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Cube-on-cube epitaxy of perovskite sub-cell of Pr-doped and undoped NaNbO3 is obtained in 130-

nm-thick films on top of (La0.18Sr0.82)(Al0.59Ta0.41)O3 (001) substrates. Experimental studies show

that the edge of optical absorption red-shifts and some interband transitions change in the films

compared to crystals. Bright red luminescence is achieved at room-temperature under ultraviolet

excitation in the Pr-doped film. An interband mechanism of luminescence excitation is detected in

the film, which is in contrast to the intervalence charge transfer mechanism in the crystal. The

results are discussed in terms of epitaxially induced changes of crystal symmetry and ferroelectric

polarization in the films. It is suggested that the band structure and interband transitions in NaNbO3

and the transition probabilities in the Pr ions can be significantly modified by these changes.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934850]

Perovskite-structure oxide ferroelectric crystals possess

high transparency and large index of refraction in the visible

optical range, excellent nonlinear optical behavior, and high

dielectric susceptibility. These optical properties enable

numerous photonic and optoelectronic applications of ferro-

electrics. Moreover, doping of ferroelectrics with lanthanide

ions leads to room-temperature luminescence in the visible

range. The luminescence can be stimulated optically, electri-

cally, or mechanically, making doped ferroelectrics attrac-

tive for applications in light-emitting diodes, displays, and

complex sensing-actuating systems. Advanced miniature

integrated applications require high-quality and small-sized

ferroelectrics, which can be achieved by the use of single-

crystal-type epitaxial thin films instead of bulk crystals or

ceramics. However, due to the film-substrate mismatch, het-

eroepitaxial films can acquire the structural phases and func-

tional properties that differ significantly from those in bulk

crystals.1–5 Thus, knowledge on how epitaxy influences

the optical behavior of ferroelectrics is vital for many

applications.

In this letter, we report on the combined effects of Pr-

doping and epitaxy on room-temperature optical constants

and luminescence in NaNbO3 (NNO) films. NNO is an end

member of advanced lead-free ferroelectric solid solutions

(K,Na)(Nb,Ta)O3 with the excellent piezoelectric properties

and a unique diffractionless light propagation.6–8 Moreover,

the red-color photoluminescence (PL) can be excited by

ultraviolet radiation in the Pr-doped NNO crystals and

(K,Na)NbO3 ceramics.9–11 Bulk NNO possesses an ortho-

rhombic crystal structure and exhibits an antiferroelectric

behavior at room temperature.12,13 When epitaxial NNO

films are grown on top of cubic substrates, a monoclinic-type

ferroelectric r-phase is expected to form in the films.2 Here,

such epitaxial Pr-doped and undoped NNO films are pre-

pared. Bright red PL is achieved at room temperature in the

Pr-doped films with a thickness of 130 nm. We show that,

when compared to bulk crystals, the interband optical transi-

tions and PL excitation spectra change in epitaxial films. We

ascribe the observed behavior to a change of lattice symme-

try and the presence of ferroelectric polarization in the epi-

taxial NNO films.

Pr-doped and undoped NNO films with a thickness of

approximately 130 nm were grown onto (La0.18Sr0.82)(Al0.59

Ta0.41)O3 (LSAT) (001) single-crystal substrates (MTI

Corp.), using the pulsed laser ablation from ceramic Pr-

doped NNO and undoped NNO targets. The nominal content

of Pr in the doped target was 1 mol. %. The deposition was

performed at an elevated temperature of 973 K and an oxy-

gen pressure of 20 Pa, while the pressure was adjusted to

800 Pa during the post-deposition cooling. The room-

temperature crystal structure of the NNO films was studied

by x-ray diffraction (XRD) and by high-resolution transmis-

sion electron microscopy (HRTEM). The XRD measure-

ments were performed on a Bruker D8 diffractometer using

the Cu Ka radiation (Figure 1). HRTEM imaging and

selected area electron diffraction (SAED) analysis were car-

ried out on a JEOL 2200FS TEM with Cs correction, oper-

ated at 200 kV (Figure 2).

The structural analyses evidence a cube-on-cube-type

epitaxy of the NNO perovskite cell with the NNO(00l)
planes parallel to the LSAT(00l) planes, and the [100]NNO

directions along the [100]LSAT directions. The lattice pa-

rameters of the films are estimated from the positions of

a)Author to whom correspondence should be addressed. Electronic mail:

marinat@ee.oulu.fi

0003-6951/2015/107(17)/172906/4/$30.00 VC 2015 AIP Publishing LLC107, 172906-1

APPLIED PHYSICS LETTERS 107, 172906 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.233.142.77 On: Thu, 29 Oct 2015 10:36:41

http://dx.doi.org/10.1063/1.4934850
http://dx.doi.org/10.1063/1.4934850
http://dx.doi.org/10.1063/1.4934850
mailto:marinat@ee.oulu.fi
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4934850&domain=pdf&date_stamp=2015-10-28


Bragg diffractions using EVA software and taking the sub-

strate as a reference. The out-of-plane lattice parameter c
(normal to substrate surface) is �3.901 Å in the undoped

NNO film and �3.914 Å in the Pr-doped NNO film. The the-

oretical NNO-LSAT lattice misfit is approximately 1% at the

temperature of film growth. The observed columnar micro-

structure suggests a pronounced relaxation of the substrate-

induced biaxial in-plane compressive strain in NNO during

the high-temperature growth (Figure 2(a)). Since the coeffi-

cient of thermal expansion in pseudo-cubic perovskite sub-

cell of NNO is considerably larger than that of LSAT, a

tensile in-plane strain can additionally build up in the NNO

film during the post-deposition cooling. The room-

temperature lattice parameter c in the NNO film is smaller

than the averaged parameter of the NNO bulk sub-cell, abulk

¼ (Vbulk)
1/3� 3.905 Å, where Vbulk is the sub-cell volume.14

Such an out-of-plane compression in the NNO film agrees

with the discussed thermal strain. Compared with the

undoped NNO film, the Pr-doped film has larger unit-cell

volume. Since the Naþ and Pr3þ ions have very similar ionic

radii, it is accepted that Pr3þ substitutes Naþ in NNO.9 An

excess charge created at Na-site upon Pr-doping can lead to

the increased unit-cell volume in the Pr-doped film. The

revealed cube-on-cube-type epitaxy of NNO on LSAT sug-

gests that the NNO films exhibit the theoretically predicted

r-state, where the ferroelectric polarization has non-zero

components along all three crystal directions of the perov-

skite NNO sub-cell. Although the corresponding lattice dis-

tortions are difficult to detect here, the ferroelectric behavior

has been experimentally confirmed in similar films.15–18 In

particular, ferroelectric transition has been evidenced in epi-

taxial NNO films on LSAT.18

The optical constants in the NNO films were explored

by variable-angle spectroscopic ellipsometry (VASE) using

a VUV J. A. Woollam ellipsometer. The bare LSAT sub-

strates and bulk undoped polydomain NNO crystal were

studied as a reference. The ellipsometric angles D and w
were measured at room temperature in vacuum (10–8 Pa)

over a spectral range from 0.74 to 9.0 eV with a step of

0.02 eV and at angles of incidence 65�, 70�, and 75�. The

data analysis was performed using the WVASE32 software

package as described earlier.18–20 The spectra of the absorp-

tion coefficient a were extracted from the VASE data

(Figure 3). As seen from Figure 3(a), the edge of absorption

is shifted to lower energies in the films compared to the crys-

tal. In order to quantify this red shift, the photon energy Ea

for which the absorption coefficient equals a¼ 104 cm�1 is

estimated with an accuracy of 60.01 eV. The energy Ea is

approximately 3.56, 3.75, and 3.96 eV in the undoped NNO

film, Pr-doped NNO film, and undoped NNO crystal, respec-

tively. Both the films and crystal exhibit broad absorption

bands with the maxima a� 106 cm�1 in the spectral range

between 4 and 8 eV. However, the shapes of the spectra in

this range are clearly different for the epitaxial films and

crystal (Figure 3(b)), suggesting differences between inter-

band optical transitions therein.

FIG. 1. H-2H x-ray diffraction patterns in the undoped and Pr-doped

(denoted by Pr in the plots) NNO films on LSAT(001) substrates. The posi-

tions of the (00l) diffractions are marked. High-intensity narrow peaks are

substrate diffractions. Inset shows NNO(002) diffractions.

FIG. 2. (a) Cross-sectional TEM image

and SAED pattern (inset) of the NNO/

LSAT sample along the [010]p,s zone

axis. The subscripts p and s denote the

pseudocubic notation of NNO and

cubic notation of LSAT, respectively.

(b) HRTEM image from a specific col-

umn including interface.

FIG. 3. The absorption coefficient a as a function of photon energy E in the

undoped and Pr-doped (marked by Pr) epitaxial NNO films, and undoped

reference NNO crystal. The logarithmic scale in (a) and the relative one in

(b) are used for convenience of comparison.
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The energies of the interband transitions were deter-

mined by analyzing the second derivatives of the dielectric

function (e¼ e1þ ie2) and assuming two-dimensional critical

points.21,22 The derivative spectra were obtained by numeri-

cal differentiation of the smoothed dielectric functions using

Origin software.23 The derivatives d2e1/dE2 and d2e2/dE2

(Figure 4) reveal a main spectral feature around 4.5 eV in the

films and crystal. This feature comprises two lines: a stronger

one at �(4.4–4.5) eV and a weaker one at �(4.7–4.9) eV. An

obvious change in the films compared to the crystal is that

the line at �4.9 eV is shifted to lower energies and that its

amplitude is suppressed. Moreover, additional features at

�6 eV are seen in the films.

The observed changes of the absorption edge and inter-

band transitions in the epitaxial NNO films compared to the

NNO crystal imply that the electronic band structure of

NNO can be significantly affected by epitaxial growth and,

less, by Pr-doping. The epitaxially induced monoclinic-type

crystal structure, lattice strain, and ferroelectric polariza-

tion—all these factors can influence the band structure in the

NNO films. A more detailed discussion can be found in Ref.

20. Next, we show that the epitaxy-related changes of crystal

structure and ferroelectric polarization also impact the lumi-

nescence behavior of NNO.

The room-temperature PL emission spectra were meas-

ured using a grating monochromator (SPM 2, Carl Zeiss)

and a cooled RCA 31034 photomultiplier (GaAs photoca-

thode) operating in the photon-counting mode. The emission

spectra were corrected for the spectral dependence of the ap-

paratus response. A high-pressure Xe lamp and a double-

grating Jobin Yvon DH 10UV monochromator were used for

the excitation of PL. The Pr-doped NNO film is found to ex-

hibit the bright red-colored PL, which can be readily seen by

the naked eye. This red PL is excited by the ultraviolet radia-

tion. We notice that in order to achieve such a bright lumi-

nescence in doped ferroelectric films, the required film

thickness is usually 3–10 times larger.24–26

The obtained spectrum of PL emission contains a strong

narrow line at approximately 2 eV (wavelength 610 nm) in

the Pr-doped film (Figure 5(a)), closely resembling that at

620 nm in the Pr-doped NNO crystal.9 Thus, also similar to

the crystal, the red PL in the film can be ascribed to radiative

transitions between the 1D2 excited state and the 3H4 ground

state of Pr3þ ions.9 The PL excitation is generally explained

by the presence of an intervalence charge transfer state

(IVCT) inside the bandgap. The existence of this state is

indicated by a broad excitation spectrum centered at �3.6 eV

(344 nm) in the Pr-doped NNO crystal.9 The excitation spec-

trum of the red PL in the Pr-doped NNO film differs signifi-

cantly from that in the crystal (Figure 5(b)). A closer

inspection reveals a main excitation band centered at

�4.4 eV and a weaker one at �3.8 eV in the film. The main

band at �4.4 eV can be directly related to the dominating

interband transition evidenced by the analysis of derivatives

(Figure 4). Although a transition at �3.8 eV is difficult to

clearly resolve in the derivative spectra, its interband nature,

not connected to Pr-doping, is indicated by the large absorp-

tion coefficient at �3.8 eV observed in the undoped and

doped NNO films. The results suggest that the interband

transitions in the NNO host are responsible for the excitation

of the red PL in the Pr-doped NNO film. Interestingly, a

trend from the IVCT excitation towards the band-to-band-

dominated one has been found for PL in Pr-doped

(Ca,Sr)TiO3 ceramics, where it has been ascribed to an

increase of the valence-band energy upon increasing Sr con-

tent.27 As theoretically shown in Ref. 28, change of crystal

symmetry and lattice strain can raise the valence-band

energy in epitaxial ferroelectric films when compared to pro-

totype crystals. Such an epitaxy-induced increase of the

valence-band energy may be responsible for the band-to-

band excitation in the Pr-doped NNO film in contrast to the

IVCT in the crystal. Also it is worth mentioning that the

presence of ferroelectric polarization can lead to an enhanced

PL intensity in the epitaxial film. The lattice distortions con-

nected to the ferroelectric polarization can lower crystal

symmetry around the Pr3þ ions, and consequently, result in

the increased probabilities for radiative transitions in these

ions.26 We anticipate that the PL intensity can be further

enhanced in the Pr-doped NNO films by selecting appropri-

ate substrates, which can enable epitaxial growth of thin

films with a larger ferroelectric polarization.16

In conclusion, the optical constants and photolumines-

cence are experimentally studied in 130-nm-thick epitaxial

FIG. 4. The second derivatives of the dielectric functions, d2e1/dE2 and d2e2/

dE2, as a function of photon energy E in the undoped and Pr-doped (marked

by Pr) epitaxial NNO films, and undoped reference NNO crystal.

FIG. 5. (a) The emission spectra of luminescence excited at 4.37 eV

(284 nm) in the Pr-doped (thick line) and undoped (thin line) NNO films.

Inset shows the details of spectra around 2 eV. (b) The excitation spectrum

of luminescence monitored at 2.03 eV (610 nm) in the Pr-doped NNO film.

Dashed lines show the spectra in the Pr-doped NNO crystal (data taken from

Ref. 9).
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NNO and Pr-doped NNO films. Cube-on-cube epitaxy of the

perovskite NNO cell on top of LSAT (001) is evidenced by

XRD and HRTEM. The films exhibit a red-shift of the

absorption edge and a change of some interband transitions

compared to reference polydomain NNO crystal. The bright

red photoluminescence is observed under ultraviolet excita-

tion in the Pr-doped NNO film. The PL emission in the film

resembles that in the crystal and is ascribed to the 1D2! 3H4

transition of Pr3þ. The PL excitation in the film is found to

be band-to-band-type, in contrast to the intervalence charge

transfer mechanism in the crystal. The results imply that the

band structure and interband transitions in NNO, and transi-

tion probabilities in Pr3þ can be significantly modified by

epitaxially induced changes of crystal symmetry and ferro-

electric polarization. Correspondingly, the epitaxial growth

may be used to tune optical properties of thin films for pho-

tonic and optoelectronic applications.
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