene is modest in the smaller onentration, but it beomes onsiderable in the larger

onentration.

Figure 6b shows the time evolution of ondutivity at E = 0 eV and E = ±0.5 eV for the

higher onentration of defets. For E = ±0.5 eV the saturation is already seen, but at

zero energy, the maximum is not yet reahed. Longer simulation would be needed to see

whether the ondutane stays on the saturated level or starts deaying. Beause of poor

onvergene, the simulation time had to be limited to a maximum of 2 ps, as onvergene

required more random vetors than usually. The problems with onvergene are aused by

the �utuations of the ondutivity, whih is seen in the diversity of the results alulated

using single random vetors. Some vetors behave almost ballistially, while others show

behaviour with deaying ondutane. When the average is taken over multiple random

vetors, the result beomes di�usive and saturation is observed.

One way of improving the onvergene would be to use lesser amount of Chebyshev mo-

ments in the alulation. The results in Figure 6 were alulated with Nm = 3000, a
onsiderably high value. Higher number of moments ensures all features are aptured in

the results, but it also makes noise more signi�ant. Lowering the amount would smoothen

the results with respet to energy and most of the energy range would see improvement in

the results. The problemati part is the energies near zero. As seen in Figure 6a, there is

a kink in ondutivity at the zero energy where the linear slopes meet eah other. If the

number of moments was dereased, the ondutivity would behave smoothly also at zero.

This is unwanted behaviour as the ondutivity near zero would gain way too large value.

The e�et of the number of moments is studied more later.
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Figure 7: (a) Down-spin ondutivity for potential defets in graphene with two di�erent

defet angles, both measured at t = 0.6 ps. (b) Spin polarization as a funtion of time at

E = 0.5 eV. Both �gures are for graphene with 1% onentration of potential defets.

5.3.2 Spin �ipping potential

The ondutane behaves a bit surprisingly when the defet angles are turned to π/2. Both
up and down ondutivities have the same value as expeted, but as seen in Figure 7a, the

value is smaller than either of the ondutivities in the θ = 0 ase. This is onsiderably

di�erent behaviour than for the lower onentration of defets in nanoribbons, for whih

the onserving ondutane at θ = π/2 was muh more like average of the up and down

ondutanes from θ = 0. The results of the �gure are alulated for 1% onentration,

whih may explain the di�erene as the ribbons results were taken from 0.01%. Di�erenes

in the harge arrier mobility do not a�et the results, beause the results are the same

regardless of whether the ondutivity is measured at onstant time or length. In any ase,

the oupling between up and down sites seems to be ausing more harge sattering than

the orresponding spin-onserving potential, leading to smaller ondutane.

When the spin polarization for 1% onentration is alulated, it is now apparent that it

behaves as a damped osillator, desribed by equation

S(t) = −e−t/τ cos(ωt), (60)

where τ is the time onstant for damping and ω is the angular frequeny of the osilla-

tion. As seen in Figure 7b, the polarization goes to zero quite fast, but a lear sinusoidal

osillation is observed before that happens. This questions the exponential �t made to the

polarization in ribbons earlier. It is possible that the behaviour in the ribbons also follows

Eq. 60 instead of simple exponential deay, but sine the �t was then made only for the

beginning of the simulation with no present osillation, the results should still be valid.
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Figure 8: (a, b)Fitting parameters ω (lower) and τ (upper) from Eq. 60 for potential defets

with θ = π/2 and potential strength ±2 eV in graphene. The defets onentrations are

0.01% and 1%. () Spin preession speed ω measured at E = 0 eV for di�erent potential

strengths. (d) Inverse of spin relaxation time τ measured at E = 1 eV. The solid blak

lines in last two �gures show linear and quadrati �ts to the data points.

Figure 8 shows the �tting parameters as a funtion of energy for both 0.01% and 1%

onentrations of potential defets in graphene. Unlike with the ribbons, there are no

resonant energies for the defets where the behaviour would be speial in some way. This

supports the observation that the resonant energies for ribbons were aused by the edge

states of the system. Edges have a muh smaller role in the graphene and periodi boundary

onditions make them even less important, fading away the possible small ontributions of

edge states.

When the results of the two onentrations are ompared, their similarity is astounding.

The time onstants have ompletely di�erent magnitudes in the two systems, but their

behaviour is exatly the same. The smaller onentration does have slightly more roughness

in the shape, but this is most likely aused by the slower osillation in the system. When

there is barely any osillation during the time for whih the �t is made, it is harder to do

the �t aurately.
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Another urious observation is that the ratio between the results at eah energy is remark-

ably lose to 0.01, the ratio of the defet onentrations. This suggests that both of the

(inverse) time onstants sale linearly with respet to the defet density. This behaviour is

also enountered with other similar spin-�ipping systems [46℄.

So far all of the potential defets alulations have been made with the same potential

strength, ±2 eV. While this has given pretty good results, the e�et of di�erent potential

strengths should also be heked. To do this, the alulations were repeated while the

strength was varied from 0.5 eV to 2.5 eV. Spin polarization still shows damped osillatory

behaviour throughout the whole range and both time onstants behave the same as a

funtion of energy. The values of the onstants at seleted energies an be seen in �gures

8 and 8d. For ω the values are taken from E = 0 eV and for τ they are from E = 1 eV.

The time onstants seem to obey simple linear and quadrati saling, as seen from the �ts

done to the data. The linear saling of ω is expeted, as osillation speed usually depends on

the energy di�erene between the two states between whih the osillation is happening [47℄.

Sine we are ontrolling the potential for eah spin hannel, we are essentially hanging

their energies, leading to the linear saling. The quadrati behaviour of τ on the other

hand an be explained by the mehanisms ausing spin sattering. The two onventional

mehanisms are alled Elliot-Yafet (EY) and Dyakonov-Perel (DP) [48℄. Both of them sale

the spin relaxation time as τs ∼ 1/∆2
with ∆ being the potential di�erene between spin

hannels [49, 50℄, explaining the observation. The dominant mehanism of the two is usually

disriminated by the relative behaviour of τ and τp, the momentum relaxation time [51℄.

In our ase, we annot use this information to speify the underlying mehanism beause

the two relaxation times are unoupled. Nevertheless, the fat that both mehanisms have

a similar saling with respet to potential strength supports our results.

5.4 Adatom Plaquettes

The potential defets studied in the previous setion should be onsidered purely as math-

ematial defets. While something similar ould be ahieved with e.g. light adatoms on

top of the arbon atoms, the potential strength is quite strong for any viable real-world

defets. Additionally, real world defets will most likely a�et multiple sites and an be

more ompliated than simple spin-dependent potential on single sites.

One way to approah the more realisti spin relaxation methods is the so-alled Rashba

�eld, whih an be seen in the tight-binding Hamiltonian as omplex spin-�ipping hoppings.

The Rashba Hamiltonian is given by

ĤR = iVR
∑

〈i,j〉
~z · (~s× ~dij)|i〉〈j|, (61)

where the sum goes over the nearest neighbours a�eted by the Rashba �eld, ~z is unit

vetor normal to the plane, ~s is vetor formed from Pauli matries and

~dij is unit vetor
along the bond between sites i and j. The Hamiltonian may seem a bit ompliated, but
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when written out in the spin basis, the terms being summed have atually quite simple

form

[

0 − cosφ+ i sin φ
cosφ+ i sinφ 0

]

, (62)

where φ is the angle between the bond and the x-axis. It is easy to see from this form that

the spin-�ipping hoppings have onstant magnitude, but their omplex phase depends on

the orientation of the bond.

It has been observed experimentally that Rashba �eld an be indued by heavy adatoms,

suh as gold, sitting in the hollow sites of graphene lattie [52℄. This type of Rashba e�et

has been studied by van Tuan et al. [46℄. In the model they used, a gold adatom sitting in

the middle of graphene hexagon indues a Rashba �eld to the surrounding arbon sites. In

addition to the Rashba part, they also inlude intrinsi spin-orbit oupling and a potential

shift assoiated with the adatoms. The Hamiltonian used has the form

Ĥ = H0 +
2i√
3
VI

∑

〈〈i,j〉〉∈R
~s · (~dkj × ~dik)|i〉〈j|+HR − µ

∑

i∈R
|i〉〈i|, (63)

with R being the set of plaquettes next to the adatoms and 〈〈i,j〉〉 ∈ R denoting the next-

nearest hoppings within the plaquette. The intrinsi spin-orbit oupling an be written out

similar to what was done with the Rashba part and it simply indues a spin-dependent

2nd-nearest neighbour hopping within the plaquette. The hoppings beome ±i/
√
3VI and

there is no oupling between the opposing spins. The loal potential shift is needed beause

there is a loal harge redistribution due to the adatoms [53℄.

Our results for the spin behaviour agree qualitatively with the ones van Tuan et al. had

in their paper, as seen in Figure 9a. The spin relaxation time features an M-shaped urve

as a funtion of energy where the relaxation time inreases quite smoothly when E = 0 is

approahed, until it ollapses to a minimum at the Dira point. The spin preession time

on the other hand stays approximately onstant for the whole energy range. When the

results are looked into more arefully, there are however quite big di�erenes. The biggest

di�erene is the magnitude of the spin relaxation time. In our alulations τ = 0.34 ps at

E = 0, a result whih still agrees quite well. The maximum at 0.1 eV, where τ = 4.3 ps,

on the other hand is ompletely di�erent from the τ = 0.8 ps at 0.2 eV reported by van

Tuan et al. Also, there is a slight kink at E = 0 in the spin preession time not present in

their results.

The di�erene between the results is most likely explained by the di�erent approximation

of the delta funtion. In their supplementary material, the authors mention a thermal

broadening of 0.027 eV. Even though this gives a relatively good approximation for the

delta funtion, it is still way wider than the one used in our alulations, as seen in Figure

9b. The type of the broadening was not mentioned in the supplement and therefore both

Lorenzian and Gaussian distributions are drawn to ompare to our Chebyshev expansions

with Nm = 300, 500, 1000. Even though the number of moments in eah of the three ases

is small ompared to Nm = 3000 used in our other alulations, all of them feature a muh

sharper peak than either of the two distributions they are ompared to.
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Figure 9: (a,-d)Spin relaxation and preession times for 8% density of adatom plaquettes

alulated with di�erent amount of Chebyshev moments. (a)Nm = 3000 for both relaxation
(blak urve) and preession (blue). (b-d) The amount of moments are 300 for light blue,

500 for orange, and 1000 for purple. (b) Approximations to delta funtion with the di�erent

amount of moments. The blak urve shows Lorenzian approximation with η = 0.027 eV

while the gray one shows Gaussian with σ = 0.027 eV.
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Figure 10: (a,b) Total ondutivity for 8% onentration of adatom plaquettes measured

at 1 µm (blue), 5 ps (orange) and at 15 ps (inset) and pristine graphene at 1 µm (gray

urves). (,d) Time-dependent di�usion oe�ient at seleted energies. Figures (a) and ()

are alulated with Nm=300 and (b) and (d) with Nm=1000.

The e�et ofNm is further investigated in Figures 9 and 9d, whih show the spin relaxation

and preession times alulated for the three ases onsidered in Figure 9b. As expeted

from the omparison between the delta funtion approximations, the ase with fewest

moments is losest to the results of van Tuan et al. The magnitude of τ is still too large

aross the whole energy range, but the shape is now fully onsistent with their results. TΩ
on the other hand behaves now muh more niely as the kink at E = 0 has turned into a

smooth bump. Beause the approximations to the delta funtion are di�erent, the results

annot be expeted to be exatly the same, but they agree already quite well.

Another e�et of the number of moments an be seen in the urious behaviour of ondu-

tivity near E = 0. During the �rst few pioseonds of the simulation, there is a minimum

at zero in the ondutivity, as seen in Figure 10. However, one time passes on enough,

the depth of the minimum dereases and it atually beomes a maximum at long enough
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times. This is aused by the inreased broadening of states over time as the peak at 0.3 eV

�lls in the minimum. The inorret behaviour is highlighted by omparing the magnitude

of the ondutivity to pristine graphene in the same �gure. Pristine graphene should give

an upper bound for ondutivity for systems with defets with them and in our ase we

have multiple times bigger ondutivity than that.

When the number of moments is inreased, the orret behaviour is brought out. Figure 10b

shows the ondutivities at exat same times but with Nm=1000 instead of 300. This time

the states do not get wider in energy and the minimum at zero also keeps its shape as time

goes on. The results now also agree muh better with the ondutivity of pristine graphene.

The pristine ondutivity shown is alulated at onstant length, and the orresponding

plaquette ondutivity agrees quite well with it. The results with onstant time annot

be diretly ompared with the pristine ase, but they also agree quite muh better. They

follow the behaviour from the pristine ase muh more losely and the bigger magnitude

is fully explained by the di�erent point of measurement.

There is still some disrepany in our results ompared to the ones by van Tuan et al.

Aording to their alulations, the di�usion oe�ient saturates at energies above 0.1 eV

at 8% defet density. This was not the ase in our results as D(t) keeps on inreasing

for muh wider range of energy. The magnitudes of the oe�ient is quite lose if our

Nm = 3000 result is ompared to theirs, but the behaviour is still a bit di�erent. Either

there is still some di�erene in the systems on mirosopial level or the e�et of the

di�erent approximations of the delta funtion is even higher.

5.5 Charge Puddles

5.5.1 Constant sized puddles

Both of the potential defets and adatom plaquettes onsidered earlier are very loal de-

fets and an result in sharp hanges in the potential. Whereas this ould be ahieved by

adatoms, too abrupt hanges in potential are not likely to be present in real systems. A

more realisti senario would be a defet whih spans over multiple sites and has smooth

behaviour for the potential. In this setion we partiularly fous on Gaussian-shaped harge

puddles, whih are desribed as

U(r) = Uσ
0 e

−r2/2r2
0 , (64)

where U0 is the potential strength at the enter of the puddle, loated in the middle of some

arbon hexagon, r is the distane from the entre and r0 is the width of the puddle. The

potential strength is hosen separately for the spin hannels but the enter of the puddle

is the same for both of them. These puddles ould be aused for example by ripples in the

graphene sheet or a magneti substrate underneath the sample. The spin-dependeny of the

potential might stem from eletron polarization of the puddle or ferromagneti properties

of the substrate. The numeri values used for the potentials are U↑
0 = 0.8 eV and U↓

0 = 0.6
eV. The defet angle is handled the same way it is done with the potential defets.
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The potential strength deays to zero with these defets quite rapidly and to ease the

forming of the Hamiltonian, a uto� radius is introdued for eah puddle. The uto� is

implemented suh that only the sites inside a retangular box entered at the defet site get

�nite values for the potential. The edges of the box are hosen suh that the exponential

oe�ient, e−r2/2r2
0
gets value 0.001 at the enter of eah side. Sites outside of this box will

gain zero ontribution from the partiular defet. The puddles are allowed to overlap and

the potential for a site is simply the sum over the ontributions from all defets.

Beause of their muh larger nature, the amount of puddles we an plae in the system

is muh smaller than that of the single-site potential defets. For example, a puddle with

r0 = 10 a0 overs an area whih has roughly 240 atom sites. Therefore, 1% density of the

potential defets would orrespond to puddle density of 0.005%. However, the strength

of the puddles gets muh weaker near the edges of the puddles and the ases with equal

overages annot be diretly ompared.

The behaviour of spin polarization with harge puddles depends greatly on whether the

potential strength is kept onstant for the puddles or is taken randomly from [−U0, U0],
as seen in Figure 11. When the potential is kept onstant, dampened osillation is still

observed. This time, however, the behaviour is highly asymmetrial with respet to the

Dira point. On one side of the point the osillation is muh faster ompared to the other one

and the same side also dampens faster. The randomized potential on the other hand shows

no signs of osillation. The behaviour is ompletely symmetrial and the spin relaxation

time is longer than on either side of the Dira point in the onstant ase.

The di�erenes between the two ases are mostly expeted. The magnitude in the onstant

strength puddles is U0, the endpoint of the potential interval from whih the randomized

strengths are taken. When the potential strength is randomized, the average magnitude of

potential is lower than the value used in the onstant ase, ausing the relaxation to take

longer. The symmetry follows from the fat that the randomized potential is taken from

-U0 to U0. Flipping the sign of the potential mirrors the results with respet to zero and

when average is taken over the di�erent potentials, there are equal amount of puddles with

opposing signs, leading to the symmetri result. The most urious di�erene is the lak of

osillations in the randomized ase. It seems that eah puddle with di�erent strength has

its own energy-dependent osillation frequeny. When there are multiple di�erent puddles

in the same system, the ompeting frequenies suppress eah other, leading to no osillation

in the end.

The behaviour of the ondutivity for the harge puddles is di�erent from either of the

potential defets or adatom plaquettes, as seen in Fig. 11d. Just like the other defet types,

σ has a minimum at E = 0, but instead of staying onstant or deaying at higher energies,

this time σ behaves quadratially near the zero energy. This is in a good agreement with

sattering from harged impurities, for whih the ondutivity sales linearly as a funtion

of harge arrier density n [54℄. Beause n depends quadratially on E, the ondutivity

sales as E2
explaining our observation. On the other hand, the linear ondutivity of

the potential defets is explained by their muh shorter range. Short range satterers in
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Figure 11: (a) Spin polarization as a funtion of time for three energies with U↑
0 = 0.8

eV and U↓
0 = 0.6 eV. The dashed lines feature onstant potential while the solid lines

have it randomized. (b) Spin relaxation time for randomized (blue) and ontant (orange)

potentials. () Spin preession time for the ontant potential. (d) ondutivity at t = 0.6
ps for randomized potential (blue) ompared to pristine graphene (blak) and potential

defets (gray).

graphene have been shown to have onstant ondutivity [55℄ and is in agreement with our

results.

5.5.2 Puddles with varying size

In real experiments, it is likely that the size of the puddles in the system is not uniform.

In ase the potential is aused by a substrate, it might have rough surfae and a�et

the eletron distribution unevenly. Therefore, it is good to also randomize the width of

the puddles in addition to the potential strength. Having another parameter randomized

auses the onvergene to su�er slightly, but as seen from Figure 12, the results are still

reasonably good even with the same number of random vetors in the alulation as before.
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Figure 12: (a) Time onstant (b) Condutivity at t = 0.6 ps for puddles with randomized

width. The blue urves orrespond to maximum width of 10a0 and the orange ones to 15a0.
The blak line in (b) shows pristine graphene as a omparison.

The blue urve in Figure 12a shows the spin relaxation time when the puddle width is

randomized uniformly between 0 and 10a0, while keeping the other parameters the same

as before. With the exeption of the viinity of the zero energy, the behaviour is pretty

muh the same as before, with the time onstant slowly dereasing with inreasing energy.

Near zero, the behaviour however hanges drastially. Instead of dropping sharply and then

forming a small peak at E = 0, the peak is now dominant and the drop in not nearly as

sharp. The orange urve in the same �gure shows the ase where the randomization is

taken over 0-15a0. Again, the zero energy shows slightly di�erent behaviour ompared to

the other ases, as there is a sharp drop and no peak at E = 0.

It seems that the peak at the zero energy is a feature originating from the smaller puddles

in the system. The ase with onstant r0 = 10a0 was shown in Fig. 11b and it had only a

small peak at E = 0. All of the puddles have smaller width than this in the randomization

and the smaller puddles have to be responsible for the larger peak. In the system where

randomization is taken from 0 to 15a0, it is basially guaranteed to have at least some

puddles with r0 > 10a0 and it is enough to fade the peak away. It seems like the smaller

puddles are too steep for the E = 0 harge arriers and sine they annot get into their

range, the amount of spin �ipping is redued. Even a few larger puddles are enough to

enable spin �ipping near zero, as they have muh gentler slope and allow the harge arriers

to enter their area.

Outside of the zero-energy range, the results are quite expeted. The spin relaxation times

are a bit longer in the randomized ase ompared to the same non-randomized one. The

randomization auses the average puddle size to be smaller and it is natural that it takes

longer for the spin to relax. There is also not muh going on with the ondutivity. Both ran-

domized ases feature the same paraboli energy dependene seen in the non-randomized
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Figure 13: (a) Spin relaxation time saling as a funtion of puddle width. The two urves

are measured at E=0 (blue) and E=1 eV (orange). (b) Behaviour of the relaxation time for

di�erent puddle widths. The urves have been saled to �t into same �gure and only the

relative behaviour should be onsidered. All widths have unit of a0, the C-C bond length

in graphene.

ase and the magnitude of the ondutivity is not muh smaller than in pristine graphene.

With larger puddles the ondutivity is a bit smaller as there is larger area sattering

harge, but it seems that the puddles do not satter harge signi�antly.

To further address the e�et of the puddle size, the spin polarization was alulated with

multiple onstant puddle sizes. Figure 13a shows the behaviour of the time onstant versus

the puddle size. At E = 1 eV the behaviour is linear, suggesting a power law behaviour.

At E = 0 there are straight portions, but overall the urve is not linear. This is mostly

explained by the transition between the extremes seen in Figure 13b. In the small size

limit the relaxation inreases inversely to the energy as zero is approahed, while the larger

puddles have dereased relaxation near zero. Between these ases is a transition region,

whih was already seen earlier.

The behaviour of the relaxation time at E = 1 eV strongly suggests that there would be a

power law saling between it and the puddle width. To see if this is the ase for all energies,

a �tting to axb was done aross the alulated energy range. The �tting an be done in

multiple ways and the results an be seen in Figure 14. Perhaps the easiest way of doing

the �t is to take the logarithmi plot similar to Figure 13a and �t a straight line to the

data. Alternatively, it is possible to get a �t diretly for the power law by minimizing the

squared sum of funtion f(a,b) = τ − arb0 aross the puddle sizes r0 and the orresponding

spin relaxation times τ . The third method utilizes the same minimization of squared sum,

but instead of applying it diretly to the data, the inverse of the relaxation time is taken.

The reason behind the three di�erent ways of �tting is the di�erent weights they give to
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Figure 14: (a) The exponent b in the power law axb �tting as a funtion of energy. (b)

Sum of squared errors of the �ts. Blue urve shows diret �t, the orange one �t to inverse

relaxation time and the purple one a logarithmi �tting.

eah data point. The �t to logarithmi plot gives roughly an equal weight for eah point in

the data, while the diret �ts give more weight for their largest data points. For diret �t

these are the smaller puddles, sine they have longer relaxation time and for the inverse �t

more weight is given to the larger puddles. To measure the goodness of eah �t, a sum of

squared error (SSE) was alulated between the �t and the atual data points. To ensure

a fair omparison between the methods, the error was alulated on the logarithmi sale.

On a regular linear sale there is way too muh weight on the smallest puddles, sine their

relaxation time is few orders of magnitude larger ompared to the larger ones.

The results given by the �rst two methods agree reasonably well with eah other, as seen

in Figure 14. The exponent in the power law mostly varies between -3 and -4 and at the

zero energy it drops down even further. The zero-region however should not be taken too

seriously, sine the the transition mentioned earlier a�ets it the most. The third method

gives onsiderably di�erent results, as the exponent is roughly -2 with almost no energy

dependene. The di�erene might be aused by the �utuations that were present in the

larger puddles. The inverse time �tting gives the most weight for the largest puddles and

if they have inauray in their values, so will the �t done by the third method.

The sum of squared error suggests that the �rst method would be the best of the three.

It has the smallest error aross the whole energy range and it also has the smoothest

behaviour for the exponent. The method however bene�ts greatly from the way the SSE

was alulated. Sine the SSE is alulated in the logarithmi sale, it gives a natural

advantage for the �rst method, sine it already minimizes the SSE on the logarithmi sale

in the linear �t. If the SSE was alulated on linear sale, the �rst method would have

multiple orders of magnitude larger error beause it doesn't give nearly as muh weight

for the smallest puddles. In any ase, the �rst method seems to be the best in �nding the
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Figure 15: (a) Saling of the (inverse) relaxation time as a funtion of harge puddle density.

(b) Slope of the linear �t as a funtion of energy. (inset) Sum of squared errors in the �t.

exponent orretly, even though the �t given by it might not be the best.

As a last result for the harge puddles, the saling of the spin relaxation time was also

alulated as a funtion of the puddle density. The results an be seen in Figure 15, where

the inverse of the relaxation time is shown against the density. With the exeption of

the zero energy, the inverse seems to be saling linearly with nearly onstant slope aross

the energy. The transition observed with the previous results seems to be a�eted by the

density, ausing deviation from the linear behaviour for zero energy. As seen in the error,

the �ts are really good aross the energy.

The linear saling is a quite reasonable result. If the puddles do not interat with eah

other, eah one will satter spin with the same rate assuming the harge arriers traverse

somewhat uniformly. Inreasing the number of puddles would then inrease the number of

spin sattering events linearly. The relaxation time is inversely proportional to the number

of spin sattering events, whih means that the inverse also inreases linearly. In high

enough onentrations the puddles start to overlap and interat with eah other, but at

least in the range that was alulated, this was not yet the ase.

5.6 Charge arrier density evolution

In the absene of a good measure for spin �ipping ondutivity the spin polarization has

been so far the best way to desribe the spin behaviour. While it gives useful information

about the system, it doesn't address the transport properties as well as ondutivity or

ondutane would. One alternative way of looking into the transport properties is to

alulate the time-evolution of the wave funtion and see how the harge density evolves in

time. An espeially interesting ase is loalized initial state, sine it gives a way to measure
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distane travelled by the wave paket.

There are some tehnial problems when the density is alulated, espeially onsidering

the amount of data that is aquired in the omputation. The system we have alulated

so far have had roughly million atoms in them. It takes roughly 16MB of memory to store

the density for one state vetor using double preision numbers, as eah atom has separate

densities for both spins. Time evolution requires roughly 100 steps to alulate the density

aurately enough for relevant time sales, whih means the amount of memory required to

store the evolution of one random state is in the order of gigabytes. Aurate alulations

require tens of random vetors and the amount of storage required beomes too large to

handle.

The memory usage an be redued by averaging the density over a few sites. For example

we an alulate the density over a grid of 10x10 squares, reduing the required memory

by a fator of 100. This kind of box �lter is a basi operation on a GPU and it performs

really e�iently. The averaging proess dereases the auray in loation slightly, but in

small enough areas this does not matter.

So far most of the quantities have been alulated as a funtion of energy. When density is

onsidered, the energy is not as important and it an be dropped out of the alulations,

saving both omputational time and size of the output. Physially the most relevant energy

range is the viinity of the Dira point and to fous the results to this area, the initial state

an be manipulated with imaginary time evolution. When operator e−τĤ2

is applied to

the state, the energy eigenstates are weighted with an exponential oe�ient e−τE2

. After

renormalization, the higher energies vanish from the state and the relevant energy range

is left in. An illustration of how the DOS hanges is shown in Figure 16a.

The initial shape of the wave paket was hosen to be Gaussian, similar to how the harge

puddles were de�ned. The width of the paket was hosen to be 5 a0 and it was normalized

to the number of atoms in the system. The initial state might be slightly unphysial, sine

it orresponds to senario where every eletron of the system is in the same loation, but

the dynamis given by it should ome out orretly nevertheless as the interation e�ets

are negleted. An example of the time evolution in the presene of harge puddles an be

seen in Figure 16b. The spreading happens quite fast and in the last snapshot, whih is

taken at t = 48 fs, the width of the paket is already 10 nm. The hexagonal shape of the

spreading paket is aused by the graphene lattie and the lak of exessive sattering in

the system. The strength of the puddles is weak enough that the initial symmetry of the

paket is retained, unlike in the presene of stronger defets in higher density. For example

the potential defets with strength of ±2 eV and 8% density ause the paket to beome

irular after the �rst 60 fs of the simulation. With the puddles, the hexagonal shape is

retained for the whole 2 ps of the simulation.

The Figure 16b also shows how similar the spins behave. The shape and size of the paket

are idential as time passes on and the only di�erene is the amount of eah spin. Also,

the ratio between the spins stays quite uniform aross the system in the presene of harge

puddles as seen in Figure 17. When the average spin perentages are ompared, their
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Figure 16: (a) The density of states after imaginary time evolution (blue) ompared to

regular DOS (blak) (b) Time evolution of the density of Gaussian shaped initial state in

the presene of harge puddles. The �rst line shows up-spin and the seond one down-spin.

The snapshots are taken from t = 0, 24 and 48 fs.

overall behaviour does not di�er muh from the loal ones, espeially in the later parts of

the simulation. After the �rst 0.1 ps of the simulation, both loal and global values are

pratially the same and most of the interesting phenomena our before that time. Up

until 0.05 ps, the density behaves smoothly for all of the points of measurement. After

that, the perentage of the up spin drops fast with a strong dependene on the distane

from the enter. For the losest points, the perentage starts to drop immediately, while

for the further points it takes muh longer to drop down.

The times at whih the drops our roughly orrespond to the moments at whih the main

wave paket passes the points of measurement. At t=0.05 ps the widest part of the paket

has travelled 5.7 nm from the entre and at 0.1 ps the narrowest part has just passed

the 9 nm distane, at whih the furthest measurement was done. Beause of its hexagonal

symmetry, the wave paket reahes the same lengths at slightly di�erent times, making the

passing a little longer event. The sudden drop in the perentage of up spin when the main

paket passes by suggests that there is a rather strong orrelation between the sattering

of harge and spin. The �rst parts of the wave paket that reah the points of measurement

are the fastest, whih means they annot have had many sattering events on their way. The

perentage of up spin in these parts is also larger than on average, whih means they also

have had less spin sattering. The most of the down spin is arried by the main paket and

as it passes the point of measurement, the down density inreases drastially. At the 0.1 ps

mark the wave paket has almost reahed the whole system and after that, the behaviour

follows the average losely, as the density has more or less reahed the equilibrium.
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Figure 17: Perentage of up spin density as a funtion of time at distanes of 4.5 nm

(purple), 6.2 nm (orange) and 9.2 nm (blue) ompared to the overall density of up spin

(blak). (a) shows the results for harge puddles and (b) for potential defets. The data

sets start from the moment when density beomes large enough that it an be numerially

distinguished from zero.

The potential defets are muh stronger satterers and therefore their loal spin behaviour

di�ers quite muh from the global one. First of all, the wave paket spreads a lot slower,

as seen from the later starting point of the data sets in Figure 17b. There is now a really

strong dependene on the point at whih the measurement is made. The amplitude of the

spin osillation deays muh slower in the farther points and they also osillate slightly

slower. This time the wave paket reahes the whole system at t=0.12 ps, but there is still

some di�erene between the loal and global behaviours. It would seem that the stronger

potential defets keep the di�erent parts of the system muh more separated, allowing

there to be di�erent behaviour at di�erent loations.

The di�erent behaviour of spin is espeially well seen in the pro�les of up spin perentage

shown in Figure 18. With harge puddles in the system, there are two levels of perentages,

one loser to the enter and one further away. The loser one has slightly less perentage of

up spin and between the two levels there is rather steep rise. The rise is most likely aused

by the main wave paket passing the radius, as their loations math. The spin pro�le

stays quite uniform aross time, unlike with the potential defets, for whih the pro�le

hanges in shape a lot as time passes. In priniple the behaviour is more or less similar to

the puddles as there is again two levels and a slope between them. This time however the

further level an get any values depending on time. It seems that, unlike with the harge

puddles, there is no oupling between the spin and harge sattering as this time the faster

eletrons undergo spin sattering.
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Figure 18: Perentage of up spin as a funtion of distane from the enter. The urves are

for t= 0, 0.02, 0.05, 0.08 and 0.1 ps, for blue, orange, yellow, purple and green, respetively.

Figure (a) is for harge puddles and (b) for 1% potential defets.

6 Conlusions

Spin-dependent transport properties of eletrons in graphene were studied in this thesis.

The researh was done using the real-spae Kubo-Greenwood formalism, implemented on

graphis proessing units. A spin-dependent formulation was derived starting from Kubo

ondutivity and an implementation was reated on top of an existing spinless ode. The

implementation was �nally tested on various types of defets embedded in graphene.

It turned out that the onept of spin-�ipping ondutivity is somewhat ill-de�ned. While

it an be de�ned in the Kubo-Greenwood formalism, this de�nition does not apture all

spin �ipping e�ets in the system, and in partiular the e�et of spin-dependent potential

is ompletely left out. This obviously does not agree with the Landauer-Büttiker formal-

ism, for whih �ipping ondutane an be de�ned. The di�erene omes from the di�er-

ent perspetives to the transport: in the Landauer-Büttiker formalism the ondutane is

aessed through transmittane and is more or less related to eletri urrent, while Kubo-

Greenwood fouses more on the density evolution whih is more related to the movement

of separate eletrons. Within the mirosopi view of Kubo-Greenwood formalism, it seems

that spin polarization provides a better measure to desribe spin �ipping.

In the ribbon geometry the results between Landauer-Büttiker and Kubo-Greenwood agree

surprisingly well onsidering the ompletely di�erent approahes. The spin-onserving on-

dutanes are pratially equal onsidering the numerial errors in the Kubo-Greenwood

alulation and the slightly di�erent systems. The spin �ipping behaviour also seems to be

similar in both formalisms, even though they measure it by di�erent means. The defets

are ative at same energies, whih strongly suggests that both formalisms apture the same
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e�ets, albeit in a di�erent way. This is even more highlighted when the defets are plaed

on the edges of the system, as they are muh more ative when plaed there.

The omparison between the two methods was limited to the ribbon geometry sine

Landauer-Büttiker annot handle wider systems nearly as e�iently. Kubo-Greenwood

on the other hand has exellent performane in wider systems. Even though the spin-part

of the implementation was not optimized for performane, the exeution times of the ode

were short enough that it was sensible to alulate enough random vetors and have the

results onverge. The onvergene depends on the system and in general the more defets

there are in the system, the fewer vetors are required for onvergene.

Another important fator in the alulation is the number of moments used in the Cheby-

shev expansion. Fewer moments allow smoother results and faster onvergene. This how-

ever omes at the expense of loss of energy resolution. Fewer moments mean that the

approximation of delta funtion beomes worse and the states are spread to wider range of

energy. As seen with the adatom plaquettes, the spreading auses muh smoother behaviour

for peaked quantities and may result in large errors. In general, the number of moments

should be hosen as high as possible while keeping the omputational time reasonable.

Out of three defet types studied, the loal potential defets are quite pure mathematial

defets, sine it would be really hard to get potential with 2 eV strength on a single site

without altering the neighbouring sites. The adatom plaquettes on the other hand are

from the other end of the spetrum and are perhaps the losest of the three to model real

world defets. The harge puddles lie between the other two, as they have been observed

experimentally, but it is not known if the potential an be spin-dependent or not. From

these three defet types, the puddles provided the most interesting features at the studied

parameter ranges. Even though the used potential strength for the puddles is relatively

strong at 0.7 eV, they don't satter harge too muh as seen from its ondutivity ompared

to pristine graphene.

The puddles also feature an interesting transition in the behaviour of the zero energy range.

In the limit of large puddles, the zero energy has the fastest spin relaxation. As the puddle

width is dereased, the relaxation time inreases faster for the zero energy and eventually

higher energies relax the fastest. The transition is most likely aused by the pro�le of

the puddles. For larger puddles the potential rises over long distane and even zero energy

modes are allowed to enter their area. When the width gets smaller, their slope gets steeper

and steeper, eventually bloking the entrane to the puddles.

All in all, the implementation proved to be e�etive in studying the spin-dependent prop-

erties of graphene. The method should be easily extendable to all materials and defets

that an be modelled with tight binding. It is slightly disappointing that the formalism

annot handle spin-�ipping ondutivity but spin polarization overs this weakness quite

well. The results for the spin polarization with the harge puddles suggest that long-range

satterers a�et spin muh more e�etively than they do harge. This might explain the

short spin lifetimes observed in the experiments even on high-quality samples [11, 56℄, if

the samples in the experiments have defets similar to the studied harge puddles.
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