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Efficient Finite Element Computation of Circulating Currents in
Thin Parallel Strands

Antti Lehikoinen and Antero Arkkio

Aalto University, Dept. of Electrical Engineering and Automation, P.O. Box 13000, FI-00076 Espoo, Finland

Electrical machines often utilize stranded parallel conductors to reduce the skin-effect losses. This practice can lead to uneven
total current distribution among the strands, increasing the resistive losses. Direct finite element analysis of circulating current
problems can be computationally costly due to the large number of nodal unknowns in the finite element mesh in the conductor
domains. Methods to reduce the computational burden exist for special problems only. This paper proposes two efficient finite
element formulations to solve circulating current problems with arbitrary winding configurations. According to simulations, the
proposed methods yield reasonably accurate results significantly faster than the traditional brute-force approach.

Index Terms—Approximation methods, eddy currents, finite element analysis, proximity effects.

I. INTRODUCTION

IN random-wound electrical machines, windings are often
divided into thin parallel strands to reduce the skin-effect

losses. However, stranding conductors like this can lead to
currents circulating between the parallel strands, occasionally
almost doubling the resistive stator losses. Surprisingly little
attention has been paid to finite element (FE) analysis of
these circulating currents, mainly due to the long computation
times resulting from finely meshing a large number of thin
strands [1], [2]. Indeed, approaches have been mostly limited
to analytical methods [3]–[5]. Where FE analysis has been
performed, it has focused on machines with large form-wound
conductors [6]–[8].

To reduce the computation times, stranded conductors have
traditionally been modelled either as a large solid conductor
with a uniform equivalent current density [9], or homogenized
in the frequency- or time-domain [10]–[14]. Obviously, the
first approach fails to model the circulating currents at all.
Similarly, practically all work on homogenization has focused
purely on the skin- and proximity effects, assuming all strands
to be series-connected or restricting the analysis to Litz wires
[15], [16].

This paper presents two alternative FE formulations to
calculate the circulating currents in stranded windings of
arbitrary configuration. The methods place no demands on
the structure or refinement-level of the mesh used. The speed
and accuracy of the proposed methods are evaluated on two
test problems. According to the simulations, the methods
yield reasonably accurate solutions significantly faster than the
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brute-force approach.

II. METHODS

A 2D eddy-current problem with Ns strands and Ni current
loops can be described by the vector potential formulation

−∇ · (ν∇A) +
∂

∂t
σA−

Ns∑
l=1

1

le
σul = 0 (1)

ul = Rl

Ni∑
k=1

η (k, l) ik +Rl

∫
Dl

∂

∂t
σA dDl, l = 1 . . . Ns (2)

Uk = Rewik +

Ns∑
l=1

η (k, l)ul, k = 1 . . . Ni , (3)

where ul are the voltages over the strands (interpreted as
functions of position in the first equation), η (k, l) indicates
if the strand l belongs to the current path k, and Dl is the
domain of the strand l [6]. Uk is the supply voltage of the
path k. Rl and Rew are the strand and end-winding resistances,
respectively, whereas ν and σ denote the material reluctivity
and conductivity. Finally, le is the equivalent problem domain
length in the z-direction.

Using the Galerkin approach yields the following block
matrix equation SAA +M ∂

∂t SAu 0
MuA ∂

∂t −I Rui

0 Riu Rii

 A
u
i

 =

 0
0
U

 , (4)

with the following block entries

[M]r,c =

∫
Dl

σφrφc dDl,
[
SAu

]
r,l

=

∫
Dl

− 1

le
σφr dDl

[
MuA

]
l,c

= Rl

∫
Dl

σφc dDl (5)

directly related to the strand l. Shape functions are denoted
by φ. The remaining entries are defined in [6].
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In the brute-force approach the strands are finely meshed to
obtain accurate skin- and proximity-effect losses. However,
it is the authors’ hypothesis that this is not necessary for
obtaining reasonably accurate total currents, provided that
the strands are thin compared to the skin-depth. Thus, two
alternative approaches are proposed, neither of them placing
any demands on the fineness or structure of the mesh used.

1) In the point-strand method, the strands are assumed thin
enough for the vector potential to be approximately constant
over their area. Assuming that the strand l is centered on xl,
(5) can be reduced to

[M]r,c ≈ σφr(xl)φc(xl)|Dl| =
le
Rl

φr(xl)φc(xl)[
SAu

]
r,l

≈ − 1

Rl
φr(xl) (6)[

MuA
]
l,c

≈ leφc(xl).

These results follow immediately from the expression for the
strand resistance

Rl =
le

σ|Dl|
, (7)

where |Dl| is the cross-sectional area of strand l.
2) In the polygon-strand method, Dl are approximated

with polygons but are otherwise unrestricted in size or shape.
To evaluate the integrals in (5), the intersecting polygons
of Dl and the mesh elements are first determined. Then, a
background mesh is generated for these polygons. This mesh is
only used for the integration, i.e. it does not result in additional
nodal unknowns and is thus ignored in the solution step.

An example of the background mesh can be seen in Fig. 1.
The strand is represented with the thick red polygon, while
the FE mesh is drawn in black. The thick blue polygon
illustrates the overlapping domain of the strand and a single
FE mesh element. Finally, elements of the background mesh
are presented with the thinner blue lines.

Fig. 1. Illustration of an auxiliary meshing.

With the background mesh, (5) can be evaluated with a
slight modification to the well-known Gaussian quadrature
approach based on reference elements. Let e be an element
overlapping with the strand domain Dl, and k an background
element belonging to e. Also, let Fe and F bg

e,k be mappings
from the reference element to the global element e and to the
background element k, respectively. By slightly abusing this

notation, the entries of e.g. M can be obtained with

[M]r,c =

∫
Dl

σφrφc dDl = (8)

∑
e∈Dl

∑
k∈e

∑
i

wiφ̂rφ̂c

(
F−1
e F bg

e,k (x̂i)
)
| detJ

(
F bg
e,k (x̂i)

)
|.

Here, x̂i and wi are the integration points and weights for the
reference element, whereas φ̂ are the reference element shape
functions and J is the Jacobian. The composition F−1

e F bg
e,k is

used since φ̂ are defined based on e, whereas the integration is
performed over k. SAu and MuA can be obtained in a similar
fashion.

Both methods can be extended to 3D problems relatively
easily. In the point-strand method, the single point evaluation
has to be replaced with a line integral. In the polygon-
strand method, the intersection of polygons is replaced by
an intersection of volumes, but the method remains otherwise
effectively unchanged.

III. SIMULATION RESULTS

The accuracy of the proposed methods was evaluated on
two simple test problems. First-order elements were used, and
the materials were assumed magnetically linear.

A. Inductor

Time-harmonic analysis was performed on an E-core in-
ductor with 80 strands (1.7 mm in diameter) per slot and
4 parallel paths. Figs. 2a and 2b show the initial unrefined
meshes used with the brute-force method and the proposed
methods, with 1792 and 151 nodes respectively. 16-gons were
used in the polygon-strand method. The winding configuration
was intentionally naive to obtain large circulating currents.
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Fig. 2. Initial unrefined meshes for the (a) brute-force and (b) proposed
methods. Strands are highlighted with red.

To illustrate the potential accuracy of the proposed methods,
Fig. 3 shows the behaviour of the four total current phasors
on the complex plane, as the supply frequency was increased
from 10 Hz (solid dot) to 1 kHz (empty dot). The solid lines
were calculated with the brute-force method, while the dotted
and dashed lines represent the point-strand and polygon-strand
method, respectively. As can be seen, a good agreement
between the methods was obtained.
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Fig. 3. Evolution of current phasors on the complex plane as frequency is
increased from 10 Hz (solid dot) to 1 kHz (empty dot). Solid lines represent
the brute-force method, and the dashed/dotted lines the proposed methods.

Furthermore, Fig. 4 illustrates the computation times and
mean current errors of all three methods, obtained by re-
peating the simulations with different levels of uniform (non-
adaptive) mesh refinement. Currents obtained with the brute-
force method on a very dense mesh were used as reference
values. Currents by the proposed methods fell within 20
% of the reference values at approximately 1/4000 of the
computation cost, and within 5 % at 1/1000 of the cost. On
dense meshes, the polygon-strand and brute-force method were
roughly on par, whereas the point-strand method started to
diverge. The diverging behaviour was probably caused by the
fact that the strands were no longer small compared to the
element size, so the approximations (6) became inaccurate.
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Fig. 4. Mean errors and computation times with different levels of non-
adaptive mesh refinement.

B. Permanent Magnet Machine

To further evaluate the accuracy of the proposed methods,
time-stepping analysis was performed on two slightly different
four-pole permanent magnet (PM) machines rotating at 15 000
rpm, one with open and the other with semi-closed slots. Five
electrical periods after synchronization at 0 s were simulated
with 400 steps per period.

The main dimensions of the machines can be found in Table
I. The machine with semi-closed slots has a slightly larger
stator radius, but otherwise the dimensions are equal. The
machines have a single-layer winding with three effective turns
per slot, and 16 strands in parallel in each phase. A quarter
of the machine cross-section is presented in Fig. 5. Phases
and turns are emphasized with different colors and shadings,
respectively.

TABLE I
MAIN DIMENSIONS OF THE PM MACHINE.

Winding connection Delta
Number of turns 3

Number of parallel strands 16
Diameter of strands (mm) 1.25

Number of stator slots 36
Outer radius of stator (mm) 105 (108)
Inner radius of stator (mm) 70

Core length (mm) 200
PM height (mm) 8

Air-gap length (mm) 3
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Fig. 5. A quarter of the machine cross-section.

The open-slotted machine was analysed first. Figs. 6a and
6b show the mesh over one slot pitch used with the brute-
force and proposed methods, respectively. Fig. 7 shows the
circulating current losses as a function of time [1]. The blue
line denotes the results obtained with the brute-force method,
while the two proposed methods are displayed with red and
black. It can be seen that the two proposed methods gave
almost equal results, both approximately 20 % larger than the
brute-force method.

To improve accuracy, the mesh used with the proposed
methods was refined inside the slots and the simulations
were repeated. The refined mesh is illustrated in Fig. 6c. A
comparison of the results can be found in Fig. 8, where the
uppermost subfigure shows the initial results, while the results
after the refinement can be seen in the middle one. Obviously,
a significantly improved agreement was obtained between the
brute-force and the proposed methods.

Furthermore, Table II shows the number of nodes in the
mesh and the computation times. Even with the refined mesh,
the proposed methods were more than seven times faster
than the brute-force approach, while reaching a comparable
accuracy.

The simulations were repeated for the machine with semi-
closed stator slots. The slot mesh for the proposed methods
is illustrated in Fig. 6d, while the simulation results can
be found from the lowest subfigure of Fig. 8. This time,
all three methods gave almost identical results. Computation
times remained virtually the same as the ones in Table II.
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TABLE II
SIMULATION DETAILS (OPEN-SLOTTED MACHINE).

No. of nodes Computation time (s)
Brute-force 5288 1052.7

Point-strand (unrefined) 442 129.5
Polygon-strand (unrefined) 124.7

Point-strand (refined) 938 153.2
Polygon-strand (refined) 158.3

(a) (b) (c) (d)

Fig. 6. Illustrations of different slot-region meshes: (a) Brute-force method;
open slots. (b) Unrefined mesh for the proposed methods; open slots. (c)
Refined mesh for the proposed methods; open slots. (d) Proposed methods;
semi-closed slots.
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Fig. 7. Circulating current losses as function of time, obtained with the three
methods.
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Fig. 8. Comparison of circulating current losses during the last two periods
in different conditions.

IV. CONCLUSION

Two methods were presented for finite element computa-
tion of circulating currents in arbitrary windings. Based on
simulations, both methods yield reasonably accurate results at
a fractional computational cost compared to the brute-force

approach. More importantly, arbitrarily coarse meshes can be
used. This is a significant improvement over the brute-force
method, where meshing requirements set a high lower bound
for the number of nodal unknowns.
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[1] J. Lähteenmäki, “Design and voltage supply of high-speed induction
machines,” Ph.D. dissertation, Helsinki University of Technology,
Espoo, Nov 2002. [Online]. Available: http://lib.tkk.fi/Diss/2002/
isbn951226224X/

[2] M. Islam, “Finite-element analysis of eddy currents in the form-
wound multi-conductor windings of electrical machines,” Ph.D.
dissertation, Aalto University, Espoo, Jan 2010. [Online]. Available:
http://lib.tkk.fi/Diss/2010/isbn9789522482556/

[3] J. Fang, X. Liu, B. Han, and K. Wang, “Analysis of circulating current
loss for high speed permanent magnet motor,” IEEE Trans. Magn., 2014,
to be published.

[4] X. Bian and Y. Liang, “Circuit network model of stator transposition
bar in large generators and calculation of circulating current,” Industrial
Electronics, IEEE Transactions on, vol. 62, no. 3, pp. 1392–1399, March
2015.

[5] J. Yoshida, N. Hino, K. Takahashi, A. Nakahara, A. Komura, and K. Hat-
tori, “Calculation method of circulating current in parallel armature
windings in consideration of magnetic circuit,” in 2013 IEEE Power
and Energy Society General Meeting (PES), July 2013, pp. 1–5.

[6] M. Islam, J. Pippuri, J. Perho, and A. Arkkio, “Time-harmonic finite-
element analysis of eddy currents in the form-wound stator winding of
a cage induction motor,” IET Electric Power Applications, vol. 1, no. 5,
pp. 839–846, Sept 2007.

[7] X. Dexin, Y. Xiuke, Y. Yingying, B. Baodong, and N. Takahashi,
“Circulating current computation and transposition design for large
current winding of transformer with multi-section strategy and hybrid
optimal method,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1014–1017,
Jul 2000.

[8] B. Baodong, X. Dexin, C. Jiefan, and O. Mohammed, “Optimal trans-
position design of transformer windings by genetic algorithms,” IEEE
Trans. Magn., vol. 31, no. 6, pp. 3572–3574, Nov 1995.

[9] P. Lombard and G. Meunier, “A general purpose method for electric
and magnetic combined problems for 2D, axisymmetric and transient
systems,” IEEE Trans. Magn., vol. 29, no. 2, pp. 1737–1740, Mar 1993.

[10] Z. De Greve, O. Deblecker, J. Lobry, and J.-P. Keradec, “High-frequency
multi-winding magnetic components: From numerical simulation to
equivalent circuits with frequency-independent RL parameters,” IEEE
Trans. Magn., vol. 50, no. 2, pp. 141–144, Feb 2014.

[11] J. Gyselinck, R. Sabariego, and P. Dular, “Time-domain homogenization
of windings in 2-D finite element models,” IEEE Trans. Magn., vol. 43,
no. 4, pp. 1297–1300, April 2007.

[12] R. Sabariego, P. Dular, and J. Gyselinck, “Time-domain homogenization
of windings in 3-D finite element models,” IEEE Trans. Magn., vol. 44,
no. 6, pp. 1302–1305, June 2008.

[13] J. Gyselinck, P. Dular, N. Sadowski, P. Kuo-Peng, and R. Sabariego,
“Homogenization of form-wound windings in frequency and time
domain finite-element modeling of electrical machines,” IEEE Trans.
Magn., vol. 46, no. 8, pp. 2852–2855, Aug 2010.

[14] J. Gyselinck and P. Dular, “Frequency-domain homogenization of bun-
dles of wires in 2-D magnetodynamic FE calculations,” IEEE Trans.
Magn., vol. 41, no. 5, pp. 1416–1419, May 2005.

[15] J. Sibue, J. Ferrieux, G. Meunier, and R. Periot, “Modeling of losses and
current density distribution in conductors of a large air-gap transformer
using homogenization and 3-D FEM,” IEEE Trans. Magn., vol. 48, no. 2,
pp. 763–766, Feb 2012.

[16] J.-R. Sibue, G. Meunier, J.-P. Ferrieux, J. Roudet, and R. Periot,
“Modeling and computation of losses in conductors and magnetic cores
of a large air gap transformer dedicated to contactless energy transfer,”
IEEE Trans. Magn., vol. 49, no. 1, pp. 586–590, Jan 2013.

c⃝ 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting republishing this material for advertising or promotional purposes, creating new collective works for resale or
redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

http://lib.tkk.fi/Diss/2002/isbn951226224X/
http://lib.tkk.fi/Diss/2002/isbn951226224X/
http://lib.tkk.fi/Diss/2010/isbn9789522482556/

