
Nuclear fission reactors are complex 
systems that involve several physical 
phenomena. The safe and sustainable 
operation of present-day reactors requires 
powerful numerical methods. Moreover, 
innovative reactor concepts pose an 
additional burden on the computational 
techniques available nowadays. This thesis 
explores the performance of preexisting and 
novel numerical formalisms for the solution 
of the steady-state neutron transport 
problem by combined Monte Carlo and 
diffusion theory methods with a view to 
improving the accuracy of the solution 
whilst keeping computational costs at 
reasonable levels. A new directional 
diffusion coefficient method exhibited very 
good performance in a sodium-cooled 
reactor environment. A novel neutron 
leakage model at assembly level provided 
valuable information about the space-
energy coupling of the scalar neutron flux. 
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1. Introduction

1.1 Background

The world’s need for energy is expected to keep its growing trend in the fore-

seeable future, mainly driven by developing countries. Large-scale deforesta-

tion and the burning of fossil fuel in order to meet the world’s energy demand

has lead to a systematic increase in the concentrations of greenhouse gases

in the atmosphere [1]. These gases, primarily in the form of carbon dioxide

(CO2), are precipitating climate change.

Nuclear fusion is a promising technology for the production of abundant

and sustainable energy [2]. Its commercial deployment, however, is not en-

visaged in the near future. Based on current operating technology, available

resources and prospects for innovation, nuclear fission reactors can provide

CO2-free electricity in large quantities.

The Gen-IV International Forum [3] has identified Sodium-cooled Fast

Reactor (SFR) designs [4] as auspicious suitors to fulfill the goals of safety,

sustainability, reliability, proliferation resistance and economic competitive-

ness. In order to improve the performance features of previous designs,

taking lessons learned into account, the use of sophisticated computational

tools, or “codes”, is indispensable.

A nuclear fission reactor is a complex system that involves multiple phys-

ical phenomena, which extend over wide ranges in the time, space, and en-

ergy domains. Over the years, numerous dedicated methodologies and suites

of computer codes, such as ERANOS [5] and FAST [6], have been developed to-

wards the study of fast reactor systems.

In the field of neutronics, the so-called stochastic, or Monte Carlo (MC)

techniques are finding increased application. Although full-core calcula-

tions with these techniques are feasible, they can be computationally very
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demanding. A more efficient approach exploits a so-called 2-step calculation

procedure, via the use of a Monte Carlo few-group cross section (XS) constant

generation code at lattice level, and a deterministic neutron diffusion solver

applied to full-core reactor calculations with piecewise homogenized zones.

The works by Fridman et al. [7] and by Nikitin et al. [8] provide examples of

the 2-step approach applied to fast reactor systems.

The computation of neutron diffusion coefficients in general, and of di-

rectional diffusion coefficients in particular, remains an open problem in the

context of Monte Carlo few-group XS generation. In addition to diffusion co-

efficients, the treatment of neutron leakage at assembly level can have an

effect on the quality of the final diffusion results.

Traditionally, most diffusion coefficient models were contrasted by direct

comparison of their results. Nowadays, the availability of more efficient

Monte Carlo codes and modern, large parallel computing facilities allows

the procurement of detailed solutions to the problem of neutron transport in

complete, three-dimensional (3-D) reactor systems. These solutions consti-

tute the best references for the performance appraisal of diffusion coefficient

and neutron leakage models when applied to their ultimate goal: the calcu-

lation of full-core problems by diffusion solvers.

1.2 Objectives and scope

The aim of this thesis is to characterize the performance of and to propose

improvements to a variety of methods adopted by some few-group XS gener-

ation codes, with a view towards full-core calculations by neutron diffusion

theory. In particular, the studies are related to diffusion coefficients and

means of characterizing neutron leakage at assembly level by Monte Carlo

methods. The objective of this thesis is twofold, and can be cast into the form

of two research questions (RQs):

RQ1: How satisfactory is the performance and what are the limitations of

neutron diffusion coefficients generated by preexisting deterministic and

novel Monte-Carlo-specific methods when applied to 3-D, full-core diffu-

sion calculations, with special emphasis on sodium-cooled fast reactors?

RQ2: In the context of Monte Carlo few-group constants generation, what is

the effect of different strategies to cater for neutron leakage at assembly

level on the quality of single assembly pin powers, full-core diffusion

eigenvalues and power distributions?

10
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These research questions are interconnected. As will be exposed in the fol-

lowing chapter, the streaming of neutrons in the diffusion equation is cap-

tured by a term involving the diffusion coefficient. Also, some MC method-

ologies resort to a form of buckling-based leakage for the computation of dif-

fusion coefficients, or even explicitly require a net leakage of neutrons from

the system.

This thesis excludes thermal-hydraulic (T-H) aspects and time-dependent

studies, as well as the isotopic changes that occur as a result of material

irradiation by neutrons and subsequent radioactive decay. This work does

not address the propagation of uncertainties associated with basic nuclear

data nor physics models.

Uncertainties in the diffusion results linked to the statistical nature of

the few-group XS data generated by Monte Carlo techniques are not consid-

ered here. These uncertainties are, however, estimated in the corresponding

publications. The criterion for the selection of the results to be included and

compared in this thesis is that those values are significantly different in a

statistical sense. When necessary, clarifications will be made in cases where

the results are comparable within their statistical uncertainties.

1.3 Research process and dissertation structure

The entirety of this thesis relies on results procured via computer simu-

lations. Most of the calculations and proposed methodologies were imple-

mented and tested in the Monte Carlo code Serpent [9], using basic nuclear

data from the JEFF-3.1 library [10]. Diffusion calculations were conducted

with the in-house code TRIZ [11], developed by the author, and with the code

TRIVAC [12].

This thesis is supported by selected findings from Publications I–V. Each

one of the two research questions from Section 1.2 is addressed by a dedi-

cated chapter, and not by a single article. This arrangement obeys the in-

cremental way in which the research was conducted in practice. In order

to assist the understanding of how RQs are addressed, the article relations

among themselves and with the research questions are illustrated in Fig. 1.1.

The rest of this thesis is structured as follows: Chapter 2 formalizes

the definition of the research problem by providing a more comprehensive

overview of the theoretical and methodological aspects associated with the

research questions. Chapters 3 and 4 are devoted to RQ1 and RQ2, re-

spectively, through a presentation of results and by discussing their rele-

11
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I

II

III

IV

V
RQ1 RQ2

Figure 1.1. The interplay among articles and research questions in this thesis. Publications
are identified by Roman numerals. A full arrow line indicates that a publication
incorporates strong developmental or investigation needs raised by its predeces-
sor. A dashed arrow line indicates a non-essential study or developmental need
from its predecessor.

vance. Finally, Chapter 5 summarizes the main conclusions, limitations, and

prospects for future work.
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2. Theoretical foundation and methods

In this chapter, the main theoretical aspects of the numerical modeling of nu-

clear reactor neutronics are outlined, with special emphasis on the methods

used in Publications I–V. The application of the methods presented herein

to the research problem addressed in this thesis is left to Chapters 3 and

4. Many of the equations found in the literature have undergone changes in

notation so that a unified nomenclature is followed throughout the thesis.

2.1 Neutron transport: the Boltzmann equation

The behavior of neutrons in a given volume V , when neutron-to-neutron

interactions are neglected, is described by the linear Boltzmann transport

equation. In its general form, this time-dependent equation is coupled to the

delayed neutron precursors equations, which describe the temporal evolution

of neutrons born upon decay of a special set of fission products, as well as

to the burnup equations, which govern the nuclide inventories as a result of

neutron irradiation. Moreover, the neutron transport equation is coupled to

the T-H equations.

In this thesis, it is assumed that the nuclide inventory and temperature

distributions in the system are known and fixed. The attention will be fo-

cused on the so-called steady-state neutron transport equation [13], in ab-

sence of external neutron sources:

Ω̂ · ∇ψ
(
�r, Ω̂, E

)
+Σt (�r,E) ψ

(
�r, Ω̂, E

)

=

∫ ∞

0

∫
4π

Σs

(
�r, Ω̂ · Ω̂′, E′ → E

)
ψ
(
�r, Ω̂′, E′

)
dΩ̂′ dE′

+
χ(�r,E)

4π k

∫ ∞

0

∫
4π

νΣf (�r,E
′)ψ

(
�r, Ω̂′, E′

)
dΩ̂′ dE′,

�r ∈ V, Ω̂ ∈ 4π, 0 < E < ∞,

ψ
(
�r, Ω̂, E

)
= 0, �r ∈ ∂V, Ω̂ · n̂ < 0.

(2.1)
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The transport equation can be cast in a number of different ways. Eq. (2.1)

uses the integro-differential form. The quantities involved are:

�r : position vector.

Ω̂ : direction vector.

E : kinetic energy.

ψ : angular neutron flux.

Σt : total macroscopic cross section.

Σs : scattering macroscopic cross section.

νΣf : fission neutron production macroscopic cross section.

χ : fission spectrum.

k : effective multiplication factor, or criticality eigenvalue.

Another quantity of importance is the scalar neutron flux:

φ (�r,E) =

∫
4π

ψ
(
�r, Ω̂, E

)
dΩ̂ . (2.2)

Specialized textbooks [13,14] provide detailed descriptions of the derivation

and physical interpretation of every term in Eq. (2.1). By omitting the tem-

poral dependence, phenomena that take place at two substantially different

time scales are neglected. In the shortest of these scales (of the order of sec-

onds), the effect of delayed neutrons is not taken into account, whereas in

a time scale that spans from hours to years, the isotopic changes that take

place as a result of neutron-induced fission, activation, and subsequent decay

are not considered. The latter changes, in turn, have an effect on the macro-

scopic cross sections of Eq. (2.1). Moreover, the thermal-hydraulic feedback

commonly encountered during reactor transients is not considered, either

A nuclear reactor is a large heterogeneous system comprising a vast num-

ber of components, with typical length scales ranging from less than a mil-

limeter to several tens of centimeters, which at the core level can result in

systems of a few meters in the radial and axial directions. In practical appli-

cations, the energy variable E ranges from 10-11 MeV to around 10 MeV. As

for the XS data, it can also experience several orders of magnitude variations

along its energy domain. Moreover, the presence of resonances implies rapid

variations within narrow energy ranges, as depicted in Fig. 2.1.

During a normal irradiation cycle, hundreds of different nuclides (with

associated cross section sets) are present in a nuclear reactor core. In view of

14
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Figure 2.1. Microscopic reaction cross sections for incident neutrons on 235U at 1173 K.
Based on data from the JEFF-3.1 nuclear data library [10].

this, the direct solution of Eq. (2.1) lies beyond the capabilities of any analyt-

ical method. It is imperative to resort to numerical techniques. These can be

classified into two categories: deterministic and stochastic. In what follows,

these categories will be described. Prior to the introduction of stochastic

methods, the 2-step calculation approach concept will be presented.

2.2 Deterministic techniques

These methods give solutions to discretized forms of Eq. (2.1). Whilst dif-

ferent methods entail particular discretization schemes and approximations

for the treatment of the spatial and angular variables, in all cases the con-

tinuous energy domain is segmented into a number of energy bins or groups.

This is known as the multi-group approximation [15].

Among the deterministic numerical methods developed for the solution

of the neutron transport equation, a few are mentioned here, followed by

computer codes where they are implemented:

• Spherical harmonics (SH or PN ): EVENT [16], MARC [17].

• Collision probabilities (CP): WIMS-D [18], CONDOR [19].

• Discrete ordinates method (SN ): NEWT [20], XSDRNPM [21].

• Method of characteristics (MoC): CASMO-4 [22], DRAGON [23], APOLLO2 [24],

HELIOS-2 [25].

With the exception of some particular forms of the spherical harmonics me-
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thod, a thorough description of the deterministic numerical methods falls

beyond the scope of this thesis. Although some of the aforementioned meth-

ods still are the subject of ongoing research, their foundations are described,

for instance, in the review article by Sanchez and McCormick [26], as well as

in the work by Lewis and Miller [15].

2.2.1 The P1 approximation

In the PN method, the angular dependence of the neutron flux is expanded

in a spherical harmonics basis. In the PN approximation, the infinite series

used for the expansion of the flux is truncated at level N , thus resulting

in (N + 1) terms. In particular, when N = 1 is set, the P1 equations are

obtained. Based on the expressions by Roy [27], and further making the

fission term explicit, the time-independent P1 equations without external

sources in multi-group form are expressed as:

∇ · �Jg(�r) + Σg
t (�r)φ

g(�r) =
G∑

g′=1

Σg←g′
s,0 (�r)φg′(�r) +

χg

k

G∑
g′=1

νΣg′
f (�r)φ

g′(�r) ,

1

3
∇φg(�r) + Σg

t (�r)
�Jg(�r) =

G∑
g′=1

Σg←g′
s,1 (�r) �Jg′(�r) . (2.3)

The first one of the P1 Eqs. (2.3) is scalar, and in fact denotes a set of G

multi-group equations, each one denoted by its group index g. The second of

the P1 equations is three dimensional, since �J is the neutron current density

vector. The scattering cross section was expanded in Legendre polynomials,

thus Σs,0 and Σs,1 denote the zeroth and first order terms of this expansion,

respectively.

2.2.2 The diffusion approximation

Three assumptions are needed in order to derive the diffusion equations from

the P1 equations:

The external source is isotropic: thus far, cases without external sources

have been considered only. As for the fission source, it is isotropic.

Negligible temporal variation of the neutron current: since the time-

independent P1 equations are dealt with here, this assumption has no

effect. In time-dependent kinetics problems, however, this simplifica-

tion could be inadequate (and difficult to verify).

In- and out-scattering neutron source anisotropy: in multi-group form,
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this approximation is expressed by:

G∑
g′=1

Σg←g′
s,1 (�r) �Jg′(�r) �

G∑
g′=1

Σg′←g
s,1 (�r) �Jg(�r) . (2.4)

Stamm’ler and Abbate [28] highlight that this approximation holds in

presence of weak absorption only. Substitution of Eq. (2.4) into the

second of the P1 Eqs. (2.3) allows to switch the summation that extends

over the incoming energies towards the outgoing energies:

1

3
∇φg(�r) + Σg

t (�r)
�Jg(�r) =

G∑
g′=1

Σg′←g
s,1 (�r) �Jg(�r) = Σg

s,1(�r)
�Jg(�r) . (2.5)

Rearranging Eq. (2.5):

�Jg(�r) = − 1

3
(
Σg
t (�r)− Σg

s,1(�r)
) ∇φg(�r) , (2.6)

one arrives at an expression that relates the neutron current with the

gradient of the neutron flux. This is known as Fick’s law, and is com-

monly expressed in terms of the diffusion coefficient D:

�Jg(�r) = −Dg(�r)∇φg(�r) . (2.7)

The diffusion coefficient is related to the transport cross section, Σtr, by:

Dg(�r) =
1

3Σg
tr(�r)

. (2.8)

In turn, the transport cross section is derived naturally from Eq. (2.6),

and is expressed in terms of the total XS, the mean scattering cosine in

the laboratory system, and the scattering cross section1:

Σg
tr(�r) = Σg

t (�r)− μg
0 Σ

g
s(�r) . (2.9)

Hébert [30] remarks that Fick’s law is a heuristic relation which, in a

more general form, is expressed in terms of a 3 × 3 diagonal tensor D,

containing directional diffusion coefficients, such that:

�Jg(�r) = −D
g(�r)∇φg(�r) . (2.10)

Fick’s law is acceptable at the global2 scale of a complete reactor, but

breaks down at the level of heterogeneous lattice calculations. As will

be seen in Section 2.3, homogenization techniques are used in order to

decompose a full heterogeneous reactor system into a set of piecewise

homogeneous regions.

1In order to arrive at Eq. (2.9), the identity Σg
s,1 = μg

0 Σ
g
s,0 was used [29].

2Either homogeneous or piecewise homogeneous.
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By introducing Fick’s law into the first of the P1 Eqs. (2.3), the multi-group

diffusion equations:

−∇ ·Dg(�r)∇φg(�r) + Σg
r(�r)φ

g(�r) =
∑
g′ �=g

Σg←g′
s,0 (�r)φg′(�r) +

χg

k

G∑
g′=1

νΣg′
f (�r)φ

g′(�r)

(2.11)

are obtained. Self-scattering elements are excluded from the scattering source.

This is compensated for by replacing the total XS with the removal cross sec-

tion:

Σg
r = Σg

t − Σg←g
s,0 . (2.12)

2.3 The 2-step calculation approach

Even after simplifications, the solution of detailed 3-D reactor systems using

deterministic methods is a formidable task from the point of view of com-

putational requirements. A low order transport method such as diffusion is

only valid at the complete –homogenized– reactor level.

Other low order methods which are less restrictive, such as P1 or simpli-

fied P3 (also called SP3) [31] are not much more than improved diffusion, and

cannot tackle the challenge of accurately modeling a detailed –heterogeneous–

reactor system, either. A work by Kotiluoto [32] stresses that the SP3 ap-

proximation applied to heterogeneous transport is not always satisfactory.

Conversely, Duerigen et al. [33] applied the SP3 approximation to piecewise

homogeneous regions, and observed good agreement with transport results.

The underlying idea of the 2-step methodology is to partition a large het-

erogeneous system into smaller sub-systems, or cells, in which some form

of the neutron transport equation is solved. This solution is then used in

order to homogenize such cell, so that as a result of this process the ho-

mogenized system furnishes the same reaction rates as the geometrically

detailed system would. This is known as the first step, or assembly calcula-

tion, or lattice calculation, usually restricted to two-dimensional (2-D) geom-

etry. Homogenized cross sections are generated assuming an infinite lattice

of identical elements. This is attained in practice by applying reflective or

periodic boundary conditions, with the exception of reflectors [34] and other

non-multiplicative regions.

In the second step, a lower order form of the transport operator is solved

at core level. Generally, this task is accomplished by diffusion theory. At this

level, every heterogeneous cell has been replaced by a set of homogeneous,

constant properties (supplied in the form of a homogenized XS set), in an
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attempt to reproduce assembly-wise reaction rates as accurately as possible,

so that the criticality eigenvalue of Eq. (2.1) is preserved in the original het-

erogeneous and in the homogeneous systems, at a much lower computational

cost.

Prinja and Larsen [13] allege that homogenization is difficult to justify

theoretically, and that there is ongoing debate about the proper manner in

which homogenization should be performed. The use of flux-and-volume-

weighting techniques is standard practice in the calculation of homogenized

reaction cross sections in a zone denoted by i:

Σg,hom
α,i =

∑
h∈g

∑
j∈i

Σh
α,j φ

h
j Vj

∑
h∈g

∑
j∈i

φh
j Vj

, (2.13)

where α identifies the type of reaction in a certain cell denoted by j, and h

identifies a micro-energy index that lies within a few-group index g. In the

infinite-medium limit, reaction rates in the heterogeneous and in the homo-

geneous systems are preserved. As for homogenized diffusion coefficients,

Cho [35] discusses some of the difficulties that emerge from their computa-

tion. The root cause of the problem is that diffusion coefficients do not arise

from a mere preservation of reaction rates.

Since the early days of lattice solvers based on the collision probability

method, extensive work [36–43] has been conducted in order to find more

accurate expressions to compute homogenized diffusion coefficients. Many

of these works were targeted at anisotropic neutron diffusion in fast reactor

systems.

In recent times, Williams [44] applied finite Fourier transform techniques

to the calculation of anisotropic diffusion coefficients in one-dimensional (1-D)

domains. Pounders and Rahnema [45] tested the performance of various dif-

fusion closures for the improvement of accuracy between diffusion theory

and transport solutions for 1-D problems. In spite of the vast number of

studies conducted on diffusion coefficients, Prinja and Larsen [13] remark

that:

“the optimal definition of homogenized diffusion coefficients remains an unre-

solved problem.”

The comparison of diffusion solutions against transport theory is an amenity

that was not readily available in the early days.
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2.3.1 Equivalence theory

The effect on core calculations of the seemingly arbitrary diffusion coefficient

definitions is mitigated in the context of Equivalence Theory. Koebke [46]

postulates that the errors introduced during the assembly homogenization

process can be overcome by providing the diffusion equation with additional

degrees of freedom, so that the average reaction rates, fluxes and neutron

currents per homogenized region are preserved with regards to the origi-

nal heterogeneous problem. In order to accomplish this, he relaxes the con-

straint of flux continuity at assembly boundaries through the introduction of

heterogeneity factors.

Smith [47, 48] also recognizes the importance of allowing the fluxes to be

discontinuous, and proposes an alternative scheme which avoids the itera-

tive techniques devised by Koebke. By treating every homogenized assembly

as a local problem, with net currents supplied by a global transport solu-

tion –assuming that it is available–, he shows that the continuity of flux at

assembly boundaries is responsible for the homogenized currents to be dif-

ferent from the transport currents. In an attempt to preserve the reaction

rates per assembly, as well as the global transport currents in the local dif-

fusion solutions, the modification proposed is based on the concept of flux

discontinuity factors (DFs), applied at assembly boundaries.

For a given face denoted by u, the discontinuity factor for group g is noted

as fu
g , and is defined as the ratio between the face-averaged heterogeneous

scalar flux (obtained by transport methods) and the face-averaged scalar flux

resulting from the application of diffusion theory with homogeneous XS data

and identical boundary conditions:

fu
g ≡ φu,het

g

φu,hom
g

. (2.14)

Although the works by Koebke and by Smith were mainly targeted at high

order nodal methods and steady-state problems, Sutton and Aviles [49], for

example, make the applicability of equivalence theory to kinetics calcula-

tions explicit. Furthermore, discontinuity factors can also be applied to

finite-difference-based solvers, as outlined by DeLorey [50].

2.3.2 Spatial discretization of the diffusion equations

The multi-group diffusion Eqs. (2.11) are continuous in the spatial variable.

As a result of homogenization, XS data is assumed to be constant over the

volume of every lattice element. In order to solve for the equations numeri-
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cally, some form of discretization is needed.

The first discretization schemes resorted to finite differences, where the

derivative term in Eq. (2.11) was approximated by a varying number of dis-

crete points [51]. The discretized equations were then solved in the form

of linear systems with special iteration strategies for the determination of

the system eigenvalue and multi-group fluxes [52]. Some examples of finite-

difference-based diffusion codes are: CITATION [53] and DIF3D [54].

The discretization of differential equations brings about some extent of

error. Methods have been developed in order to palliate this [55], and were

applied, for example, to the calculation of “extrapolated” solutions of bench-

mark problems [56, 57]. It is interesting to notice that the corrections pro-

posed are closely related to the very early studies by Richardson [58] and by

Richardson and Gaunt [59], before the invention of electronic computers.

Modern diffusion solvers resort to the so-called nodal methods, which

take advantage of scalar neutron flux expansions, so that the number of un-

knowns to be solved for is kept low, yet the solution is highly accurate. An ex-

cellent review of nodal methods may be found in the work by Lawrence [60].

The schemes reported therein resort to the decomposition of the full problem

into 1-D transverse-integrated equations.

Whereas the transverse integration technique has shown a high degree of

success in Cartesian geometry, its application to hexagonal problems results

in singular terms, which need to be dealt with carefully. For this reason,

more recent alternative techniques have been developed for the solution of

the nodal diffusion equations in hexagonal geometry, such as conformal map-

ping [61, 62], Analytical Function Expansion Nodal [63], and Higher Order

Polynomial Expansion Nodal [64]. A few examples of nodal diffusion codes

are: PARCS [65], ARES [66], and DYN3D [67].

In contrast to Cartesian geometry, it is not possible to resort to mesh re-

finement in hexagonal problems, unless the domain is decomposed into tri-

angles. In the hypothetical case where the quality of the nodal solution is

suspected to be compromised as a result of the inability of a low order flux

expansion to capture sharp flux variations within an assembly, then it might

be a better choice to sacrifice computational efficiency by resorting to finite-

difference codes, instead.
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2.4 Stochastic techniques

The use of stochastic techniques is commonly known as the Monte Carlo me-

thod [68, 69]. This powerful method is based on the simulation of stochastic

processes using computer-generated pseudo-random numbers and by sam-

pling different events with probabilities given by the laws that govern such

processes. The Monte Carlo method can be applied to mathematical, physi-

cal and engineering problems, amongst several others.

The application of Monte Carlo techniques to neutron transport is exten-

sively presented in specialized references [70, 71, and references therein].

The main advantages of the MC method applied to reactor calculations are

the possibility of modeling complex systems with virtually no geometrical

approximations; the detailed treatment of the neutron interaction models;

and parallelization. Some examples of general purpose Monte Carlo particle

transport codes are: MCNP [71], TRIPOLI [72], VIM [73], and MCBEND [74].

Any Monte Carlo result –or tally– is subject to some extent of statistical

uncertainty due to the finite size of the number of samples, or neutron his-

tories simulated. According to the Central Limit Theorem, the estimated

mean of a number of identically distributed, independent random variables

will appear to be normally distributed, with a standard deviation:

σm = σ/
√
N, (2.15)

as the number of samples, N , approaches infinity. The standard deviation σ

is approximated [75] by the square root of the observed sample variance, s2.

Eq. (2.15) implies that the statistical uncertainty of Monte Carlo results

can be reduced by the computation of more neutron histories, thus increasing

the value of N . However, the 1/
√
N dependence with the number of histo-

ries entails an extra computational burden that renders the MC approach

impractical for several everyday neutron transport calculations. Also, the

method can be prone to bias [76] and false convergence, which need to be

carefully assessed. In addition, Martin [77] underlines an excessive demand

on computer memory, slow convergence of the fission source, and an under-

estimation3 of the true variance. Mervin and others [78] propose remedies

to mitigate this.

In spite of these limitations, Monte Carlo methods are finding increased

application in the context of few-group cross section generation, thanks to

their high geometrical fidelity and continuous-energy neutron interaction
3This is due to the fact that neutron histories are correlated, in contrast with the
assumptions of the Central Limit Theorem.
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models. Examples of codes that can handle XS generation are Serpent [9],

OpenMC [79], RMC [80], and McCARD [81].

The Serpent project

The vast majority of the results in this thesis was generated by the Serpent

computer code. Originally named PSG [82], this code is actively developed and

maintained by the VTT Technical Research Centre of Finland. The project

began in 2004, and two separate versions of the code exist. Serpent 1 is dis-

tributed by the OECD/NEA Data Bank [83] and by the Radiation Safety In-

formation Computational Center (RSICC) [84]. Serpent 2 is in beta-testing

phase. Much of the computational efficiency of Serpent is attributable to the

Woodcock delta-tracking method [85], and to a unionized energy grid [86]. A

dedicated site [87] presents all the features and developmental status of the

project. The main applications of Serpent are:

• Spatial homogenization for deterministic codes.

• Fuel cycle studies.

• Validation of deterministic lattice solvers.

• Full-core modeling.

• Coupled multi-physics applications.

• Educational purposes.

A few examples of code sequences where Serpent was applied to few-group

XS generation in various reactor types may be found in references [88–92].

2.4.1 Neutron leakage models

In the 2-step approach (Section 2.3), the commonly adopted assumption of

identical assemblies constituting an infinite lattice has some impact on the

quality of the full-core diffusion calculations, because the use of either reflec-

tive or periodic boundary conditions fails to capture the energy-dependent

neutron exchange that takes place between a given assembly and its neigh-

bors. This exchange plays an important role in the spatial distribution of pin

powers, as well as in the average neutron spectrum inside the assembly.
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What follows is the description of some numerical models that can be used

in Monte Carlo XS generation in order to correct for the adoption of zero-

net-leakage boundary conditions4. The treatment of leakage at cell level,

however, affects the quality of XS data generated either by deterministic or

stochastic techniques.

Homogeneous B1 corrections

This method was originally developed for deterministic neutron transport

solvers. Its main assumption is the factorization of the scalar neutron flux

into spatial and energy components. This separability allows a modal ex-

pansion of the neutron flux, where each mode satisfies the Helmholtz equa-

tion. By solving for the first mode, one obtains a leakage-corrected assembly-

averaged spectrum, known as the fundamental mode flux, that is used for

XS collapsing and for the calculation of diffusion coefficients. The detailed

derivation of the method may be found in the work by Stamm’ler and Ab-

bate [28].

The B1 method has been incorporated into the codes Serpent [88] and

McCARD [81]. Martin and Hébert [93] developed an original adaptation of the

method to treat B1-based leakage as a part of the neutron random walks. It

is important to remark that the B1 method, as implemented in Serpent, only

corrects the spectral weighting of the XS data and diffusion coefficients, but

does not introduce any actual leakage into the system during the transport

cycle.

Other authors have also resorted to bucklings as a means of accounting

for neutron leakage in MC simulations. These bucklings were obtained ei-

ther by perturbation theory [94] or by recasting the neutron transport equa-

tion in the form of an eigenvalue problem, and subsequently iterating on an

axial buckling term [95]. These methods do not resort to homogeneous B1

corrections.

Albedo iterations

This technique introduces net neutron leakage at assembly level by means of

weight modifications upon lattice boundary crossings. The extent of weight

adjustments is iterated upon, and depends on how much the infinite lattice

model departs from criticality. Yun and Cho [96] developed this technique

with special emphasis on the correction of spectral effects during depletion

calculations with Monte Carlo.
4Periodic boundary conditions result in zero-net-leakage for some symmetric config-
urations, but not necessarily in the most general case.
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Unlike homogeneous B1 corrections, the use of albedo iterations intro-

duces spatial modifications to the neutron flux, which affect the distribution

of pin powers. Whereas Yun and Cho reported on these variations, the ef-

fect on few-group XS data generation in a large core with vacuum boundary

conditions was not assessed. The albedo method is a promising candidate

for the needed simultaneous leakage correction of XS data and discontinu-

ity factors highlighted by Rahnema and Nichita [97]. They referred to this

problem as the “leakage assembly environmental effect”. The albedo method

was implemented in Serpent version 2.1.16.

Layer-expansion leakage model

This novel leakage model was introduced in Publication IV, with a view to

develop a heterogeneous scheme where the concept of periodicity was more

tangible than in albedo iterations. In order to attain this, the idea of trajec-

tory expansion, or unfolding, was formulated. By means of special indexes,

which are updated when a neutron attempts a boundary surface crossing,

it is possible to determine the location of that neutron in an expanded sys-

tem of identical assemblies, as depicted in Fig. 2.2. It is pertinent to point

out that trajectories are expanded without resorting to the explicit storage

of neighboring assemblies. This results in only modest additional memory

overheads.
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Figure 2.2. Single cell-based and expanded lattice systems used in trajectory unfolding
for Cartesian (a) and Hexagonal (b) geometries. Every lattice element corre-
sponds to a heterogeneous assembly. Different colors correspond to different
layers. Whereas in the case of albedo iterations neutrons undergo weight adjust-
ments upon any surface crossing (indicated by the � symbol), in layer-expansion
mode the weight is modified only at crossings indicated by the ♠ and ♣ symbols.
The layer where these modifications apply is determined by the algorithm in
Fig. 2.3 a). Adapted from Publication IV.

Grouping assemblies based on similarity or symmetry considerations leads

to the concept of layers. The rationale behind the leakage model is to modify

the weight of a neutron when it “enters” one specific layer in the expanded
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systems of Fig. 2.2. When the neutron attempts to reach a more distant

layer, the history is terminated5. The determination of the layer index where

this happens is the object of the algorithm presented in Fig. 2.3 a), whereas

the magnitude of the weight modification is determined by the algorithm in

Fig. 2.3 b).

Compute average k-eff

over N cycles

Compute 2 cycles

k-eff > ktarget ?

over N cycles

Compute 2 cycles

k-eff > ktarget ? A

B
Print warning:

super-critical system

under void BCs

Start

Compute normal
inactive cycles

set region = #reg
set iter val = 1

Yes

set iter val = 0

Compute average k-eff

Yes

region > 1 ?

Yes

set region =
region - 1

Apply
clustering 1.01 × iter val

set iter val =

Compute average k-eff

over N cycles

Compute 2 cycles

Arrange pairs
(iter val, k-eff )1,2

No

No

No

set iter val

Yes

Sufficient #cycles
remaining?

A

No

Linear interpolation on

(iter val, k-eff )1,2

Compute one cycle

over N cycles
Compute average k-eff

Rendez-vous

Compute 10+

settle cycles

B

Finish
(to active cycles)

a)

b)

Figure 2.3. Proposed algorithm for the determination of the iteration region index (a) and
for the determination of the iteration value, once the region index is known (b).
When the algorithm (a) reaches the dashed area, the value of the region is al-
ready known. Adapted from Publication IV.

5An exception to this applies when the algorithm resorts to clustering. When this
happens, history termination is substituted by weight modifications, and the layer
index is not increased.
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The layer-expansion leakage model was preliminarily implemented in the

Serpent code version 2.1.21, and requires three input parameters:

1. The desired eigenvalue, ktarget (generally, 1.0).

2. The maximum number of regions to be used (usually, not more than 4).

3. The number of elements to be averaged (recommended value: 10).

In its lower order form, the layer-expansion leakage model reduces to albedo

iterations. This is attained in practice by setting the number of regions to

one. When this happens, neutrons are always confined to a single layer, and

weight modifications apply at every boundary surface crossing.

2.4.2 Neutron diffusion coefficients

Neutron diffusion coefficients are not a part of the Monte Carlo random walk

process, and are therefore not required in the calculations that make use this

technique. When Monte Carlo methods are applied to cross section genera-

tion, however, a certain diffusion coefficient model is needed. The literature

on stochastically generated diffusion coefficients is extensive. Only a few

selected methodologies will be described in this thesis.

Definitions based on homogenized transport cross sections

Probably, the simplest method to calculate the diffusion coefficient is to tally

the transport cross section, and then make use of Eq. (2.8). In that case,

the explicit spatial dependence will no longer hold, because the transport

XS will be homogenized. This seemingly straightforward task is not easy

to implement in Monte Carlo codes. Referring to Eq. (2.9), the transport

correction term can be treated in a variety of ways.

Tohjoh et al. [98] opted for an average of the elastic collision rate extended

to all nuclides, and hard-coded constants for the average scattering cosines.

Their derivation was limited to three energy groups. Ilas and Rahnema [99]

and Redmond [100] proposed and tested modifications to the standard rou-

tines in the MCNP code versions 4A and 4B [101]. A homogenized estimate of

the transport XS was also one of the implementations used in the first ver-

sions of the Serpent code [82]. At a later stage, the treatment of the transport

cross section was improved [102] by adapting an in-scatter approximation
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via the computation of the flux-weighted inverse transport XS:

Σg
tr =

∑
h∈ g

φh

∑
h∈ g

φh

Σh
t −μh

0 Σh
s

, (2.16)

where the index h denotes a micro-group that lies within a given few-group

index, identified by g. In an earlier work, Takeda et al. [103] also compared

the diffusion coefficients obtained through direct and inverse weighting of

the transport XS obtained through deterministic methods.

A new anisotropic formalism

In Publication I, a novel, Monte-Carlo-specific method for the computation

of directional diffusion coefficients was proposed. This scheme relies on a

special type of score when neutrons traverse a specific surface. The complete

derivation of the method may be found in Publications I and II. Here, only

the main equations will be introduced. Referring to Fig. 2.4, a neutron that

travels from q to p intersects a surface of interest, denoted by S. Diffusion

coefficients normal to this surface are computed.

�r′

p

Ω̂

�r

�R = �r − �r′

S

n̂

o

q

Figure 2.4. Surface crossing variables: the neutron flying from point q to point p intersects
the surface S at the coordinate �r. From Publication II.

Let �R = R �Ω be the displacement vector between the source point q (either

a fission, fixed, or collision source point) and the crossing point on S. By

assuming that this single crossing can be associated with a fixed, isotropic

source, simple analytical expressions can be obtained for the scalar flux:

φ(�r) =
w exp

(
− ∫ R

0 Σt(s) ds
)

4π R2
(2.17)

and for the angular current:

�J(�r) =
w exp

(
− ∫ R

0 Σt(s) ds
)

4π R2
Ω̂ , (2.18)
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where w is the neutron weight6. The gradient of Eq. (2.17) along the normal

n̂ takes the form:

∂φ(�r)

∂n
= −

w exp
(
− ∫ R

0 Σt(s) ds
)

4π R2

(
Σt|R +

2

R

)
Ω̂ • n̂ . (2.19)

By projecting Eq. (2.18) along n̂, one obtains the net neutron current due to

this surface crossing:

Jn(�r) =
w exp

(
− ∫ R

0 Σt(s) ds
)

4π R2
Ω̂ • n̂ . (2.20)

In a Monte Carlo sense, one could attempt to apply Fick’s law in 1-D by

accumulating the quantities from Eqs. (2.20) and (2.19) , and then computing

their ratio. This approach was not adopted due to several practical consider-

ations:

• It is possible that similar contributions from different directions cancel out,

thus yielding a nearly-zero estimate in Eq. (2.19), which causes numerical

problems when computing the quotient. This is particularly troublesome

in the case of symmetry planes or reflective boundary conditions. These

problems were evident in the method devised by Milgram [104].

• The previous situation can be circumvented by accumulating the necessary

quantities in different bins, according to the sense of the surface crossing,

and by then averaging the contributions, at the expense of increased com-

plexity.

• The evaluation of the integral attenuation term exp
(
− ∫ R

0 Σt(s) ds
)

entails

computational overheads.

• The presence of the 1/R2 dependence in Eqs. (2.20) and (2.19) poses chal-

lenges for small values of R. Such cases would require a special treatment,

similar to the evaluation of the scalar flux at a point [105].

In order to avoid these pitfalls, it is possible to compute the ratio7 of Eqs. (2.20)

and (2.19) for every surface crossing, which results in the special score:

Dn =
R

2 +R Σt|R
. (2.21)

By following this approach, the resulting “diffusion coefficient” will be un-

normalized, since the neutron currents and scalar fluxes are the result of

6This quantity is introduced in connection with implicit capture, commonly used in
Monte Carlo particle transport.
7And change the sign, according to Fick’s law.
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collective contributions. In Eq. (2.21), Σt|R is the total cross section at the

crossing point. It is important to highlight that the system under study is

heterogeneous. Denoting by 〈Dn〉 the mean value of the scores Dn, the new

method estimates, after normalization, the average total cross section ex-

tended to surface S as:

〈Σt〉 = 2 e2 Ei(−2) + 1

〈Dn〉 =
α

〈Dn〉 , (2.22)

where Ei is the Exponential Integral function. Using tabulated values of

Ei (see [106]), one has α = 0.2773427662. In Publication I, the normalization

procedure was based on the assumptions of an infinite homogeneous medium

and isotropic flux, for which the analytical expression of α could be procured.

With the relationship of Eq. (2.22), an average transport cross section over S
can be estimated:

〈Σtr〉 = α

〈Dn〉 − μ0 〈Σs〉 , (2.23)

where the energy indexes were dropped for simplicity. μ0 is the cell-averaged

mean scattering cosine. In Publication I, 〈Σs〉 was taken as the homoge-

nized, flux-and-volume-weighted scattering cross section. Thanks to the in-

sights gained during that work, the averaged transport XS in Publication II

was further modified in order to include a problem-dependent interpolation

constant m, as well as the total-current-weighted scattering and total cross

sections:

〈Σtr〉 |J = (1−m)
α

〈Dn〉 + m 〈Σt〉 |J − μ0 〈Σs〉 |J , 0 ≤ m ≤ 1 . (2.24)

Eventually, the resulting transport cross section is also current-weighted,

as denoted by the |
J

identifiers. The introduction of the interpolation con-

stant m also aims at correcting for the assumptions of infinite homogeneous

medium and isotropic flux postulated in the derivation of α in Eq. (2.22).

The aim of the new method is to obtain a diffusion coefficient by substitu-

tion of the transport XS (obtained either through Eqs. (2.23) or (2.24)) into

Eq. (2.8).

A note on directional averages is due: in Publication II, only axial direc-

tional diffusion coefficients (DZ) could be calculated with the new formalism

as implemented in Serpent. In order to account for the radial direction, an

approximation previously used by Gho [107] in the HETAIRE [108] cell code

was adopted. Namely, the radial diffusion coefficient (DR) was derived from

the isotropic –standard– diffusion coefficient (Dstd) calculated by Serpent,

and the axial diffusion coefficient DZ :

DR =
1

2
(3Dstd −DZ) . (2.25)
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At a later stage, a mesh-based averaging technique was introduced in Publi-

cation III. This will be illustrated in Section 3.2.

From B1 equations

As described in Section 2.4.1, the homogeneous B1 leakage model also sup-

plies few-group diffusion coefficients collapsed with the criticality spectrum.

Monte Carlo codes such as McCARD and Serpent incorporate this functionality.

Milgram’s method

A work by Milgram [104] takes a different approach towards the calculation

of axial diffusion coefficients in a CANDU8 reactor cell, since no attempt is

made to calculate any transport cross section, and therefore Eq. (2.8) is not

needed altogether. Instead, Milgram proposes a functional fit of Fick’s law

(Eq. (2.7)) through numerous axial-dependent estimators of the net neutron

currents and scalar fluxes in three energy groups. As a result, diffusion coef-

ficients are obtained by post-processing quantities tallied during the Monte

Carlo simulations carried out with MCNP. A schematic representation of the

calculation domain and diffusion coefficients is presented in Fig. 2.5.

Z

Void

Moderator region

Fuel region

a)

Figure 2.5. An illustration of Milgram’s method applied to the axial direction. Schematic
domain (a) with dashed vertical lines indicating tallying surfaces and mesh ex-
tents for scalar flux calculations. Reflective boundary conditions are applied at
the left boundary and in the X–Y plane. In (b), an example calculation of 3-group
diffusion coefficients. For illustrative purposes only.

The system under consideration must have leakage, so that the net neu-

tron current in Eq. (2.7) does not vanish, as occurs at reflective boundaries.

Milgram conducted a meticulous study on the assumption of flux factorizabil-

8CANDU� (CANada Deuterium Uranium�)
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ity and on the applicability of diffusion theory, as well as on the implications

of different channel lengths and fitting techniques on the diffusion coefficient

statistics.

The application of Milgram’s method to few-group XS generation is not

straightforward, due to statistical considerations, but primarily due to the

need for neutron leakage, and the criteria for the rejection of estimates at lo-

cations where the diffusion approach is not valid. In spite of this, the method

can be a valuable tool for the comparison of different diffusion coefficient for-

malisms. Van Rooijen et al. [109] applied the method to the calculation of

anisotropic diffusion coefficients with the MVP computer code [110], and read-

ily identified the need to report results in the form of confidence intervals.

Van Rooijen and Chiba [111] compared the diffusion coefficients obtained by

Monte Carlo techniques and by the (deterministic) Method of Characteris-

tics, and concluded that the stochastic approach entailed prohibitive running

times.

Other methods

This overview of methods would be far from complete if the works by Gelbard

and Pego [112], Gast [113] and Yamamoto [114] were not mentioned. In the

first of these works, the authors postulate a buckling-based expansion of

the neutron source in an infinite lattice configuration, and implement an

elaborate algorithm involving “real” and “image” neutrons. Gast compared

results obtained through different formalisms, and proposed an empirical

correction factor for the fast energy range. In his work, he points out that

the transport cross section should be current-weighted. Yamamoto addresses

the simultaneous leakage-correction of XS data and generation of anisotropic

diffusion coefficients via the introduction of complex neutron weights in the

Monte Carlo random walks.

In the early years, computational constraints drove most works on deter-

ministic and stochastic diffusion coefficients generation to be limited to com-

parisons against formalisms, thus not assessing the performance of these for-

malisms on full-core diffusion calculations. Pertaining diffusion coefficients

procured by Monte Carlo techniques, Yamamoto’s view [95] is that:

“the methods are considered unverified and not necessarily recommended to be

used for group constant generation.”
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2.4.3 Discontinuity factors

At cell level, zero-net-current conditions in all boundaries allow the adoption

of the volume-averaged heterogeneous flux as a replacement for the surface-

averaged homogeneous flux needed in Eq. (2.14). Under these conditions, the

computation of discontinuity factors by Monte Carlo codes does not pose ma-

jor challenges. Tohjoh et al. [98] applied this infinite medium approach to the

generation of boiling water reactor (BWR) cross section data. The Serpent

code also has built-in capabilities for the computation of 2-D discontinuity

factors.

When non-zero leakage exists at any of the assembly boundaries, it is

necessary to estimate the surface-averaged homogeneous flux at cell level

by using a (deterministic) diffusion solver. Examples of this are available

for 1-D radial [115], 1-D axial [116, 117], and 2-D radial [90] problems. In

all of these works, the computation of homogeneous fluxes was carried via

post-processing Serpent results with the help of dedicated tools9. Cho and

Lee [118] also generated 2-D leakage-corrected discontinuity factors, but it

is unclear if the homogeneous fluxes were or were not calculated in line with

the Monte Carlo computations.

The examples cited so far apply to light water reactors, with the exception

of the works by Fridman et al. [116] and by Hall et al. [117], which apply to

hard-spectrum, high conversion BWR cores. In high-temperature, gas-cooled

reactors, Zika and Downar [119] identified numerical divergences when ap-

plying discontinuity factors. Although Yamamoto [120] later proposed means

of overcoming the divergences, it is of interest to test the performance of ani-

sotropic diffusion coefficients in scenarios where the application of Equiva-

lence Theory is not straightforward, as well as to attempt to generate 3-D

discontinuity factors for other reactor types, such as SFRs.

In Publication III, the implementation of a finite-difference-based diffu-

sion solver into Serpent is described. This routine allows the calculation of

3-D leakage-corrected discontinuity factors in line with the transport cycle.

This is advantageous not only for simplicity, but also because statistical un-

certainties can be assigned to all generated few-group constants.

9Shortly after the publication of the work by Leppänen et al. [90], a 2-D homo-
geneous flux solver based on analytical function expansion was incorporated into
Serpent version 2.1.22. The solver can be used for the calculation of radial, leakage-
corrected discontinuity factors and for pin power reconstruction.
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3. Neutron diffusion coefficients in
Monte Carlo

The generation of few-group neutron diffusion coefficients to be used in core

calculations is demanding for deterministic as well as for stochastic neutron

transport solvers. The challenge resides in that diffusion coefficients, con-

trarily to other XS data, cannot be calculated through a mere preservation

of reaction rates.

Lattice-level calculations have been historically dominated by determin-

istic methods. Along with the progress in computational power and paral-

lelization, Monte Carlo techniques have found increased application in as-

sembly calculations. The preservation of multi-group reaction rates in the

original (heterogeneous) infinite lattice transport problem and in the re-

sulting (homogenized) system dictates the adoption of a flux-and-volume XS

weighting schemes.

As for diffusion coefficients, different formalisms were implemented in

MC assembly codes, mostly as a result of the various methods previously

implemented in deterministic codes. Equivalence Theory allows some flexi-

bility in the definition of the diffusion coefficients. Rahnema and Nichita [97]

make explicit mention of the arbitrariness in the diffusion coefficient defini-

tion. To this, Cho [35] adds that:

“in modern nodal methods . . . the direction dependency of the diffusion coefficient

can be ignored and the diffusion coefficient itself can be determined arbitrarily

(conveniently for practice) according to the equivalence theory for homogenization.

But the burden is transfered to the discontinuity factors.”

In cases where discontinuity factors are not used, however, it is expected

that the way in which the diffusion coefficients are defined will impact the

quality of core-level results.

This chapter will first address a study on some basic properties of the dif-
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fusion coefficients generated by Monte Carlo techniques based on Eq. (2.8).

The study will be supported with findings from Publication I. Later on, more

refined 3-D models will be used for the generation of diffusion coefficients

in a fast reactor system. These coefficients will be compared, and their per-

formance in full-core diffusion calculations will be assessed, making use of

selected results from Publications II and III. A study on the applicability to

other reactor types will also be presented, followed by core calculations of a

CANDU reactor, reported in Publication V.

3.1 Diffusion coefficients: on their functional dependence

Prior to the analysis of realistic full-core problems, it is pertinent to exam-

ine some basic properties of the diffusion coefficient models. Publication I is

dedicated to the comparison of three Monte-Carlo-based diffusion coefficient

generation methods in one spatial dimension, with special emphasis on some

properties of the newly proposed technique described in Section 2.4.2. Whe-

reas the first two methods scrutinized are based on Eq. (2.8), they differ in

how the transport cross section is defined. The third method was introduced

for comparison purposes. Originally proposed by Milgram [104], this scheme

is free from the assumptions of lattice theory.

The calculations were conducted with a multi-group MC code specifically

developed for Publication I. The diffusion coefficients compared are denoted

by Dtr, DJ , and Dfit. The models used to compute them are based on:

Dtr: a flux-and-volume-weighted homogenized transport cross section, Σtr,

and the use of Eq. (2.8). This method was in use by the Serpent 1

code [82]. Shortly after Publication I was presented, another method

that superseded the former was implemented in Serpent 2 [102].

DJ : the novel methodology for the estimation of the total cross section, Σt,

derived in Section 2.4.2. By adding the flux-and-volume weighted trans-

port correction term, the transport cross section of Eq. (2.23) is ob-

tained. This, in turn, is applied to the calculation of diffusion coeffi-

cients through Eq. (2.8).

Dfit: the method proposed by Milgram [104]. This scheme aims at providing

a functional fit to Fick’s law (Eq. (2.7)), without resorting to the trans-

port cross section. Milgram’s approach does not lend itself to the cal-

culation of “benchmark” values. On this, van Rooijen and Chiba [111]

state that only “best-estimate” values could be expected. For compari-
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son purposes, however, this method is advantageous in that it allows a

certain degree of parametrization of Fick’s law by means of the XS set

supplied to the multi-group MC solver. This parametrization is then ex-

ploited to test the ability of Eq. (2.8) to capture functional dependences.

Under the assumption of linearly anisotropic scattering in a homogeneous

medium, the one-group results of Fig. 3.1 reveal that both diffusion coeffi-

cients Dtr and DJ undergo similar trends as a function of the mean scatter-

ing cosine in the laboratory reference frame. Dtr values, however, have no

dependence with the optical thickness of the medium, whereas DJ values

do exhibit variations which improve the agreement with the best-estimates

from Milgram’s formalism (Dfit) for optically thin1 media. Pertaining the

latter formalism, it is important to highlight that the associated statistical

uncertainties are prohibitively large.

Figure 3.1. Linearly anisotropic one-group diffusion coefficients for optically thin (a) and
thick (b) media. Optical thicknesses are expressed in units of mean free paths
(mfp). Results obtained through Milgram’s method are represented as 95%
confidence intervals. Other models include one standard deviation error bars.
Adapted from Publication I.

Thus far, the attention has been focused on linearly anisotropic scattering

laws. Other scattering laws (see Fig. 3.2) were also postulated. All these laws

can be exactly represented by Legendre polynomials of order 5 or less, and

share the same total cross section and average scattering cosine. The results

of Table 3.1 show that there is no appreciable difference in DJ coefficients

with the scattering law, thus indicating that the transport correction of order

0 is sufficient at this level of accuracy. The accuracy is dictated by the poor

statistical quality of the estimates provided by Milgram’s method.

1A thickness of 5 mpf is insufficient for diffusion theory to hold, given the vacuum
boundary conditions. This scenario was selected as a limiting case where Milgram’s
method yields values that depart significantly from the asymptotic, infinite medium
solution.
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Figure 3.2. Scattering laws used for one-group diffusion coefficient calculations. All laws
can be represented by Legendre polynomials of order 5 or less. μ0 = 0.3333.
Σ0 = 0.27 cm−1. Results from Publication I.

Table 3.1. Diffusion coefficients for varying scattering laws. Optical thickness: 30 mfp.

Scattering Diffusion Coefficients (cm)

Law Dtr DJ ΔDJ
|1σ Dfit (95 % CI)

F1 1.58723 1.5734 0.0005 ( 1.560 – 1.591 )

F2 1.58723 1.5737 0.0008 ( 1.575 – 1.590 )

F3 1.58723 1.5734 0.0005 ( 1.573 – 1.589 )

F4 1.58723 1.5742 0.0010 ( 1.572 – 1.589 )

F5 1.58723 1.5735 0.0005 ( 1.574 – 1.589 )

3.2 3-D systems

The simplistic nature of the homogeneous, one-dimensional models studied

in Publication I was adequate for a first introduction to the properties of the

new directional diffusion coefficient model. However, the limitations of its

implementation hampered any application to realistic problems.

In Publication II, the transport cross section of Eq. (2.23) was modified in

two ways. The first change was to use the neutron-current-averaged scat-

tering XS, 〈Σs〉 |J. The second one was the introduction of an interpolation

constant m and the neutron-current-averaged total cross section, 〈Σt〉 |J.
The final expression of the transport cross section is given by Eq. (2.24).

The new directional diffusion coefficient formalism was preliminarily imple-

mented in the code Serpent 2, and limited to the axial direction only. This

limitation entailed making use of Eq. (2.25).

A sensitivity study was conducted in order to optimize the interpolation
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constant m in Eq. (2.24) for sodium-cooled fast reactor studies. A value

m = 0.85 was found to furnish good agreement for normal and coolant voided

conditions.
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Figure 3.3. A comparison between Serpent’s standard –isotropic– and directional axial dif-
fusion coefficients in an SFR cell for normal (a) and coolant voided (b) conditions.
Relative differences are reported in the right axis. Adapted from Publication II.

Fig. 3.3 presents a comparison of diffusion coefficient results. The extent

of anisotropy is significant in a few energy groups only. In Fig. 3.3 a), the

presence of sodium is responsible for the first peak in the relative differ-

ences between isotropic and axial diffusion coefficients. This is attributable

to the 2.805 keV absorption resonance of 23Na. Under normal operating con-

ditions, neutrons streaming in the axial direction around this energy are

more likely to leak through the fuel than through the coolant. When the

coolant is voided, axial streaming is increased.
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Figure 3.4. A regular superimposed Cartesian mesh for the simultaneous treatment of dif-
fusion coefficient scores per direction in hexagonal (a) and square (b) cells.

Using Eq. (2.25) implies that some of the properties of the isotropic diffu-

sion coefficients are retained, which is undesirable. In Publication III, the

limitation to generate anisotropic diffusion coefficients only along the axial
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direction was overcome by means of a superimposed regular Cartesian mesh,

illustrated in Fig. 3.4. With the help of this mesh, radial diffusion coefficients

could be generated.

In Fig. 3.5, the differences between the radial and the axial components of

the diffusion coefficients in a control rod (CR) are strongly energy-dependent,

and can be as large as 25%. Considerably larger differences can be expected,

nevertheless, between the standard and directional diffusion coefficient for-

malisms.
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Figure 3.5. Radial (DR) and axial (DZ ) directional coefficients in an SFR control rod assem-
bly and comparison against standard diffusion coefficients. From Publication
III.

3.3 Application to neutron diffusion calculations in a fast reactor

Thus far, diffusion coefficients obtained by different methods were compared.

In themselves, such comparisons do not yield any conclusive information

about the convenience of opting for a given formalism. To that end, it is

necessary to perform full-core diffusion calculations and contrast those so-

lutions against reference values. This section reports on the performance of

diffusion coefficient generation methods when few-group cross section data

sets calculated by Serpent 2 are fed to a diffusion solver.

The use of the same Monte Carlo code and associated cross section data

library for the generation of a reference full-core solution as well as of few-

group XS data is greatly advantageous for comparison purposes against dif-
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fusion results. In Publications II and III, the two-step calculation procedure

was applied to the study of a medium-sized Advanced Burner Reactor (ABR)

with oxide fuel at Beginning of Cycle (BOC) conditions.

1 Inner core (30)

2 Middle core (90)

3 Outer core (60)

4 Reflector (114)

5 Shield (66)

6 Primary control (15)

7 Secondary control (4)7 1 1 7 2 2 6 3 4 4 5

1 1 2 2 2 3 4 4 5

1 2 2 2 3 3 4 4 5

2 2 6 2 3 4 4 5

2 2 2 3 4 4 5

2 3 3 4 4 5

3 3 4 4 5

4 4 4 5

4 4 5

5 5

Figure 3.6. Top view of the oxide core version of the ABR benchmark problem with 1/6 pe-
riodic symmetry. Heterogeneous assemblies are schematically depicted as solid
regions. Primary and secondary control rod banks were not discriminated in the
cases under study. From Publication III.

The detailed ABR benchmark specification is described in the report by

Blanchet et al. [121]. Fig. 3.6 provides a schematic top view of the ABR core.

In the axial direction, the system is heterogeneous. From top to bottom, all

the elements listed in Table 3.2 are present in the fuel sub-assemblies.

Table 3.2. Axial configuration of a driver sub-assembly in the ABR oxide core. The same
definition applies to the Inner, Middle and Outer elements. Radial sub-assembly
pitch: 16.2471 cm. Number of fuel pins: 271. Based on Blanchet et al. [121].

Element name Axial length (cm)

Upper structure 44.70

Gas plenum 172.41

Zone 5 22.988

Zone 4 22.988

Zone 3 22.988

Zone 2 22.988

Zone 1 22.988

Lower reflector 112.39

Lower structure 35.76

During the XS generation process, different approaches were adopted in

Publication II to account for neutron leakage at assembly level. Since the rel-

ative performance of leakage models will be scrutinized in Chapter 4, here

the reporting is based on results obtained using the so-called axially hetero-
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geneous models with 24 energy groups2.

An axially heterogeneous model includes all the components listed in Ta-

ble 3.2. Pertaining boundary conditions, axial vacuum and radial periodicity

were used. It is worthwhile highlighting that these XS generation models

are intrinsically three-dimensional and can be represented without difficul-

ties in Serpent. As a result, few-group XS data sets for every axial region is

obtained.

3.3.1 Un-rodded system

In Publication II, the new anisotropic diffusion formalism was applied for

the first time to a 3-D heterogeneous core. Control rods were not modeled for

simplicity. Instead, they were replaced by sodium-filled regions.

The performance of the diffusion coefficient models was assessed in terms

of system eigenvalue, axial and radial power profiles against reference Monte

Carlo results. Table 3.3 compares extrapolated diffusion results obtained

with the TRIZ computer code [11] for normal and coolant voided conditions.

With the exception of the radial power distribution, for which maximum dis-

crepancies with reference results do not exceed 1%, anisotropic diffusion co-

efficients clearly improve the quality of the diffusion solutions.

Table 3.3. Summary of 3-D results for the ABR core without control rods. For normal condi-
tions, the reference eigenvalue obtained with Serpent is k-eff = 1.03732± 0.00001.
For voided conditions, k-eff = 1.05620± 0.00001.

Coolant
Model for D k-eff

Δρ Δmax
Pow|Z Δmax

Pow|R
conditions (pcm) (%) (%)

normal
standard 1.03317 -387 2.61 0.73

anisotropic 1.03607 -116 1.23 0.95

voided
standard 1.05355 -238 1.92 0.89

anisotropic 1.05612 -7 1.47 0.81

Δmax
Pow|Z : maximum relative difference in axial power distribution.

Δmax
Pow|R: maximum relative difference in radial power distribution.

Figure of merit

The choice of an optimal calculation scheme generally arises from a trade-

off between the accuracy of the solution and the computational resources

2 The group structure used is partially based on the ECCO-33 [122] structure used
in the ERANOS [5] code system. Following considerations from Fridman and Shwa-
geraus [89], the lowest-energy groups were merged until a total of 24 groups was
attained. The resulting structure is presented in Table 4.1.
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needed. In an attempt to quantify the efficiency of the two-step approach, a

Figure of Merit (FOM) was defined:

FOM ≡ 1

|Δk| T , (3.1)

where |Δk| is the absolute error in k-eff, and T is the total3 computation time.

Eq. (3.1) results in larger values for solutions that entail high accuracy, or

which require short computer times. The definition of a FOM is not unique4.

The form proposed here pursues a simplistic, straightforward means of com-

parison, since it does not cater for memory requirements nor errors in the

power distributions. Through Eq. (3.1), it is possible to calculate FOMs for

the cases reported in Table 3.3, as well as to compare such values against

the figure of merit obtained through full-core Monte Carlo calculations.

Table 3.4. Computational figure of merit comparison between full-core Monte Carlo and the
2-step scheme, via Eq. (3.1). For the full-core Monte Carlo case, |Δk| is the statis-
tical uncertainty reported by Serpent. For the 2-step approach, |Δk| is the differ-
ence against MC results, and also includes a bias of 13 pcm due to the statistical
nature of the XS, as discussed in Publication II. Memory use –not considered in
Eq. (3.1)– and CPU times are unpublished results from the same calculations.

Coolant
Scheme Model for D

Memory
|Δk|

T
FOM

conditions (MB) (min)

normal

MC n/a 6938 0.00001 59592 1.68

2-step standard 5600 0.00428 1811 0.13

2-step anisotropic 5600 0.00138 1818 0.40

voided

MC n/a 6938 0.00001 63624 1.57

2-step standard 5600 0.00278 1823 0.20

2-step anisotropic 5600 0.00021 1827 2.61

The results of Table 3.4 highlight the large computation times taken by

the full-core MC solutions, which would be inviable without parallelization

techniques. In the 2-step approach, the vast majority of the time is taken by

the XS generation step.

For normal conditions, anisotropic diffusion coefficients outperform stan-

dard diffusion coefficients due to increased accuracy, whilst the computa-

tional overheads are very similar5. The full-core MC approach has a higher

3In the case of parallel calculations, this is the direct sum of the times per task.
4In the MCNP code [71], the relative error of a tally, R, is introduced, and the FOM
is defined as 1/(R2 T ). In connection with Eq. (2.15), this figure of merit should be
approximately constant, and is used both as a tally convergence indicator and as a
measure of variance reduction techniques’ performance.
5The computational time of the standard diffusion coefficients is being penalized by
around 20 %, due to the implementation of the anisotropic routine in Serpent.
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FOM, but this value would decrease if the inter-cycle bias was properly as-

sessed. For voided conditions, the anisotropic diffusion formalism in the

2-step approach has the best performance.

The FOM values reported in Table 3.4 fail to put in evidence the enormous

versatility of the 2-step approach: by using the same preexisting XS sets,

various reactor configurations can be studied via inexpensive diffusion runs.

Conversely, the full-core Monte Carlo approach would entail several time-

consuming calculations, which might necessitate large, expensive computing

facilities.

3.3.2 Rodded system

In Publication III, control rods were incorporated into the ABR system. Mod-

eling strong absorbers in diffusion theory is challenging, mainly because the

validity of Eq. (2.4) is breached. It is unlikely that a mere ad hoc re-definition

of the diffusion coefficients can circumvent the inapplicability of diffusion

theory. Amid the alternatives available to lessen the effect of this limitation,

the following were tested:

• Discontinuity factors.

• Internal boundary conditions (IBCs).

The computation of 3-D discontinuity factors required modifications to the

preexisting routines available in Serpent. The first one entailed extensions

to tally heterogeneous neutron fluxes and partial neutron currents in the

axial direction, whereas the second one was the implementation of a mesh-

centered, finite-difference diffusion solver for the computation of leakage-

corrected discontinuity factors. The choice of finite differences followed the

need for consistence with the solver TRIZ. Herrero et al. [123], for example,

emphasize the importance of this consistence.

Internal boundary conditions were typically used in thermal reactor anal-

ysis, as in the works by Bretscher [124], by Bretscher et al. [125], and in

the HEXTRAN code [126]. IBCs are input to the diffusion solver in the form

of multi-group current-to-flux ratios at control rod locations6. These regions

are then excluded from the computational domain. This technique resulted

advantageous due to its simple implementation in the diffusion solver TRIZ,

and because face-averaged fluxes and neutron currents were readily avail-

6Depending on the particular application, IBCs can also be applied at reflectors.
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able from the computation of DFs.

An overall poor performance of the standard diffusion coefficient model

without corrections is evident from the results of Table 3.5. For the same

case, there is a pronounced radial tilt in the powers, as illustrated in the two-

dimensional power comparison of Fig. 3.7 a). From Table 3.5 and Fig. 3.7, it

follows that the use of anisotropic diffusion coefficients yields the best agree-

ment in radial powers against reference transport values.

Table 3.5. Summary of 3-D results for the ABR core with control rods in withdrawn position.
Reference eigenvalue form Serpent: k-eff = 1.02914± 0.00001.

Model for D
Control rod

k-eff
Δρ Δmax

Pow|Z Δmax
Pow|R

treatment (pcm) (%) (%)

standard
Standard 1.02070 -804 5.28 4.81

DFs 1.03017 +97 1.88 2.28

anisotropic
Anisotropic 1.02862 -49 4.85 1.27

IBCs 1.03024 +104 0.97 1.31

Δmax
Pow|Z : maximum relative difference in axial power distribution.

Δmax
Pow|R: maximum relative difference in radial power distribution.

The introduction of discontinuity factors improved all performance indica-

tors. Nevertheless, certain limitations and pitfalls in the XS generation pro-

cess have downplayed the extent of ameliorations. It is important to bear in

mind that the axially heterogeneous models described in Section 3.3 have no

net radial leakage. Also, dedicated discontinuity factors were not generated

for fuel sub-assemblies surrounding control rods, thus forfeiting corrections

there. Finally, the calculation of homogeneous fluxes in reflector and empty

(sodium-filled) control rod positions resulted in negative fluxes. Loberg et

al. [127] experienced similar difficulties in light water reactor analyses.

Notwithstanding the improvement brought about by anisotropic diffusion

coefficients, the presence of withdrawn control rods significantly deteriorates

the axial power distributions. The introduction of discontinuity factors is

beneficial, but the adoption of internal boundary conditions improves the

quality of the axial distribution further, as can be observed in Fig. 3.8 a).

The drawback posed by the lack of radial leakage-corrected discontinuity

factors is apparent in the results of Table 3.6. In a voided scenario, neutrons

travel longer distances, thus leakage corrections are expected to be more

prominent. Of all the options studied, anisotropic diffusion coefficients with

IBCs gave the best agreement in control rod worth.

The control rod S-curves of Fig. 3.8 b) suggest that the quality of IBC
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Figure 3.8. Axial power comparisons against the Monte Carlo reference when control rods
are withdrawn (a), and control rod worth curves (b). Vertical dashed lines iden-
tify fuel zone interfaces. The methods used are indicated by legends which follow
the same nomenclature of Fig. 3.7. Adapted from Publication III.

Table 3.6. Sodium void reactivity and control rod worth, calculated as
[
Δk
k

]
. Uncertainties

are below 0.01 %. Serpent reference values are, respectively, 1.68 and 16.49.

Model for D DFs?
Control rod Sodium void worth CR worth

treatment (%) (%)

standard
No Standard 1.69 17.95

Yes DFs 1.88 14.57

anisotropic
No Anisotropic 1.60 17.89

No Internal BC 1.62 15.61

results could be improved even further by a more meticulous treatment of the

current-to-flux ratios at the end of the insertion depth (Zone 1 in Table 3.2).

Whilst the introduction of directional diffusion coefficients improved the

quality of the diffusion solution, it is fair to question the need for anisotropic

constants in virtue of physical considerations. In the past, Shirakata and

Iijima [128] conducted experiments on plate-type critical assemblies. As a

result, they were able to measure the change in reactivity associated with

the rotation of a fuel element. They used this result as a means of validating

Benoist’s formula [36]. In the case of Pebble-Bed High-Temperature Gas-

Cooled reactors, Gerwin and Scherer [129] developed a directional formalism

for cylindrical void regions.

Although geometrical and material arguments allow a preliminarily in-

dication on the direction dependence of the neutron streaming process, the

presence of structural components and other non-multiplicative regions, such

as control rods, makes it difficult to provide a final statement on the sever-
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ity of the anisotropy and the consequent need for directional constants. The

new formalism described in this thesis is advantageous in the sense that it

always provides directional constants. The degree of anisotropy among the

components is given by the physics of the problem at the lattice level. In

consequence, there is no need to resort to ad hoc considerations.

3.4 Extension to other reactor types

Directional diffusion coefficients applied to a fast reactor problem furnished

better eigenvalues and power distributions than standard diffusion coeffi-

cients. It is of interest to study the performance of anisotropic diffusion con-

stants in other reactor systems. To that end, the first step is to determine

an optimal value of the interpolation constant m in Eq. (2.24) by means of

combined Monte Carlo and diffusion methods.

In Publication V, a series of tests was conducted on CANDU, Russian-type

VVER-440 and prismatic, high-temperature, graphite-moderated gas-cooled

reactor (HTR) cells. SFR cells were considered, too, in order to compare

results against previous findings from Publication II.

For every reactor design, one-dimensional axial models were used for XS

generation with Serpent 2. Next, the resulting data was input to the diffu-

sion solver TRIVAC [12]. In Fig. 3.9, the results of this study are parametrized

with the height of the axial model. With the exception of the SFR cases, cal-

culations were carried using a coarse two-group energy structure, with a

cutoff at 0.625 eV, and a relatively fine 23-group structure from the CASMO

code [22]. Using an iterative procedure for the rejection of outliers described

in Publication V, 95% confidence intervals of the optimal interpolation con-

stant per case were established and summarized in Table 3.7.

The effect of group collapsing is severe for the VVER reactor case, and

originates a substantial shift in the curves of Fig. 3.9. There is no value of

m in the interval [0, 1] that yields equivalence in k-eff for this type of cell.

Although an intermediate group structure that does yield equivalence could

exist, the anisotropic diffusion coefficient formalism is not recommended for

light water reactor calculations at this stage.

For the CANDU case7, optimal interpolation constants for 23 and for 2

energy groups could be determined, albeit the spread in the latter structure

7In the CANDU cell, the term “axial” was must be interpreted in the same context as
Milgram [104] has used it, i.e., along the fuel channel, which is actually horizontal
in this type of reactors.
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Figure 3.9. Differences in eigenvalues calculated by Monte Carlo (kMC) and by diffusion
theory (kdif ) for various simplified 1-D problems. XS data generated by Serpent
for different system heights was fed to the TRIVAC code [12]. Diffusion calcu-
lations were performed using 50 axial meshes. Ordinate values correspond to
Δk = (kMC − kdif ). The legend at the top indicates the height of the system.
From Publication V.
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Table 3.7. Optimal interpolation constants determined for the scenarios of Fig. 3.9. VVER
and two-group HTR results do not yield equivalence and thus a confidence interval
was not determined.

Cell type mopt 95 % confidence limits

VVER (2 groups) 0.00 n/a

VVER (23 groups) 1.00 n/a

CANDU (2 groups) 0.39 (0.14 – 0.64)

CANDU (23 groups) 0.64 (0.60 – 0.67)

HTR (2 groups) 0.00 n/a

HTR (23 groups) 0.48 (0.38 – 0.58)

SFR (normal) 0.76 (0.71 – 0.82)

SFR (voided) 0.84 (0.80 – 0.88)

is considerable. In HTR cells, an optimal value can only be determined for

a sufficiently refined energy grid. SFR results are compatible with previous

findings from Publication II, where more refined models yielded an optimal

value m = 0.85.

3.4.1 Application to a CANDU reactor

A half-core CANDU benchmark problem was selected in order to test the per-

formance of anisotropic diffusion coefficients taking into account the optimal

interpolation constants of Table 3.7. The proposal by Pounders et al. [130]

was simplified by modeling a fresh fuel core and by not including the re-

activity control devices. Material temperature definitions were taken from

another work [131].

Studies were conducted in two energy groups and also with an 8-group

structure proposed by Pounders et al. [132]. Based on the results of Table 3.7,

the interpolation constants m = 0.40 and m = 0.65 were used in conjunction

with the 2- and 8-group structures, respectively.

In Publication V, this simplified benchmark problem was solved exploiting

a variety of neutron leakage models at assembly level. The leakage model

part of the study will be dealt with in Section 4.4 of the next chapter. Here,

only the use of albedo boundary conditions at assembly level is dealt with.

The comparison of diffusion calculations and Monte Carlo reference val-

ues is summarized in Table 3.8. The agreement in 2-group eigenvalues is

very poor, particularly in the case of directional diffusion coefficients, where

the interpolation constant had been specifically adjusted to yield equiva-

lence. Such adjustment, however, was conducted on 1-D systems along the
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axial direction. In fact, Table 3.8 does report an improvement in the axial

power comparison. It follows that the treatment of the radial component is

troublesome.

Table 3.8. Results summary for CANDU problem using albedo boundary conditions during
the XS generation process. The eigenvalue calculated with the code Serpent is
k-eff = 1.09585± 0.00001.

Energy
Model for D k-eff

Δρ Δmax
Pow|1D Δmax

Pow|2D Δmax
Pow|3D

bins (pcm) (%) (%) (%)

2
Standard 1.09265 -267 0.92 1.57 2.31

Anisotropic 1.09255 -276 0.82 3.07 3.19

8
Standard 1.09597 -10 0.50 1.39 1.48

Anisotropic 1.09573 -10 0.41 2.49 2.57

Δmax
Pow|1D: maximum relative difference in axial powers (12 axial regions).

Δmax
Pow|2D: maximum relative difference in radial channel powers.

Δmax
Pow|3D: maximum relative difference in fuel bundle powers.

Inspection of Fig. 3.4 b) reveals that some of the Cartesian mesh elements

only intersect the moderator material, and thus the type of directional aver-

aging method proposed fails to capture the nature of neutron diffusion in the

homogenized system when heterogeneities are not uniformly distributed. In

the SFR studies on hexagonal geometry (Publications II and III), such draw-

back was not experienced.

Figure 3.10. Radial power comparison for CANDU problem diffusion calculations performed
in 2 energy groups using standard (a) and directional (b) diffusion coefficients.
At every channel position, the legend denotes the relative difference between
Monte Carlo and diffusion results, in percent. Adapted from Publication V.

8-energy-group results evidence a remarkable improvement in k-eff for

both diffusion coefficient models, which points out to the fact that the ra-

dial averaging problem is magnified when using 2 energy groups. To some
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extent, however, the radial issue remains, because in Table 3.8 the perfor-

mance of standard diffusion coefficients is still superior in terms of channel

and bundle powers. In Fig. 3.10 b), the use of anisotropic diffusion coeffi-

cients induces a slight radial tilt in channel powers.

The quality of directional diffusion coefficients might be improved via a

non-regular Cartesian mesh during cross section generation, in addition to

a dedicated interpolation constant for the radial direction. However, the

performance of standard diffusion coefficients is very satisfactory. Hence,

improvements to the directional formalism are not easily justifiable.

3.5 Limitations

3.5.1 Micro-group structure

In the SFR studies, directional diffusion coefficients systematically yielded

better results than isotropic diffusion coefficients. In Publication III, how-

ever, a study demonstrated that diffusion coefficients are susceptible to an

undesirable dependence on the micro-group energy structure used in Serpent.

The micro-group structure is used in an intermediate array where partial

quantities are stored during the transport cycle, and then mapped onto the

few-group array.
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Figure 3.11. Selected one-group reaction XS data and relative computation time (a), and
one-group diffusion coefficients (b) as a function of the number of energy bins in
a uniform-lethargy micro-group structure ranging from 10-11 MeV to 20 MeV.
Fully colored dots correspond to the non-uniform-lethargy structures ECCO-33
and ECCO-1968 [122]. Adapted from Publication III.

In Fig. 3.11, whereas the choice of the micro-group structure has an im-

pact on the computing time, it has no effect on one-group reaction cross sec-
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tion data. Conversely, standard and directional diffusion coefficients do show

a dependence on the micro-group structure. This variation is associated

with the summation of reciprocals in Eq. (2.16) and also when Eq. (2.24)

is mapped from the micro- to the few-group array. The effect is more severe

on standard diffusion coefficients. In multi-group problems, fine-structure

effects are expected to be less prominent in the diffusion coefficients. The

present studies, however, have not been focused on this matter.

Also in Publication III, discontinuity factors did improve the results, al-

though the lack of leakage-corrected DFs in the radial direction and in some

non-multiplicative regions limited the quality of the improvements.

The radial averaging techniques for directional diffusion coefficients pro-

posed in Publication III are not fit for the treatment of cluster geometries

typical in CANDU reactors, as arises from Publication V. This issue mainly

affects the eigenvalue in two-group diffusion theory, although radial powers

are also influenced for 2- as well as for 8-group structures.

3.5.2 On statistics in Publication I

In Publication I, Milgram’s method was applied to simplified problems, with

a view to allow tailoring the cross section data to suit the needs of that

work. However, it would have been desirable to increase the computation

time in order to improve the statistics of the results of Section 3.1. When

that work was conducted, the premise was to characterize a qualitative func-

tional dependence, and to underline the large uncertainties associated with

Milgram’s method when alternative techniques had already furnished well

converged values.
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4. Neutron leakage models in Monte
Carlo XS generation

The first stage of the 2-step approach involves a solution of the neutron

transport problem at lattice level. The means of capturing the physics of

an infinite lattice is by the use of reflective or periodic boundary conditions.

The boundary conditions imposed at assembly level are generally not sat-

isfied at core level. Hence, the performance of the homogenized few-group

cross section data can be deteriorated due to the inability to capture neutron

leakage in the first computational step. Because of this, corrections of the

XS data at assembly level are mandatory. The problem is aggravated by the

fact that the choice of the few-group structure may have a detrimental ef-

fect on the diffusion calculations or, conversely, result in some extent of error

compensation that overrides the effect of the corrections.

Whereas the best means of representing assembly leakage is by explic-

itly modeling the –heterogeneous– surroundings, this approach can become

computationally expensive. Furthermore, in a way this attempts against

the idea of the two-step approach in the limit of large surroundings, since

the full, heterogeneous core problem would be solved at the assembly level.

A good leakage model is a trade-off between the improvement in the per-

formance of the few-group XS data at core level and the complexity of the

neutron transport problem solved at assembly level.

The focal point of this chapter is the comparison of various options to

account for neutron leakage with the Monte Carlo code Serpent 2, and to

compare the performance of such alternatives when applied to diffusion cal-

culations. This chapter includes selected excerpts from Publications II–V.
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4.1 On the explicit representation of surrounding assemblies:
application to a fast reactor

It is expected that the effect of neutron leakage models is more pronounced in

calculations involving only a reduced number of energy groups, since in such

cases the real –continuous– neutron energy spectrum can undergo larger

within-group variations, which affect the resulting few-group XS data.

In Publication II, the influence of the leakage model on the quality of

full-core diffusion calculations of the ABR design in 7 energy groups was

studied. Neutron leakage was accounted for via axially heterogeneous (or

Z-heterogeneous) models, as well as by single fuel assemblies, followed by

B1 corrections1 The energy structures used in Publication II are presented

in Table 4.1.

Table 4.1. Energy group structures used in Publication II. Only upper bounds are reported.
The lowest energy bound is 10-11 MeV.

24 g 7 g
Energy

24 g 7 g
Energy

24 g 7 g
Energy

(MeV) (MeV) (MeV)

1 1 1.9640E+01 9 3.0197E-01 17 5 5.5308E-03

2 1.0000E+01 10 1.8316E-01 18 3.3546E-03

3 6.0653E+00 11 4 1.1109E-01 19 6 2.0347E-03

4 2 3.6788E+00 12 6.7379E-02 20 1.2341E-03

5 2.2313E+00 13 4.0868E-02 21 7.4852E-04

6 3 1.3534E+00 14 2.4788E-02 22 4.5400E-04

7 8.2085E-01 15 1.5034E-02 23 3.0432E-04

8 4.9787E-01 16 9.1188E-03 24 7 1.4863E-04

Regardless of the diffusion coefficient model, the results for normal and

voided conditions of Table 4.2 and Table 4.3, respectively, indicate that Z-

heterogeneous models have a better overall performance. Axially heteroge-

neous cross section generation models have the following advantages:

1. Improved fidelity of the neutron spectra in presence of explicit heteroge-

neous neutron leakage in the axial direction.

2. There is no need to postulate any space-energy separability of the neutron

flux, as occurs with the B1 corrections.

1In the case of the non-multiplicative assemblies (such as reflectors and control rod
channels), a fuel region had to be added to the model, and no B1 corrections were
applied. B1 corrections did not apply to XS data from other non-multiplicative zones
listed in Table 3.2, either.
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Table 4.2. Summary of 3-D ABR results for normal conditions using 7 energy groups. Refer-
ence eigenvalue from Serpent: k-eff = 1.03732 ± 0.00001. Radial diffusion coeffi-
cients were obtained through the use of Eq. (2.25).

Model for D
Leakage

k-eff
Δρ Δmax

Pow|Z Δmax
Pow|R

treatment (pcm) (%) (%)

standard
B1 1.04280 +507 2.22 0.90

Z-heterogeneous 1.03677 -51 0.50 1.04

anisotropic
B1 1.04267 +494 2.53 0.96

Z-heterogeneous 1.03725 -6 1.32 1.02

Δmax
Pow|Z : maximum relative difference in axial power distribution.

Δmax
Pow|R: maximum relative difference in radial power distribution.

Table 4.3. Summary of 3-D ABR results for voided conditions using 7 energy groups. Refer-
ence eigenvalue from Serpent: k-eff = 1.05620 ± 0.00001. Radial diffusion coeffi-
cients were obtained through the use of Eq. (2.25).

Model for D
Leakage

k-eff
Δρ Δmax

Pow|Z Δmax
Pow|R

treatment (pcm) (%) (%)

standard
B1 1.06304 +609 2.40 0.93

Z-heterogeneous 1.05948 +293 1.11 0.82

anisotropic
B1 1.06229 +543 2.11 1.06

Z-heterogeneous 1.05954 +298 1.45 0.78

Δmax
Pow|Z : maximum relative difference in axial power distribution.

Δmax
Pow|R: maximum relative difference in radial power distribution.

3. Monte Carlo codes such as Serpent are specially well suited for this type

of three-dimensional setups.

4. XS data sets for several regions are generated simultaneously in a single

run.

5. The availability of heterogeneous inter-region scalar fluxes and neutron

currents can be exploited towards the generation of leakage-corrected dis-

continuity factors.

Z-heterogeneous models also suffer from some drawbacks:

1. Memory requirements are increased.

2. An adequate characterization of the surrounding environment and bound-
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ary conditions is needed.

3. The number of neutron histories to be run is dictated by the region with

the poorest statistics.

By adopting a coarse few-group structure, the spectral effect associated with

the voiding of sodium from the ABR core cannot be properly captured, as

emerges from the reactivity differences in Table 4.3. Also in Publication II,

the number of energy groups was increased to 24. The results were already

presented in Chapter 3, in the form of Table 3.3. The values reported therein

suggest that there was a compensation of errors in the 7-group results for

normal conditions. Leakage models cannot fully compensate the effect of a

poor energy resolution.

In the context of Monte Carlo XS generation, the statistical precision of

the few group data is directly linked to the CPU time, as discussed in con-

nection with Eq. (2.15). By increasing the number of energy groups, one in-

evitably incurs in a computing time penalty, provided that the same degree

of statistical precision is attained.

Increased CPU times are not associated with energy grid refinement only.

In Publication III, axially heterogeneous models were applied to the genera-

tion of leakage-corrected discontinuity factors in the axial direction. As pre-

sented in Table 3.5, the quality of the results was improved, but the periodic

radial boundary conditions imposed limited the extent of the enhancements.

An attempt to extend the generation of leakage-corrected discontinuity fac-

tors to the radial direction through the explicit representation of neighbor-

ing assemblies plus vacuum boundary conditions would entail a combined

memory and CPU computational burden that would render this approach

impractical.

4.2 Generation of 3-D leakage-corrected discontinuity factors

The results of the preceding section bring to light that a detailed environ-

ment is beneficial in terms of the quality of the few-group XS data, although

it can be at the same time detrimental from the point of view of CPU and

memory requirements. For the sake of computational efficiency, it is of inter-

est to model smaller systems, and use an adequate neutron leakage model.

In the particular case of leakage-corrected discontinuity factors, the need

for non-zero net neutron currents at assembly boundaries rules out the use of
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Table 4.4. Differences in reactivity between MC and diffusion calculations with albedo
boundary conditions for different discontinuity factor models. Standard devia-
tion in k-eff values computed by Serpent is 1 pcm. Standard diffusion coefficients
were used in all cases. UDF cases use unity discontinuity factors. DFg cases
use discontinuity factors from Generalized Equivalence Theory. DFl cases use
leakage-corrected discontinuity factors.

k-eff albedo
Δρ (pcm)

UDF DFg DFl

1.16074 1.00000 3 3 3

1.15001 0.99914 -9 -7 -7

1.13751 0.99812 -10 -6 -5

1.12501 0.99708 -14 -7 -3

1.11251 0.99602 -15 -4 2

1.10001 0.99493 -22 -9 2

homogeneous B1 theory. The results of Publication III show that it is possible

to use the albedo heterogeneous leakage model available in Serpent 2 in

order to obtain leakage-corrected discontinuity factors. The performance of

these DFs improves over that one of Generalized Equivalence Theory for a

single node case, as presented in Table 4.4.

In Fig. 4.1, leakage-corrected discontinuity factors converge to those from

Generalized Equivalence Theory in the limit of zero leakage.
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Figure 4.1. Radial leakage-corrected discontinuity factors (DFl) normalized with discon-
tinuity factors from Generalized Equivalence Theory (DFg). The results are
parametrized according to the albedo value (β). A table containing absolute val-
ues and their statistical uncertainties is included in Publication III.
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4.3 Assembly-level comparison of neutron leakage methodologies

In Sections 4.1 and 4.2, the quality of some neutron leakage methodologies

applied to diffusion calculations was assessed in a fast reactor system. In

the interest of contrasting different leakage methods in a wider range of

scenarios, it is convenient to isolate the cell calculation step from the core-

level solution. In this way, neither the diffusion coefficient model nor the

particular reactor setup will interfere with the comparisons.

In Publication IV, the following leakage methodologies:

• infinite medium (no spectral corrections),

• homogeneous B1 corrections,

• albedo iterations, and

• layer-expansion-based leakage model

were applied to the study of a wide range of 2-D reactor cells. In addition

to previous reactor designs, BWR and Pressurized Water Reactor (PWR), as

well as plate-type, thermal-spectrum Materials Testing Reactor (MTR) fuel

elements were added to the study. The MTR-CR case is a non-multiplicative,

box-type MTR Control Rod, surrounded by MTR fuel.

The quality of every leakage option was judged based on the maximum

relative differences in assembly-averaged multi-group scalar fluxes and pin

powers. As a reference, a solution obtained by linear interpolation between

two closest-to-critical colorsets was used.

A colorset is an extended cell, or super-cell of identical elements in a sym-

metrical arrangement. Typically, vacuum boundary conditions are applied,

and few-group XS data constants are generated for the innermost element

only. Additional considerations justifying the choice of colorset references

are exposed in Section 4.5.1.

The full comparisons of assembly fluxes and pin powers of Table 4.5 and

Table 4.6, respectively, have been summarized in the form of Table 4.7 in

order to ease the analysis. The comparison is focused on the layer-expansion

method2 against infinite medium and albedo iterations only, for the sake

of catering for the extreme scenarios where either no corrections at all, or

detailed heterogeneous leakages were taken into account.

Referring to Table 4.7, the performance of the layer-expansion method is

superior to the use of no corrections, whereas albedo search exhibits better

2Selected results correspond to the highest number of layers.
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performance in reactor cells where neutrons travel large distances (CANDU,

HTR and SFR). These maximum flux differences, however, occur in groups

that do not contribute significantly to pin powers. In the case of the HTR

cell, it should be born in mind that the maximum pin power difference with

the layer-expansion method is within the bounds defined by the closest-to-

critical colorsets, according to Table 4.6.

Table 4.5. Calculated maximum relative assembly flux differences (in percent) for various
assembly leakage models. The maximum absolute uncertainty in the relative dif-
ferences is 0.03%. Neutrons are always born in the central layer.

Cell type
Colorset Single assembly

Lower Upper Infinite B1 Albedo 2 layers 3 layers 4 layers

BWR 0.19 0.85 3.09 1.43 4.12 3.77 1.77 –

CANDU 0.12 3.31 10.10 1.81 2.63 2.68 4.99 –

HTR 2.83 1.32 9.18 1.90 1.79 2.00 3.70 –

MTR 13.63 9.14 21.78 7.67 20.13 6.21 6.12 –

MTR-CR 16.89 7.65 8.95 – 3.89 2.11 – –

PWR 2.94 2.77 6.20 1.78 7.09 3.97 3.91 –

SFR 1.94 4.37 22.59 3.21 12.90 13.63 22.42 21.58

VVER 17.64 2.41 13.66 2.71 12.42 10.89 6.32 –

Table 4.6. Calculated maximum relative pin power differences (in percent) for various as-
sembly leakage models. The maximum absolute uncertainty in the relative dif-
ferences is 0.01%, with the exception of infinite medium results for the SFR cell,
where 0.06% applies. Results corresponding to B1 corrections were excluded, be-
cause they are the same as in the “Infinite” cases.

Cell type
Colorset Single assembly

Lower Upper Infinite Albedo 2 layers 3 layers 4 layers

BWR 0.09 0.39 1.20 1.80 1.92 1.64 –

CANDU 0.01 0.22 0.29 0.17 0.12 0.15 –

HTR 0.57 0.26 0.92 0.25 0.40 0.55 –

MTR 2.09 1.40 3.52 7.39 3.13 – –

PWR 4.13 3.89 9.27 7.48 6.24 – –

SFR 0.14 0.32 1.13 0.35 0.32 0.43 0.34

VVER 5.18 0.71 4.18 4.99 4.60 3.61 –

With regard to computational requirements, the layer-expansion method

only incurs in a minor memory overhead, whereas the CPU time is either

equivalent or slightly lower than in the case of albedo iterations, due to his-

tory termination by leakage. The results of Table 4.8 for BWR and PWR cells

were obtained by running and averaging 250 cases per cell and per leakage

model.

In multiplicative systems, the maximum number of layers determined by

the algorithm of Fig. 2.3 a) will primarily depend on the difference between

the infinite multiplication factor, k∞, and the target eigenvalue, ktarget. When
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Table 4.7. Relative performance of the layer-expansion-based leakage model against infinite
medium and albedo search methodologies. A tick mark (�) indicates a better per-
formance by the layer-expansion method. A dash sign (–) indicates that the values
are comparable within their standard deviations. No powers were compared in the
MTR control rod case.

Cell type
Fluxes Powers

Infinite Albedo Infinite Albedo

BWR � � × �

CANDU � × � –

HTR � × � ×
MTR � � � �

MTR-CR � � n/a n/a

PWR � � � �

SFR � × � –

VVER � � � �

Table 4.8. Averaged wall-clock computer time and memory overheads for heterogeneous
leakage models. CPU times correspond to cases run using 12 tasks in Six-Core
AMD Opteron 2435 2.6 GHz processors. Adapted from Publication IV.

Cell type Leakage model
Time Memory

(min) (MB)

BWR
Albedo iterations 31.5 ± 0.2 377.32

Layer expansion 32.0 ± 0.4 377.79

PWR
Albedo iterations 24.4 ± 0.1 874.85

Layer expansion 23.4 ± 0.1 876.05

the excess reactivity is large, a low number of layers will suffice. As the dif-

ference decreases, or becomes negative3, more layers will be necessary. Even

in this situation, the layer-expansion algorithm will not incur in considerable

computational overheads for two reasons:

1. The maximum number of layers needed is naturally limited by the neu-

tron migration length, since neutrons are always born in the central posi-

tion, as far away from the outer layer as possible. This results in system

sizes smaller than the closest-to-critical colorsets. Moreover, the user can

limit the maximum number of layers by input. The main CPU overheads

envisaged are associated with the algorithms of Fig. 2.3 during the inactive

cycles, and with weight modifications at some boundary crossings during

3In the case of ktarget > k∞, the algorithm will resort to clustering, and an iteration
value larger than unity will be enforced.
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the active cycles. These costs should be comparable to those of the albedo

iterations.

2. One of the main advantages of the trajectory expansion is that it relies

on three integer indexes in order to identify any 3-D lattice element in

the expanded system. There is no need to store additional assemblies in

computer memory, irrespective of the number of layers. Consequently, the

memory footprint of the method is very modest, and is mostly driven by the

arrays used to tally layer-dependent fluxes. The user can also request 2-D

multi-group flux maps (see Section 4.3.1), but this is an optional feature

that can be overridden by input.

In scenarios where the assembly under study is sub-critical, either as a re-

sult of high burnup, boron concentration, or inserted control rods, the layer-

expansion method will be susceptible to an increased variance of the iter-

ation value due to a large number of layers, as will be discussed in Sec-

tion 4.5.2.

No leakage model is able to account for what is not explicitly represented.

Highly sub-critical (or non-multiplicative) assemblies will see their spectra

more and more influenced by the neutron exchange with its neighbors as k∞

decreases. In such situations, it is recommended to extend the XS model to

include first neighbors. Even in these macro-cell environments, the layer-

expansion method can be successfully applied, as demonstrated in the MTR-

CR case in Table 4.5.

4.3.1 Layer-dependent fluxes

The unique index-based trajectory reconstruction feature exploited by the

layer-expansion model can decouple the spatial and spectral components of

the scalar neutron flux in a regular lattice by tallying layer-dependent spec-

tra due to the neutrons originated in a single –central– lattice position. Ex-

amples of these special tallies are presented in Fig. 4.2.

Letting weight modifications aside, layer-dependent scalar fluxes satisfy

reciprocity relations. For a single assembly with periodic or reflective bound-

ary conditions, the scalar flux in such “central” element will be the direct

sum of the contributions arising from all layers (in principle, the number of

layers is unbound). If this system is now replaced by an equivalent infinite

regular lattice of identical cells, and further assuming that a particular as-

sembly embedded such lattice can be individualized, only the fluxes in the

first layer of this assembly are due to neutrons born within such “central”
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Figure 4.2. Layer-dependent scalar fluxes for CANDU (a) and VVER (b) assemblies. Neu-
trons are born in the central layer only. Adapted from Publication V.

position. This follows from the definition of the first layer.

All the remaining layer fluxes are due to neutrons that were born in other

assemblies, and reached the central one. For those peripheral positions, re-

ciprocally, the central assembly is located in some layer other than the first.

Consequently, whilst the energy spectrum of neutrons dwelling in the first

layer is a footprint of the central assembly, all higher layer fluxes are influ-

enced by the neighbors.

In the CANDU case of Fig. 4.2 a), the fast flux is predominantly confined

to layer 1. This means that most of the fast neutrons are born in the same

central assembly, and only a reduced fraction of them reaches the neighbor-

ing surroundings. Conversely, thermal flux is predominant in layer 2, which

implies that the majority of the thermal flux a CANDU assembly “sees” is

actually due to neutrons born in first-neighbor assemblies. These distinc-

tive behaviors are due to the combined effect of cluster geometry and large

migration lengths, and are more tangible in the two-group results of Fig. 4.3.

Figure 4.3. Fast (a) and thermal (b) expanded scalar fluxes in a fresh CANDU cell. Fluxes
due to neutrons born only in the central lattice element are tallied at collision
sites. In fissile regions, colors ranging from red to yellow depict the fission rate,
in arbitrary units. Adapted from Publication V.

In the VVER case of Fig. 4.2 b), the spectral variations per layer are not

so pronounced, which suggests that for this type of cells the environment of

a given assembly has less effect on the spectrum “seen” by that element.

The layer-expansion technique provides valuable insights on the space-

64



Neutron leakage models in Monte Carlo XS generation

energy properties of the scalar flux in a regular lattice, and can be helpful in

understanding what are the characteristic length scales that neutronically

couple different fuel elements in a reactor core.

4.4 Leakage models applied to a CANDU reactor

In Publication V, different strategies were applied in order to account for

neutron leakage during few-group XS generation with Serpent 2. Since it is

expected that group collapsing effects are more severe in coarse energy grids,

cross section generation and diffusion calculations were carried out in 2 and

in 8 energy groups. The latter energy structure definition may be found in

Publication V. The results are presented in Table 4.9.

Table 4.9. Results summary for simplified CANDU benchmark problem using standard dif-
fusion coefficients. No leakage corrections were applied in the reflector region
in the B1 cases. Serpent eigenvalue: k-eff = 1.09587± 0.00001. Relative uncer-
tainties in maximum channel (0.02%) and bundle (0.09%) power differences are
governed by the quality of the MC solution. Adapted from Publication V.

Energy
Leakage model k-eff

Δρ Δmax
Pow|1D Δmax

Pow|2D Δmax
Pow|3D

bins (pcm) (%) (%) (%)

2

Infinite lattice 1.09289 -247 0.91 1.73 2.67

B1 1.09149 -365 0.89 2.15 2.28

Albedo 1.09265 -267 0.92 1.57 2.31

Layer expansion 1.09270 -263 0.92 1.60 2.56

8

Infinite lattice 1.09631 +38 0.50 1.31 1.51

B1 1.09537 -40 0.48 1.79 1.88

Albedo 1.09597 +10 0.50 1.39 1.48

Layer expansion 1.09632 +39 0.50 1.22 1.61

Δmax
Pow|1D: maximum relative difference in axial powers (12 axial regions).

Δmax
Pow|2D: maximum relative difference in radial channel powers.

Δmax
Pow|3D: maximum relative difference in fuel bundle powers.

The effect of energy collapsing is readily noticeable in the 2-group results.

The differences in reactivity are in agreement with results by Shen [133].

In the case of B1 corrections, the agreement in eigenvalue is particularly

deteriorated. Heterogeneous leakage models (albedo, layer expansion) yield

better results, which differ only slightly among them.

The overall agreement in eigenvalue and power distribution is remark-

ably improved when a finer, 8-group structure is used. This exercise con-

firms that leakage models cannot entirely correct combined homogenization

and condensation errors. In the framework of the two-step core analysis ap-

proach with a coarse energy mesh, it is recommended that leakage-corrected
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discontinuity factors are generated as a means of reducing these errors. It

is pertinent to point out that, from the methods listed in Table 4.9, only the

albedo and layer-expansion schemes can provide the face-averaged net cur-

rents required for this task.

In Publication V, a CANDU benchmark problem was adopted mostly due

to directional diffusion coefficient considerations, and was not necessarily

the best motif for a conclusive evaluation of leakage models beyond the ob-

servations of the preceding paragraphs. It is not possible to assert, at this

stage, that the similar performance of albedo and layer-expansion methods

will hold in other reactor types. Further studies focused on other systems

are envisaged as future work.

4.5 Limitations

4.5.1 About the reference solution

In Publication IV, a linear interpolation technique between values obtained

from the two closest-to-critical colorsets was adopted as a source of reference

data for comparison. Denoting the “lower” (i.e., sub-critical) colorset by the

superscript “l”, and by the superscript “u” the “upper” (super-critical) col-

orset, any reference quantity χr was computed by linear interpolation of the

corresponding colorset quantities
(
χl , χu

)
and their associated eigenvalues,(

kl , ku
)
, through:

χr =
ku − 1

ku − kl
χl +

1− kl

ku − kl
χu . (4.1)

In Eq. (4.1), the quantity χ may be a multi-group flux, a pin power, or a

face-averaged multi-group albedo. The use of interpolation was driven by

the need to reduce two discrete data sets into a single one. In addition to

Table 4.5 and Table 4.6, calculated multi-group albedos depicted in Fig. 4.4

also highlight the extent of variability that can be expected between closest-

to-critical colorsets.

The assumption of linear behavior is undoubtedly conjectural, but given

the discrete nature of the bounding colorsets, the procurement of any inter-

mediate solution will entail some extent of approximation.

It is fair to question the choice of colorsets as sources of reference values

altogether, knowing that more reliable figures would originate from hetero-

geneous, full-core systems. Had the latter approach been opted for, then the

computational requirements would have increased dramatically.
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Figure 4.4. Calculated radial albedos for SFR (a) and VVER (b) cases. The gray area high-
lights the extent of variability that can be expected depending on the size of the
colorset used. Adapted from Publication IV.

At the expense of much extra work, the calculation burden could have

been alleviated via global-local iterations, with embedded Monte Carlo cell

calculations constrained by boundary neutron currents provided by a core-

level diffusion solver. The results of Cho et al. [118], however, evidence slow

convergence and an apparent bias in this approach.

In the work by Leppänen et al. [90], large colorsets were shown to pro-

vide the best characterization of assembly environments in a highly hetero-

geneous core fueled with uranium dioxide (UO2), and including burnable

absorber pins and control rods. The performance of those colorsets was also

taken into account during the choice of the reference scenarios in Publication

IV.

4.5.2 Layer-expansion leakage model: sensitivity study

Neutron weight updates in the layer-expansion-based leakage model do not

occur, in the general case, at every lattice surface crossing, as happens in

the case of albedo iterations. The relatively infrequent nature of the weight

modifications is manifested in the statistical spread of the system eigenval-

ues obtained by layer expansion.

In Publication IV, a sensitivity study for PWR and BWR cells was con-

ducted by running several identical cases with different random seeds, in

order to guarantee statistical independence. The results are presented in

the form of histograms in Fig. 4.5.

The dispersion of the eigenvalues associated with the layer-expansion me-

thod can be reduced by increasing the number of inactive cycles, at the ex-

pense of increased computation time. It is expected, nonetheless, that cells

with eigenvalues that depart a few hundred pcm from their target values

will still yield better leakage-corrected spectra than in the infinite lattice
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Figure 4.5. Statistical distribution of iteration value and eigenvalue for PWR (a) and
BWR (b) cells. For comparison purposes, the results obtained via albedo criti-
cality search are also included. Every data set was obtained by post-processing
the results of 250 independent Monte Carlo calculations. Adapted from Publica-
tion IV.

model without any corrections.
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5. Conclusions

5.1 Implications

The adoption of different Monte Carlo techniques for the computation of

multi-group diffusion coefficients may have a considerable effect on the agree-

ment between full-core diffusion results and reference values procured by a

detailed Monte Carlo transport simulation. In SFR applications, the newly

introduced anisotropic diffusion coefficient formalism performed remarkably

better than the use of previous –isotropic– diffusion coefficients with unity

discontinuity factors.

The treatment of control rods was challenging for both diffusion coefficient

models. The root cause of this is not intrinsic to the diffusion coefficients,

but to the validity of the diffusion approximation altogether. Whereas dis-

continuity factors improved the quality of the solutions, the improvements

were lessened due to the lack of leakage-corrected radial DFs, as well as to

the emergence of negative homogeneous fluxes in some non-multiplicative

regions. In situations like these, anisotropic diffusion coefficients are more

convenient. The introduction of internal boundary conditions, a relatively

simple technique, was more successful in the evaluation of control rod worth,

which is an extremely important safety parameter.

The need for improvements in the calculation methods for control rods in

fast reactors was already identified, for example, by Gauthier et al. [134].

The advantages of the IBC implementation described in this work are that:

IBCs were readily available from data required for the calculation of dis-

continuity factors; current-to-flux ratios required only minor modifications

to the diffusion solver; and no post-processing of the diffusion results was

necessary.

In order to improve the performance of diffusion coefficients under voided
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conditions, leakage corrections are necessary also in the radial direction. To

that end, the heterogeneous leakage models at assembly level studied in

this thesis can provide the net neutron currents required for this task. This

reinforces the introductory claim (see Section 1.2) that diffusion coefficients

and leakage models are coupled.

Homogeneous B1 corrections in SFR and CANDU cases yielded the worst

overall agreement against transport results. In consequence, either albedo

or layer-expansion methods are recommended. It is also important to remark

that refining the energy grid had a more beneficial effect than the choice of

the leakage model. If computational speed constraints force the adoption

of a coarse energy structure, the energy condensation error can be compen-

sated by generating leakage-corrected discontinuity factors with the help of

heterogeneous leakage models.

The CANDU scenario was not optimal for an exhaustive comparison be-

tween albedo and layer-expansion leakage models. In spite of this, the con-

cept of layer expansion furnishes valuable information about the space-energy

coupling of the scalar neutron flux in any type of reactor assembly embedded

in a lattice.

5.2 Limitations of the research

The numerical methods implemented in Serpent 2 and all the related code

modifications have not been optimized, and were developed for the sake of

this research only. None of these changes constitutes a part of the software

package.

The main findings of this research are limited to the reactor systems con-

sidered. A study on the generalization of anisotropic diffusion coefficients

to diverse reactor types provided some insights, including their inapplica-

bility to light water reactors1. The same study, however, suggested that

CANDU reactors were good candidates for the application of the formalism,

until detailed 3-D calculations revealed deficiencies in the radial averaging

technique for cluster geometry.

A more comprehensive study on the effect of the micro-group structure on

the diffusion coefficients condensed over several groups is still missing.

The larger variances associated with the layer-expansion leakage model

were not directly discernible in the results. As stated earlier, a reactor sys-

tem other than CANDU would have been more suitable for the comparison

1At least, in the limit of very coarse and very fine energy grids.
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between heterogeneous leakage models in the 2-step approach.

5.3 Recommendations for future research

The limitations raised in Section 5.2 provide motivation for future research.

The application of the layer-expansion leakage model to different types of

reactor cells may shed light on features that were not accessible through

previous methods. Pertaining directional diffusion coefficients, preliminary

results suggest that the application of the new methodology to graphite-

moderated, gas-cooled reactors is worthwhile investigating.

Advanced leakage models may impact the quality of the depletion calcu-

lations used in source term analysis. This, in turn, may have implications

that range from fuel performance to shielding analysis and fuel disposal. In

the near future, the main beneficiaries of this research will be prospective

students and other colleagues.
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Publication I

This article incorrectly references the work by Yamamoto:

• T. Yamamoto, “Monte Carlo algorithm for buckling search and neutron

leakage-corrected calculations,” Ann Nucl Energy, 47, 14–20 (2012)

Instead, the correct reference should be:

• T. Yamamoto, “Monte Carlo method with complex weights for neutron leakage-

corrected calculations and anisotropic diffusion coefficient generations,” Ann

Nucl Energy, 50, 141–149 (2012)
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