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Monte Carlo Analysis of Circulating Currents in Random-Wound
Electrical Machines

Antti Lehikoinen1, Nicola Chiodetto1,2, Erkki Lantto3, Antero Arkkio1, and Anouar Belahcen1

1Aalto University, Dept. of Electrical Engineering and Automation, P.O. Box 13000, FI-00076 Espoo, Finland
2University of Padova, Electric Drives Lab., Dept. of Industrial Engineering, Via Gradenigo 6a, 35131 Padova, Italy

3Sulzer Pumps Finland Oy, Kotka, Finland

Electrical machines with stranded random windings often suffer from considerable circulating current losses. These losses have
been poorly studied because of the difficulty and computational cost of modelling stranded windings, and the stochastic nature of
the problem due to the uncertain positions of the strands. This paper proposes two methods to model random stranded windings of
arbitrary complexity. Firstly, a circuit model considering the entire main flux path is presented, and some practical implementation
considerations are discussed. Secondly, a computationally efficient finite element approach based on non-conforming meshing is
presented. Finally, a method is proposed to model the random packing process of strands within a slot, without any re-meshing
or inductance re-calculation required. The proposed methods are then compared to special no-rotor measurement data of a large
number of high-speed induction machines, and a good agreement is observed.

Index Terms—Approximation methods, circulating currents, eddy currents, proximity effects, stochastic analysis.

I. INTRODUCTION

H IGH-speed electrical machines often utilize stranded
windings, where the large solid conductors are replaced

by a number of smaller parallel-connected sub-conductors
called strands. This approach is mainly adopted to limit the
skin effect losses while maintaining the copper area and the
number of turns per slot. However, it can also result in
uneven total current distribution between the strands. This
phenomenon is called the circulating current effect, and has
doubled the resistive stator losses in some high-speed ma-
chines [1].

Most analysis on AC resistive losses has mainly focused
on the skin and proximity effect losses, related to the uneven
current density distribution within each conductor. For ma-
chines with form-wound windings with relatively large solid
conductors both analytical [2] and finite element (FE) [3]–
[7] models have been utilized. Windings consisting of a larger
number of thinner conductors, usually in the form of idealized
Litz wires, have often been FE analysed by homogenization
in either frequency- or time-domain or both [8]–[14]. Some
analytical approaches have also been published, along with a
few brute-force studies [15]–[18].

By contrast, research specifically on circulating currents in
stranded windings has been scarce. Both FE-based [3], [7],
[19]–[21] and analytical [22], [23] approaches have largely
focused on form-wound windings, with the circulating cur-
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rents often effectively suppressed by conductor transpositions.
Nevertheless, a few more relevant papers were published
recently. In 2014 and 2015, two circuit-based models were
used to analyse permanent magnet (PM) machines [24], [25].
Furthermore, in 2015 a computationally light method for FE
analysis of arbitrary windings was proposed [26], [27].

None of the listed publications has considered truly ran-
dom-wound windings. Instead, the configuration of strands
inside the slots has been assumed known and deterministic.
Therefore, this paper proposes two methods to analyse the
statistical properties of circulating currents. Firstly, the circuit
model in [24] is extended to take also the rotor of the
machine into account. Secondly, the FE approach of [27] is
improved. Furthermore, practical software implementation of
the methods is discussed. Finally, an approach is proposed to
approximately model the uncertain winding process, with no
re-meshing or inductance re-calculation required.

The methods are then used in conjunction with the Monte
Carlo (MC) method to model a special no-rotor test set-up of
high-speed induction machines, and the simulation results are
compared to measurement data. A good match is obtained
between the simulations and measurements. The full-load
behaviour of the machines predicted by the computational
model is then briefly analysed, although further work will still
be needed to fully validate the methods in these conditions.

II. CIRCULATING CURRENT PHENOMENON

In many electrical machines, the stator winding is composed
of a large number of thin sub-conductors connected in parallel.
This kind of winding is usually called stranded, and the
sub-conductors respectively strands. When the sub-conductors
have a non-rectangular cross-section the winding can also be
called random-wound, due to the fact that the exact positions
of the conductors inside slots cannot be precisely controlled.
This uncertainty in positioning is by the fact that semi-closed
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slots are often utilized in high-speed machines, requiring the
strands to be inserted into the slots a few at a time [28].

Due to the slot flux, each strand will see a different flux
linkage and thus have a different inductance. This often leads
to a difference in the total current of each parallel current path,
increasing the total resistive losses. The difference between the
individual and average strand currents is called the circulating
current, and the associated losses the circulating current losses
respectively.

If the skin and proximity effect losses are neglected, the
circulating current losses Pcc can be obtained with

Pcc = PAC − PDC, (1)

where PAC denotes the actual resistive losses, whereas PDC are
the ideal resistive losses from the DC approximation. However,
a more practical indicator will often be the circulating current
factor kcc, i.e. the ratio between PAC and PDC. For each parallel
path l, klcc can be obtained with

klcc =
P l

cc + P l
DC

P l
DC

=

∑
i∈l

|ii|2

1
Np

∣∣∣∣∑
i∈l

ii

∣∣∣∣2
, (2)

where Np is the number of parallel strands in the path, and the
vector i contains all linearly independent strand currents [1].
The latter form of (2) has the benefit of remaining valid even
with the skin and proximity effect losses taken into account.
Equation (2) can be extended for phases and the entire machine
in a similar fashion.

In the following two sections, two methods are proposed to
analyse the circulating current phenomenon. First, an equiva-
lent circuit based model is presented, also taking into account
the effect of the rotor circuit. After that, a computationally
efficient FE model is presented.

III. CIRCUIT MODEL

Throughout this paper, the following notation will be used.
I, 1, and 0 are used to denote the identity matrix and matrices
of all ones and zeros, respectively. If necessary, the size of a
matrix will be expressed in the subscript, for instance 1r×1

denoting an all-one column vector of r entries. Furthermore,
the term strand is used to denote a single sub-conductor in a
single slot, unless otherwise specified.

The analytical circulating current model proposed in [24] is
briefly re-presented here, and generalized to cover arbitrary
circuit topologies. The leakage flux of a single slot of a
machine is considered first. If there are n strands in the slot
with currents i, the voltages u over the strands (between the
ends of the machine) can be obtained from

u1 = r1i1 + jω (L1i1 +M12i2 + . . .M1nin)

u2 = r2i2 + jω (M21i1 + L2i2 + . . .M2nin)

...

un = rnin + jω
(
Mn1i1 + . . .Mn(n−1)in−1 + Lnin

)
, (3)

where r are the strand resistances, and L and M the self
and mutual (leakage) inductances respectively. It should be

noted that the term inductance is maybe used in a somewhat
non-standard fashion here, and should be understood as the
ratio between the current flowing in a single strand of the
machine and the voltage induced over it or some other strand.
The inductances can be calculated with analytical methods of
varying complexity [29]–[31], or extracted from FE analysis
[32], [33].

The situation is slightly more complicated in an actual
machine. Firstly, there are several slots, each of them governed
by equations like (3). Also, the main flux of the machine will
induce a significant electromotive force (emf) on the strands,
referred to as back-emf in this paper. Thus, for each slot k it
can be written

uslot,k = (Rk + jωLk) istrand,k +Ek. (4)

Here R and L are the slot resistance and inductance matrices
with entries corresponding to (3). E is the vector of back-emfs
induced in the strands.

In most machines, the majority of the main flux will travel
along the teeth of the machine, rather than the slots. Thus, the
same back-emf will be induced on all strands in the same slot.
An important exception are e.g. permanent magnet machines
with open slots [34]. However, this paper will deal mainly with
high-speed machines with semi-closed slots, so the coupling
between the circulating currents and main flux should be weak.

Secondly, not all strands in the machine are typically in
parallel. Instead, several strands may be connected in series,
in one or more slots. Thus, the number of independent currents
is often significantly smaller than the total number of strands
in the machine. By utilizing e.g. the loop method, these
independent currents i can be determined, and the strand
currents then expressed as

istrand,k = Cki. (5)

The loop matrix Ck has the entries

[Ck]i,j = (6) 1, current j flows forwards in strand i of slot k
−1, current j flows backwards in strand i of slot k
0, otherwise.

The forward and backward directions can be freely chosen, as
long as they are consistent.

Finally, the total supply voltage for each current path has
to equal the sum of all Qs slot voltages of the path, i.e.

usupply =

Qs∑
k=1

CT
kuslot,k

=

Qs∑
k=1

CT
k (Rk + jωLk)Cki+CT

kEk. (7)

The currents i – and by extension the actual strand currents
(5) – can now be easily solved. Resistive losses can then be
obtained from the strand currents and resistances.
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A. Practical Matrix Assembly
While (7) is fully sufficient to cover any stator winding

configuration, forming all the per-slot matrices Ck by hand
would be very cumbersome and error-prone. Thus, a system-
atic, easy-to-implement approach is briefly presented here for
typical windings. A Delta-connected three-phase machine with
a two-layered winding and two parallel paths is used as an
example, due to a similar one appearing later in the results
section.

Firstly, the vector usupply of supply voltages of each current
path can be obtained by repeating the line voltages as

usupply =

 12Np×1 0 0
0 12Np×1 0
0 0 12Np×1

uline

=
(
I3×3 ⊗ 1Np×1

)
uline. (8)

Here, uline is the vector of line voltage phasors

uline =
[
u1 u2 u3

]T
. (9)

On the second row of (8), a Kronecker product notation
has been introduced both for compactness and simplicity of
implementation in any high-level programming language.

Likewise, the loop matrices C can be partitioned into blocks
based on the number of phases, parallel paths and winding
layers. For instance, if slot 1 were to host the positive coil
side of path 1 and the negative coil side of path 2 in its upper
and lower layers respectively, C1 could be written as

C1 =

[
Cb 0 0 0 0 0
0 −Cb 0 0 0 0

]
=

[
1 0 0 0 0 0
0 −1 0 0 0 0

]
⊗Cb = F1 ⊗Cb. (10)

Here, two new matrix types (Cb and Fk) were introduced.
They will be described next.

Cb is used to describe the basic strand configuration per
layer. Of course, the necessary assumption for its use is that
the configuration does not change from layer to layer, or slot
to slot. Assuming – for now – also that all strands in the same
turn are close to each other, Cb can be written as

Cb = 1Nturns×1 ⊗ INp×Np . (11)

Nturns is the number of turns per layer.
The second new matrix Fk, on the other hand, describes

which parallel paths traverse the slot k, and to which direction.
Each Fk can be constructed as follows. Let F̃ be a 2 × Qs
matrix describing the overall winding configuration of the
machine, with the entries

[
F̃
]
i,k

=


j parallel path j has a positive coil side

in the ith layer of slot k
−j parallel path j has a negative coil side

in the ith layer of slot k.
(12)

Parallel paths 1 and 2 are assumed to belong to phase a of the
machine, paths 3 and 4 to phase b, and similarly for phase c.
Then, each Fk can be obtained from F̃ by setting

[Fk]i,j =

 sign
([

F̃
]
i,k

)
, if abs

([
F̃
]
i,k

)
= j

0, otherwise.
(13)

Even F̃ can be constructed in a simple fashion. For a typical
diamond winding configuration it is sufficient to first calculate

F̃ =

[
1 −5 3 −2 6 −4
2 −6 4 −1 5 −3

]
⊗ 11×q. (14)

In other words, the typical phase belt order in the rotation
direction is first manually written for both layers. Then,
each entry of the 2 × 6 matrix is replicated column-wise to
correspond to the number of slots per pole and phase q. If
necessary, short-pitching can then be modelled by shifting the
entries of the upper row of (14) to correspond to the pole pitch
of the machine.

B. Taking the Rotor into Account

In [24], the back-EMF vector E was assumed to be only
due to permanent magnet flux, and equal for all the strands in
the same slot. Thus, E could be written as

Ek = jωrδleffexp
(
j
2π

Qs
k

)
B · 1Nstrands×1, (15)

where leff and rδ are the effective length and air-gap radius
of the machine, respectively. B is the amplitude of the funda-
mental air-gap flux density.

However, B will also depend on the currents of the machine,
especially in an induction machine with a small air-gap.
Thus, (15) cannot be used directly. Therefore, an approach
is proposed to take both the magnetizing and rotor branch
into account in the circuit model, based on the well-known
T equivalent circuit of an induction machine. Obviously, it is
assumed that the circulating current phenomena do not signif-
icantly distort the air-gap flux density, so that the basic space
vector approximation remains valid. Then, the relationship

B = kBim = kB(is + ir) (16)

can be established between B and the magnetizing current
vector im. The coefficient kB can be derived analytically based
on the machine geometry, or obtained from finite element
analysis. A method utilizing the concepts derived in this paper
is presented in Appendix A.

To determine the rotor current space vector ir, the rotor
branch voltage equation

0 = jωLm (is + ir) +

(
Rr

s
+ jωLσr

)
ir (17)

has to be added to the model. The stator current vector is, on
the other hand, can be obtained directly from the stator loop
currents i by

is = PαβLIi. (18)

Here, the matrices

LI = I3×3 ⊗ 11×2Np

Pαβ =
2

3

[
1 exp

(
j 2π3
)

exp
(
j 4π3
) ]

(19)

are used to calculate the phase currents from the loop currents
i, and the current space vector from the phase currents,
respectively.
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With this notation, the final system of equations to be solved
can be written as

usupply =

Qs∑
k=1

CT
k (Rk + jωLk)Cki+CT

kk̃k (PαβLIi+ ir)

0 = jωLm (PαβLIi+ ir) +

(
Rr

s
+ jωLσr

)
ir. (20)

The new short-hand coefficient

k̃k =
Ek

im
= jωrδleffexp

(
j
2π

Qs
k

)
kB · 1Nstrands×1, (21)

describing the ratio between E and im has been adopted for
clarity, obtained from (16) and (15).

IV. FINITE ELEMENT MODEL

Finite element modelling of circulating current problems
has been notoriously difficult due to the excessively dense
mesh required for representing the stranded conductors, and
the large number of strand voltages to be solved [7]. This
paper proposes an approach to tackle these two problems.
Analysis is limited to linear time-harmonic 2D problems,
although extension to the time-domain with nonlinearities, or
three dimensions should be relatively straightforward.

A solution to the dense mesh problem was proposed in
in [26], [27], based on non-conforming meshing around the
conducting domains. The method was then successfully used
to simulate a simplified PM machine in the time-domain.
However, even with this method the number of unknown
strand voltages could be uncomfortably large – easily in excess
of 10 000 in a realistic problem with the entire cross-section
of the machine simulated.

Thus, the method is slightly modified here. Assuming that
the current density inside each strand is almost uniform,
the governing equation for the Galerkin-discretized vector
potential a is

Sa+

Qs∑
k=1

Fkistrand,k = 0, (22)

where S is the typical FE stiffness matrix [32]. The current
source matrix F has the entries

[Fk]i,j =

∫
Dk,j

φi dS

|Dk,j |
, (23)

where Dk,j is the domain of the jth strand of slot k, and
|Dk,j | its cross-sectional area. Shape functions are denoted
by φ. Based on the point-source approach in [27], F can be
approximated by

[Fk]i,j ≈

{
φi

(
xc
k,j

)
, xc

k,j ∈ Dk,j

0, otherwise,
(24)

where xc
k,j is the center point of the strand j in slot k. This

way, the strands can be completely ignored while meshing the
slot regions, yielding a huge reduction in the number of nodes.

On the other hand, since the back-emf induced in one
particular strand l of slot k is

Ek,l = jωleff
1

|Dk,j |

∫
Dk,l

A (x) dS, (25)

the vector of back-emfs for this slot can be obtained from

uslot,k = jωleffF
T
ka. (26)

Then, combining (22) to the circuit equations presented earlier
yields the matrix system S

Qs∑
k=1

FkCk

jωleff

Qs∑
k=1

CT
kFk

Qs∑
k=1

CT
kRkCk

[ a
i

]
=

[
0

usupply

]
.

(27)
This system can then be further modified to include e.g.
permanent magnets or a rotor cage to the analysis. For this
purpose, any well-established FE approach can be used.

V. MODELLING RANDOMNESS

The analysis presented so far has assumed that the strand
configuration is known in each slot. However, in a random-
wound machine – as the name suggests – the configuration
will usually vary from slot to slot, and machine to machine
in a stochastic fashion. Although some preliminary attempts
have been made to include such geometric uncertainty into
the model [35], Monte Carlo analysis will be utilized in this
paper. Thus, a method is needed to generate samples from the
random strand configurations.

There are extremely many ways to pack the strands inside
one slot. However, in this paper it is assumed that the random-
ness can be satisfyingly modelled by swapping the positions
of the strands with each other, rather than re-packing them. In
other words, a single feasible packing is first generated, and
the positions of strands in that configuration are numbered and
stored. Then, the indexing of the strands – which strand gets
assigned to which position – within the pre-defined packing is
randomly permuted. A brief justification for this assumption
can be found in Appendix B. An example of a packing – also
used later in the results section – with a filling factor of 0.37
is illustrated in Fig. 1.

Fig. 1. The packing of strands used in the simulations. Winding layers are
illustrated with the red and blue colors, while different shades are used for
turns.

This randomization of strand indices is equivalent to ran-
domly permuting the rows and columns of the resistance and
inductance matrices by assigning

L := PT (θ)LP (θ) . (28)

Here, P (θ) is a random permutation matrix with a suitable
probability density function (pdf), and θ is used to denote the
outcome in the probability space. Based on 7, this permutation
approach can also be understood as a permutation of the rows
of the loop matrices, by

Ck := P (θ)Ck. (29)
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In double layer machines, there is usually a thick layer of
insulation between the layers. Thus, it can be reasonably
assumed that the strands will not travel from layer to layer, and
P (θ) can thus be written with two smaller block permutation
matrices P1,P2 as

P (θ) =

[
P1 (θ) 0

0 P2 (θ)

]
. (30)

The permutation procedure is illustrated in Fig. 2, where
the indices of the first six strands (1 . . . 6) have been flipped
(6 . . . 1). In this case, the upper-left 6 × 6 block of the
permutation matrix would be the so-called exchange matrix,
i.e. a matrix with ones on the counter-diagonal (running from
the lower left to the upper right corner).

1

2

3

4

5

6 1

2

3

4

5

6

Permutation

Fig. 2. An illustration of a permutation of six strands at the slot bottom.

This approach has two important benefits. Firstly, the math-
ematically difficult random packing problem has been reduced
to generating random permutations. Also, it is now possible
to utilize pre-calculated slot matrices (L or F), instead of
having to assemble new ones for each Monte Carlo sample.
The method could possibly also be classified as a Quasi-Monte
Carlo method, since only a structured subset of the entire
probability space is explored.

A. Generating Permutations

Obviously, the distribution of P should be known, and
a method to draw samples from this distribution is needed.
Since no measured data directly related to strand positioning
is available, the following assumption is made. Let x0

k be the
positions in the pre-defined packing, and dij be the distance

dij = ∥x0
i − x0

j∥. (31)

Then, the probability that strand i gets assigned to position j
(i.e. the only non-zero entry on row i of P is on column j)
is assumed to approximately follow the discrete normal-like
distribution

pi(j) = Pr
(
strand i assigned to x0

j

)
= Pr

(
[P]ij = 1

)
∼ 1

c
exp

(
−

d2ij
2σ2

)
. (32)

The normalization coefficient c can be ignored, since it will not
be required by the algorithm proposed shortly. The variation
parameter σ defines how far the strands are expected to stray

from their default positions. For further use, the per-unit
notation

σpu =
σ

max dij
(33)

is adopted for clarity.
Generating random permutations from a distribution other

than the uniform one is a nontrivial task. In this case, even
defining the pdf of P in such a way that (32) holds is not
straightforward. Nevertheless, Fig. 3 shows an approximative
Gibbs-inspired algorithm for generating samples of P, that
was observed to yield satisfactory results based on extensive
numerical analysis.

..Begin with previous
P, set r = 1

.

Draw c ∈ [r, N ]

from c ∼ pr(c)pc(r)
pr(r)pc(c)

.

Swap columns c, r:
[P]:,[c r] ← [P]:,[r c]

.

r < N

.

r ← r+1

.

Return P

.

yes

.

no

.

G
en

er
at

e
ad

di
tio

na
l

sa
m

pl
es

?

Fig. 3. A sampling algorithm for generating random permutations.

Indeed, an example with 174 strands and σpu = 0.2 can
be seen in Fig. 4. The probabilities of the strands 1 and
100 ending up in the positions 1 . . . 174 are shown. The
solid lines have been estimated from 30 000 samples to
eliminate most noise, while the dotted lines correspond to the
now-normalized target distribution (32). It can be seen that
the sampling algorithm produces permutation matrices with
properties reasonably close to the desired ones, considering
that (32) is already highly approximative of the real physical
phenomenon.

0 20 40 60 80 100 120 140 160 180

Position

0

0.01

0.02

0.03

0.04

0.05

P
ro

ba
bi

lit
y

Strand 1 (Proposed algorithm)
Strand 1 (Target distribution)
Strand 100 (Proposed algorithm)
Strand 100 (Target distribution)

Fig. 4. Example of permutations generated by proposed the algorithm, and
the target distribution.

VI. SIMULATION AND MEASUREMENT RESULTS

For evaluating the proposed methods, winding-related mea-
surement data was provided by a manufacturer of high-speed
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2-pole solid-rotor induction machines in the 200 kW range,
with the rated frequencies around 450 Hz. Measurements of a
total of 230 nominally identical machines of the same product
series were analysed. In the tests, the rotors of the machines
had been removed to obtain information about the circulating
currents in particular. The main dimensions of the machines
can be found in Table I, and the slot shape in Fig. 1.

TABLE I
MAIN DIMENSIONS OF MACHINES.

É·²¼·²¹ ½±²²»½¬·±² Ü»´¬¿
Ò«³¾»® ±º °¿®¿´´»´ °¿¬¸­ î

Ò«³¾»® ±º ©·²¼·²¹ ´¿§»®­ î

Ò«³¾»® ±º ¬«®²­ í
Ò«³¾»® ±º ­¬®¿²¼­ °»® ­´±¬ íìè

Ò«³¾»® ±º ­¬¿¬±® ­´±¬­ íê
Ý±·´ °·¬½¸ ø­´±¬­÷ ïî

Í¬¿¬±® ¼·¿³»¬»® ø³³÷ îçð

The machines had been measured with a dedicated tester,
utilizing feedback control to force the machine currents to
follow the desired waveforms, also measuring the input current
and voltage phasors along with powers [36]. In the tests,
balanced sinusoidal currents had been used, with an amplitude
of 5 A and frequencies from approximately 15 Hz to 900 Hz.
The machines had been delta-connected.

From the measurements, active and reactive input powers
were extracted. Core losses were estimated with FEM assum-
ing no circulating currents, ranging approximately 1 to 15 %
of the input power in the frequency range [37]. They were then
removed from the active power to obtain the total losses in the
stator winding. The circulating current losses and factors were
finally calculated with (1) and (2).

A. Skin and Proximity Effects

In the tested frequency range, the strand radius was less
than 15 % of the skin depth. Thus, the skin and proximity
effect losses could reasonably be assumed negligible [11],
[12]. Nevertheless, to test this assumption, a brute-force FE
simulation at 1 kHz was performed on one slot segment of
the machine. The strands were meshed with two layers of
elements each to obtain accurate current density distributions
[13], [32], resulting in a total of 57 300 elements. The winding
configuration was the same as in slot 1 of the actual machine.

The results were then compared to the ones obtained with
the approximate FEM model proposed in Section IV. A
maximum relative difference of 4.2 % was observed between
the total layer currents obtained with the two methods. With
the per-layer circulating current coefficients, the error was 2.2
% at most. Although this problem was a simplified one, it
did indeed support the assumption that the skin and proximity
effects can be safely ignored.

B. Simulation Results with Independent Strand Packings

A simplified version of the test set-up was first modelled
with the proposed circuit and FE methods. The machines were
supplied with a three-phase delta-connected voltage source.

The supply voltages were solved simultaneously with the cur-
rents, so that total phase currents with equal magnitudes and
exactly 120 degree phase shifts were obtained. Supply cable
impedances were assumed zero, and the strand resistances
– also taking into account the end-winding length – were
estimated analytically. End-winding inductances were ignored,
due to their presumably small effect on the circulating currents
[38]. Finally, the strand inductances for the circuit model were
calculated with FEA, based on the strand packing seen in Fig.
1 [25], [37]. The entire stator bore was meshed in the FE
method, and modelled with a small magnetizing inductance in
the circuit method. Frequencies up to 1.2×fN = 550 Hz were
analysed.

In the FE model, the total number of unknowns was approxi-
mately 12 000. Thus, the direct sparse solver of Matlab could
easily be utilized. Obviously, in the circuit model only the
currents and supply voltages were solved, resulting in 348+3
unknowns. The total solution time of a single configuration
was well under 1 second for both methods.

The uncertainty in the strand configurations was modelled
with the Monte Carlo method, by permuting the rows of the
loop matrices with the algorithm proposed in Section V-A. The
random permutations for each slot and layer were assumed to
be independent. The behaviour of each randomized machine
was then analysed over the entire frequency range without
re-randomization, to simulate the testing process of an actual
individual machine. The simulations were then run in parallel
on 8 cores. Based on some initial test runs, the number of MC
samples was chosen to be 2000 to obtain good convergence
at a reasonable computational cost.

The total circulating current factors kcc,tot as a function of
frequency are shown in Figs. 5 and 6, calculated with the
circuit and FE model respectively. The solid curves show the
simulated mean values with different σpu, while the corre-
sponding standard deviations are denoted by the vertical error
bars. Measured results are shown with the thick black line.
Convergence of var (kcc,tot) calculated with the circuit model
at three different frequencies can be seen in Fig. 7, with
σpu = 0.2. Finally, estimated distributions of total and per-
phase kcc at 400 Hz are shown in Figs. 8 and 9.
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Fig. 5. Total circulating current factors calculated with the circuit model as
a function of frequency, with different σpu.
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Fig. 6. Total circulating current factors calculated with the FE model as a
function of frequency, with different σpu.
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Fig. 7. Convergence of the circulating current factor variance as a function
of MC samples, illustrated at three different frequencies.

It can be seen that the circuit model and FE model yielded
very similar results, with approximately correct mean values
at σpu = 0.2. Both the simulated and measured values appear
to be normally distributed, but the measured results exhibit
significantly higher variance. Furthermore, the simulated per-
phase kcc exhibit clearly larger variance than the simulated
kcc,tot, whereas the measured values are almost equally dis-
tributed. The number of samples used should be sufficient,
though, based on Fig. 7.

In an attempt to improve the results, some refinements were
then made on the simulation model. The voltage supply was
changed to star connection (to comply with the actual test
set-up). Also, it was observed that the simulation models
underestimated both the total phase resistance and inductance
by approximately 8 % and 22 % on low frequencies. These
differences could probably be explained by the end-winding
impedance, and possibly also the main flux fringing due to the
absence of the rotor (increasing the magnetizing inductance).
A corresponding correction impedance was then added in
series with each parallel path of the machine.

These refinements only resulted in very minor changes from
Figs. 5-9, so these results are not shown. Nevertheless, some
conclusions can be drawn. Slightly surprisingly, increasing the
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Fig. 8. Probability density functions of the circulating current factors at 400
Hz, with the simulated results calculated by the circuit model at σpu = 0.2.
Factors for each phase (a,b,c) and the entire machine are shown.
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Fig. 9. Probability density functions of the circulating current factors at 400
Hz, with the simulated results calculated by the FE model at σpu = 0.2.
Factors for each phase (a,b,c) and the entire machine are shown.

variation σpu decreased the mean circulating current losses.
This could be easily explained by analysing the assumed
winding configuration, though. In Section III-A the per-layer
default configuration matrix Cb was defined so that the strand
positions within layer (before randomization) did not change
from slot to slot – any strand at the bottom of the layer would
be at the bottom of the layer in any slot. This configuration
would result in very large circulating current losses. Thus,
any change in the configuration would very likely yield lower
losses. Indeed, this can be observed from the simulation results
as well.

More surprisingly, σpu did not seem to influence the variance
of the circulating current losses. This is slightly paradoxical,
since setting σpu to zero would obviously result in a zero
variance in the results. Apparently, the variance would then
rise very rapidly before saturating at some σpu < 0.1. This
phenomenon is probably related to the extremely large num-
ber of possible strand configurations for the entire machine
(174!)72, resulting in a very low probability of obtaining any
outlying results.

c⃝ 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting, republishing this material for advertising or promotional purposes, creating new collective works for resale or
redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.



IEEE TRANSACTIONS ON MAGNETICS 8

C. Simulation Results with Dependent Strand Packings

Since refining the deterministic part of the simulation mod-
els did not improve accuracy, it became evident that the
approach to model the randomness was probably inaccurate.
Thus, the following simple adjustment was made to the MC
procedure.

In the first models, the permutation matrices were drawn
independently from the same distribution for the entire layer,
assuming no large error was caused by this. However, in
an actual machine the positions of all strands are probably
slightly interdependent, both due to the manufacture process
and mechanical reasons as well. Furthermore, the strands of
each turn can probably be expected to stay close to each other.
A more detailed analysis of the manufacture process and its
effect on P is underway, but for now the following ad-hoc
procedure was observed to yield relatively good results.

Indeed, the slots, turns, and parallel paths of the machine
were first ordered as seen in Fig. 10. The correspondence
between numbering the paths and the phases of the machine
has been described in III-A. Then, the strand configurations
of each turn were randomized in a successive fashion, each
based on the preceding turn with the permutation matrix

Pk+1 = P (θ)Pk. (34)

The random matrices P (θ) were still generated with the same
algorithm to be able to adjust the level of slot-to-slot variation.
The values of σ were calculated from σpu separately for each
turn with (33). The identity matrix was used as P0.

..(1) 1st positive coil side of turn 1, path 1.

(2) 1st positive coil side of turn 1, path 2

.

(6) 1st positive coil side of turn 1, path 6

.

(7) 1st negative coil side of turn 1, path 1

.

(13) 1st positive coil side of turn 2, path 1

.

(216) 6th negative coil side of turn 3, path 6

Fig. 10. Ordering of the turns of the machine used with the dependent packing
algorithm.

Again, kcc,tot as a function of frequency can be seen in Fig.
11, and the estimated pdfs (at σpu = 0.037) in Fig. 12. As can
be seen, the simulated distribution is now much wider and
thus closer to the measured one. Also, the total circulating
current factor has a variance close to the per-phase factors,
again in agreement with the measured results. FE results were
again very similar to the circuit model ones, and are thus not
shown.

One very important observation is that significantly smaller
values of σpu were now required to obtain the best agreement
with measurements. In other words, very small changes in the
strand positions resulted in large variation in the circulating
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Fig. 11. Total circulating current factors calculated with the refined circuit
model as a function of frequency. Slot permutations no longer assumed
independent.
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Fig. 12. Probability density functions of the circulating current factors at 450
Hz. The simulated results have been calculated by the analytical model with
dependent permutations and σpu = 0.037. Factors for each phase (a,b,c) and
the entire machine are shown.

current losses. Indeed, most strands either did not change their
relative positions at all from one slot to the next one, or only
swapped places with an adjacent strand.

As before, increasing σpu resulted in lower losses on av-
erage. This time however, the variance of kcc,tot peaked with
σpu = 0.037, and decreased towards both ends of the simulated
range. At the upper end of the range, the results approached
the previously obtained ones. This is understandable, since
uniformly permuting (σ >> 1) the strands would break all
dependence between successive turns.

D. Predicted Full-Load Behaviour

Although the results obtained thus far are preliminary, some
predictive calculations about the statistical properties at full-
load could still be interesting. As no full-load measurement
data was available, the following results have not been verified,
and should be regarded with certain scepticism.

The simulations were repeated for a loaded machine sup-
plied with a balanced sinusoidal 450 Hz voltage source. The
slip was varied from no-load to standstill. To avoid the compu-
tational cost of modelling a solid rotor, only the circuit model

c⃝ 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting, republishing this material for advertising or promotional purposes, creating new collective works for resale or
redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.



IEEE TRANSACTIONS ON MAGNETICS 9

was utilized. The magnetizing and rotor branch impedances
were calculated with FEM at the rated slip sN = 0.007. The
rotor parameters were then scaled for different slips as shown
in Fig. 13, with the method described in [39]. The strands were
randomized in the previously described dependent fashion with
a fixed σpu = 0.037. A total of 10 000 machine samples were
simulated, both at ambient and rated temperatures.
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Fig. 13. Slip dependency of the rotor parameters, referred to the stator.

The circulating current factor as a function of slip can be
seen in Fig. 14. Values corresponding to the simulated no-
rotor test of Fig. 11 at 450 Hz have also been included for
comparison. As expected, the results for a cold machine are
close to the ones obtained without the rotor, and practically
independent of the slip. At the rated temperature the values
are somewhat lower, due to the increased resistances [38].
Nevertheless, the results suggest that the stator resistive losses
at any load can be predicted from the locked-rotor test.
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Fig. 14. The predicted circulating current factor as a function of slip at
450 Hz. Strands have been randomized in the dependent fashion with σpu =
0.0037.

Fig. 15 shows the mean torque curve and standard devi-
ations obtained from the MC analysis at rated temperature.
The single-valued curve obtained from the conventional T
equivalent circuit is also shown for comparison. It can be seen
that randomizing the winding has little effect on the torque.
This was expected, since the main flux was assumed to link
all strands in one slot equally. Nevertheless, there seems to be

a minor decrease in the maximum torque, probably due to the
increase in the stator impedance. By contrast, the variation in
the torque is extremely small – approximately 0.05 % at the
rated slip and peaking at 0.23 % with s = 5sN.
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Fig. 15. Torque curves as a function of slip at 450 Hz, obtained from the T
equivalent circuit and the proposed circuit model.

Yet another result of interest is the distribution of losses
within one slot. Thus, individual strand losses were calculated
at the rated slip and temperature for each MC sample. As an
example, three randomly selected loss distributions in slot 1
are illustrated in Fig. 16. Relative values are shown, compared
to the ideal situation of equal total current in each strand. It
seems that any hot-spots are relatively few in number, but can
have significantly higher losses in comparison.

P/P
DC

1 1.5 2 2.5 3 3.5

Fig. 16. Samples of the strand losses of slot 1 with randomized strand
configurations.

Similarly, Fig. 17 shows the mean values of the individual
strand losses in slot 1. As could be expected, the highest mean
losses are concentrated near the inter-turn borders, especially
on the slot-opening side of each turn [24]. However, in reality
some mixing of strands could be expected on the boundary,
decreasing the average losses in these areas. Furthermore,
brief analysis revealed that the strand losses are practically
uncorrelated with those of the neighbouring strands, with
the Pearson’s correlation coefficients r on the order of 0.1.
Therefore, the worst hotspots should be physically separated,
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although some further analysis is obviously required. Addi-
tionally, the multiphysics coupling between the uneven local
heating and the strand resistances should be analysed.

P/P
DC

1.2 1.4 1.6 1.8 2 2.2 2.4

Fig. 17. Mean values of the strand losses of slot 1.

VII. CONCLUSION

Two efficient methods were proposed for analysis of circu-
lating current losses in a stranded winding. Firstly, a circuit-
based model was presented, based on the self and mutual
inductances of the strands inside each slot. Also the rotor-
side equivalent circuit was included, and practical imple-
mentation issues were discussed. Secondly, an efficient finite
element formulation was proposed. The recently proposed
non-conforming mesh approach [27] was improved by neglect-
ing the skin and proximity effects, yielding very reasonable
computation times.

Furthermore, an approach was proposed to model the
random winding process. By randomly permuting the order
of strands within a set of pre-defined positions, instead of
fully modelling the packing process, the same pre-calculated
inductances or FE mesh could be used for all simulations.
This simplification should yield significant computation time
savings and simplify the theoretical considerations included.
Based on brief mathematical analysis, it should not present
any large errors in the strand inductances. Finally, an ad-hoc
algorithm was proposed to approximate normally distributed
variations in strand positions.

The proposed methods were then compared to no-rotor test
data of a large number of high-speed induction machines.
Monte Carlo analysis was performed to model the statisti-
cal behaviour, with the slot packings assumed statistically
independent. A good agreement of mean circulating current
losses was easily obtained between both the circuit and
FE methods, and the measurements. However, both methods
predicted significantly smaller variances of losses compared
to the measured data. Much better results were obtained by
discarding the independence assumption, but more work would
still be needed to obtain a perfect agreement.

Based on simulations, the analysed induction machines
should exhibit proportionally slightly smaller circulating cur-
rent losses at full load, compared to the no-rotor test set-
up. However, the ratio between AC and DC resistive losses
should be practically independent of the slip. Furthermore,
the effect on machine torque should be minimal. Although
winding hotspots could be expected, most of them should be
isolated, with the neighbouring strands having significantly
lower losses.

However, some further work should still be performed. The
proposed circuit model should be more thoroughly validated

at nominal machine operation, either against measurements or
numerically. For the latter approach, some suitable model order
reduction technique should probably be utilized to decrease the
computational cost of modelling a solid rotor. Furthermore, the
stochastic model of the strand packing process, i.e. the distri-
bution of the random permutation matrices, could probably
still be improved. Finally, multiphysic analysis of the thermal
behaviour of the strands could be interesting.
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APPENDIX A
DERIVATION OF THE FLUX DENSITY COEFFICIENT

An expression for the coefficient kB can be easily derived
from the material presented in this paper, assuming that the
magnetizing inductance Lm is known. Setting the rotor current
to zero, the voltage vector over the magnetizing branch will
be

u = jωLmis. (35)

On the other hand, the same voltage can also be obtained by
summing the voltages induced in all the strands in the machine,
i.e. by combining (7), (15) and (16) to obtain

u = PαβLU

Qs∑
k=1

CT
kjωrδleffexp

(
j
2π

Qs
k

)
· 1Nstrands×1 · kBis.

(36)
Here, the matrix

LU =
1

2Np
I3×3 ⊗ 11×2Np (37)

is used to calculate the phase voltages from the average
voltage induced in the current loops. Strictly speaking, given
the assumptions in this paper, the induced voltage should be
equal for all parallel paths, but the averaging operation (37)
is adopted for numerical stability.

Combining (35) and (36) and yields the desired expression

kB =
jωLm

jωrδleffPαβLU

(
Qs∑
k=1

CT
kexp

(
j 2πQs

k
))

· 1Nstrands×1

.

(38)

APPENDIX B
MODELLING RANDOM SLOT PACKING

One of the most important assumptions of this paper is that
the random packing of strands inside slots can be sufficiently
modelled by randomly assigning the strands to pre-defined
positions, rather than modelling the entire packing process. A
brief justification for this assumption is presented here.

Let there be N strands inside one slot, and x0
1, . . . ,x

0
N

be the strand center points in the pre-defined packing. Now,
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consider an actual packing with the strands centered at
x1, . . . ,xN . Re-number x0 so that the squared total distance

N∑
k=1

∥x0
k − xk∥

2
(39)

is minimized – often equivalent to assigning index k to
the point x0 closest to xk. Provided that x0 are reasonably
distributed in the slot, and that the strand diameter is much
smaller than the slot dimensions, ∥x0

k −xk∥ will be small for
all k.

On the other hand, the self and mutual inductances of the
strands in the actual packing can be written as

Lij = L0
ij +∆ij

(
xi − x0

i ,xj − x0
j

)
(40)

where L0
ij are the inductances of strands at the pre-defined

positions. ∆ij is an error function, with ∆ij = 0 for all
xi,xj = x0

i ,x
0
j . Since the inductances – and by extension

∆ – are continuous continuously dependent on the position
within slot, Lij ≈ L0

ij since ∥x0
k − xk∥ are small.

Now, when comparing a large number of different packings,
each Lij may exhibit considerable variation due to the strands
being in different positions in the slot. However, based on
the above reasoning, in each case all Lij can be closely
approximated by the corresponding L0

ij . In other words, the
set of strand inductances with any strand packing can be
approximated by the set of pre-calculated inductances L0

ij , by
a suitable permutation of the indices ij.
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