
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Joni Toiviainen

Consistency-responsiveness Tradeoff
Evaluation for Consistency Maintenance in
Multiplayer Online Games

Master’s Thesis
Espoo, March 03, 2016

Supervisor: Professor Jukka K. Nurminen, Aalto University
Advisor: Teemu Kämäräinen M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80719021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Joni Toiviainen

Title:
Consistency-responsiveness Tradeoff Evaluation for Consistency Maintenance in
Multiplayer Online Games

Date: March 03, 2016 Pages: vii + 62

Major: Software Technology Code: T-106

Supervisor: Professor Jukka K. Nurminen

Advisor: Teemu Kämäräinen M.Sc. (Tech.)

Multiplayer online gaming has become a massive part of the game industry.
Games that use network connections are known to be vulnerable to communi-
cation problems like latency, jitter and packet loss. These problems may cause
players to suffer from delayed responsiveness or weird game entity behaviors.

Games typically fight against network problems by using consistency maintenance
methods which need to perform a balancing act between the game’s consistency
and responsiveness. A huge variety of techniques exists, but there has not been
a clear guideline about how a suitable technique should be selected.

This Thesis proposes a categorization for the consistency maintenance techniques
based on their ability to handle time or data. Categorization is also evaluated
with a user study by implementing a single technique from each category and
testing them with a simple game.

Results from the evaluation are further used to form an analysis for each proposed
category. Analysis is used to make small conclusions about the advantages and
disadvantages for each category together with an suggestion of how to balance
with the consistency-responsiveness ratio to maintain the playability of the game.

Pessimistic techniques are considered to provide good consistency in the cost
of responsiveness and vice versa for optimistic techniques. PPT is considered
as a good solution for a game that does not require real-time simulation, while
PDT works well with a game that requires high consistency and may tolerate
long response times. OPT is considered as a suitable solution for a game which
contains easily predictable shared state entities and ODT is recommended for a
game that contains clear decision points.

Keywords: consistency-responsiveness trade-off, latency, consistency
maintenance, latency compensation, multiplayer online games

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Joni Toiviainen

Työn nimi:
Yhteneväisyyden ja reagointikyvyn tasapainon tutkiminen verkkomoninpelien
yhteneväisyyden ylläpidossa

Päiväys: 3. maaliskuuta 2016 Sivumäärä: vii + 62

Pääaine: Ohjelmistotekniikka Koodi: T-106

Valvoja: Professori Jukka K. Nurminen

Ohjaaja: Diplomi-insinööri Teemu Kämäräinen

Verkkomoninpelit ovat nousseet massiiviseksi osaksi peliteollisuutta. Verkkoyh-
teyksiä käyttävät pelit ovat tunnettuja siitä, että ne kärsivät helposti yhteyteen
liittyvistä ongelmista kuten viiveestä, yhteyden huojunnasta ja pakettihävikistä.
Nämä ongelmat voivat aiheuttaa pelin reagointikyvyn heikkenemistä tai pelissä
esiintyvien objetien erikoista käyttäytymistä.

Pelit kamppailevat verkon ongelmia vastaan yleensä käyttämällä erilaisia yhte-
neväisyydenhallintamenetelmiä, jotka tasapainottelevat pelin yhteneväisyyden ja
reagointikyvyn välillä. Laaja valikoima erilaisia tekniikoita on jo saatavilla, mutta
niiden valintaan liittyvää selkeää ohjeistusta ei ole vielä kehitetty.

Tämä työ esittää tavan luokitella yhteneväisyydenhallintatekniikat perustuen nii-
den kykyyn hallita aikaa tai tietoa. Tuloksena syntyneet kategoriat myös testa-
taan käyttäjätestauksessa pienen pelin avulla, johon toteutetaan yksi tekniikka
jokaisesta kategoriasta.

Testauksen tuloksista muodostetaan analyysi jokaiselle ehdotetulle kategorialle.
Lopuksi analyysiä käytetään esittämään pieniä johtopäätöksiä jokaisen katego-
rian vahvuuksista ja heikkouksista. Lisäksi esitetään ehdotus siitä, miten yhte-
neväisyyden ja reagointikyvyn tasapainottelukertoimia on mahdollista hyödyntää
pelin pelattavuuden ylläpidossa.

Pessimististen tekniikoiden päätellään tuottavan hyvää yhteneväisyyttä alenne-
tun reagointikyvyn kustannuksella, kun taas optimiset tekniikat mahdollistavat
nopean reagointikyvyn alennetun yhteneväisyyden kustannuksella. PPT toimii
hyvin sellaisten pelien kanssa, jotka eivät vaadi reaaliaikasimulaatiota. PDT puo-
lestaan toimii hyvin niiden pelien kanssa, jotka vaativat korkean yhteneväisyyden
ja pystyvät hyväksymään pitkän reagointiajan. OPT toimii hyvin, mikäli pelin
jaetun tilan objektit ovat helposti pääteltävissä. ODT:ta puolestaan suositellaan
käytettäväksi, kun pelin päätöksentekopisteet ovat helposti määritettävissä.

Asiasanat: yhteneväisyys-responsiivisuuden tasapainotus, latenssi, yhte-
neväisyyden ylläpito, latenssin kompensaatio, verkkomonin-
pelit

Kieli: Englanti

iii

Acknowledgements

I would first like to thank Prof. Jukka K. Nurminen and thesis advisor Teemu
Kämäräinen for all their support and guidance. Our conversations gave a
numerous amount of new ideas and sights about the thesis topic. Thank you
for the valuable information that helped me throughout the thesis.

I would also want to thank all user study participants for their effort.
Without your help, the evaluation part of this thesis would not have been
possible. Thank you for spending your time and being a part of this thesis.

I also want to thank my friends and family for being supportive through-
out the time I have worked with my studies. You gave me plenty of new
ideas and support throughout my long days spent with this thesis. I am the
luckiest man in the world to have you all around.

Above all, I would like to express my profound gratitude to my beloved
Erika for the continouos encouragement and support during my years of
study. These accomplishments would not have been possible without your
love and support. Words cannot describe how much I love you.

Espoo, March 03, 2016

Joni Toiviainen

iv

Abbreviations and Acronyms

CI Confidence interval
CM Consistency maintenance
CPU Central processing unit
CSV Comma-separated values
C-S Client-server
DIA Distributed interactive application
FPS First-person shooter
IR Input response time
MOG Multiplayer online game
ODT Optimistic delay technique
OPT Optimistic presence technique
P2P Peer-to-peer
PDT Pessimistic delay technique
PPT Pessimistic presence technique
RAM Random access memory
RR Remote response time
RTS Real-time strategy
RTT Round-trip time
UX User experience

v

Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Problem statement . 2
1.2 Scope of the Thesis . 2
1.3 Research methods . 3
1.4 Structure of the Thesis . 3

2 Background 4
2.1 Distributed interactive applications 5

2.1.1 Network architectures 6
2.1.2 User interaction . 7

2.2 Consistency-responsiveness trade-off 8
2.2.1 Consistency . 9
2.2.2 Responsiveness . 10

2.3 Consistency maintenance techniques 11
2.3.1 Pessimistic presence techniques 13
2.3.2 Optimistic presence techniques 14
2.3.3 Pessimistic delay techniques 16
2.3.4 Optimistic delay techniques 17
2.3.5 Convergency techniques 18

3 Implementation 20
3.1 The game . 20
3.2 Framework overview . 22
3.3 Time synchronization and RTT 23
3.4 Object model . 24
3.5 Consistency maintenance techniques 27

3.5.1 Pessimistic presence technique 27
3.5.2 Pessimistic delay technique 29
3.5.3 Optimistic presence technique 31

vi

3.5.4 Optimistic delay technique 32

4 Evaluation 34
4.1 Testing environment setup . 34
4.2 User study participants . 35
4.3 Responsiveness measurement setup 36
4.4 Responsiveness measurements 37
4.5 Consistency measurement setup 39
4.6 Consistency measurements . 41
4.7 Playability results . 46
4.8 Consistency-responsiveness trade-off 47

5 Discussion 50

6 Conclusions 56
6.1 Future Work . 57

vii

Chapter 1

Introduction

Multiplayer online gaming has become a massive part of the game industry.
Some multiplayer games like Dota 2 [3] and Counter Strike: Global Offen-
sive [2] currently have millions of dedicated players around the world. It is
needless to say that online gaming has established its place in the gaming
mainstream and also deserves a great focus on the fields of research.

Multiplayer online games use network connections to communicate be-
tween participated computers around the globe. These networks are known
to be vulnerable to network challenges like latency, jitter and packet loss,
which are also commonly known as a lag. Lag may issue odd behavior to
game entities by making players to not hit targets, making characters to
move in weird fashion or by halting the screen for some amount of time.

Even some popular games have suffered from the negative effects of lag
right after their release date. One of these games is Battlefield 4 [1], where
some players were affected by the lag effect called rubber banding that makes
players to warp back in time by their positions. Developers took the issue
as a top priority problem as it had a huge negative impact on the gaming
experience. Rubber banding is also only a single example from huge variety of
negative effects that can affect the game when it is affected by a lag. All these
lag issues should be avoided as they are concluded to have a huge impact on
the gaming experience by making players frustrated or annoyed [21].

Most games try to minimize the negative effects of the lag with consis-
tency maintenance techniques. These techniques try to ensure that the game
runs smoothly and consistently when the latency impacts the network con-
nection. Efficient usage of these techniques is not trivial, as techniques can
be complex and may be used individually or by mixing multiple techniques
together. Different techniques also have advantages and disadvantages that
must be considered when selecting a good set of techniques to be used.

1

CHAPTER 1. INTRODUCTION 2

1.1 Problem statement

The main objective for this Thesis is to study and evaluate how consistency
maintenance techniques should be selected for multiplayer online games that
have some specific interaction and consistency requirements. Objective can
be written as a research question in the following way.

RQ: How to select a suitable consistency maintenance technique for a net-
worked multiplayer game with a particular responsiveness and consistency
requirements?

To achieve the answer for the question, we need to study advantages and
disadvantages of different consistency maintenance techniques. As there are
huge variety of different techniques, we need to categorize techniques so we
can restrict our evaluation process. Therefore, the main research question
can be divided into following three subquestions.

RQ1: How to perform the major categorization for the consistency main-
tenance techniques commonly used in the multiplayer online games?

RQ2: What are the major advantages and disadvantages for each consis-
tency maintenance technique category?

RQ2: What factors should be considered when deciding which consistency
maintenance technique to use with the multiplayer online game with some
specific responsiveness and consistency requirements?

1.2 Scope of the Thesis

Thesis concentrates to study the major consistency maintenance technique
algorithms that fight against lag in multiplayer online games. We assume
that all games use a client-server architecture with a single server instance
and therefore we will exclude multi-server environments and peer-to-peer
(P2P) consistency maintenance problems out of the scope. However, it does
not mean that these games would not be able to benefit from the results.

Thesis will focus on software issues and inconsistency prevention systems
that are affected by the network delays. We will exclude all external phys-
ical and logical challenges that are related to network lines or data transfer
systems which are not part of the actual game engine or logic code.

CHAPTER 1. INTRODUCTION 3

1.3 Research methods

Thesis gathers background and related work information from journal arti-
cles, conference papers and reports from research institutions. Information
is used to receive a solid understanding about the current state of the topic.
In addition, some minor details are also gathered from websites to provide
up-to-date statistics.

Gathered knowledge is used to plan and implement a small simple test
game for the empiric study. Implementation is done with the C++ lan-
guage using the SDL and Boost Asio libraries together with the Emscripten
cross-compiler. Game was tested with 26 people to gather player experience
statistics about the suitability of different consistency maintenance technique
categories. Statistic information was used and compared with background
information to make conclusions and answers to presented research questions.

1.4 Structure of the Thesis

Chapter 1 contains the introduction about the Thesis. Chapter 2 dives into
the theory and the current state of the research about the topic. Chapter
3 contains the planning and implementation phase for the testing environ-
ment where we build the demo game. Chapter 4 contains the testing phase
where real human players are used to test different consistency maintenance
methods. Chapter 5 contains a discussion and analysis about the evaluation
results and finally Chapter 6 contains the conclusions based on the results
from the previous chapters.

Chapter 2

Background

The definition of a multiplayer online game (MOG) refers to a multiplayer
game where players use a client software to process a network communica-
tion with a server or directly with other players. Communication is used
to distribute game events to maintain a consistent shared state between all
connected participants, which are also known as nodes. Issued game events
are typically distributed immediately between the participating nodes, which
allows participated players to interact with the same game world in real-time.

Each node is running a game instance that has a game state, which defines
a current state and behavior of all entities within a game world. Game
state is updated regarding to the game events and the inputs provided by
the players. The way how the game state is updated is specified by the
networking architecture and the way how the player interacts with the game.

Network communication contains data transfer challenges like packet loss
and delays, which may make the game to behave in an inconsistent or unre-
sponsive way. These challenges are typically fought against with consistency
maintenance (CM) techniques that try to balance between the consistency
and the responsiveness of the application. Achieving an absolute consistency
with absolute responsiveness is considered to be impossible because of the a
consistency-responsiveness tradeoff of the techniques. [31]

This chapter starts by gathering information about distributed interactive
applications (DIAs) that are used as the basis structure for all MOGs. Then
we continue by exploring what is the definition for a consistency and respon-
siveness and how do they relate on each other. And finally we study what
kind of consistency maintenance technique categories exists and introduce
some examples from each category.

4

CHAPTER 2. BACKGROUND 5

2.1 Distributed interactive applications

DIAs are computer programs that are connected by a communications net-
work and can interact with each other in a shared virtual environment [12].
Shared virtual environment contains a global state that presents a position
and behavior of all entities within the environment. Global state is replicated
to all nodes as a local state, which presents the state of the environment on
a single node. User may interact with the shared virtual environment by is-
suing events on a local computer, which is also referred as a terminal. Issued
events are delivered to other nodes directly or through a centralized node.
Demonstration about state replication is shown in Figure 2.1.

Figure 2.1: Terminals maintain a local version of the DIA’s global state.

User issued events are used to make changes to global state in addition
to application’s simulation events. However, authoritative modification to
the global state is performed by the decision points. These decision points
are either dedicated servers or users computers, which may either deny or
allow state changes requested by other nodes. The way how decision points
communicate with each other is based on the used networking architecture. [8]

DIAs can be categorized based on two different key features: a used net-
work topology and the different types of interactions that a DIA provides for
the users [31]. Network topology can be considered as a main feature to define
how different nodes communicate and form the networking structure for the
application. Different interactions define how the users may communicate
with the virtual environment and how events are applied to states.

CHAPTER 2. BACKGROUND 6

2.1.1 Network architectures

Network architecture defines the main decision points and the way how dif-
ferent nodes may communicate with each other. It is an important aspect of
DIA as it defines the propagation connections for the state synchronization
and event distribution. These communication architectures can be split into
three categories: centralized, distributed and hybrid solutions [4, 29, 31].

Centralized solution contains a node instance that acts as an server and
performs a two-way communication with other nodes known as clients. This
kind of network architecture is typically known as a client-server (C-S) ar-
chitecture. C-S requires all communication to go through the server node,
which is in contrast to distributed architectures that allow nodes to directly
communicate with each other. Distributed architectures can be also referred
as peer-to-peer (P2P) architectures, where each node acts as a peer. Hybrid
solutions are used combine communication strategies from the C-S and P2P.
The concept of the mentioned topologies are shown in the Figure 2.2.

Figure 2.2: DIA network topology architectures: (a) C-S (b) P2P (c) hybrid

Each topology is considered to have advantages and disadvantages. Ad-
vantages of the C-S architecture are that it can be implemented to contain
administrative features like cheating prevention and network data flow con-
trol [29]. However, the server may become a performance bottleneck im-
pacting the speed of the whole DIA [4]. Advantages of the P2P are that
it is straightforward to implement and there is no server as a performance
bottleneck [4, 29]. Serverless architecture may provide better responsiveness
to P2P when compared to C-S. On the other hand, P2P disadvantages are
that it does not scale well without additional hierarchical structure [4, 29].
Hybrid solutions may be used to combine the benefits from P2P and C-S,
but with the cost of adding more complexity to the architecture.

CHAPTER 2. BACKGROUND 7

2.1.2 User interaction

User interaction types can be categorized based on how the entity state can be
changed and how the participants take turns to interact with the entity. State
of an entity can be changed either in discrete or continuous way. Discrete
applications change the entity state by a result of events from the users or
from the application logic, while continuous applications change entity state
in a response of the passage of time in addition to other events. Participant
interaction turns can be taken in turn-based or concurrent way. Turn-based
applications allow only one user per time to interact with the entity at one
time instance, while concurrent applications allow simultaneous actions on a
same entity at the same time. The concept of the categorization is shown in
the Figure 2.3. [31]

Figure 2.3: Dia categorization taxonomy based on the user interaction.

Example of continuous and turn-based applications are tennis games,
where simulation is continuous but players take turns to interact with the
ball. One example of a discrete and turn-based application is a traditional
chess, where players take turns and entities move to target spots. Example
of a discrete and concurrent application is a collaborative editing system,
where a multiple users make changes to editable target. Finally an example
about a continuous and concurrent application is a typical simulation based
MOG like Call of Duty, which allows multiple players to interact with a
continuously simulated world. The focus of this Thesis concentrates on the
DIAs that belong in the continuous categories.

CHAPTER 2. BACKGROUND 8

2.2 Consistency-responsiveness trade-off

Continuous and concurrent DIAs have four major features that are necessary
to keep the application to mimic real-world interactions. First feature is the
causality, which requires application to be able to handle events in a correct
order and switch from one state to another. Second is the concurrency that
requires multiple users to be able to interact with the same entities at the
same time. Third one is the simultaneity, which requires simultaneous events
to be shown as simultaneous events to all participants. The last feature is the
instantaneity that requires a short response time for actions. These features
are also listed within the Table 2.1. [7, 31]

causality update state according to received events.
concurrency allow users to interact with entities at the same time.
simultaneity show simultaneous events simultaneously.
instantaneity provide short response time for input events.

Table 2.1: Four major features for continouos and concurrent DIAs.

Achieving an absolute simultaneity with absolute instantaneity is consid-
ered to be impossible in DIAs due to network delays [13, 31]. Instantaneity
requires the application to maintain fast responsiveness, which is typically
achieved be applying events to the local state immediately. However, due
to network delays, the simultaneity is not satisfied as events are applied and
processed on remote nodes at different time points. As a result of non-
simultaneity, local and remote states start to diverge towards inconsistency.

By the means of not being able to provide absolute simultaneity with
absolute instantaneity, some amount of inconsistency must be tolerated by
the MOG for the sake of the responsiveness [28]. A research by Brun et
al. [8] stated that the game’s consistency and responsiveness are highly re-
lated to each other. Their suggestion of the playability space defines that
by decreasing the level of consistency it is possible to increase the the level
of the responsiveness and vice versa. A similar conclusion was made by the
study from Savery [24], which stated that application’s CM can be though
as a balancing act between the consistency and the responsiveness.

CHAPTER 2. BACKGROUND 9

2.2.1 Consistency

Consistency refers to the game’s ability to keep remote and local game states
to as similar as possible. If these states are considered similar at all points
of time, application can be considered to maintain an absolute consistency.
Maintaining an absolute consistency in a practical DIA is considered to be
impossible due the clock asynchrony between the nodes and the network
delays that impact the game’s event processing. However, CM techniques
can be used to maintain consistency near the absolute consistency. [9, 13]

According to a study from Delaney et al. [13], consistency can be consid-
ered to refer to the causality, concurrency and simultaneity of DIAs features
that were listed in the Table 2.1. By causality, consistency tries to ensure
that events are applied in a correct order to global game state, which is then
updated to new state to maintain a cause-effect order. By concurrency, con-
sistency tries to resolve simultaneous events on a same entity in a reasonable
way. Finally, the consistency tries to ensure simultaneity by trying to keep
local game states between nodes to as similar as possible.

Consistency may also be defined as a set of consistency requirements. A
study from Palant et al. [20] suggests to create the consistency requirements
by focusing on the user-centered consistency, where clients do not necessarily
have to be in similar state with other clients. Study suggest that requirements
could be split into physical model restrictions, game critical state distribution
and ensuring that player actions are reasonable also in other players views.

Study from Savery et al. [27] has a bit different approach by focusing on a
entity-centric consistency requirements by suggesting that each entity-event
relationship could have a different consistency requirements. They suggest
that each entity type, interaction type, tolerable inconsistency and game-
critical event should be considered separately. Study also categorizes the
main consistency requirements into three categories: state divergence, prop-
agation delay and timeline divergence. State divergence is the amount of
difference between the view of the users at a certain point in time. Propa-
gation delay is the amount of time that passes from the local state change
to be propagated to other nodes. Timeline divergence is the extent how the
player experience of game world events differ.

CHAPTER 2. BACKGROUND 10

2.2.2 Responsiveness

Responsiveness refers to the time for the application to register and response
on a input event [13]. Input events may be issued with input peripherals like
a keyboard, mouse or gamepad. Application responds to events by providing
a feedback with a output device like a computer screen or speakers. The
time between issuing an event to receive the associated feedback may also be
called as a response time [27] or input lag [16].

The amount of acceptable response time is determined by the way how the
player views and interacts with the game [11]. Claypool and Claypool [10]
found that omnipresent aerial games, like real-time strategy (RTS) games
may tolerate delays up to 1000ms. In contrast, Raaen and Grønli [22] found
that fast-paced games may be considered to tolerate only 45ms to 60ms. Re-
sponse time tolerance varies between all games and it should be considered as
a game specific value that should be evaluated for each game independently.

Networked applications may divide response time into remote response
time (RR) and input response time (IR). IR is the time from issuing an
input to receiving the associated feedback on the same terminal. RR is the
time that passes before a remote user sees the locally issued action. [6] Both
RR and IR are affected by the local delays, which are the delays introduced by
the local hardware and software on each node [23]. Because RR contains the
network transmission line, it is also affected by the network challenges like
delays and packet loss. Challenges may also affect IR if the system requires
a remote node to provide a response before local state can be updated.

Ivkovic et al. [15] found that local delays on a single node may vary from
23ms to 243ms. Highest local delays were introduced by the gaming consoles,
where all delays were ranging from 130 ms to 243 ms. In contrast, fast action
games in a PC environment did have the lowest local delays ranging from
23 ms to 65 ms. Similar results was achieved by a study from Raeen and
Petlund [23], where authors found that the average local lag in a popular
fast action Unreal Tournament 3 FPS is between 33 ms and 95 ms.

Responsiveness can be considered as a metric of the DIAs instantaneity
feature that was listed in the Table 2.1. The instantaneity feature requires
DIAs to provide short response times for input events, which can be also
expressed as a requirement of a fast responsiveness. In contrast, long and
noticeable delays are considered to provide slow responsiveness, which is
typically considered to be annoying [21].

CHAPTER 2. BACKGROUND 11

2.3 Consistency maintenance techniques

Consistency maintenance (CM) can be considered as a key feature in net-
worked interactive applications. CM techniques try to ensure that all nodes
keep their game states to as similar as possible while also trying to ensure
that application stays responsive. Without any kind of CM, states would
start to diverge and players would face strange phenomenas like warping
characters or other jerky behaviors that would degrade the UX of the game.

CM techniques can be categorized into optimistic and pessimistic tech-
niques based on their relation to consistency-responsiveness tradeoff [13, 31].

Optimistic CM techniques
Optimistic techniques allow node to make immediate local state up-
dates to maintain a high responsiveness. Node may also use technique
to perform speculative computations to predict remote state updates
before they arrive. However, if predictions go wrong, they must be
corrected with some repair techniques like Time Warp. [13, 31]

Pessimistic CM techniques
Pessimistic techniques require node’s local state to be synchronized
with the global state. Node may not perform any predictions and the
local state is only updated when the same update is synchronized with
all other nodes. [13, 31]

Optimistic techniques are especially good for applications that have easily
predictable state updates or the cost of correcting divergence is relatively low.
Pessimistic techniques are preferred when a high consistency is required and a
degrade in responsiveness is tolerable. In general, optimistic techniques prefer
responsiveness over consistency and vice versa for pessimistic techniques.

It is also completely allowed to combine multiple consistency maintenance
techniques together to form the final solution. Final solution may be built
from optimistic and pessimistic techniques, where a hybrid solutions may take
advantages from each category. For example, optimistic techniques could be
used to keep world simulation running smoothly while pessimistic techniques
could be used to ensure that game-critical events are executed in a consistent
way. According to some previous studies [11, 27], different game entities and
events should be treated to contain different consistency requirements to
other entities within the game world.

CM techniques may also be even further categorized based on different
characteristics. There seems to not be a general way to do the categorization
but several studies have made some suggestions. In this Thesis, we will form

CHAPTER 2. BACKGROUND 12

a taxonomy which is based on the optimistic and pessimistic technique cat-
egorization. This makes a categorization suggestion from Savery et al. [28]
to not directly fit into our requirements as it does not separate optimistic
and pessimistic techniques. Their study suggests to split a client-server CM
design space into three factors, which are the way how the inconsistency is
prevented, how it is repaired and where the game critical decisions are made.
Pessimistic CM techniques require states to be synchronized, which makes
the suggestion to use the factor of repairing inconsistent states applicable
only with the optimistic techniques. For the same reason, we ignore game-
critical decisions as a CM categorization factor. Delaney et al. [13] would
split CM techniques based on the major manipulation targets. However,
their suggestion would also consider network packet transmissions and ap-
plication architectures, which are not in the scope of this Thesis. A research
from Stuckel and Gutwin [30] would split network latency management tech-
niques into delay hiding, delay revealing and delay adding techniques. By
collecting the information from all these three mentioned categorizations, we
can construct a CM technique taxonomy that is shown in the Figure 2.4.

Figure 2.4: Taxonomy for CM based on the technique behavior.

Taxonomy categories are based on the optimistic and pessimistic be-
havioral axes. Presence techniques control game consistency-responsiveness
by managing game entities and events with synchronization and prediction
methods. Delay techniques introduce delays to various points of the system to
compensate network delays. These artificially introduced delays are selected
such they fit into the application’s responsiveness requirements. Taxonomy
is not meant to be exclusive and different techniques may be combined to
form a final solution.

CHAPTER 2. BACKGROUND 13

2.3.1 Pessimistic presence techniques

Pessimistic presence techniques (PPTs) require game state updates to be
applied to each interested participant before the next simulation step can be
processed. PPTs ensure high consistency by requiring strict synchronization
of the game states. However, techniques may dramatically reduce applica-
tion’s responsiveness as all nodes must wait until event has reached all nodes.

One of the most basic PPT is the pessimistic serialization [14], which
requires events to be sent to centralized node that broadcasts events to other
nodes in a consistent order. Simulation can proceed into next step after all
nodes have acknowledged that they have received and processed the event.
Pessimistic serialization is strongly impacted by the network delays as the
node with the highest lag does determine the impact on the responsiveness.

Another common PPT is the pessimistic locking [14], where nodes must
acquire a lock before they may perform changes to shared context. The
lock management is based on the lock requests and releases. When a node
wants to handle the lock target, it must request a lock from the lock holder.
Lock may be granted if it is free, but otherwise the requesting node must
wait until the lock is released. Requests may be blocking or non-blocking,
but without the lock the node cannot edit the lock target. When a node
has finished manipulating the lock target, it will release the lock so it can
acquired by other nodes. The editable granularity determines the object set
that is protected by the lock. Coarse granularity requires less lock requests
from the nodes, but also implies to less concurrency. Fine-grained locks allow
better concurrency but require more lock requests. It is up to application
developer to determine which kind of granularity should be applied based on
the application’s requirement of concurrency.

PPT techniques try ensure good consistency but their impact on respon-
siveness seems to violate DIA’s instantaneity feature. Techniques are con-
sidered to be suitable choice when game-critical events are processed [27].
However, they should not be considered as a main CM technique with inter-
active MOGs. A study by Savery et al. [27] tested how serialization works
as MOG’s CM technique among other techniques. Serialization was consid-
ered as the worst technique from all tested techniques. Results show that
serialization performance becomes much worse when the latency gets higher,
where especially response times are straightly related to introduced network
delays.

CHAPTER 2. BACKGROUND 14

2.3.2 Optimistic presence techniques

Optimistic presence techniques (OPTs) allow some divergence between the
nodes to achieve better responsiveness. Responsiveness is maintained by
allowing nodes to apply local events into the local game state before the event
is applied on the remote nodes. OPT allows the use of prediction techniques
to continue simulation even when remote updates are not yet received.

Two of the most basic OPTs are the optimistic serialization and opti-
mistic locking [14]. Optimistic serialization works like the pessimistic ver-
sion by requiring that events are sent to centralized node that broadcasts
events to other nodes. Unlike pessimistic version, optimistic version does
not require node to wait until synchronization before events are transmitted,
which improves the response time for events. Optimistic locking is based
on the same idea than the pessimistic version, but it may assume that lock
can be achieved without waiting until a lock is really granted. By assuming
that lock is granted, the node may perform update operations to lock target
before the response is received. When the response is finally received, it will
determine how the node should behave. Node can continue normally if the
lock is approved, while lock denial requires lock target to be rolled back.

One popular method for OPT is to use a prediction technique called
dead-reckoning, which uses the previously known states to extrapolate the
current state. Predictive methods can be used to continue the simulation
when the game is impacted by the network conditions by predicting the
remote state update before it is received. This is typically done by using the
position, heading and velocities of the game entities to extrapolate their next
positions. [24]

A typical method for extrapolating the position of a game entity may be
calculated by using a basic physics formula like shown in the Equation 2.1.
The extrapolated position P (t1) is calculated by using the previously known
position P (t0), velocity V (t0), acceleration A(t0) and the time difference ∆t
from the previously received remote update to the current time. [4, 29]

P (t1) = P (t0) + V (t0)∆t + (1/2)A(t0)∆t2 (2.1)

As shown in the equation, the technique assumes that the velocity and
the acceleration remain constant until a next state update is received. This
makes the technique quite vulnerable to non-predictive behavior, like sudden
movement direction changes or warp-movements like teleportation from one
position to another. Non-predictive behavior typically increases the amount
of inconsistency between the local and remote view, and it must be repaired
when the next state update is received.

CHAPTER 2. BACKGROUND 15

An example about the inconsistency with the prediction can be seen in
the Figure 2.5. The gray path indicates the true motion path and black lines
present the predicted path of the car. Points P0 and P ′

0 present a first point
where a remote state update is received and the first inconsistency correction
must be executed. In this case, a warp correction is used to restore the car
into consistent state by directly warping the car into correct position. Points
P1 and P ′

1 present a second point where the next remote update is again
received and the position is again restored to maintain state consistency. It
is easy to deduct that the frequency of the remote state updates and the free-
dom of movement behavior is highly related to the amount of inconsistency
introduced by the technique.

Figure 2.5: Dead reckoning prediction errors in entity motion path.

Prediction techniques are also used to decrease the amount of data re-
quired to be sent over the network. This can be done when all nodes (includ-
ing the server) use a same prediction technique. Nodes may use a difference
threshold, which is a tolerance limit for a state difference. If the server de-
tects a entity’s movement that exceeds the defined difference threshold, it
will broadcast a game state update about the movement. This can greatly
reduce the amount of transferred network data, especially when game entities
have a easily predictable motion paths. [29]

OPT techniques are generally considered good for optimizing responsive-
ness by enabling simulation to continue before remote response is received.
However, their impact on consistency with unpredictable entity movements
may demand application to use costly convergency methods.

CHAPTER 2. BACKGROUND 16

2.3.3 Pessimistic delay techniques

Pessimistic delay techniques (PDTs) compensate network latency by intro-
ducing delays on the game state updates. Delays are used to wait until all
nodes have been synchronized, which removes the need of state roll-backs.

One approach to PDT is to delay local event processing with a technique
called local lag. It is based on the idea to introduce delay to local event
execution to improve the change to execute events at the same time with
a remote node. Delaying events on the local node compensates the time
required for the event to be transferred to remote nodes over the network. [19]

Let us consider a local lag example where we have two nodes like shown
in the Figure 2.6. Local node issues an event E at time the t1. Event is
locally delayed by amount of D1, which corresponds to the network latency
D2 that appears in the connection from local to remote node. By using an
execution delay on the local node, the event is executed at the time t3 in
both nodes.

Figure 2.6: Local lag event execution example.

There has been plenty of studies regarding on how to select a suitable
local delay value for a local lag. Mauve et al.[19] suggested that the delay
value should be selected between the maximum average network delay of the
nodes and the application’s maximum acceptable response time. However,
network delays may change during the application execution and therefore an
adaptive solutions have been proposed. A study from Chen [17] introduced an
approach where the delay value is calculated from the maximum acceptable
response time and periodically measured network latency average. Khan et
al. [18] also used network load as a factor, but also introduced a way to
use entity based calculations for the delay value for particular object classes.
These adaptive techniques introduce a bit more complexity to application
structure but keeps the delay value in a balance with the network latency.

CHAPTER 2. BACKGROUND 17

2.3.4 Optimistic delay techniques

Optimistic delay techniques (ODT) allow nodes to maintain a responsive
simulation by the cost of possible divergence between the game states. Tech-
niques may give immediate feedback to user by applying local events imme-
diately to the local game state. However, when a remote state update is
received and inconsistency is detected, the game state must be rolled back
in time into a correct state.

One approach to ODT is to use predictive time management [13]. It is
based on the idea that deterministic events can be pre-empted before they
actually happen. For example, if two bounding objects are closing to each
other, the game logic could pre-empt that they are going to collide after next
50ms. Pre-empted collision event could be sent to other nodes in advance
to compensate network transfer delays. Eventhough technique can work well
with deterministic events, it cannot pre-empt non-deterministic events like
sudden player movements that are quite usual in MOGs.

Another approach to ODT is to use remote lag technique, which buffers
game state updates before they are applied. Technique makes the client to
run behind the server’s time by introducing a small delay before remote state
updates are applied. Delay allows client to receive remote state updates so
the client always knows the past and the future of the global game state.
Local simulation runs by interpolating between the states in the state buffer.

According to Bernier [5], technique was implemented in the well-known
Half-life (1998) FPS. By default, the game server sends state updates to
clients on every 50 ms, but allows the value to be changed by the players.
Clients will use these updates as position history entries, which contain a
timestamp, the origin, angles and any other interpolative data for the object.
Entries are used to determine final positions of the game entities by smoothly
interpolating between entries with the target time.

Technique introduces inconsistency as clients do not immediately detect
events from other clients. For example, let us consider a shooting action that
comes from the client A. Action is directed to precisely hit the character
owned by the client B. However, client A is currently lagged by some amount
of time and therefore action is delayed before it reaches server. When the
action reaches the server the consequences must be determined whether the
shooting actually hit the target. In the client A perspective, shooting should
hit the character owned by the client B. However, in the client B perspective
is seemed that she/he has dodged the possible hit. This kind of inconsistency
can be solved by allowing either client or server to determine whether the
character was actually hit.

According to Savery et al. [28], remote lag can eliminate almost all posi-

CHAPTER 2. BACKGROUND 18

tion corrections on game entities at the cost of adding the complexity to make
game critical decisions on diverged player views. It can be also considered to
make it easier to provide smooth animations to players.

2.3.5 Convergency techniques

State divergency is commonly found in applications that use optimistic CM
techniques. When a node detects divergency it typically handles it with one
of the three common techniques: tolerate, warp or smooth correct [28].

Tolerate
Tolerating means that the inconsistency will not be repaired. This is
due that inconsistency on some game entities may not have any affect
on the gameplay or they can tolerate amounts of inconsistency before
they do impact the game. Decision whether to tolerate can be done
for example, by defining a tolerance threshold, which must be exceeded
before any correction is processed. [28]

Warp
Warping means that the inconsistency is repaired by immediately mov-
ing the target entity into a correct position. Moving is typically done
immediately when the remote update is received. Technique ensures
that on each remote update, the local state of the entity matches the
remote state which took place at the time when the remote message
was sent. [28]

Smooth correction
Smooth correction is a technique, which modifies the position of the
entity to converge into correct position over a time. Correction may
not even be noticeable by the user because the correction is processed
smoothly and also typically without any jerky motion. [28]

A research from Savery el al. [27], describes that each entity can be con-
sidered to have individual consistency requirements. Authors suggest that
non-interactable entities like clouds in the sky, shattering glasses and some
animations can be usually considered to tolerate any amount of inconsistency.
This is due that they do not typically have any kind of impact on the actual
gameplay and can therefore be considered to be inconsistent-safe.

A study from Savery and Graham [25], experimented that players are
highly sensitive to sudden entity position changes. Authors especially noticed
that players get frustrated when they are controlling an entity and performing
actions against another entity that suddenly warps into another position.

CHAPTER 2. BACKGROUND 19

This might be due that player decisions were based on the game state that
was followed by an unpredictable state with jerky motion, which leads into
decreased game UX.

Chapter 3

Implementation

This chapter explains how we implement CM techniques into a game frame-
work which is used to construct a game for the evaluation phase. We start
by explaining what kind of game we are going to use and how the base struc-
ture of the implementation is built. Then we proceed to explain how the
framework handles the time and the object model especially with the shared
state objects. Finally we proceed and close the chapter by describing how
we implement an CM technique from each CM technique category.

3.1 The game

Our target is to build and evaluate a game that is highly sensitive to the
effects of the consistency-responsiveness trade-off. In other words, we need
to build a game which requires fast player reactions to game state changes.
Previous studies have shown that FPS and racing games can be considered
to require fast response to player input [10]. However, these genres do not fit
into our needs because we want to keep our game implementation as simple
as possible and also want players to be interactive between each other.

Our requirements can be satisfied by constructing a clone of an old classic
game called Pong. Pong is a simulated table-tennis game where two players
control paddles which are used to hit a ball back and forth. Players are
able to earn score when an opponent misses a ball and the first player which
reaches the maximum points wins the game. Pong contains a small and
simple scene where players make decisions based on the movements of a ball
and the opponent. This makes Pong a suitable choice to study the effects
of the CM techniques for evaluating the consistency-responsiveness trade-off.
The visual look of our version of the game can be seen in the Figure 3.1.

Implementation contains five shared state objects, which are the paddles,

20

CHAPTER 3. IMPLEMENTATION 21

Figure 3.1: In-game screenshot from the game.

the ball and the point indicators. Point indicator synchronization is sim-
plified by using non-stateful objects that are updated via using point event
distribution. The paddles and the ball are considered as shared state entities
that also require interpolation and extrapolation method implementations
for positions and orientations. Top and bottom walls are considered as non-
moving and non-stateful objects as well as the goal sections at the right and
the left side of the scene.

The game allows players to control their avatar paddles up and down
with the keyboard controls. Ball movement will be re-oriented when it hits
a paddle or a wall. Right player will receive a point if the ball hits a goal
section at the left and vice versa for the left player. A game round lasts until
either player receives 10 points or the time limit of one minute is reached.

Our target is to compare four different CM strategies so we create a game
that has four rounds. Each round contains a different CM strategy and the
order of strategies is randomized for each player pair. We also gather UX
between the rounds by using simple query scenes for the user feedback. Query
contents are handled and described in the next chapter.

CHAPTER 3. IMPLEMENTATION 22

3.2 Framework overview

We extend the target application framework with the networking compo-
nents described in this chapter. The original application framework is built
as a generic game framework that can be used to construct different types of
games. Framework is written in C++ and has an additional library depen-
dencies on SDL, SDL-image and OpenGL.

We want our game to playable by the web browsers, so we decide to
cross compile the client side code into a JavaScript application. LLVM-to-
JavaScript compiler called Emscripten1 will be used to generate an optimized
high performance JavaScript code and the server application will be compiled
as a native application.

Application dependency structure is split into modules as shown in the
Figure 3.2. Game implementation uses framework components to construct
and run a game instance which contains all required game entities and sim-
ulation methods. Client and server implementations use the game library to
construct a new client or server executable of the game.

Figure 3.2: Framework dependency diagram.

Networking support for the server application is implemented by using
the WebSocket++2 library, while the networking support for the client is
built with the WebSocket API provided by the Emscripten. The WebSocket
protocol is used as the communication channel between the clients and the
server. WebSocket is a standardized3 and quite broadly supported by the cur-
rently used browsers. It also provides a way for users to participate into our
experimentation remotely without users having to install any new software
or plug-ins on their computers.

1https://github.com/kripken/emscripten
2http://www.zaphoyd.com/websocketpp
3https://tools.ietf.org/html/rfc6455

CHAPTER 3. IMPLEMENTATION 23

3.3 Time synchronization and RTT

The original framework contained a simple clock implementation where the
time was measured directly from the system time. A direct system time mea-
surement is typically easy to use when the application runs a local simulation
that does not require state synchronization over the network. However, it
is not suitable for the distributed applications that must run a timed re-
lated simulation simultaneously as each node may be running on a different
system time. Difference could lead into problems with the the object state
synchronization where the packages typically contain a time related data.

A clock synchronization support requires that the old clock implementa-
tion is extended to manage time offsetting. The new clock implementation
allows the offset to be given as a negative or positive value that will be added
into the results on each virtual time query. Framework uses this corrected
time for all game simulation events but uses the system time for the local
engine specific events like periodic tasks and local statistics.

Time offset calculation time points are shown in the Figure 3.3. Node1
starts the procedure by creating a time offset network message. The message
is time stamped by t0 that presents a time when the message is sent to Node2.
Node2 receives the message and adds a time stamp t1 to indicate the receive
time. Node2 may then perform some operations like message parsing and
handling between times t1 and t2. Then the message is sent back to the
node1 stamping it with the time stamp t2 that this time presents the point
when the message is sent. Node1 will add the time stamp t3 at the point
when the message is received back. All collected time stamps are queried
from the clock as an virtual times that may contain already added offset
values.

Figure 3.3: Time offset calculation procedure.

All four time points are used to calculate the offset value for the clock
with the formula shown in the Equation 3.1. Equation assumes that the
same amount of network latency affects both transfer directions and therefore
allows it to calculate the time difference by using the specified time points.

CHAPTER 3. IMPLEMENTATION 24

The calculated offset is only applied when the node acts as a client. This
kind of behavior makes the server to run the simulation in a correct virtual
time which further simplifies the state synchronization procedures.

time-offset =
(t1 − t0) + (t2 − t3)

2
(3.1)

Procedure also provides a way to calculate the round-trip time (RTT)
with the formula shown in the Equation 3.2. RTT is calculated by solving
the amount of time passed from the time when the message was sent to the
time when the message was received back subtracted by the time that was
used by the remote node to process operations.

RTT = (t3 − t0)− (t2 − t1) (3.2)

A clock synchronization process is launched as a periodic task with a five
second interval upon the application startup. At the client side, procedure
measures and applies the time offset to keep the virtual time consistent with
the server and to also calculate and store the connection RTT. Server does
not need the offset value so it uses the procedure to only calculate RTTs for
all connected clients.

3.4 Object model

Framework splits object model into the shared and non-shared objects. Non-
shared objects are only used locally and do not require synchronization with
the other network nodes, while shared objects contain a list of states that
present values of the object in certain points in time and must be synchro-
nized with the other network nodes. This kind of approach was also used in
the Timelines implementation presented by Savery and Graham [26].

Framework calls shared objects as stateful objects that are used with dif-
ferent state types. Each different state type must implement a state interface
that requires an implementation of an interpolation, extrapolation, difference
calculation and a serialization operation. Stateful object itself is a template
class that is able to manage the list of states by providing access to set,
assign, get and clear operations.

The set function may be used to define a state indirectly into a specified
point in time as can be seen in the Algorithm 1. Algorithm takes a state
S as an input parameter and generates a state update event that is queued
into the event queue of the application. This makes S to be applied by the
stateful object during the next application update tick.

CHAPTER 3. IMPLEMENTATION 25

Algorithm 1 Set a state into a stateful object

1: procedure Set(S)
2: event← create-state-update-event(S)
3: insert-into-event-queue(event)
4: end procedure

A variation of the Algorithm 1 is shown in the Algorithm 2, which takes
a time offset input parameter t and the state S which are then combined into
a new state that is sent into the normal version of the set algorithm. The
time offset value t is given as an offset of the current time, so the function
adds the current update milliseconds and a possible state update delay into
the offset to construct the final timestamp for the event. Idea behind adding
a state update delay is that we are able to locally determine all new state
updates to be offset by a certain amount of time.

Algorithm 2 Set a state into a stateful object with time offset

1: procedure Set(t, S)
2: t← t + application-update-time
3: t← t + application-state-update-delay
4: S.time← t
5: set(S)
6: end procedure

The assign function can be used to define a state directly into a spec-
ified point in time. Pseudocode of the implementation can be seen in the
Algorithm 3. Procedure takes a state S as an input parameter and iterates
over the list of states to find a place where to insert the given state. State
count may be reduced by removing the most oldest state definition after the
specified state has been inserted into the list. Decision whether the latest
state is removed is decided by comparing the current count of states with
the state count limit specified by the used CM technique. However, it should
be noticed that Algorithm 3 requires state S to contain a absolute times-
tamp. To make the interface more programmer-friendly, we also provide an
Algorithm 4 for specifying a state with a time offset like in the Algorithm 2.

The get function is used to get an state for a time offset from the stateful
object. Pseudo-code for the implementation is shown in the Algorithm 5.
Algorithm first appends the previous application update time into the off-
set to form an absolute time. Time is then used to find a correct state by
iterating over the state list. Interpolation is used when the target time is
located between two existing states and is allowed by the CM technique.

CHAPTER 3. IMPLEMENTATION 26

Algorithm 3 Assign a state into a stateful object

1: procedure Assign(S)
2: state← states.first
3: found← false
4: while found = false do
5: if state = states.end then
6: append-to-back-of-the-list(states, S)
7: found← true
8: else if state.time = S.time then
9: state.value = S.value

10: found← true
11: else if state.time > S.time then
12: insert-before(states, state, S)
13: found← true
14: end if
15: state← state.next
16: end while
17: if states.count > cm-strategy-cache-size then
18: remove-from-front-of-the-list(states)
19: end if
20: end procedure

Algorithm 4 Assign a state into a stateful object with time offset

1: procedure Assign(t, S)
2: t← t + application-update-time
3: t← t + application-state-update-delay
4: S.time← t
5: assign(S)
6: end procedure

CHAPTER 3. IMPLEMENTATION 27

Extrapolation is used when the target time is after all known states and
is allowed by the CM technique. Algorithm will return a dummy value if
the state list is empty. Implementations for extrapolation and interpolation
must be constructed by state objects. Our implementation contains states
for position and orientation, where position uses 3d-vector that uses linear
interpolation/extrapolation and orientation uses spherical linear interpola-
tion/extrapolation for quaternions.

3.5 Consistency maintenance techniques

Framework requires all CM technique implementations to define state cache
size and a way to resolve whether it is allowed the use the state extrapolation
or interpolation. Techniques are also further divided into a server and client
side implementations as they require different kind of operational structures.

Framework contains implementations for four different CM techniques
where each technique is selected from a different CM technique category.
Nature of the category defines how the technique adjusts the consistency-
responsiveness trade-off with the time and the available data but is also used
to determine which nodes run a game logic instance.

Framework requires clients to send shared state object updates to server
for validation and processing of the global game state update as shown in
the Figure 3.4. Pessimistic clients (a) do not process game logic, like car
controlling, at the client side as all control events are directly send (1a and 1b)
to server that validates and applies them into the global game state. Server
distributes (2a and 2b) shared object state changes to all clients after it has
finished the game state update. In contrast to centralized logic, optimistic
clients (b) process logic in each node. Control events routing is is similar to
pessimistic technique, but distribution from the server to clients is only done
when a correction or a user generated object state change update is detected.

3.5.1 Pessimistic presence technique

Framework implements PPT as a centralized serialization technique. Tech-
nique requires that all client events are sent to the server which applies them
into the global game state. State changes are distributed to clients when the
server has received an confirmation message from the clients. A confirmation
message is a request that tells the server that the sender client has received
previously sent updates and is now ready for the next application update
step. Server does not tick the game logic before all clients have confirmed

CHAPTER 3. IMPLEMENTATION 28

Algorithm 5 Get a state from the stateful object

1: procedure Get(t)
2: t← t + application-last-update-time
3: if states.empty = false then
4: if states.first = states.last then
5: return states.first
6: else
7: if states.first.time > t then
8: return states.first
9: else if states.last.time < t then

10: if extrapolation-allowed = true then
11: return extrapolate(t, states.last.previous, states.last)
12: else
13: return states.last
14: end if
15: else
16: for each state in states do
17: if state.time = t then
18: return state
19: else if state.time > t then
20: if interpolation-allowed = true then
21: return interpolate(t, state.previous, state)
22: else
23: return state.previous
24: end if
25: end if
26: end for
27: end if
28: end if
29: end if
30: return dummy(t)
31: end procedure

CHAPTER 3. IMPLEMENTATION 29

(a) Shared state update routes and logic
location in a pessimistic CM technique.

(b) Shared state update routes and logic
locations in a optimistic CM technique.

Figure 3.4: Shared state update routes and logic locations in CM techniques.

that they are waiting for the server, which makes the game simulation speed
to highly coupled with the latency of the clients.

Client side implementation uses a simple event handling logic for the
serialization as shown in the Algorithm 6. Client will response to server
sent update event immediately by sending an update event as a confirmation
response. Client also immediately applies all object state updates when they
arrive.

Algorithm 6 PPT-Client: handle an event received from the server.

1: procedure ppt-client-handle-remote-event(event)
2: if event.type = ”update” then
3: send-update-event-to-server()
4: else if event.type = ”object-state-update” then
5: apply-object-state-update(event.data)
6: end if
7: end procedure

Server side implementation for the remote event handling is shown in the
Algorithm 7. Technique requires an update event from both clients before
server ticks the game logic. Logical step will typically update game object
states which makes the system to distribute state updates to clients. Server
also collects and applies all input events that are sent from the client to
server. Input events are applied to the avatar controller that is assigned for
the client that did sent the event.

3.5.2 Pessimistic delay technique

Framework implements the PDT technique as a server side version of the
local lag technique. Both pessimistic CM techniques in the framework are

CHAPTER 3. IMPLEMENTATION 30

Algorithm 7 PPT-Server: handle an event received from a client.

1: procedure ppt-server-handle-remote-event(event)
2: if event.type = ”update” then
3: if update-requester-set-size() = clients-count then
4: tick-game-logic()
5: clear-update-requester-set()
6: send-update-event-to-clients()
7: else
8: add-into-update-requester-set(event.connection)
9: end if

10: else if event.type = ”input-message” then
11: apply-input-to-controller(event.data)
12: end if
13: end procedure

required to maintain game logic at the server, which is also used as a point
to apply local delay to all events in PDT. As an pessimistic technique, the
implementation only requires simple remote event handling algorithms for
the object state updates and input events as shown in Algorithms 8 and 9.

Algorithm 8 PDT-Client: handle an event received from the server.

1: procedure pdt-client-handle-remote-event(event)
2: if event.type = ”object-state-update” then
3: apply-object-state-update(event.data)
4: end if
5: end procedure

Algorithm 9 PDT-Server: handle an event received from a client.

1: procedure pdt-server-handle-remote-event(event)
2: if event.type = ”input-message” then
3: apply-input-to-controller-with-delay(event.data)
4: end if
5: end procedure

Applying a state update delay allows events to be distributed to all clients
and to provide a feedback at the same time when the delay is selected as a
maximum latency of current clients. Technique adapts changes in network
conditions by checking the maximum latency with a five second interval and
making updates on the local lag with correction rounded up to next 50s.

CHAPTER 3. IMPLEMENTATION 31

Selected latency value is added to all next state updates and it should com-
pensate the transfer time of object state event messages from the server to
clients.

3.5.3 Optimistic presence technique

OPT allows stateful objects to use extrapolation to predict current and future
state of an object. New stateful object states are sent to the server but are
also immediately applied to the local game state which makes the game to
produce immediate feedback for the user.

Extrapolation uses two previously known states to predict the current
state with an extrapolation scalar that is calculated with an extrapolation
function implemented in the state structure. OPT implementation allows
the extrapolation processing shown in the Algorithm 5. Extrapolation can
be only processed when the state history contains at least two states.

The algorithm for handling OPT events contains an important aspect
that is not required with pessimistic CM techniques. A client must be able
to apply remote updates after local state update are applied. This kind
of behavior ensures that the corrections sent by the server are applied over
the local updates that may contain divergent data. Framework implements
ordering of the events by using an event priority management, where low
priority events are processed after high priority events. An remote event
handling algorithm for OPT clients is shown in the Algorithm 10.

Algorithm 10 OPT-Client: handle an event received from the server.

1: procedure opt-client-handle-remote-event(event)
2: if event.type = ”object-state-update” then
3: event.priority = low
4: wait-for-processing(event)
5: end if
6: end procedure

CHAPTER 3. IMPLEMENTATION 32

3.5.4 Optimistic delay technique

ODT requires the application to delay remote events by running two different
virtual times. One time is used to simulate the locally controlled avatar while
the another is used for all remotely controlled objects. The virtual time for
the remote objects is lagged behind the the time used for the local avatar
making the remote objects to be positioned by their past transformations.

Our technique implementation slightly follows the algorithm introduced
by the Bernier [5]. Each node must be able to detect which shared state
objects are considered as owned by the node. These owned objects are simu-
lated by using the current virtual time while the non-owned objects subtract
a remote lag offset to simulate past states. A procedure to read a value from
a shared state object is shown in the Algorithm 11.

Algorithm 11 Read a state from a shared state object when using ODT.

1: procedure get-value(statefulObject)
2: if statefulObject.isOwned then
3: return statefulObject.get(0)
4: else
5: return statefulObject.get(remoteLag)
6: end if
7: end procedure

The remote lag amount is calculated at the server when the technique
is activated. An formula for this calculation is shown in the Equation 3.3
where dx values present the one-way network delay and ax values indicate the
artificial network delay assigned for the client x. Calculation result is further
rounded up for the next 50s and then sent to both clients which apply the
value to be used with all non-owned shared state objects.

remote-lag = −(d1 + d2 + a1 + a2) (3.3)

It should be noted that the amount of remote lag is always negative,
which makes the state query for the non-owned stateful objects to always
point into the past. This kind of behavior allows the target node to first
receive information about the real state of the non-owned object and to
interpolate a precise state by using two known states.

Technique requires the game to process game critical decisions in multiple
places. Remote paddles are simulated by their past positions, which makes
their simulation imprecise for collision detection. Decision whether a paddle
collides with a ball is determined and distributed from the client which owns
the paddle. This kind of functionality could lead into situations where the

CHAPTER 3. IMPLEMENTATION 33

local client would see a ball to go through the remote paddle. We solve this
by allowing the local client to preempt the collision and correct it when the
state update is received from the owner of the collision participant. Goal
sections are processed similarly where the paddle owner decides whether the
ball collided with the goal section behind the paddle.

Chapter 4

Evaluation

This chapter describes the used methods and results for the consistency-
responsiveness trade-off evaluation for the created game. Chapter starts with
an explanation about how the testing environment setup is built. Then the
chapter proceeds to describe how the measurements for the responsiveness,
consistency and playability are implemented and what kind of results they
provided. Chapter is then closed by gathering the evaluation results as a
consistency-responsiveness trade-off ratio analysis.

4.1 Testing environment setup

The server environment is built on the top of a virtual server machine hosted
on a high speed campus network. The machine is running Ubuntu 14.04 on a
single CPU environment with 1024 MB of RAM. The game client application
is set available by running an Apache HTTP server (ver. 2.2.22) instance,
while the game server is compiled and executed as a native application.

The server application has permission to write data into the file system.
This data contains all log entries from the internal log system and statistic
data collections from the game session specific measurements. Log entries
are used to debug the application in the case of any errors, while the statistic
data collections are used to study how different CM techniques operated
during the game sessions.

Data collecting can be divided into automatic and user specific statistics.
Automatic data is collected by the background processes during the game
session. This data contains consistency and responsiveness measurements
and is not noticeable by the user. In contrast, the user specified data con-
tains the answers that are given by the user for each presented query. After
each session is closed, a new line containing the session specific data will

34

CHAPTER 4. EVALUATION 35

be appended into a CSV file. This data will be appended even in the case
where the player does leave the game before the test is over. This kind of
functionality allows us to collect results also from the partial game sessions.

Our server application contains support for management of connection
specific artificial delays. We use this feature to provide additional delay to
each game session to simulate real-world latency problems. A collection of
four different delays are assigned to connections in a round robin pattern. Our
selection of delays are 0ms, 25ms, 50ms and 125ms, where the 0ms contains
only the delay from the real connection latency. When a delay is assigned
to a connection, it will be assigned into incoming and outgoing channel. For
example, this kind of functionality increases the connection RTT by 250ms
when the delay of 125ms is assigned to a connection.

4.2 User study participants

User study was participated by 26 persons who were recruited by using per-
sonal invites, Facebook, Twitter and forums at gamedev.net and TIGSource.
As an addition to queries performed after each round, we also queried the
age group and the playing hours per week at the start of the test.

Each query contained five possible choices. First query asked the par-
ticipant to select an age group, where the user was able to select from the
following categories; under 20, 20-29, 30-39, 40-49 and 50 or over. Second
query asked user to select a playing hours per week group that contained fol-
lowing options; 0-1, 1-2, 2-4, 4-8 and over 8 hours per week. The participant
distribution between the categories can be seen in the diagrams shown in the
Figure 4.1. Most of the participants were 20-29 years old and were playing
digital games at least over 8 hours per week.

215

9

under 20
20-29
30-39

(a) Age group distribution.

3

32

7

11

0-1 hours
1-2 hours
2-4 hours
4-8 hours
over 8 hours

(b) Playing hours per week distribution.

Figure 4.1: Results from the user study initial queries.

CHAPTER 4. EVALUATION 36

4.3 Responsiveness measurement setup

Game responsiveness is measured by using the response time for the local
input events. The total delay is the time from the user to give an input to
get and associated feedback as shown in the Figure 4.2. The game section
contains the processing delay (t2 - t3) of the target application, while the
system sections contain hardware device delays (t0 - t1 and t4 - t5) together
with operating system and software delays (t1 - t2 and t3 - t4). Our client side
application is processed remotely as a web browser application, which makes
our measurement to be unable to measure system specific times as they
would require additional equipments installed on each local system. This
limitation makes our responsiveness calculation to focus only to the response
time measurement from t2 to t3 with an formula response-time= t3 − t2.

Figure 4.2: Total delay for an user input.

The procedure to capture t2 and t3 requires us to use time stamps with the
issued events. All locally polled input events are tagged with a time stamp
that describes when the event was detected by the game. Time stamps are
further used to tag state updates which are issued as a reaction for the input
events. Response time is calculated when the rendering system renders a
positional state which contains a tagged time stamp.

Each client first stores all detected response times into a local container
which is cleared when the values are sent to the server by an five second
interval periodic task. Value message contains the average response time
from all collected response times from the last five seconds. When the server
receives an response time message, it stores the value into a statistics file.

We also provide user queries about how users were able to detect possible
responsiveness problems with the controlled paddle. Queries were shown
after each round and the user was able to provide an answer by using a scale
from one to five. Number one means that the user felt that the controlled
paddle did respond very poorly and number five means that user felt that
the paddle was responding very well.

CHAPTER 4. EVALUATION 37

4.4 Responsiveness measurements

The results from the responsiveness measurement were collected with the
technique described in the previous section. Each technique was measured
separately such that we were able to collect technique specific responsiveness
statistics from each game session. The measured responsiveness results can
be seen in the Figure 4.3.

0 100 200 300 400 500 600

0

200

400

600

800

Ping time [ms]

R
es

p
on

si
ve

n
es

s
[m

s]

PPT
PDT
OPT
ODT

Figure 4.3: Technique specific responsiveness results.

The measurement results show that the responsiveness in pessimistic tech-
niques is highly related to the ping time of the connection. In contrast, op-
timistic techniques seems to be not affected by the connection ping as their
responsiveness stays close to 17ms, which relates to one frame lag in a game
that runs with a 60fps frame rate. The best responsiveness was provided by
the ODT, while the PDT had the worst responsiveness for the paddle.

The Table 4.1 shows a summary of the responsiveness measurement re-
sults. PDT contains the worst responsiveness average and median with 291ms
and 168ms, while ODT has the best responsiveness with 17ms average and
16ms median. Table 4.1 also contains columns for ping related responsiveness
average and median. These ping related values are calculated by dividing the
measured responsiveness value with the connection latency.

CHAPTER 4. EVALUATION 38

Technique Average Median Ping-rel average Ping-rel median
PPT 218 136 2.93 1.77
PDT 291 186 6.14 2.47
OPT 21 16 0.59 0.24
ODT 17 16 0.79 0.24

Table 4.1: Responsiveness measurement result averages and medians. Lower
is better.

According to Section 2.2.2, fast paced games may only tolerate delays up
to 45ms - 60ms. This can be provided by both optimistic techniques as they
keep the response time below 45ms regardless to the connection latency. In
contrast, our PDT should not be considered as suitable for fast paced games
as it does keep the response time constantly above 100ms. Our PPT is able
to produce enough responsiveness when the connection latency is 50ms or
lower as it seems to be quite highly coupled with the connection delay.

In Section 2.2.2, we also studied that some researches have found that
slow paced RTS games may even tolerate delays up to 1000ms. This is not a
problem for optimistic techniques as they are capable to provide fast respon-
siveness at any latency level. However, pessimistic techniques may even fail
to satisfy this limit if the connection latency increases enough. For example,
with a connection latency of 1000ms, PPT would delay responsiveness above
the one second limit as it requires events to be serialized. PDT would also
behave in a similar way as it delays all events at least with an amount of
connection latency.

The results from the responsiveness query also show that the participants
were more satisfied with the responsiveness provided by the optimistic tech-
niques. Results were collected after each round where the participants gave
values from one to five, where one indicates worst value and five would be
the best possible value. The average and the median of the results can be
seen from the Table 4.2.

As seen from the Table 4.2, optimistic techniques were considered su-
perior with their responsiveness capability. Our ODT implementation was
considered as the best of the four techniques, while PDT was considered as
the worst technique to maintain the responsiveness. OPT was considered as
the second best with an almost similar points than ODT, while PPT was
graded with an almost similar grade than PDT. Query results also seem to
reflect the measured values shown in the Figure 4.3.

Table 4.2 also contains columns for ping related average and median for
the query answers. These values describe the relationship of the given query

CHAPTER 4. EVALUATION 39

Technique Average Median Ping-rel average Ping-rel median
PPT 2.4 3 0.09 0.03
PDT 2.2 2 0.07 0.03
OPT 4.2 4 0.14 0.05
ODT 4.3 4 0.15 0.06

Table 4.2: Responsiveness query result averages and medians as a normal
and ping related values. Higher is better.

answer regarding to the amount of the connection latency. Results show
that optimistic techniques were capable to produce almost two times bet-
ter responsiveness for each latency millisecond than pessimistic techniques.
By combining the measurement results from the Table 4.1 and Table 4.2,
it is possible to deduce that optimistic techniques produce much more re-
sponsive gaming experience than pessimistic techniques. This supports the
findings from the previous researches studied in the Section 2.3, where we
made the major categorization of the techniques based on their optimistic
and pessimistic behavior and studied their relationship with the application’s
responsiveness.

4.5 Consistency measurement setup

Game consistency was measured by calculating the state divergence between
the nodes. Only stateful objects are suitable for the measurement as the
static objects are stateless and therefore they can be considered as immune
to inconsistency. Our game implementation contains three suitable objects
for this purpose; the ball and both avatars.

We adapt a state divergence metric used in the paper by Savery et al. [27].
Difference amount is expressed as a percentage of the screen size, which can
be calculated by the formula shown in the Equation 4.1. Formula calculates
the difference of the positions in x and y axises and divides them with the
screen width and height. The result value is divided by two and converted
into percentages by multiplying the value by 100%.

ball-state-divergence = (
|x1 − x2|

screen-width
+

|y1 − y2|
screen-height

) : 2× 100% (4.1)

Equation 4.1 is suitable for calculating a difference for the ball movement
but not viable for the avatar difference as the avatar only moves in y-axis.

CHAPTER 4. EVALUATION 40

Therefore we introduce a new formula shown in Equation 4.2 to calculate the
difference of the remote avatar. Formula uses differences in the y-axis and
divides them with the screen height multiplied with the percentages to get
the difference in the required format.

avatar-state-divergence =
|y1 − y2|

screen-height
× 100% (4.2)

A message route example for calculating the state divergence for an en-
tity is shown the the Figure 4.4. Client1 starts the procedure at the point
t0 by creating a message that contains the currently used position state for
the non-owned entity. Message is then passed to the server that immediately
routes the message to Client2 at the point t1. When the Client2 receives the
message at the point t2, it compares the remote value to the local value and
measures the state divergence value as shown in the Equation 4.1. Calcula-
tion result is then send to the server, which receives the value at point t3 and
stores the value into a statistics file.

Figure 4.4: Consistency measurement message route.

The measurement procedure is implemented as a periodic tasks that is
launched when a game round begins. Periodic task is processed with an five
second interval on both clients.

As an addition to automatically measure the consistency, we also provided
user queries about how the user actually recognizes inconsistency corrections.
These queries were shown after each game round and the user is able to
answer by using a scale from one to five, where one means that user was
constantly recognizing odd movements and five means that user was not
able to detect any corrections.

CHAPTER 4. EVALUATION 41

4.6 Consistency measurements

The results for the consistency measurement were collected by using the
technique described within the previous section. As with the responsiveness
measurement, consistency was measured by collecting values separately such
that we were able to collect technique specific consistency statistics from
each game session. In addition, the procedure split the measurement into
two sections; the ball and the remote avatar.

Inconsistency results for the ball with the pessimistic techniques can be
seen from the Figure 4.5. Results show that PPT is able to keep the in-
consistency below 2%, where PDT may even keep the inconsistency below
0.6%. PPT inconsistency variation seems to increase when the connection
ping time increases, while PDT keeps the variation quite steady.

0 100 200 300 400 500 600

0

0.5

1

1.5

2

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(a) PPT

0 100 200 300 400 500 600

0

0.5

1

1.5

2

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(b) PDT

Figure 4.5: Ball inconsistency results for PPT and PDT.

The Figure 4.6 shows the results for the remote avatar consistency mea-
surement with pessimistic techniques. Results show that the inconsistency
for the remote avatar grows when the connection latency increases with PPT.
Inconsistency may even reach almost up to 6%, while PDT is able keep it
below 2%. These results also support the measurements from the Figure 4.5,
where PDT was producing better consistency than PPT.

Three high inconsistency nodes at 275ms - 300ms shown in the PDT
diagram in Figure 4.6 may be a result of the connection jitter, browser envi-
ronment or bad clock synchronization. However, all other nodes within the
same chart shows that PDT is able to keep the inconsistency below 1%.

The results for the PPT show that the inconsistency increases rapidly
when the connection ping time increases. This may be due to same problems

CHAPTER 4. EVALUATION 42

0 100 200 300 400 500 600

1

2

3

4

5

6

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(a) PPT

0 100 200 300 400 500 600
0

1

2

3

4

5

6

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(b) PDT

Figure 4.6: Remote avatar inconsistency results for PPT and PDT.

than with PDT but can be also a result of the PDT implementation as the
implemented serialization technique allows client to perform the rendering of
the updated state immediately when the client receives the acknowledgement
from the server.

The ball inconsistency measurement results from the optimistic tech-
niques are shown in the Figure 4.7. OPT seems to be able to keep the
inconsistency around one percentage when the connection ping time is be-
tween 0ms to 100ms. When the ping time increase above 100ms, the incon-
sistency variation increases rapidly. In contrast, ODT inconsistency contains
a big variation that seems not to be so closely related with the connection
latency. However, ODT technique does allow clients to simulate game in the
most divergent environment, which may produce this kind of behavior.

Results for the remote avatar consistency with optimistic techniques can
be seen from the Figure 4.8. Here the results show that the OPT is nearly
able to keep the inconsistency around 1%, which makes it to perform almost
as well as PDT. OPT chart also contains two peaks at around 25ms and
75ms which may be caused by connection jitter, clock asynchrony or other
possible problems.

The Figure 4.8 shows that the ODT increases the inconsistency quite
rapidly when the connection ping time increases. Inconsistency may even
reach up to 10% when the connection latency increases above 300ms. This
kind of behavior can be a result of the remote lag, which may allow the view
between the clients to divergence almost linearly with the connection latency.

All results from the ball consistency measurement procedure are summa-
rized in Table 4.3. Pessimistic techniques seem to provide better consistency
than optimistic techniques. Results show that PDT provides the best consis-

CHAPTER 4. EVALUATION 43

0 100 200 300 400 500 600

0

1

2

3

4

5

6

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(a) OPT

0 100 200 300 400 500 600

0

1

2

3

4

5

6

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(b) ODT

Figure 4.7: Ball inconsistency results for OPT and ODT.

0 100 200 300 400 500 600

0

2

4

6

8

10

12

14

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(a) OPT

0 100 200 300 400 500 600

0

2

4

6

8

10

12

14

Ping time [ms]

In
co

n
si

st
en

cy
[%

]

(b) ODT

Figure 4.8: Remote avatar inconsistency results for OPT and ODT.

tency with an average inconsistency of 0.34% and median 0.18%, while ODT
has the largest state divergence with average of 2.42% and median 2.02%.
However, differences get smaller when we calculate the average and median
for the ping related inconsistency. This calculation tells us the relationship
between the measured inconsistency and the connection latency. While this
may give us a more precise results, it does not change the classification order
of the techniques.

Summarized results from the remote avatar measurement procedure are
shown in Table 4.4. PDT can be still considered as the best technique as
states only divergent on average 0.76% and median 0.66%, while ODT is still
considered to make the largest state divergence with an average of 5.31% and

CHAPTER 4. EVALUATION 44

Technique Average Median Ping-rel average Ping-rel median
PPT 0.61% 0.21% 0.01% 0.00%
PDT 0.34% 0.18% 0.01% 0.00%
OPT 1.04% 0.61% 0.01% 0.01%
ODT 2.42% 2.02% 0.10% 0.03%

Table 4.3: Ball inconsistency summary from the measurement procedure.
Lower is better.

median 3.61%. Interestingly, PPT provided a much worse state consistency
for the remote avatar than OPT. However, this might again be a result from
the serialization technique implementation, as the technique applies state
changes immediately when they arrive to the client.

Technique Average Median Ping-rel average Ping-rel median
PPT 2.65% 2.22% 0.04% 0.03%
PDT 0.76% 0.66% 0.02% 0.01%
OPT 0.97% 0.79% 0.03% 0.01%
ODT 5.31% 3.61% 0.07% 0.05%

Table 4.4: Remote avatar inconsistency summary from the measurements.
Lower is better.

The results from the consistency query can be seen in Table 4.5. Partici-
pants were asked to describe how much odd movements they noticed during
the game. Results show that the ODT was producing least odd movements
regarding to players, which does not correspond to the results we received
from the consistency measurement procedure. However, it should be noted
that odd movement in a optimistic technique is typically a side effect of a
state correction, which is not the same thing than the view inconsistency.
This makes the query not so strictly relevant to the actual inconsistency of
the game as the users were actually asked about the amount of state correc-
tion they noticed during the game.

This assumption also describes why OPT was graded as the worst tech-
nique by the participants, while it was capable to provide good consistency
measurement results. Technique used a state prediction that is capable to
extrapolate entity movement, which makes the local state vulnerable to many
corrections. These corrections were applied directly into the state objects,
which made entities to warp into corrected positions. This relation between
the bad grade and warping corrections is similar to findings from the previous

CHAPTER 4. EVALUATION 45

Technique Average Median Ping-rel average Ping-rel median
PPT 3.0 3 0.10 0.04
PDT 3.7 4 0.10 0.05
OPT 2.7 2 0.13 0.03
ODT 3.9 4 0.14 0.05

Table 4.5: Consistency query result averages and medians as a normal and
ping related values. Higher is better.

researches studied in Section 2.3.5, where studies show that warp corrections
are considered as a quite frustrating way to correct state inconsistency.

In contrast, ODT only uses interpolation between already known states
to make optimistic assumptions for the state update and therefore may also
require less and smaller corrections to states. These corrections are done with
the smooth correction convergence method, which is considered to provide
good and unnoticeable corrections in regards to findings from the previous
researches studied in Section 2.3.5. The query points received by the ODT
also provide similar results than what we found from the previous studies in
Section 2.3.4, where some researches found that remote lag technique may
eliminate almost all visible corrections to game states.

A reason why PPT received such low points may be due to simulation
jerkiness that grows linearly when the connection latency increases. The
simulation delta time is tightly coupled with the connection ping as the
server requires confirmation from both clients after each simulation step.
This behavior makes game entities to warp with a magnitude that is related
to the maximum latency between the clients and the server. Query results
show that participants ranked PPT almost as bad as OPT. This may be
due that PPT state updates behave almost similarly than noticeable and
frustrating warp corrections that were used with OPT.

As a summary, PDT can be considered as the best technique based on
the overall measurement and queried results. ODT can be considered as the
worst technique to prevent state divergence, even though it provided the best
grade from the user queries. Our classification order for the techniques based
on their consistency capabilities is PDT, PPT, OPT and ODT, where PDT
can be considered as the best technique to prevent inconsistency between the
nodes.

CHAPTER 4. EVALUATION 46

4.7 Playability results

The results from the consistency and responsiveness measurements do not
itself provide a clear view how the players experienced the game. Therefore,
we also provided a query about the playability, where participants were asked
give an grade to their gaming experience after each round. Users were able
to give an grade by selecting an value from one to five, where one would be
the worst and five would be the best possible grade.

The results from the query show that both optimistic techniques provided
higher playability scores than either of the pessimistic techniques. ODT
seems to provide the best playability with the average grade 3.7 and median
4.0. PPT was considered as the worst technique with an average grade of 2.2
and median 2.0. Both pessimistic techniques were graded below the average
playability level, while optimistic techniques were considered a bit above it.
The collected results from the query can be seen from the Table 4.6.

Technique Average Median Ping-rel average Ping-rel median
PPT 2.2 2.0 0.08 0.03
PDT 2.3 2.0 0.08 0.04
OPT 3.2 3.0 0.12 0.03
ODT 3.7 4.0 0.14 0.04

Table 4.6: Results from the playability query. Higher is better.

Table 4.6 also contains columns for ping relative grade averages and me-
dians. Ping related grade is calculated by dividing the given grade with the
connection latency. The results from the ping relative value columns show
similar classification ordering than non-ping relative columns.

We are also able to calculate relative playability against measured respon-
siveness and inconsistency. The Table 4.7 shows results from these relative
calculations. Relative responsiveness describes a user given grade per respon-
siveness millisecond, while relative ball and remote avatar contain a grade per
inconsistency percentage. Each value is calculated by dividing the playability
grade with the corresponding measurement result.

The results from the Table 4.7 show that ODT is able to get highest playa-
bility grade per responsiveness milliseconds. In contrast, PDT has the worst
responsiveness classification per playability but provides the best playability
per ball inconsistency percentage. OPT seems to get quite good classifica-
tion in all three categories, while PPT produces worst results in almost all
categories.

CHAPTER 4. EVALUATION 47

Technique responsiveness ball remote avatar
PPT 0.02 2.74 1.26
PDT 0.01 11.42 3.51
OPT 0.18 7.28 3.99
ODT 0.22 3.49 1.52

Table 4.7: Average relative results for the playability. Higher is better.

4.8 Consistency-responsiveness trade-off

To study the trade-off effect between the consistency and the responsiveness,
we need to study both values by evaluating their relationship. To do this, we
use the measurement results from the previous sections and combine them
to form a trade-off value results. The first value combination is shown in the
Table 4.8, which contains a summary of average values.

Resp. Ball incon. Remote avatar incon. B/R RA/R
PPT 218 0.61% 2.65% 0.003 0.012
PDT 291 0.34% 0.76% 0.001 0.003
OPT 21 1.04% 0.97% 0.050 0.046
ODT 17 2.42% 5.31% 0.142 0.312

Table 4.8: A result comparison for the average measurement values.

The Table 4.8 contains three columns for the average results received
from the previous sections. Column Resp. for the responsiveness, Ball incon.
for the ball inconsistency and Remote avatar incon. for the remote avatar
inconsistency. Additional column B/R stands for a ratio between the ball
inconsistency and the responsiveness, while column RA/R contains ratios
between the remote avatar inconsistency and the responsiveness.

The results in the Table 4.8 shows that both optimistic techniques have
a much higher ratio to produce inconsistency per a single responsiveness
millisecond. In contrast, pessimistic techniques have a very small ratio to
produce inconsistency per a millisecond spent on the responsiveness. The
PDT offers the best ratios, where it averagely produces inconsistency with
an ratio 0.001 and 0.003. The worst ratios are clearly produced by the ODT,
which uses ratios 0.142 and 0.312 by an average.

The second value combination is shown in the Table 4.9, which contains
a summary of median values. Median values produce similar results than

CHAPTER 4. EVALUATION 48

average values, while the difference between the optimistic and pessimistic
techniques is a bit smaller. PDT can be still considered to produce best
ratios with ratios 0.001 and 0.004, while ODT clearly produces the worst
ratios with 0.126 and 0.226.

Resp. Ball incon. Remote avatar incon. B/R RA/R
PPT 136 0.21% 2.22% 0.002 0.016
PDT 186 0.18% 0.66% 0.001 0.004
OPT 16 0.61% 0.79% 0.038 0.049
ODT 16 2.02% 3.61% 0.126 0.226

Table 4.9: A result comparison for the median measurement values.

We are also able to evaluate ping relative values, which gives us ratios per
connection latency milliseconds. The Table 4.10 contains the ping relative
values from the previous sections, but does also provide similar ratio columns
as provided within the Table 4.8 and Table 4.9.

Resp. Ball incon. Remote avatar incon. B/R RA/R
PPT 2.93 0.01 0.04 0.003 0.014
PDT 6.14 0.01 0.02 0.002 0.003
OPT 0.59 0.01 0.03 0.017 0.051
ODT 0.79 0.10 0.07 0.127 0.089

Table 4.10: Results for the ping relative average measurement values.

The results in Table 4.10 show that the ball inconsistency ratio differ-
ence between the OPT and the pessimistic techniques gets smaller. Also the
remote avatar inconsistency ratio in ODT is much smaller than the ratio
produced by the normal average and median calculations. There is no dif-
ference for the classification order of the techniques, while PDT and ODT
still contain the best and the worst ratios, respectfully. Also the median
value calculation shown in the Table 4.11 does classify techniques in a same
manner. Results are similar than shown in the median calculation Table 4.9.

Results show that optimistic techniques trade consistency into increased
responsiveness and vice versa for pessimistic techniques. Pessimistic tech-
niques provide much less inconsistency per used responsiveness milliseconds
than their optimistic versions. Optimistic techniques are capable to provide
much better responsiveness especially at high latency levels in the cost of
introduced state divergence.

CHAPTER 4. EVALUATION 49

Resp. Ball incon. Remote avatar incon. B/R RA/R
PPT 1.77 0.00 0.03 0.000 0.017
PDT 2.47 0.00 0.01 0.000 0.004
OPT 0.24 0.01 0.01 0.042 0.042
ODT 0.24 0.03 0.05 0.125 0.208

Table 4.11: Results for the ping relative median measurement values.

Based on the results calculated for previous tables, we are able to deduce
the classification order for the techniques. The order of the techniques based
on their trade-off ratios is PDT, PPT, OPT and ODT, where PDT can be
considered as the best technique to keep the game in a consistent state with
the cost of increased response time.

Chapter 5

Discussion

Chapter 4 successfully evaluated a simple real-time game, where four differ-
ent CM technique categories were used to compensate a connection latency.
Evaluation results were collected and analyzed by forming different kinds of
relational results between the measured and queried values. Each evaluation
section classified techniques based on their ability to maintain the evaluated
value. A summary of the classifications can be seen in Table 5.1.

Responsiveness Consistency Playability Trade-off ratio
PPT 3 2 4 2
PDT 4 1 3 1
OPT 2 3 2 3
ODT 1 4 1 4

Table 5.1: Measurement classification order for each CM technique from the
evaluation sections. Lower classification is better.

User study participants were asked to rank each technique based on the
responsiveness, consistency and the playability after each round of the game.
The queries asked users to give an grade for each category, where the number
one was considered as the worst and the number five as the best possible
grade. A summary of the query results and their confidence intervals (CI)
can be can be seen from the Table 5.2. All CI values are calculated by using
the 95% confidence level.

Pessimistic techniques were reasonably ranked with a low classification
and responsiveness grade as their response time is highly related to the con-
nection latency as we studied in the Section 4.4. PDT produces the worst re-
sponsiveness, since it delays game events with the maximum latency rounded
up to next 50s. This rounding operation adds additional and perhaps un-

50

CHAPTER 5. DISCUSSION 51

Resp. Resp. CI Cons. Cons. CI Play. Play. CI
PPT 2.4 2.0 ... 2.8 3.0 2.4 ... 3.6 2.2 1.7 ... 2.7
PDT 2.2 1.8 ... 2.6 3.7 3.2 ... 4.2 2.3 1.8 ... 2.8
OPT 4.2 3.9 ... 4.5 2.7 2.2 ... 3.2 3.2 2.8 ... 3.6
ODT 4.3 4.0 ... 4.6 3.9 3.5 ... 4.3 3.7 3.2 ... 4.2

Table 5.2: Average points and their confidence intervals (CI) from the user
queries. Higher value is better. CI values use the 95% confidence level.

necessary margin to the response time, which made PDT as not capable to
produce response times that would be shorter than 100ms. Based on the
previous researches studied in the Section 2.2.2, a 100ms responsiveness is
considered to exceed the responsiveness requirements for fast paced games
that may tolerate delays up to 45ms - 60ms. Evaluation shows that this
requirement could be satisfied by our PPT implementation if the connection
latency is 50ms or lower. PPT is more strictly coupled with the maximum
connection latency and does not use additional delay that would add unnec-
essary margin to application’s response time. Both pessimistic techniques
did also rapidly increase the response time when the connection latency in-
creased. These measurement findings are also supported by the user query
results shown in the Table 5.2, where responsiveness (Resp.) grades given for
the pessimistic techniques are much worse than the grades given for the opti-
mistic techniques. The difference between the techniques can be considered
as quite significant as the responsiveness CIs (Resp. CI) measured for the
PPT and PDT do not overlap with the CIs calculated for OPT and ODT.

Optimistic techniques provided instantaneous feedback as they could ap-
ply state changes locally before they were applied at remote nodes. Both
techniques were capable to maintain application’s responsiveness at around
20ms, which is nearly instantaneous responsiveness feedback in a game that
uses one frame lag and runs at 60fps. Evaluation shows that the difference
between optimistic and pessimistic techniques becomes more wider when the
latency level increases. Optimistic techniques are able to adapt connection
delays and still maintain immediate responsiveness, while pessimistic tech-
niques have direct impact on their response delays. These results also support
the findings from some previous researches studied in the Section 2.3, where
studies found that optimistic techniques should be capable to provide fast
responsiveness by using immediate state updates. Furthermore, fast respon-
siveness seems to be highly related to the game’s playability regarding to our
measurements in the Section 4.7. Results show that optimistic techniques
were capable to produce 9 - 22 times better playability for each responsive-

CHAPTER 5. DISCUSSION 52

ness millisecond with 0.18 (OPT) and 0.22 (ODT) against 0.02 (PPT) and
0.01 (PDT). This clear difference is also supported by the user query re-
sults shown in the Table 5.2, where the playability CIs (Play. CI) for OPT
and ODT contain a clear difference against pessimistic techniques. Based
on these results, it is quite clear that optimistic techniques are capable to
provide better playability than pessimistic techniques.

Based on the measurements in the Section 4.4, presence techniques are
capable to provide better responsiveness than delay techniques. The average
ping relative responsiveness for the PPT was 2.93 and 6.14 for the PDT.
This means that PDT delays the response time about two times longer than
PPT when the connection latency is increased by one millisecond. However,
it should be noted that our PDT implementation has a 100ms minimum
response delay, while our PPT does not have this kind of restriction. The
difference between optimistic techniques provided smaller difference, while
the average ping relative responsiveness for OPT was 0.59 and 0.79 for ODT.
This difference may be due to inaccuracy of the measurement or the browser
environment problems, while both techniques were using similar kind of local
state update strategy that should provide quite identical results.

Results from the Section 4.6 show that pessimistic delay technique is able
to produce less inconsistencies than pessimistic presence technique. PDT
was capable to keep average inconsistency level of the ball at 0.34%, while
PPT almost doubled this with 0.61%. PDT also produced less remote avatar
inconsistency with an average inconsistency level of 0.76% in contrast with
2.65% provided by the PPT. PDT’s ability to define events to be applied
in the future seems to provide more consistent state changes between nodes.
In contrast, PPT applied all incoming events at the moment they were re-
ceived from the server, which led into temporary divergence between the
nodes. Interestingly, optimistic techniques produced inversed results, while
the presence technique produced less state divergence than the delay tech-
nique. OPT was capable to keep average ball inconsistency level at 1.04%,
while ODT doubled this with 2.42%. OPT was also capable to keep re-
mote avatar inconsistency level at 0.97% in contrast with 5.31% provided by
the ODT. The high inconsistency level of ODT was predictable as the tech-
nique allows states to diverge by maintaining the playability with reasonable
decision points. However, it seems that OPT is capable to provide much
less inconsistency than ODT and even almost similar consistency level than
PPT. Findings from the Section 2.3.2 are in contrast with our measurement
results, while OPT methods should be highly vulnerable to state divergence
when they are used to predict player movement. A possible reason why OPT
received such good consistency results may be due to inaccuracy of our mea-
surement procedure. Procedure took state comparison snapshots at every

CHAPTER 5. DISCUSSION 53

5 seconds, which can produce a behavior that does not detect some of the
extrapolated states before they are converged. Perhaps a better way to mea-
sure inconsistency could be implemented by comparing states when a remote
state correction is applied.

Interestingly, ODT received the highest average points from the consis-
tency query, even though it was considered as the worst technique to prevent
state divergence. One possible reason for this can be that ODT allowed the
state interpolation, which enables the technique to use smooth correction con-
vergence technique described in the Section 2.3.5. It may be that users were
not notifying these corrections as long as the game was running smoothly.
Similar conclusions were made in the research by Savery et al. [28], where
three different small games were studied with some CM technique combi-
nations. Authors found that players were preferring smooth corrections and
local view consistent game critical decisions over the global consistency. Also
the research from Palant et al. [20] introduced similar conclusions, while au-
thors suggested to keep the local view and decision points consistent even
though it could lead into global state inconsistency. Our ODT implemen-
tation used decision points that were based on the game entity ownership,
which may have reduced some amount of corrections at the local view and
therefore produced a smooth simulation. The results also seem to support
findings from the previous researches studied in the Section 2.3.4, where some
studies concluded that ODT may be capable to eliminate almost all visible
state corrections if game decision points are handled properly.

It is also noticeable that OPT had much worse points than ODT from the
consistency query. One possible reason for this can be the state convergence
technique, which replaced state container states without any smooth correc-
tions. This kind of state management can make big state corrections that
may move game entities in a warping manner. Findings from the previous
researches studied in the Section 2.3.5 show that warping behavior may lead
into decreased game UX as players may get frustrated when game entities
warp around the game scene. If these corrections could be hided or corrected
smoothly with a different convergence technique, OPT would most likely get
much better results.

The best consistency-responsiveness trade-off ratio is provided by the
PDT with average ratios 0.001 and 0.003. The ratio is about 15-142 times
better than the ratios provided by the OPT and ODT, while it is also about
3 times better than the ratio provided by the PPT. This means that PDT
was highly capable to prevent state divergence by increasing the response
time. However, this does not mean that PDT should be considered as the
best technique to keep the nodes in a consistent state. It still requires the
highest decrease in the application’s responsiveness, which seems to have big

CHAPTER 5. DISCUSSION 54

impact on the application’s playability as was studied in the Section 4.7.
There are also some other problems within our evaluation, as we did not

include any kind of measurements for the amount and amplitude of the re-
quired corrections. Perhaps this should have been done for better consistency
analysis as our techniques were using two kinds of convergence techniques.
For possible further research, one solution could be to use a research by Sav-
ery et al. [28] as an reference to determine what kinds of components could
be used for more precise measurements.

Our evaluation also did not provide any kind of results for the implemen-
tation complexity. During the implementation, the PPT was the easiest to
implement. It did not require any kinds of corrections as the incoming state
was immediately applied to the target shared state object. PDT was also
quite easy to implement as we were able to define events to be applied in
the future. The biggest difference between the complexity of the technique
implementations was that our optimistic techniques must run the game logic
in all nodes, where pessimistic techniques only run logic at the server. This
behavior made optimistic techniques much harder to implement as we were
required to define the correct decision points for the events. All decision
points for OPT were assigned to the server, while ODT used node specific
decision points that made final decisions based on whether the node owned
the shared state entity. If the decision point strategy would be changed, it
would most likely lead into different kinds of measurement results.

Our user study was participated only by 26 persons, which was less than
what we expected. However, we still received quite good CIs for each user
query as shown in the Table 5.2 and therefore we may expect that these
results are quite significant. Similar amount of persons was also recruited
for a research by Savery et al. [28]. Their study evaluated three different
kind of small games, where each game was tested with different CM related
behavior. Authors found that good CM strategy does not require players
to have identical local states. It is more important that players have rea-
sonable game critical decisions and state outcomes. Our measurements and
conclusions also support their findings as our ODT was measured as the best
technique, while it also produced the highest amount of state inconsistency.
ODT implementation also used smooth corrections, which provided reason-
able state outcomes as corrections did not warp entities around the game
scene.

Chapter 2 presented a study were CM techniques were divided into four
categories, where split was based on their optimistic or pessimistic behavior
against time or data. This categorization did provide a quite clear distinction
between the techniques that were implemented within the implementation.
Categorization helped us to build an generic stateful object container that

CHAPTER 5. DISCUSSION 55

was capable to handle all state change events for each category. Our im-
plementation of the stateful container may be a bit too complex for a game
which uses only one or two from the provided categories. Perhaps it would be
wiser to build an stateful container that is directly optimized for implemented
techniques to decrease the management complexity for the state updates.

Our study only evaluated one game type, where players were not per-
forming tightly coupled interaction with each other. It is likely, that players
mainly focused only on the owned paddle and the ball. Games that use sim-
ilar middle point interaction entities could benefit our results, while games
with a tightly coupled player interaction may contain different types of re-
quirements. Our study did emphasize how the responsiveness, decision points
and a suitable state convergence method can improve the game’s playability.
This may not be a case with the games that require tightly coupled inter-
action between the players. Tightly coupled interaction can require high
consistency level to produce good playability and may contain problematic
decision points, which are in contrast to our game implementation.

Chapter 6

Conclusions

Consistency maintenance is a huge topic in the field of multiplayer gaming,
where a malfunctioning synchronization or an invalid timing of game events
can make the game totally unplayable. Network connections are almost al-
ways affected by some sort of latency and jitter that may cause problems with
the transmission of the network messages. Network problems can be fought
against with different consistency maintenance techniques, which require a
balancing act between the responsiveness and the consistency.

This Thesis proposed that consistency maintenance techniques could be
categorized based on their ability to handle time or data either in an opti-
mistic or a pessimistic way. Optimistic techniques are able to provide fast
feedback with the cost of increased state divergence, while pessimistic tech-
niques sacrifice responsiveness to gain increased shared state consistency.
Techniques using the time manipulation may either pessimistically add an
additional delay to local events or by optimistically adding a delay for the
remote events. Data manipulation based techniques may either pessimisti-
cally require event serialization or optimistically allow node to predict future
states for the shared state objects.

The solution how to select an consistency maintenance technique for a
game should be always based on the game behavioral requirements. A tech-
nique from the PPT category could be used as an solution for a game that
does not require real-time simulation, while it is typically simple to imple-
ment and may produce a good consistency between the nodes. Technique
also allows the game logic to be located at a centralized server, which can
validate and handle data streams and may also be used to prevent cheating.
As a downside, PPT has a strong impact to the responsiveness and may
produce warping movement even at the low latency levels.

A technique from the PDT category could be used for a game that is
capable to tolerate delay in the responsiveness. PDT provides a very good

56

CHAPTER 6. CONCLUSIONS 57

and precise consistency and may also be used with interpolation to perform
smooth movement. It can be also used to put all game logic into a centralized
server and may also be simple to implement. However, a PDT has the
strongest impact to the responsiveness, which makes it not suitable for fast
paced games that may require 45ms or lower response times.

Fast paced games could benefit from the optimistic techniques as they
are capable to provide instant feedback. A technique from the ODT can
be a good solution for a game which contains a clear set of decision points
and can tolerate large amounts of divergence between the nodes. However,
the implementation may become quite complex if the decision point strategy
cannot be easily determined.

A technique from the OPT should be considered for a game that contains
shared state objects that are easily predictable. The technique may reduce
the required amount of transmission data and may produce smooth extrapo-
lation results when implemented correctly. As a downside, it may introduce
big corrections to states when the game has shared state objects that are not
easily predictable.

None of the techniques should be considered as a supreme solution, as
each of them have downsides. Sometimes games could benefit by combining
different techniques to form a hybrid solution. For example a technique from
the OPT could be combined with a technique from the PDT to add a small
delay to local events to decrease the high inconsistency ratio of the OPT.
These combinations may be used to balance the consistency-responsiveness
ratio, which indicates how the consistency maintenance will trade-off between
the inconsistency percentages and responsiveness milliseconds. This should
be separately considered for each game to find the most optimal and playable
solution that is capable to provide the most enjoyable gaming experience for
the players.

6.1 Future Work

This Thesis evaluated how consistency maintenance techniques could be cat-
egorized and how they balance with the consistency-responsiveness trade-off.
The evaluated game was somewhat slow paced and did not require users to
be directly interacting between each other. A user study should be arranged
for a fast paced game where users would directly interact with each other.

Evaluation only studied each consistency maintenance category sepa-
rately, while many games tend to combine consistency maintenance tech-
niques to form the final solution. A further research should be done about
how the presented categories could be combined and what kind of results they

CHAPTER 6. CONCLUSIONS 58

would provide with the same measurements as we used within this Thesis.
Thesis did not also consider decision point problems, convergence tech-

niques or data reduction capabilities in the main technique categorization.
Further study should be arranged to see whether these features should be
taken into account within the categorization.

By overall, the results from this Thesis could be used with other DIA
environments as well. Games are not the only type of networked applications
that may benefit from the techniques and results that were received from this
Thesis.

Bibliography

[1] Addressing battlefield 4 rubber banding issues. webpage,
2016. http://battlelog.battlefield.com/bf4/news/view/

addressing-bf4-rubber-banding-issues/ Accessed: 2016-01-31.

[2] Counter strike: Global offensive. webpage, 2016. http://blog.

counter-strike.net/ Accessed: 2016-01-31.

[3] Dota 2 official blog. webpage, 2016. http://blog.dota2.com/ Accessed:
2016-01-31.

[4] Grenville Armitage, Mark Claypool, and Philip Branch. Networking
and Online Games: Understanding and Engineering Multiplayer Inter-
net Games. John Wiley & Sons, Ltd, 1st edition, 2006. ISBN: 978-0-
470-01857-6.

[5] Yahn W Bernier. Latency compensating methods in client/server in-
game protocol design and optimization. Game Developers Conference
2001, Valve, 2001.

[6] Sumeer Bhola, Guruduth Banavar, and Mustaque Ahamad. Responsive-
ness and consistency tradeoffs in interactive groupware. In Proceedings
of the 1998 ACM Conference on Computer Supported Cooperative Work,
CSCW ’98, pages 79–88, New York, NY, USA, 1998. ACM.

[7] Nicolas Bouillot and Eric Gressier-Soudan. Consistency models for dis-
tributed interactive multimedia applications. SIGOPS Oper. Syst. Rev.,
38(4):20–32, 2004.

[8] Jeremy Brun, Farzad Safaei, and Paul Boustead. Fairness and playa-
bility in online multiplayer games. In Consumer Communications and
Networking Conference, 2006. CCNC 2006. 3rd IEEE, volume 2, pages
1199–1203, Piscataway, NJ, USA, 2006. IEEE.

59

http://battlelog.battlefield.com/bf4/news/view/addressing-bf4-rubber-banding-issues/
http://battlelog.battlefield.com/bf4/news/view/addressing-bf4-rubber-banding-issues/
http://blog.counter-strike.net/
http://blog.counter-strike.net/
http://blog.dota2.com/

BIBLIOGRAPHY 60

[9] Peng Chen and Magda El Zarki. Perceptual view inconsistency: An
objective evaluation framework for online game quality of experience
(qoe). In Proceedings of the 10th Annual Workshop on Network and
Systems Support for Games, NetGames ’11, pages 2:1–2:6, Piscataway,
NJ, USA, 2011. IEEE.

[10] Mark Claypool and Kajal Claypool. Latency and player actions in online
games. Commun. ACM, 49(11):40–45, 2006.

[11] Mark Claypool and Kajal Claypool. Latency can kill: Precision and
deadline in online games. In Proceedings of the First Annual ACM
SIGMM Conference on Multimedia Systems, MMSys ’10, pages 215–
222, New York, NY, USA, 2010. ACM.

[12] Declan Delaney. Latency Reduction in Distributed Interactive Applica-
tions using Hybrid Strategy-Based Models. PhD thesis, National Univer-
sity of Ireland, May 2005.

[13] Declan Delaney, Tomás Ward, and Seamus McLoone. On consistency
and network latency in distributed interactive applications: A survey
part i. Presence, 15(2):218–234, 2006.

[14] Saul Greenberg and David Marwood. Real time groupware as a dis-
tributed system: Concurrency control and its effect on the interface. In
Proceedings of the 1994 ACM Conference on Computer Supported Co-
operative Work, CSCW ’94, pages 207–217, New York, NY, USA, 1994.
ACM.

[15] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven Sutcliffe. Quanti-
fying and mitigating the negative effects of local latencies on aiming in
3d shooter games. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’15, pages 135–144, New
York, NY, USA, 2015. ACM.

[16] Chris Lewis, Jim Whitehead, and Noah Wardrip-Fruin. What went
wrong: A taxonomy of video game bugs. In Proceedings of the Fifth
International Conference on the Foundations of Digital Games, FDG
’10, pages 108–115, New York, NY, USA, 2010. ACM.

[17] Chen Ling. An adaptive consistency maintenance approach for repli-
cated continuous applications. In ”Proceedings of the 2005 11th In-
ternational Conference on Parallel and Distributed Systems, volume 1,
pages 795–801, Piscataway, NJ, USA, 2005. IEEE.

BIBLIOGRAPHY 61

[18] Abdul Malik Khan, Sophie Chabridon, and Antoine Beugnard. A
dynamic approach to consistency management for mobile multiplayer
games. In Proceedings of the 8th International Conference on New Tech-
nologies in Distributed Systems, NOTERE ’08, pages 42:1–42:6, New
York, NY, USA, 2008. ACM.

[19] Martin Mauve, Jürgen Vogel, Volker Hilt, and Wolfgang Effelsberg.
Local-lag and timewarp: providing consistency for replicated continuous
applications. IEEE Transactions on Multimedia, 6(1):47–57, 2004.

[20] Wladimir Palant, Carsten Griwodz, and P̊al Halvorsen. Consistency re-
quirements in multiplayer online games. In Proceedings of 5th ACM
SIGCOMM Workshop on Network and System Support for Games,
NetGames ’06, New York, NY, USA, 2006. ACM.

[21] Tseng Po-Han, Wang Nai-Ching, Lin Ruei-Min, and Chen Kuan-Ta.
On the battle between lag and online gamers. In 2011 IEEE Interna-
tional Workshop Technical Committee on Communications Quality and
Reliability (CQR), pages 1–6, Piscataway, NJ, USA, 2011. IEEE.

[22] Kjetil Raaen and Tor-Morten Grønli. Latency thresholds for usability
in games: A survey. NIK-2014, Norsk Informatikkonferanse, 2014.

[23] Kjetil Raaen and Andreas Petlund. How much delay is there really
in current games? In Proceedings of the 6th ACM Multimedia Systems
Conference, MMSys ’15, pages 89–92, New York, NY, USA, 2015. ACM.

[24] Cheryl Savery. Consistency maintenance in networked games. PhD
thesis, Queen’s University, September 2014.

[25] Cheryl Savery and Nicholas Graham. Reducing the negative effects of
inconsistencies in networked games. In Proceedings of the First ACM
SIGCHI Annual Symposium on Computer-human Interaction in Play,
CHI PLAY ’14, pages 237–246, New York, NY, USA, 2014. ACM.

[26] Cheryl Savery and T. C. Nicholas Graham. Timelines: simplifying the
programming of lag compensation for the next generation of networked
games. Multimedia Systems, 19(3):271–287, 2012.

[27] Cheryl Savery, T. C. Nicholas Graham, and Carl Gutwin. The human
factors of consistency maintenance in multiplayer computer games. In
Proceedings of the 16th ACM International Conference on Supporting
Group Work, GROUP ’10, pages 187–196, New York, NY, USA, 2010.
ACM.

BIBLIOGRAPHY 62

[28] Cheryl Savery, Nicholas Graham, Carl Gutwin, and Michelle Brown. The
effects of consistency maintenance methods on player experience and
performance in networked games. In Proceedings of the 17th ACM Con-
ference on Computer Supported Cooperative Work & Social Com-
puting, CSCW ’14, pages 1344–1355, New York, NY, USA, 2014. ACM.

[29] Jouni Smed and Harri Hakonen. Algorithms and Networking for Com-
puter Games. John Wiler & Sons, Ltd, 1st edition, 2006. ISBN: 978-0-
047-01812-5.

[30] Dane Stuckel and Carl Gutwin. The effects of local lag on tightly-coupled
interaction in distributed groupware. In Proceedings of the 2008 ACM
Conference on Computer Supported Cooperative Work, CSCW ’08, pages
447–456, New York, NY, USA, 2008. ACM.

[31] Xin Zhang. An Information-Theoretic Framework for Consistency
Maintenance in Distributed Interactive Applications. PhD thesis, Na-
tional University of Ireland, April 2011.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Scope of the Thesis
	1.3 Research methods
	1.4 Structure of the Thesis

	2 Background
	2.1 Distributed interactive applications
	2.1.1 Network architectures
	2.1.2 User interaction

	2.2 Consistency-responsiveness trade-off
	2.2.1 Consistency
	2.2.2 Responsiveness

	2.3 Consistency maintenance techniques
	2.3.1 Pessimistic presence techniques
	2.3.2 Optimistic presence techniques
	2.3.3 Pessimistic delay techniques
	2.3.4 Optimistic delay techniques
	2.3.5 Convergency techniques

	3 Implementation
	3.1 The game
	3.2 Framework overview
	3.3 Time synchronization and RTT
	3.4 Object model
	3.5 Consistency maintenance techniques
	3.5.1 Pessimistic presence technique
	3.5.2 Pessimistic delay technique
	3.5.3 Optimistic presence technique
	3.5.4 Optimistic delay technique

	4 Evaluation
	4.1 Testing environment setup
	4.2 User study participants
	4.3 Responsiveness measurement setup
	4.4 Responsiveness measurements
	4.5 Consistency measurement setup
	4.6 Consistency measurements
	4.7 Playability results
	4.8 Consistency-responsiveness trade-off

	5 Discussion
	6 Conclusions
	6.1 Future Work

