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In the evolving nature of today’s world of network security, threats have become
more and more sophisticated. Although different security solutions such as firewalls
and antivirus software have been deployed to protect systems, external attackers
are still capable of intruding into computer networks. This is where intrusion
detection systems come into play as an additional security layer.

Despite the large volume of research conducted in the field of intrusion de-
tection, finding a perfect solution of intrusion detection systems for critical
applications is still a major challenge. This is mainly due to the continuous emer-
gence of security threats which can bypass the outdated intrusion detection systems.

The main objective of this thesis is to propose an adaptive design of intrusion
detection systems which offers the capability of detecting known and novel attacks
and being updated according to new trends of data patterns provided by security
experts in a cost-effective manner. The proposed intrusion detection system uses
an anomaly-based technique and is constructed on the basis of Extreme Learning
Machine method which is a variant of neural networks. In this work, two novel
approaches are also proposed to enhance the speed of partial updates for the
learning model according to new information fed into the system. The performance
of the proposed intrusion detection system is evaluated as a network-based solution
using NSL-KDD data set. The evaluation results indicate that the system provides
an average detection rate of 81 % while having a false positive rate of 3 % in
detecting known and novel attacks. In addition, the obtained results show that
the system is capable of adapting to the new input information and data injected
into the system by a human security expert.

Keywords: Intrusion Detection System, Anomaly Detection, Clustering, ELM,
Neural Networks
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Chapter 1

Introduction

1.1 Background
In today’s world, internet and computer networks are widely used in different busi-
nesses. Business requirements have made corporations deploy their own information
systems on internet. These information systems may utilize different technologies
such as distributed data storage systems, encryption and authentication techniques,
remote access and web services [51]. While the usage of these technologies provides
lots of opportunities for enterprises to achieve their commercial goals, it also increases
the chance of intruders to launch attacks against the information systems. With
unknown vulnerabilities in software design and network protocols, cyber-crimes have
grown significantly during the past decade.

As information is a crucial asset of every organization [35], any security breach
in information systems which can put confidentiality, integrity and availability of
the information at risk may cause severe loss for the organization. According to [4],
the annual cost from cyber-crimes to the global economy is estimated to be more
than $400 billion in 2014. This statistic stresses the importance of developing proper
solutions to ensure the safety of information systems.

In order to protect information systems against intruders, different preventive
solutions have been deployed by organizations. These solutions include user au-
thentication, access control mechanisms and firewalls [29]. Although the mentioned
solutions secure information systems against unauthorized access by outsiders [27],
they can’t provide the necessary protection against internal attackers. As a result, in-
truders can launch attacks from a compromised user account without being identified.

This is where intrusion detection systems come into play as the second line of
defense. Intrusion detection is the task of monitoring a system or network in order to
detect malicious activities which try to compromise the confidentiality, integrity and
availability of the information on that system or network. An intrusion detection
system (IDS) which is deployed on a system or network generates alarms upon
detection of malicious activities. These systems are capable of detecting intrusive
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activities launched by both insiders and outsiders in a system or network. Intru-
sion detection systems can be of two types of anomaly-based and signature-based.
Anomaly-based IDSs try to find the abnormal patterns of activities in a system by
comparing the activities with the normal profile of the system. On the other hand,
signature-based IDSs compare the patterns of the activities in the monitored system to
the predefined patterns of existing intrusions and trigger an alarm if a match is found.

Despite the fact that intrusion detection has been a vast area of research for
many years [62, 56, 14, 38], there is no perfect example of intrusion detection systems
which can be used in critical applications. This is mainly due to the evolving nature
of today’s world of cyber-security where novel attacks are emerging continuously
while security solutions remain the same. In order to address this issue, an effective
design of intrusion detection system must have the capability of detecting new and
unknown attacks as well as being updated according to new trends of data patterns
provided by security experts in a cost-effective manner.

1.2 Scope
The goal of this thesis is to design a new intrusion detection system which addresses
the problem of adaptability of existing IDSs. The proposed solution is capable of
detecting novel attacks while providing acceptable rates of detection and false alarms.
In addition, the proposed methodology uses a fast procedure for updating the IDS
according to the new patterns of data coming from both existing and new attacks.
The proposed IDS has the capability of receiving the input from a human security
expert and being updated according to that input with a low computational cost.
The update cases may consist in modifying the existing data, adding new unlabeled
or labeled data, and adding new classes of data into the system. Moreover, the
proposed IDS is capable of detecting human errors in categorizing the data and
providing the appropriate correction proposals.

1.3 The Structure of Thesis
The rest of this thesis is organized as follows.

Chapter 2 provides the necessary background in the field of intrusion detection.
Chapter 3 describes the problem tackled in this thesis as well the criteria used

to evaluate the proposed solution. In addition, the test data set which is used for
evaluation of the proposed intrusion detection system is described.

Chapter 4 presents the mathematical methods and algorithms which are applied
in the proposed solution.

Chapter 5 introduces the proposed intrusion detection system. Different compo-
nents of the system and the novel approaches of this work are discussed in detail in
this chapter.
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Chapter 6 provides an evaluation of the proposed approaches according to the
defined criteria. In addition, the effectiveness of our proposed solution will be
discussed.

Finally Chapter 7 concludes the thesis and its key outcomes and discusses the
possible improvements to the proposed solution in future work.



Chapter 2

Intrusion Detection Systems

This chapter provides the necessary background in the field of intrusion detection.
In the following sections, the objective of intrusion detection is described briefly.
In addition, different types of intrusion detection systems are discussed in terms of
their source of information as well as their detection technique. Finally, anomaly
detection systems are elaborated a bit as a subcategory of intrusion detection systems.

2.1 Definition and Purpose
In the field of network security, intrusion is defined as a set of malicious activities
against the integrity, confidentiality and availability of information on a system or
network that make it vulnerable against future attacks [22]. In order to counter
such threats, intrusion detection systems are deployed to detect and identify the
attempted intrusions into a system or network. Using a set of hardware and software
resources, IDS tries to detect intrusions by monitoring the data collected from a
single host or network and generate alarm in case of detecting attempted intrusions.

2.2 IDS Classification
Intrusion detection systems can be divided into different categories according to their
source of information and detection technique. Each of these categories is described
briefly in the following subsections.

2.2.1 Detection Technique

Considering their detection method, intrusion detection systems can be classified
into two major types of signature-based and anomaly-based systems [7, 13, 23, 39, 48].

4
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Signature-based

Signature-based IDSs try to identify malicious activities in a system by comparing
the observed behavior to known attack patterns. In this type of systems, a database
is used to store the behavior of previously known attacks which are encoded as
signatures [59]. Therefore, these systems are able to detect attacks by finding similar
signatures in the database.

Signature-based IDSs can operate reliably when the observed attack pattern is
already known [51]. As a result, they have a very low rate of false positives. However,
the missing ability in detecting unknown attacks is a major drawback of this type of
systems which makes it an undesirable solution comparing to other types.

Anomaly-based

Anomaly-based IDSs create a profile by monitoring the normal activities on a system
[29]. This profile is used to find deviations of the observed activities from the normal
behavior of the system and report them as anomalies. In this type of systems, it
is of great importance to define the normal profile of the system properly in an
offline or online manner [20]. Otherwise, any activity that differ from the constructed
profile can be identified as an intrusion and hence, the system may suffer from a
high false positive rate which is caused by marking any non-intrusive abnormal
behavior as malicious. In contrast with signature-based systems, as a key advantage
anomaly-based systems are capable of detecting novel types of attacks.

2.2.2 Source of Information

The data used by an intrusion detection system may come from different sources on
a network or system [50]. Depending on the source of this data, intrusion detection
systems can be divided in two categories of host-based and network-based which are
complementary solutions [28].

Host-based

In host-based IDSs, the information is collected from a single host and may consist
of audit data, log files and resource usage of the machine [28]. Host-based IDSs
have the advantage of detecting the malicious activities aimed toward the host’s
operating system which cannot be detected by network-based IDSs [5]. However,
they also cause performance degradation on the host machine due to the background
computational activities [12]. In addition, they may be disabled by the attacker as
part of system compromise [8].
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Network-based

Network-based IDSs monitor network traffic data and try to find malicious activities
using the data coming from a single or multiple sources on the network [13]. This
type of IDS can be deployed as a separate entity in the network and therefore it has
its own resources. As a result, it addresses the performance degradation problem of
the host-based solutions.

On the other hand, network-based IDSs do not provide any information regarding
the impact of an attack on network hosts. Therefore, it is necessary to use some
complementary solutions to find out whether an attack was successful in compromis-
ing the targeted host or not [5]. This can be done e.g. by collecting the audit logs of
the network hosts.

2.3 Anomaly Detection System
An intrusion detection system which uses anomaly-based techniques for finding mali-
cious activities is called an anomaly detection system. Anomaly detection systems are
constructed based on the assumption that intrusions are a subset of anomalies [33].
In the ideal case, each detected anomaly is in fact an intrusion which means to have
zero false positives in the system. Under this assumption, anomaly detection systems
are capable of detecting intrusive activities even if the attacks are launched from
a legitimate user account. As mentioned earlier, in contrast with signature-based
systems, anomaly detection systems are capable of detecting unknown intrusions.
However, the major drawback of these systems is the high rate of false alarms trig-
gered on observing any legitimate abnormal activity on the monitored system or
network. In real applications, the burden of false alarms may lead to the crash of
the IDS [49]. On the other hand, upon detection of abnormal activities, the system
administrator must spend a lot of time to identify the root cause of generated alarms
[53]. As the number of alarms grows, the system administrator may not be able to
monitor all the triggered alerts or may simply disable the alarm generator. Therefore,
a number of true alarms may be lost among the large volume of false ones in system
traces.

The common process of an anomaly detection system can be divided in two
phases of training and testing. In the training phase, the normal profile of the system
is constructed by the IDS. As discussed in earlier sections, this profile represents
the normal behavior of the system in terms of defined features and metrics. In the
testing phase, the IDS monitors ongoing activities of the system or network and tries
to find deviations by comparing the trained profile to the new data [51].

Anomaly detection systems may use different techniques with respect to the
available data features. These include statistics-based and machine learning-based
techniques. In the following subsections, each of these techniques is discussed briefly.



7

2.3.1 Statistics-based

In statistics-based techniques, the system maintains two profiles for normal and
current behavior of the system or network. In each of these profiles, the system
behavior is modeled by calculating some statistical measures such as mean, standard
deviation, distribution of the data, etc [54]. When a new set of activities is launched
in the system or network, the IDS tries to find deviations between the two profiles
according to the mentioned measures. By using some statistical tests, the system
calculates an anomaly score for the current profile which indicates the degree of
abnormality. If the anomaly score is higher than a certain threshold, the system
triggers an alarm as a sign of an anomaly [51].

Statistics-based methods have a number of advantages. Firstly, they do not need
any prior knowledge about the system or network since the normal profile can be
built only by observing the activities in the system for a period of time. Furthermore,
as these approaches use statistical models they are particularly effective in detecting
the attacks occurring over long periods of time [17].

On the other hand, statistics-based approaches have two major drawbacks. In
these methods, the system can be trained by an intruder so that the intrusive behavior
can be assumed to be normal. Moreover, a primary principle of these approaches
is to model data points as stochastic distributions assuming to be quasi-stationary
process [17]. However, in this thesis, we take a frequentist approach to this problem
and therefore, do not rely on such assumptions.

2.3.2 Machine learning-based

In machine learning-based approaches, the system tries to learn the patterns of
the data and construct a model for categorizing the analyzed patterns [17]. Using
this model, machine learning-based anomaly detection systems have the ability to
improve their performance according to the previous results. Machine learning-based
techniques [9] may use supervised or unsupervised learning.

In supervised learning, a set of labeled data is used by the system in the training
phase. Each label represents a class of activities such as malicious or normal. After
establishing a model on the basis of data features and their corresponding labels, the
system is able to make predictions for categorizing the new data which is available
in the testing phase.

On the other hand, in unsupervised learning, the available data set is not labeled.
In this method the system tries to analyze the structure of the data and identify
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similar data points which makes it quite effective in solving clustering problems.

Artificial Neural Networks

Among different machine learning models, artificial neural networks have been quite
popular during the recent years. The basic goal of neural networks is to model the
human brain and perform a particular task in a similar way as a human by learning
from the input data. A neural network is made up of a number of interconnected neu-
rons acting as processing units where each connection has a strength called weight [21].

In a neural network, computation takes place on a layer-by-layer basis where each
layer contains a number of neurons. The basic goal of this property is to model the
parallel computing capability of human brain [21]. The number of layers and the num-
ber of neurons in each layer can be adjusted according to the application. The primary
task of a neural network is to learn from the input data and adjust the connection
weights to achieve the desired output. This can be done by using a learning algorithm.

Neural networks may use different architectures and learning algorithms. A
popular architecture of neural networks is Multi-layer Perceptron (MLP) which is
particularly used for supervised learning. MLP consists of a single input and output
layer containing the input and output data respectively. In addition, it contains a
number of intermediate layers called hidden layers. In this type of neural network,
all the neurons of a layer are connected to all the neurons of the previous layer. The
weights can be optimized on a layer-by-layer basis using a training algorithm.

Among different training algorithms, Backpropagation (BP) has been widely used
in many applications [36][30]. In this algorithm, after a random initialization of
weights the actual output of the neural network is compared to the desired output.
Starting from the output layer the local error of each layer is calculated. Considering
the error values, the weights of each layer are adapted accordingly. This procedure
continues until the network reaches a desired level of accuracy [21].

BP algorithm has a major drawback of having a long convergence time which
makes it a bottleneck in real applications. Therefore, some other methods have
been proposed to improve the convergence time of this algorithm. Extreme Learning
Machine (ELM) is one of the algorithms proposed recently as an alternative solution
which offers shorter training time. The details of this algorithm will be discussed in
Chapter 4.

2.4 Summary
This chapter provided the required background in the field of intrusion detection
containing different categories of intrusion detection systems considering their in-
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formation sources as well as method of detection. In addition, the advantages and
drawbacks of different methods of intrusion detection has been discussed. The pro-
vided knowledge about the existing solutions and their shortcomings gives a better
understanding of the tackled problem of this thesis which is formulated in Chapter 3.



Chapter 3

Problem Statement

This chapter provides a description of the problem which is tackled in this thesis. In
addition, the criteria used in this work for evaluation of the proposed solution are
introduced. Finally, the data set which is used for assessing the effectiveness of the
proposed method is described.

3.1 Problem Description
In the evolving nature of today’s world of cyber-security, the deployment of intrusion
detection systems has become a critical task. As the number of security threats
increases, developing adaptive solutions for intrusion detection is becoming a major
challenge. Despite the variety of intrusion detection approaches proposed in the
recent years, there are several challenges remaining to be tackled in this field.

In the context of intrusion detection, the proper selection of the detection tech-
nique is a matter of discussion. While signature-based techniques provide a high
detection rate for the well-known attacks, they are not capable of detecting novel
ones. Although the majority of commercial intrusion detection systems mainly use
signature-based techniques [51], with new types of attacks emerging continually, this
missing ability disfavors the use of these systems in many applications.

On the other hand, anomaly-based techniques provide the capability of detecting
unknown or “zero day” attacks by tracking the behavior of the system or network and
comparing it with a well-defined normal profile. However, as mentioned in earlier
chapters, the major drawback of these techniques is the high rate of false alarms
which affects the performance of the IDS and causes difficulties for the administrators
to identify the root cause of the triggered alarms. Therefore, providing an adaptive
approach for reducing the likelihood of false alarms can be considered as a key
requirement in designing an effective solution of intrusion detection.

Unavailability of labeled data set for training and evaluation of intrusion detection
systems is another major challenge in real applications. This can be particularly

10
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noticed in network-based intrusion detection systems. Since strict privacy-preserving
laws are issued in many countries, sharing network traffic traces of the users for public
use is banned [10]. As a result, since the labeled network data is not available for
training IDSs, the use of supervised learning methods has become very limited. This
makes unsupervised learning methods to be a proper choice for intrusion detection
systems [34] as they do not need any prior labeling of the data set. However, even
in unsupervised learning, the system decisions must be monitored and evaluated by
security experts.

Evaluation of intrusion detection systems is a critical task. In every intrusion
detection system, the decisions made by the system must be verified by human
security experts. This verification consists in checking of all the system decisions
and correcting the possible errors in classification of the data. In real systems, this
evaluation must be performed manually. Therefore, it is a time consuming and error
prone task and needs a lot of human effort. A proper intrusion detection solution
should provide a mechanism for simplifying the task of evaluation and reducing the
likelihood of human errors.

As new patterns and classes of attacks appear in the world of cyber-crimes,
updating the existing intrusion detection systems according to new patterns of data
has become an essential requirement. Such update requires the IDS to be retrained
using the new data set beside the old existing one. As discussed in earlier chapters,
training of an IDS is a costly operation in terms of computational time and resources.
Therefore, performing such costly updates is not desired by system administrators
although it has a great impact on the adaptivity of the designed solution accord-
ing to new trends of cyber-attacks. Considering this fact, providing a timely and
cost-effective update mechanism can be noted as a critical requirement in designing
intrusion detection systems.

The main objective of this thesis is to propose a new intrusion detection system
which can address the challenges and requirements of real life IDSs as discussed
above. In subsequent chapters, the proposed IDS is constructed and evaluated using
the criteria and the data set introduced in the following sections.

3.2 Evaluation Criteria
Evaluation of intrusion detection systems is a challenging task. Although a large
amount of research has been conducted in this field, there is no globally accepted
metric for measuring the performance of intrusion detection systems [51]. Generally,
the evaluation methods of intrusion detection systems can be divided in two categories
of offline and online evaluation. In offline evaluation, the system is tested by using
an existing data set which simulates the behavior of real systems or networks. The
most widely used data sets in the field of network intrusion detection are DARPA
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1998 and 1999 data sets [42, 41]. Although these data sets have been used for evalu-
ating many intrusion detection systems, they have been criticized as they cannot
simulate real network environments [51]. On the other hand, in online evaluation,
the intrusion detection system can be tested using the actual traffic of the network
containing both normal and malicious activities in a real time manner [12]. While
online evaluation provides a more realistic tailored test case, setting up such an eval-
uation is challenging as it needs similar experimental environment as in real networks.

Despite its shortcomings, in this thesis, offline method is chosen to evaluate the
proposed intrusion detection system as a network-based solution using the data set
introduced in the next section. The evaluation is conducted for two main criteria as
follows.

Evaluation of Computational time

The main focus of this evaluation is to provide a study of the computational time
required for updating the system according to the new information available as the
input. In this study, the speed of the update mechanism of the proposed system
is compared to the existing solution where the system is fully retrained. This com-
parison is performed by evaluating the computational time of each method while
varying the parameters of the problem context such as the size of existing data, the
number of traffic classes, etc. This criteria is relevant as one desired requirement of
the system is its online adaptivity.

Evaluation of Accuracy

In this evaluation, the accuracy of the decisions made by the proposed IDS is studied.
In order to measure such accuracy, a number of metrics may be taken into considera-
tion. The most commonly used evaluation metrics in the field of intrusion detection
are Detection Rate and False Positive Rate which can be defined as

Detection Rate = Number of Detected Intrusions
Total Number of Injected Intrusions

and

False Positive Rate = Number of Normal Patterns Classified as Intrusions
Total Number of Normal Patterns

.
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In the context of intrusion detection, an effective system must have a high de-
tection rate while having a low rate of false positives. Using these two accuracy
evaluation metrics, the adaptability of the proposed system to new trends of input
data is studied.

3.3 Data Set Description
In this thesis, in order to evaluate the performance of the proposed intrusion detection
system NSL-KDD data set is used which is a variant of KDD 99 data set.

KDD 99 is one of the publicly available network intrusion detection data sets
which is widely used in several studies [19, 15, 6, 31, 16, 57]. The original data
set was produced in DARPA Intrusion Detection Program [2] with the purpose of
evaluation of research in intrusion detection. The data were collected over nine weeks
of TCP dump data on a Local Area Network (LAN) which was processed into seven
million records of connections. KDD 99 is a derivative of this data [3].

Despite its popularity, KDD 99 data set has been reported to suffer from var-
ious deficiencies discussed in [43]. A major problem of this data set is the huge
number of redundant records in both train and test sets. This makes the machine
learning model to be biased towards the most frequent records in the training phase
so that it cannot learn well the less frequent samples. On the other hand, having
too many repeated samples in the test set prevents the model to be properly evaluated.

NSL-KDD data set is a modified version of KDD 99 and has a number of ad-
vantages over the original KDD 99 data set [60]. The redundant records have been
removed from both training and test sets so that the performance of classifiers can be
evaluated properly in both phases. In addition, as the number of records in training
and test sets are reasonable, there is no need to make a random selection of the
records for evaluation. Therefore, the performance of different classifiers can be
compared according to the results obtained from experimenting on the whole data set.

In NSL-KDD data set, each record represents a single connection corresponding
to a sequence of TCP packets flowing between a source and destination IP addresses
under a predefined protocol. This data set contains 41 number of features for each
record. These features include 6 discrete fields as well as 35 continuous ones. The
full description of features can be seen in Appendix A.

In addition, each record has a label which indicates the traffic class of that record.
This label may correspond to either a normal or malicious traffic class. The available
attack classes of NSL-KDD data set fall into four main categories as follows [3].

• DoS: Denial of Service, e.g. syn flood;
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• R2L: Remote to Local - Unauthorized access from a remote machine e.g.
guessing password;

• U2R: User to Root - Unauthorized access to local superuser (root) privileges,
e.g., buffer overflow attacks;

• Probe: Surveillance and other probing, e.g., port scanning.

Each of the aforementioned attack categories consists of a number of example attacks
in the data set. The full list of attacks can be seen in table 3.1. A detailed description
of different attack types can be found in [58].

Table 3.1: List of Attacks in NSL-KDD Data Set

DoS Probe R2L U2R
back, land, ipsweep, spy, warezclient, bufferoverflow,

neptune, pod, nmap, guesspassword, loadmodule,
smurf, saint, ftp_write, perl,

teardrop, mscan, imap, multihop, snmpguess,
processtable, portsweep, named, phf, sqlattack,
udpstorm, satan snmpgetattack, xterm,
mailbomb, warezmaster, rootkit,
apache2 xlock, xsnoop ps,

httptunnel, worm
sendmail,

3.4 Summary
This chapter described the existing challenges in the field of intrusion detection and
stated the problem which is tackled in this thesis. Furthermore, the criteria used for
evaluating the effectiveness of the proposed solution as well as the data set which
is used for evaluation of this work was presented. In the following chapter, the
mathematical background which is required in constructing the proposed solution
will be introduced with regards to the stated problem.



Chapter 4

Mathematical Methods and
Algorithms

This chapter provides the theoretical machine learning background that is needed
for constructing the proposed intrusion detection system. The machine learning
methods which are used in this research are mainly based on the Extreme Learning
Machine algorithm. In this chapter, the original Extreme Learning Machine (ELM)
algorithm and two of its variants are discussed in detail.

4.1 Extreme Learning Machine
The original algorithm of ELM was proposed by Huang et al. in [25][26] for training
Single hidden Layer Feedforward Neural networks (SLFN). In contrast with other
existing learning methods such as Backpropagation (BP) and Levenberg-Marquardt
(LVM) [47], while using a random initialization of input weights; ELM only updates
the output weights in a single iteration without tuning the input weights. As a result,
it provides a fast [61] and robust [45] [46] learning capability. The original ELM
algorithm works as follows.

Suppose that we have a SLFN with n number of hidden neurons and a training
set of N samples (xi,yi) where xi ∈ Rd and yi ∈ Rc. The output of such SLFN can
be represented as

n∑
j=1

βjG(wjxi + bj), i ∈ [1, N ], (4.1)

where wj and bj are the learning parameters, βj is the output weight of node j
and G : R→ R is the activation function.

15
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A perfect approximation of SLFN with zero error shows that with random wj

and bj there exists βj such that

n∑
j=1

βjG(wjxi + bj) = yi, i ∈ [1, N ], (4.2)

which can be written as

Hβ = Y, (4.3)

where

H =


G(w1x1 + b1 ) ... G(wnx1 + bn)

. ... .

. ... .

. ... .
G(w1xN + b1 ) ... G(wnxN + bn)

 , (4.4)

and

β = (βT1 . . . βTn )T , Y = (yT1 . . .yTN)T . (4.5)

Assuming that the number of samples is greater than the number of hidden
neurons, output weights can be calculated using the following formula

β = H†Y, (4.6)

where H† is the Moore-Penrose generalized inverse [55] of matrix H. The calcula-
tion of H† can be performed in a single step without going through lengthy training
iterations. This makes ELM a computationally cost-effective learning method.

The detailed theoretical proofs of ELM algorithm can be found in the original
paper [26].
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4.2 Online Sequential ELM
In many of the applications, SLFNs are trained using batch learning algorithms. Most
of these algorithms suffer from lengthy training times caused by the large number of
iterations needed to choose the proper parameters for the model. In these algorithms,
it is assumed that the entire training set is available at once. On the arrival of new
data, batch learning algorithms require the model to be fully retrained using the past
data along with the new one and hence consuming a lot of time. Considering this, in
many of the real applications the usage of online sequential learning algorithms is
taken into consideration rather than batch learning algorithms as they can handle
newly arrived chunks of data without requiring to perform full retraining [40].

The original ELM is a batch learning algorithm. In order to handle the cases
where the training data arrives sequentially, Online Sequential Extreme Learning
Machine (OS-ELM) [40] was proposed as a variant of ELM. As a sequential learning
algorithm, on the arrival of new data, OS-ELM is able to update the model without
requiring the previously trained data to be available. In addition, unlike many of the
sequential learning algorithms such as Stochastic Gradient Descent Backpropaga-
tion (SGBP) [37] and Resource Allocation Network (RAN) [52], OS-ELM can learn
data on a one by one or chunk by chunk basis while having fixed or varying chunk size.

The main idea of OS-ELM is to update the output weights of hidden layer on
the arrival of new data without retraining the whole model. For this purpose, OS-
ELM uses a special case of Sherman-Morrison-Woodbury formula [18] to update the
generalized inverse of H.

OS-ELM consists of two phases of initial and sequential learning. In the initial
phase, the model is trained using N0 number of distinct samples and the hidden
layer output matrix H0 is constructed according to these samples. As a fundamental
assumption of ELM and OS-ELM, N0 must be equal or greater than the number of
hidden neurons n, so that rank(H0) ≥ n. After the initial phase, the model can be
updated sequentially on the arrival of new data.

Assuming {(xi,yi)}N0
i=1 as the available training set at the initial phase, H0 and

β0 are the hidden layer output matrix and the output weights of ELM respectively
and can be formulated as follows.

H0 =


G(w1x1 + b1 ) ... G(wnx1 + bn)

. ... .

. ... .

. ... .
G(w1xN0 + b1 ) ... G(wnxN0 + bn)

 , (4.7)
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β0 = P0HT
0 Y0, (4.8)

where P0 = (HT
0 H0)−1 and Y0 = (yT1 . . .yTN0)T .

After this initial phase, on the arrival of (k+1)−th chunk of data withNk+1number
of samples, the partial hidden layer output matrix can be constructed as

Hk+1 =



G(w1x(
∑k

j=0 Nj)+1 + b1 ) ... G(wnx(
∑k

j=0 Nj)+1 + bn)
. ... .
. ... .
. ... .

G(w1x(
∑k+1

j=0 Nj)+1 + b1 ) ... G(wnx(
∑k+1

j=0 Nj)
+ bn)

 , (4.9)

and the output weights can be updated using the following formula.

βk+1 = βk + Pk+1HT
k+1(Yk+1 −Hk+1βk), (4.10)

with

Pk+1 = Pk −PkHT
k+1(I + Hk+1PkHT

k+1)−1Hk+1Pk. (4.11)

A comparison of OS-ELM with other well-known sequential learning algorithms indi-
cates that OS-ELM has a lower training time while producing a better generalization
performance [40].

4.3 CLUS-ELM
The smooth approximation of ELM makes it a proper solution for clustering problems.
A clustering algorithm is proposed in [44] which assumes that the number of clusters
and the size of each cluster are known as prior knowledge and tries to find the
appropriate cluster for each sample. In this method, the ELM is used in a reversed
way i.e. the cluster centers are projected into the input data space. In other words,
the cluster centers are the inputs and the original input samples are the output of ELM.
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The algorithm is initialized by random assignment of samples to different clusters
and training the model using ELM. The number of hidden neurons is adjusted in a
way to achieve the lowest possible training error.

After the initial training where the output weights are calculated as βold, the
proposed method keeps swapping the rows of samples to obtain a lower training error.

Considering βold = H†Xold as the output weights matrix calculated by ELM,
the proposed method keeps swapping the rows of the desired ELM output to find a
better cluster assignment for the samples i.e. achieving a lower training error.

Assuming rows i and j are swapped, the new output weights matrix can be
updated using the following formula.

βnew = βold −H†(i)X(i) −H†(j)X(j) + H†(i)X(j) + H†(j)X(i), (4.12)

where H†(i) is column i in H† and X(i) is row i in Xold.

Considering the updated output weights, the algorithm evaluates the success of
swapping decision with respect to the new training error which is 1

N
||Hβnew−Xnew||2.

In case of achieving a smaller training error, the proposed methodology keeps the
current cluster assignment for the swapped samples.

4.4 Summary
This chapter provided a detailed description of the original algorithm of ELM and two
of its variants i.e. OS-ELM and CLUS-ELM. In this thesis, the proposed intrusion
detection system is constructed on the basis of these algorithms. It is necessary to
note that a critical requirement of an effective design for intrusion detection systems
is the fast learning capability and real time detection which are supported by the
aforementioned algorithms. The fundamental learning method of the proposed IDS
in this research is based on the clustering approach of CLUS-ELM. Although this
algorithm is originally proposed as an unsupervised learning method, in this thesis,
it can be used both for unsupervised and supervised problems. In addition, in the
proposed methodology, the prior assumptions of CLUS-ELM i.e. the number of
clusters and the number of samples in each cluster can be modified after the initial
convergence of the model. In such cases, two novel approaches are proposed in order
to update the learning model in a fast adaptive manner. On the other hand, in order
to provide the capability of sequential training for the proposed IDS, the OS-ELM
algorithm is used. In the following Chapter 5, the proposed intrusion detection
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system will be introduced and the novel update approaches will be presented in
detail.



Chapter 5

The Proposed Intrusion Detection
System

In this chapter, the proposed intrusion detection system is described. Firstly, an
overview of the system is presented and explained briefly. Secondly, the function of
different components of the system is discussed in detail. In addition, the operation
of the system is exemplified using toy data.

5.1 System Overview
The proposed intrusion detection system in this thesis is constructed on the basis of
anomaly-based machine learning techniques. Thus, it is capable of detecting novel
attacks. The proposed IDS uses an adaptive approach to reduce the number of false
alarms over time. This is done by providing the capability of having the input from
human experts and updating the learning model in accordance with that input. This
reduces the likelihood of generating repeating false alarms for similar data in an
adaptive manner.

On the other hand, the proposed IDS can be used both as an unsupervised and
supervised learning method. As a result, there is no requirement of having labeled
data in the training phase. While having the number of traffic classes as the only
required prior knowledge, the proposed solution is capable of finding the correct
labels for unlabeled data. In addition, it provides correction proposals in cases where
the training data is labeled manually by human experts.

The proposed intrusion detection system provides a scoring mechanism to simplify
the evaluation of decisions for human security experts. In this mechanism, the system
is capable of detecting errors by means of predefined measurements. In addition,
in case of supervised learning, the system has the ability to detect human errors in
labeling the data and provide correction proposals to the expert. On the other hand,
using such scoring mechanism, the system is capable of detecting new classes of traffic.

21
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Moreover, the proposed intrusion detection solution provides a fast update mech-
anism which addresses the adaptability challenge of the existing solutions. The
proposed mechanism can be used to update the learning model according to the new
data as well as new attack types with a very low computational cost.

Fig. 5.1 represents an overview of the proposed intrusion detection system. The
proposed IDS consists of three main components of Clustering Manager (CM), Eval-
uation Engine (EE) and Update Manager (UM). Clustering Manager is responsible
for constructing a learning model by mapping the training data into different clusters
where each cluster represents a class of traffic. Evaluation Engine is responsible for
evaluating the clustering decisions made by the trained model. This component
consists of two elements called Scorer and Fault Detector (FD). The Scorer tries to
measure the accuracy of clustering decisions on different data samples by assigning a
set of score values to each sample. These scores are used by the Fault Detector to
detect possible errors in the current clustering decisions and provide modification
proposals to the learning model. These proposals can be used by Update Manager
component which has three procedures for updating the model in different cases.

Figure 5.1: The Proposed IDS Overview

In addition to these three components, the proposed system is able to interact
with an external human expert. This expert is responsible for firstly approving or
rejecting the correction proposals provided by the Evaluation Engine and secondly
labeling each class of traffic by checking the cluster centers.

To clarify the relations between different components of the system, assume that
the model is constructed by the Clustering Manager according to some training
data. The Evaluation Engine tries to validate the constructed model by verifying
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the current clustering decisions and providing proposals for modifying the model. If
there is no fault reported by the Evaluation Engine, the expert can label the current
clusters by looking at the cluster centers. Otherwise, the expert may reject or approve
the proposals. On the approval, the proposals must be sent to the Update Manager
to apply the required changes to the model. On the other hand, on arrival of new
data, the Update Manager is responsible for updating the model according to the
newly arrived samples. In case of any changes applied to the system, the updated
learning model must be evaluated by the Evaluation Engine.

5.2 Clustering Manager
The Clustering Manager is the primary component of the proposed IDS which is
responsible for clustering data samples. This component uses a modified version of
the algorithm introduced in CLUS-ELM. In the proposed approach, the number
of clusters and the probability of data samples being in each cluster are known as
prior assumptions of the expert. As a key advantage of our model, such assumptions
can be tuned later according to the clustering evaluation results produced by the
Evaluation Engine.

In order to highlight the importance of such an advantage, an example scenario
can be considered. Suppose a situation in which the expert assumes the traffic being
categorized into two different classes of normal and malicious where their occurrence
probabilities are set as 0.8 and 0.2 respectively according to the general status of
the network. In this case, if these probabilities are not correctly set by the expert,
our proposed model is capable of modifying the expert knowledge and tuning the
clustering according to that.

Now suppose that the number of clusters and the probability of data being in
cluster j (cj) are formulated as nc and Pr(cj) respectively. Therefore, the number of
samples being in cluster j can be shown as

size(cj) = NPr(cj), (5.1)

where N is the total number of samples in the training set.

In order to have independent and equally spaced cluster centers, the cluster
assignment is formulated by a 1-in-all code i.e. cluster j can be coded as
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cj =
[

ck
]

1×nc
ck =

1 k = j

0 else
. (5.2)

Considering the adjusted number of clusters and the number of samples in each
cluster, the cluster assignment matrix C can be constructed as

C =


0 . . . 1 0 0 . . . 0
. . .
. . .
. . .
0 . . . 0 1 0 . . . 0


N×nc

. (5.3)

To find a proper clustering, it is required to map the input matrix X to clusters
matrix C. However, according to CLUS-ELM, another solution is to perform cluster-
ing in a reversed fashion by projecting cluster centers into the original input data
space. This is particularly important to avoid the errors in distances between data
samples [44].This can be done by using ELM with C and X being the input and
output matrices respectively.

In the initial step, the samples in X must be assigned to the rows in clusters
matrix C randomly. This assignment can be modified later to achieve a smaller
training error. Also the number of hidden neurons in ELM must be adjusted in a
way to obtain the smallest possible training error. This can be done by performing
k-fold cross-validation test [32] on the initial cluster assignment.

Now suppose that n is the number of hidden neurons and W is the input weights
matrix of ELM which can be denoted as

W =


w11 ... wn1
. ... .
. ... .
. ... .

w1nc ... wnnc


nc×n

. (5.4)

Considering the 1-in-all property of rows in clusters matrix and assuming the rth
sample being assigned to cluster j, the corresponding row of the hidden layer output
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matrix of ELM will be

Hnonlinear
r =

[
G(w1j + b1 ) ... G(wnj + bn)

]
, (5.5)

where bi is the bias value of neuron i and G is the non-linear activation function.

Therefore, under the assumption of first and last sample being assigned to clusters
j and k respectively, hidden layer output matrix can be represented as

Hnonlinear =


G(w1j + b1 ) ... G(wnj + bn)

. ... .

. ... .

. ... .
G(w1k + b1 ) ... G(wnk + bn)

 . (5.6)

The original version of the ELM proposed in [24] did not include linear neurons
in addition to the non-linear ones. While it is theoretically possible to approximate a
linear behavior using only non-linear neurons, it is much easier if linear neurons are
present in the network. Miche et al. in [45] have proposed to use such linear neurons
for such reasons.

Therefore, in addition to the n hidden neurons with non-linear activation function,
we also consider using of nc additional linear neurons in the hidden layer. The new
output matrix of the hidden layer will be

H = [Hnonlinear C] =


G(w1j + b1 ) ... G(wnj + bn) 0 ... 1 0 0 ... 0

. ... . ... .

. ... . ... .

. ... . ... .
G(w1k + b1 ) ... G(wnk + bn) 0 ... 0 1 0 ... 0

 .
(5.7)

As mentioned in Chapter 4, the output weights matrix β of the ELM can be
computed as

β = H†X.
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After obtaining the initial β, the algorithm keeps swapping the samples in X as
in CLUS-ELM to achieve a smaller training error which is formulated as

εtrain = 1
N
||Hβ −X||2. (5.8)

In case of a successful swap which lowers the training error, the weights matrix β
is updated using Eq. 4.12.

As a key improvement to the convergence time of CLUS-ELM approach, we
propose two methods for selecting the best swapping candidates among the data
samples. In the first method, the swapping candidates can only be selected from
a subset of samples with the highest Mean Squared Error (MSE). This provides
a better chance of selecting the samples with a larger distance from their cluster
centers. On the other hand, another approach is to select a proportion of candidates
from the subset with highest MSE while choosing the rest randomly.

A comparison of the two proposed method and the original swapping algorithm
of CLUS-ELM with regards to their convergence time is presented in Fig. 5.2. The
experiments of this comparison are conducted on a synthetic data set of 2000 samples
where the data points are randomly generated into two clusters with the same size.
The clusters are composed of normally distributed points in a 2-dimensional feature
space, with means (1, 1) and (2, 2) and standard deviations 0.2. The number of
hidden neurons is set as 100. The results are averaged over 20 runs using Matlab on
a Windows machine with 8 GB of RAM and CPU of 2.30 GHz.

According to the obtained results, both of the proposed methods perform faster
than the original CLUS-ELM in terms of convergence time. Among these methods,
the approach which selects all the candidates from the subset with highest MSE
outperforms the other method as it gives a lower total MSE in a shorter time.

5.3 Evaluation Engine
The Evaluation Engine is responsible for assessing the clustering assignments and
detecting the possible errors in such assignments. This component provides some
measurements for the human expert and suggests some modifications to the model
to improve the accuracy of clustering. EE contains two components of Scorer and
Fault Detector which are discussed in detail in the following subsections.
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Figure 5.2: Comparison of swapping algorithms with regards to their convergence
time. The algorithm which selects the swapping candidates from the samples with
highest MSE achieves the lowest error in the shortest time.

5.3.1 Scorer

The Scorer component is responsible for providing the evaluation results of the
current clustering to other components such as Fault Detector. These results can be
studied by Fault Detector to detect the possible errors and suggest modifications to
the clustering.

Assuming that the current number of clusters is nc, the Scorer calculates nc
number of scores for each sample. These scores are driven directly from the MSE
and can be interpreted as the scores of each sample being in any of the clusters.
The scores can be measured by rotating the clusters matrix C by one column for nc
times, constructing the hidden layer output matrix Hrotated of the rotated matrix and
simply calculating the per sample training error for each matrix using the following
formula

MSErotated = 1
nc
||Hrotatedβ −X||. (5.9)

Therefore, after normalizing the obtained training errors with respect to the
maximum and minimum available values the output of Scorer can be denoted as

Sc = {scij}1≤i≤N
1≤j≤nc ,



28

where scij = 1−MSEij and can be interpreted as the score of ith sample being in
cluster j.

5.3.2 Fault Detector

The Fault Detector (FD) component is responsible for finding possible errors in the
current clustering and providing correction proposals to the human expert. This
component utilizes the scores calculated by the Scorer to find suspected clustering
decisions.

There are two different scenarios where the current clustering may not be accu-
rate enough. First case happens when the ratio of different types of traffic which is
imported to the model by the expert does not suit the real training data. And the
other one occurs when a new type of attack is detected, i.e. a new cluster is needed.
In order to handle these cases, the proposed FD uses two criteria for detecting the
samples suspected of not being in the proper cluster.

For the first scenario, FD prepares a new clusters matrix only based on the
calculated scores. Based on that, each sample will be assigned to the cluster which
has the highest score in the corresponding row of scores matrix i.e. the cluster with
the lowest error. Comparing the new clustering assignments to the original ones, FD
finds the unsimilar rows and sends an alarm to the expert along with the suspected
samples and their likely clusters.

As an example, assume that in a three-cluster problem the cluster matrix Cexample

and the corresponding scores matrix Scexample are driven as follows.

Cexample =


1 0 0
. . .
. . .
. . .
0 0 1


N×3

, (5.10)

and

Scexample =


0.5 0.6 0.9
. . .
. . .
. . .

0.44 0.5 0.93


N×3

. (5.11)
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Considering the values in the score matrix, the new clusters matrix constructed
by FD will be

CFD
example =


0 0 1
. . .
. . .
. . .
0 0 1


N×3

. (5.12)

Comparing the two matrices of Cexample and CFD
example, FD proposes to change

the cluster assignment of the first sample in the data set.

The second scenario focuses on the ability of the system to detect new types of
attacks as an essential duty of the proposed IDS. In the proposed methodology, it
is obvious that the samples belonging to a new traffic type do not suit any of the
existing clusters. However, even such samples will finally find the best cluster among
the bad ones although having very low scores. Considering this fact, we use the
difference of two highest scores on each row of the scores matrix as a metric to find
suspected samples. While a larger difference means that the new sample fits into its
current cluster properly, a small difference shows that the sample cannot be placed
into any of the existing clusters or simply fit into two or many of them. As a result,
assigning such sample to a newly added cluster may increase the accuracy of clustering.

Suppose that the clusters matrix and the corresponding scores matrix is given as
follows.

Cexample =


0 0 1
. . .
. . .
. . .
0 0 1


N×3

, (5.13)

and

Scexample =


0.61 0.59 0.62
. . .
. . .
. . .

0.93 0.93 0.95


N×3

. (5.14)



30

Considering the score matrix, it is obvious that the values in the 2nd column of
the matrix is too close to the values in the 3rd column for the first and last row.
So the corresponding samples in the data set are suspected to be from a new class
of attacks. However, the value of the highest score in the last row shows a small
clustering error meaning that the last sample can fit into all three existing clusters.
On the other hand, the value of the highest score in the first row of Scexample shows
a large clustering error which means the first sample may be a proper candidate for
being in a new cluster. As a result, in such example the FD proposes to add a new
cluster to the model and place the first sample in that cluster.

5.4 Update Manager
The main responsibility of the Update Manager (UM) component is to modify the
clustering model according to new changes applied to cluster assignment. These
changes may be applied based on the human expert’s decision or due to the faults
detected by Fault Detector component. As a requirement of real time attack de-
tection, it is essential that the model update can be performed as fast as possible.
The proposed UM fulfills such requirement by avoiding the full retraining of the model.

In general, there are three different cases where the clustering model needs to be
updated. These cases include the availability of new incoming data, adding a new
cluster and change of cluster assignment for a group of samples. In the following
subsections, the proposed update mechanism for each of the cases is discussed in
detail. In all the cases, it is assumed that the model is already trained and verified
by the expert at the start of the update procedure.

5.4.1 UM-Procedure-1: New Data

The basic capability of the UM is to update the clustering model according to the
new incoming data. The cluster assignment of such data may be known or unknown
which can be interpreted as supervised or unsupervised learning. In the proposed
model, we take advantage of the same idea as in OS-ELM to handle both types of
updates. In case of unsupervised learning, the data samples are labeled in a random
manner initially by assigning the samples to one of the existing clusters. Later, this
assignment will be evaluated and modified according to the available scores provided
by EE. The same procedure will be applied to the case of supervised learning with
a slight difference as the cluster is already known. In this case, the Fault Detector
component may provide some correction proposals for modifying the initial labels in
order to enhance the accuracy of clustering.

Let N1 be the size of the newly arrived chunk of data where all the data samples
fit best into cluster j. Therefore, the output matrix of the hidden layer of ELM for
the new data can be formulated as
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Hchunk =


G(w1j + b1 ) ... G(wnj + bn) 0 ... 1 0 0 ... 0

. ... . ... .

. ... . ... .

. ... . ... .
G(w1j + b1 ) ... G(wnj + bn) 0 ... 1 0 0 ... 0


N1×(n+nc)

.

(5.15)

Assuming Hold to be the current output matrix of the hidden layer, the Hnew

matrix can be constructed as

Hnew =
[

Hold

Hchunk

]
. (5.16)

Thus, according to the proposed method in OS-ELM the new output weights can
be calculated using the following formulas.

Pnew =Pold −PoldHnewT
(
I + HnewPoldHnewT

)−1
HnewPold, (5.17)

and

βnew = βold+PnewHnewT
(
Xchunk + Hnewβold

)
, (5.18)

where Pold =
(
HoldTHold

)−1
and Xchunk is the arrived chunk of data.

After updating the output weights matrix βnew, the clustering assignment must be
evaluated by the EE. Upon detection of errors in cluster assignments, clustering will
be modified automatically by the system using UM-Procedure-3 for the unsupervised
learning. On the other hand, if the learning type is supervised, EE sends the results
to the expert who is responsible for verifying the correctness of clustering for the
new samples.

5.4.2 UM-Procedure-2: New Cluster

In case of new type of incoming traffic, the Fault Detector sends an alarm to inform
the UM about some samples not being a proper match to any of the current clusters.
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In this case, it is necessary to add a new cluster to the model so that it can be
able to find a better cluster assignment for the mismatched samples. Such update
can be performed as to first add a new cluster to the model and then to map the
mismatched samples to the new cluster. In order to adapt the model to the change
in cluster numbers, some of the parameters such as β and C must be updated. This
can be done by going through the following procedure.

The new cluster can be added to the model by simply adding a column of zeros
to the current clusters matrix C meaning that currently there is no sample in this
cluster. In addition, a new input weight vector of wd must be initialized randomly
where d is the new number of clusters. Adding a column of zeros to the clusters
matrix does not affect the values in H and H† except for adding a new column and
row of zeros to each respectively.

Now suppose that the ith sample is a mismatched row and must be assigned to
the newly added cluster. Assuming this sample to be in jth cluster originally, the
corresponding row in H can be formulated as

Hold
i =

[
G(wj1 + b1 ) ... G(wjn + bn) 0 ... 1 0 0 ... 0

]
. (5.19)

And assigning this sample to the new cluster only changes the values in ith row
of H to

Hnew
i =

[
G(wd1 + b1 ) ... G(wdn + bn) 0 ... 0 0 0 ... 1

]
. (5.20)

Considering these values, Hnew can be written as

Hnew = Hold + Hupdate
i(j) , (5.21)

where Hupdate
i(j) is a whole zero matrix except for the ith row which equals Hnew

i −Hold
i .

To update output weights β, the pseudo-inverse of the Hnew matrix must be
calculated. In the proposed methodology, we take advantage of the work of Campbell
and Meyer on generalized inverses of linear transformations [11] to speed up this
process.
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According to [11], pseudo-inverse of any matrix of the form H1 =
(
H + uvT

)
with u and v being vectors can be formulated as

H†1 = H† + M (5.22)

where M is a matrix made up of sums and products of matrices H, H†, u, v and
their conjugate transposes. Therefore, rather than the lengthy calculation of pseudo-
inverse of H1 the following procedure can be utilized with a lower computational cost.

From [11], Theorem 3.1.3, we first calculate the intermediate step vectors q, r, s,
t and the scalar γ as follows.

q = H†u

r = vTH†

s =
(
I−HH†

)
u

t = vT
(
I−H†H

)

γ = 1 + vTH†u

Then, and denoting by u† = u/||u||2, the six following cases give the form of the
pseudo inverse

(
H + uvT

)†
:

1. If s 6= 0 and t 6= 0, then
(
H + uvT

)†
= H† − qs† − t†r + γt†s†.

2. If s = 0, t 6= 0 and γ = 0, then
(
H + uvT

)†
= H† − qq†H† − t†r.

3. If s = 0 and γ 6= 0, then
(
H + uvT

)†
= H† + 1

γ̄
tTqTH† − γ̄

σ1
m1nT1 , with

m1 = −
(
||q||2
γ̄

tT + q
)
, nT1 = −

(
||t||2
γ̄

qTH† + r
)
, and σ1 = ||q||2||t||2 + γ2.

4. If s 6= 0, t = 0, and γ = 0, then
(
H + uvT

)†
= H† −H†r†r− qs†.

5. If t = 0 and γ 6= 0, then
(
H + uvT

)†
= H† + 1

γ̄
H†rT sT − γ̄

σ2
m2nT2 , with

m2 = −
(
||s||2
γ̄

H†rT + q
)
, nT2 = −

(
||r||2
γ̄

sT + r
)
and σ2 = ||r||2||s||2 + γ2.
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6. If s = 0, t = 0 and γ = 0, then
(
H + uvT

)†
= H† − qq†H† − H†r†r +(

q†H†r†
)

qr.

Now that we are able to calculate the pseudo-inverse of the updated matrix in the
mentioned form, we need to find the proper u and v for our case which can meet the
requirement of Hupdate

i = uvT .

Remembering the fact that Hupdate
i(j) is an all-zero matrix except for the ith row,

it is clearly a rank(1) matrix. Therefore it can be decomposed as the product of a
column and a row vector which can be denoted as

u =
[

uk
]

uk =

1 k = i

0 else

and v = Hnew
i −Hold

i .

As an important fact, it is necessary to note that the updates of moving samples
from cluster j to cluster d can be performed in a single iteration of the six-case method
mentioned above. This can be done by using the same v and simply modifying u
to contain the value ”1” in all the rows which their corresponding rows in Hneware
updated. As a result, u can be formulated as

u =
[

uk
]

uk =

1 kth sample placed from cluster j to cluster d
0 else

Utilizing such u and v and the previously mentioned method, the pseudo-inverse
of the updated matrix and hence β can be simply calculated.

In order to generalize the proposed update method to be used in different cases,
it should be considered that Hupdate

total which contains the updates of all clustering
changes can be denoted as

Hupdate
total =

d−1∑
j=1

Hupdate
i(j)
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Therefore, the entire update procedure can be completed in (d− 1) iterations
with a low computational cost comparing to full retraining of the model.

5.4.3 UM-Procedure-3: Change of Cluster Assignment

There are two cases where the clustering decisions for some of the samples must
be changed due to the errors in cluster assignments. Firstly, the clustering update
may be requested by the FD component which shows a mismatching between the
sample’s current assignment and its highest scored cluster. This means that accord-
ing to the calculated scores, there is a more appropriate cluster for the specified
sample in terms of MSEs. Secondly, the update request may come from a human
expert. An example scenario of this case may be that the expert decides that a
new type of traffic being normal rather than malicious after studying the status
of the network. Therefore, similar traffic must be considered as normal by the
model in future clustering decisions. In any of these cases, the parameters of the
model must be updated in order to improve the clustering accuracy for future samples.

The problem of cluster assignment modification is an expanded case of adding
the new cluster problem where in the latter the preferred cluster for all the samples
is the dth one. Therefore, here we use a similar technique as in the previous problem
along with a small modification.

Suppose ith and lth samples which are being in clusters j and k originally are
requested to be replaced in clusters k and j respectively. As a result. the correspond-
ing rows in Hold and Hnew matrices can be represented as

Hold
i = Hnew

l =
[

G(wj1 + b1 ) ... G(wjn + bn) 0 ... 1 0 0 ... 0
]
, (5.23)

Hnew
i = Hold

l =
[

G(wk1 + b1 ) ... G(wkn + bn) 0 ... 0 0 1 ... 0
]
. (5.24)

Considering these values, Hnew can be written as

Hnew = Hold + Hupdate
i,l(j,k), (5.25)
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where Hupdate
i,l(j,k) is a whole zero matrix except for the ith and lth row respectively

being equal to (Hnew
i −Hold

i ) and (Hold
i −Hnew

i ).

To calculate the pseudo-inverse of Hnew we take advantage of the same idea as in
the previous subsection to be able to use Campbell and Meyer solution for updated
matrix pseudo-inverse.

As in the previous case Hupdate
i,l(j,k) can be decomposed as the product of column and

row vectors of u and v which can be denoted as

u =
[

um
]

um =


1 m = i

-1 m = l

0 else

, (5.26)

v = Hnew
i −Hold

i . (5.27)

Therefore, all the updates of replacing samples from cluster j to cluster k and
vice versa can be performed in a single iteration of Campbell and Meyer solution
utilizing the following parameters.

u =
[

um
]

um =


1 mth sample moved from cluster j to cluster k
-1 mth sample moved from cluster k to cluster j
0 else

,

(5.28)

v = Hnew
i −Hold

i . (5.29)

Again as in the previous case, Hupdate
total consisting of all the updates can be repre-

sented as
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Hupdate
total =

nc∑
j=1

nc∑
k=1

Hupdate
(j,k) . (5.30)

Thus, considering the proposed method for decomposition of the update matrices,
the entire update procedure can be completed in O(nc2 ) number of iterations which
is significantly cost effective comparing to the case where the model is fully retrained.

5.5 Example Story
An example of system operation is presented in Fig. 5.3. In this example, the same
data set as in Fig. 5.2 is used. However, in the initial setup of these experiments, it
is assumed that there are more number of samples in cluster 2 comparing to cluster
1. This is considered as a prior knowledge injected to the system by the human
expert. Under this assumption, some of the samples which are originally from cluster
1 are wrongly labeled as being in cluster 2. In this case, the operation of system in
finding the mislabeled samples and modifying them is presented in Figs. 5.3a-5.3f. In
addition, Figs. 5.3h-5.3l present the system operation in discovering the new classes
of input.

Fig. 5.3a indicates the initial labeling of the data points according to the available
information from the expert. As it can be seen, a number of samples which are
similar to cluster 1 samples are labeled as being in cluster 2. As discussed in earlier
chapters, the clustering is started by shuffling the data points and assigning the
samples to different clusters in a random manner as in Fig. 5.3b. In the next phase,
the algorithm keeps swapping the samples between different clusters in order to
achieve a lower training error. The outcome of this phase can be seen in Fig. 5.3c
which represents the current clustering of the trained model. After the initial training
phase, the clustering decisions of the system must be evaluated by the EE. Fig. 5.3d,
demonstrates the group of samples detected by EE as being in the wrong cluster. As
a result, the cluster assignments of these samples are modified as in Fig. 5.3e and
the system is updated in accordance with that. The clustering assignment of the
updated system is presented in Fig. 5.3e. Considering the evaluation results of EE
in Fig. 5.3g, although a number of samples are detected as being suspected to be
in the other cluster, the correction proposals of the Fault Detector are ignored as
these samples are at the border of the two clusters and can be mapped to any of them.

Now assume a case where a number of data points from a new class are served
into the system as the input. The system first tries to find the best cluster for the
newly arrived samples among the existing classes. Thus, the new samples are mapped
into cluster 1 as in Fig. 5.3h. However, the Fault Detector component detects these
samples as the candidates of being in a new cluster (Fig. 5.3i). Therefore, the model
is updated by adding a new cluster and assigning the new sample to that cluster as in
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Fig. 5.3j. The evaluation results of the system decisions provided by EE shows that a
number of data points from cluster 1 and cluster 2 can also be assigned to the newly
added cluster 3 (Fig. 5.3k). However, as in the previous case, these samples can
be ignored as they are at the borders of the three clusters. The outcome of the up-
date procedure is the new model containing three classes of data points as in Fig. 5.3l.

5.6 Summary
This chapter provided a detailed description of the intrusion detection system pro-
posed in this research. The proposed IDS consists of three main components of
Clustering Manager, Evaluation Engine and Update Manager. The Clustering Man-
ager is responsible for constructing the initial learning model of the system. The
Evaluation Engine evaluates the clustering decisions of the system and provides
correction proposals to the current decisions. These proposals may be offered upon
detection of errors in the current clustering as well as observing new classes of data
in the input. The Update Manager is responsible for updating the model according
to new patterns and information provided by the human expert or the Evaluation
Engine. This chapter also introduced two novel update approaches which assist
Update Manager to speed up the update process.

In the following chapter, the performance of the proposed intrusion detection
system will be evaluated in different circumstances.
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Cluster 1

Cluster 2

(a) The initial clustering is provided by the ex-
pert.

Cluster 1

Cluster 2

(b) Samples are assigned to different clusters
randomly.

Cluster 1

Cluster 2

(c) The trained model finds the best cluster as-
signment for all the samples with the current
cluster sizes set by the expert.

Cluster 1

Cluster 2

Suspected

(d) A group of misclassified samples are detected
by FD.

Cluster 1

Cluster 2

Modified

(e) The cluster assignments of misclassified sam-
ples are modified.

Cluster 1

Cluster 2

(f) The system is updated according to the mod-
ified cluster assignments.

Figure 5.3: The Operation of The Proposed IDS
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Cluster 1

Cluster 2

Suspected

(g) A number of samples are detected as being
suspected to be in the other cluster. These
samples are marked to be ignored by the expert
as they are at the border of the two clusters.

Cluster 1

Cluster 2

(h) New input data arrives into the system. The
system classifies them in the best cluster among
the existing ones.

Cluster 1

Cluster 2

Suspected

(i) The system detects the group of new samples
as the candidates for being in a new cluster.

Cluster 1

Cluster 2

Modified

(j) The system is updated by adding a new clus-
ter and assigning the new samples to that clus-
ter.

Cluster 1

Cluster 2

Cluster 3

Suspected

Suspected

(k) A number of samples from the initial data
set are detected to be similar to the newly added
cluster. These samples are ignored by the expert
as they are at the borders of multiple clusters.

Cluster 1

Cluster 2

Cluster 3

(l) The updated system contains three classes of
data where the samples are correctly assigned
to these classes.

Figure 5.2: The Operation of The Proposed IDS



Chapter 6

Results and Evaluation

This chapter provides an evaluation of the proposed solutions presented in Chapter
5. Firstly, the performance of the two novel update approaches of UM-Procedure-2
and UM-Procedure-3 are evaluated. In this evaluation, the computational time of
the proposed methods is compared to the existing update method of full retraining.
Secondly, the performance of the proposed intrusion detection system is evaluated
using the criteria defined in earlier chapters. In addition, the suitability of the used
test data for the purpose of this research is discussed through some examples.

6.1 Evaluation of Novel Approaches
This section provides an evaluation of the novel approaches proposed in Chapter
5. Firstly, the performance of the UM-Procedure-2 for adding a new cluster will
be studied. Secondly, the approach of UM-Procedure-3 for modifying the cluster
assignment for part of the samples is evaluated. The performance of these methods is
studied with regards to the parameters of the problem context such as the size of the
training data, the number of clusters and the number of mislabeled samples in the
data set. The main focus of this evaluation is to provide a comparison of the proposed
methods and the traditional method of full retraining in terms of computational
time.

For each of the proposed approaches, we consider two types of evaluations which
are defined as follows. The experimental results of both types are presented separately
for each update procedure.

Type A: How is the computational time affected by the variation in the size of
the training set? In this case, the computational time of the proposed method is
measured in response to the change in the size of the training set while the number
of mislabeled samples is adjusted to 400. The number of clusters is fixed and chosen
from {5, 10} and the size of the training set is varied between [1000, 24000] number
of data points.

41
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Type B: How do the approaches react to the change in the number of misla-
beled samples? In this case, the variation of the computational time of the update
procedure in response to the change in the number of updated samples is studied.
In the corresponding experiments, the number of clusters is set to 5 and the size of
the training set is fixed and chosen from {12000, 20000} while having the number of
mislabeled samples from as 10, 20 and 30 % of the size of the training set.

All the experiments are done on a synthetic data set where the data points are
randomly generated into different clusters and normalized with zero mean and unit
variance. For simplicity, the number of data features is chosen to be 2 and the
number of hidden neurons in the learning model is set as 150.

The experiments are repeated 50 times using Matlab code on a Windows machine
with 8 GB of RAM and CPU of 2.30 GHz and the average results over those number
of runs are presented.

6.1.1 UM-Procedure-2

UM-Procedure-2 performs the task of updating the learning model in case of detecting
new classes of traffic. As discussed in Chapter 5, in the proposed mechanism first a
new cluster is added to the model, and then the suspected data samples are mapped
into the new cluster. The main focus of the following experiments is to study the
computational time of the proposed update procedure in comparison with the case
where the model is fully retrained from the initial stage.

Type A

In the following experiments, we consider two problems of having the initial number
of clusters as 5 and 10. In each of these problems, the data points are randomly
generated and assigned into different clusters. After the initial training, each data
point is mapped into its correct cluster. The data points of the new class are generated
in a way to be of the same distance from all the existing clusters i.e. having equal
chance of being mapped to any of them. As a result, in the update procedure the
current cluster of the newly added data points can come from all the existing clusters
rather than a single one.

Fig. 6.1a represents the results of the experiments on the 5− cluster problem.
It can be seen that as the size of the training set grows, the proposed method
tends to perform slightly faster than the traditional method of full retraining. The
same phenomenon can be observed in Fig. 6.1b which represents the results for the
10− cluster problem although the difference is less noticeable.

Although we expected to see a significant improvement of the computational
time using the proposed update procedure, the above experiments only offer a minor
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Figure 6.1: Time comparison of the novel update method and old method of full
retraining using ELM for new cluster case. The number of hidden neurons and the
number of updated samples are set as 150 and 400 respectively.

improvement comparing to the old method as the number of samples in the training
set exceeds a specific data point.

Type B

Supposing to have the same problem of 5 clusters as before, the effect of the change
in the number of newly added samples on the computational time of the proposed
method is studied in the following experiments. In the following experiments, we
consider two cases of having the size of training set as 12000 and 20000.
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Figure 6.2: Reaction of novel update method in response to changing the number of
updated samples in comparison with the old method of full retraining using ELM for
new cluster case. The number of hidden neurons and the number of clusters are set
as 150 and 5 respectively.

As it can be seen in Fig. 6.2a, as the number of mislabeled samples increases,
the computational time of the update procedure changes in a similar way for both
the proposed method and the full retraining method. This fact can also be observed
in Fig. 6.2b which represents the results of the similar experiments on a larger data
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set. Considering these results, it can be concluded that the varying the number of
mislabeled samples does not have a major impact on the computational time of the
update procedure.

6.1.2 UM-Procedure-3

As discussed in Chapter 5, the Update Manager uses UM-Procedure-3 for modifying
the cluster assignment for a group of samples and updating the learning model
according to that. The following experiments are performed in order to provide an
evaluation of the proposed method in comparison with the method of full retraining
in terms of computational time.

Type A

As in the previous subsection, we consider two problems of having 5 and 10 clusters.
In each of the problems, the data points are generated randomly into the existing
clusters. The data points are mapped into different clusters in a random manner.
After the initial training, a number of samples which are suspected of being in the
wrong cluster are chosen by the Fault Detector component. Among these samples,
400 data points are selected as the correct candidates for being updated in the
following experiments.
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Figure 6.3: Time comparison of the novel update method and old method of full
retraining using ELM for cluster modification case. The number of hidden neurons
and the number of modified samples are set as 150 and 400 respectively.

Fig. 6.3a and Fig. 6.3b represent the results for the 5− cluster and 10− cluster
problems respectively. As it can be seen in the figures, in both of the problems the
proposed method performs slightly faster than the traditional method as the number
of the training samples increases. Considering the above plots, our proposed method
provides a minor improvement to the computational time of update procedure where
the size of the training set exceeds 16000 samples.
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Type B

In order to study the effect of the number of mislabeled data points on the com-
putational time of the update procedure, we consider a number of assumptions.
Considering two cases of having the previously mentioned 5− cluster problem, we
run the experiments on the training sets of 12000 and 20000 samples while changing
the number of mislabeled samples.
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Figure 6.4: Reaction of novel update method in response to changing the number of
modified samples in comparison with the old method of full retraining using ELM for
cluster modification case. The number of hidden neurons and the number of clusters
are set as 150 and 5 respectively.

As it can be seen in Fig. 6.4a, for the problem with 12000 samples the com-
putational time of the proposed update mechanism grows slowly as the number of
mislabeled samples increases. This follows a similar pattern as in the full retraining
method. On the other hand, a similar sketch can be observed in Fig. 6.4b where the
results of experiments on the larger data set is presented. In either case, the growth
in the number of mislabeled samples does not affect the computational time in a
considerable manner.

6.1.3 Discussion

As the results of type A experiments indicate, our novel method offers a minor
improvement to the computational time of the model update comparing to the
traditional update method. The same results can be observed for both the methods
of UM-Procedure-2 and UM-Procedure-3 which start to perform faster with a slight
difference as the number of samples exceeds a certain point. This is against our
expectation to see a noticeable difference in the computational time of the proposed
methods comparing to the full retraining of ELM.

The immediate outcome of the aforementioned observations is the excellence
of ELM as a fast learning method which can be fully retrained using thousands
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of samples with a low computational cost. In spite of this fact, it is necessary to
mention that in real life cases, the IDSs may be trained using millions of samples
rather than a few thousands. As a result, it is very likely that even a fast learning
method like ELM cannot provide the required speed for fully retraining the system
in such cases. This is where the two proposed update methods can be considered as
alternative approaches for updating the model without retraining. In this thesis, due
to the lack of computational resources, conducting the experiments with such large
data sets was not possible. Otherwise, the difference between the computational
time of the proposed methods and the traditional method could be more noticeable.

In addition, it is possible that improving the code used to perform the above
experiments can make the difference between the novel and old approaches more
evident.

6.2 Evaluation of the IDS
This section provides an evaluation of the proposed IDS according to the defined
accuracy measures in the field of intrusion detection. The results of this evaluation
is presented using the criteria introduced in Chapter 3 which are the detection rate
and false positive rate of the system. The primary objective in this evaluation is
to provide an assessment of the adaptivity of the proposed solution in different
conditions. In other words, the main focus of this assessment is to study how the
accuracy of the system decisions is affected when the learning model is updated
according to the new patterns appearing in the input data.

In the following experiments, we consider two cases for updating the system. In
the first case, the system is updated according to the new data from an existing
traffic class. In this case, the system first categorizes the data using the current
learning model and then updates the model according to the predicted labels. On
the other hand, in the second case, the system is tested using the new data from a
new traffic class. As in the previous case, the data is initially classified by the system
and then the system is updated by adding a new cluster considering the correction
proposals provided by the Fault Detector component. Each of these cases can be con-
sidered on the presence or absence of a human expert monitoring the system decisions.

In the following subsections, the experimental setup of the test environment is
discussed in detail and the evaluation results of the proposed intrusion detection
system are presented.

6.2.1 Experimental Setup

In this thesis, performance of the system is evaluated using NSL-KDD data set [60].
As discussed in Chapter 3, this data set consists of five main traffic categories of
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normal, DoS, Probe, R2L and U2R. For the purpose of testing the proposed IDS for
different scenarios, we consider to include the samples from four classes of normal,
DoS, Probe and U2R in the training phase. It is necessary to note that in the original
NSL-KDD data set the proportion of each class (and also malicious against normal
samples) are in no way realistic when compared to real network data. However,
in this thesis, we use the original proportions in order to be able to evaluate the
proposed system in a similar way as the existing IDSs in the state of the art.

In order to choose the proper parameters of the learning model i.e. the number of
hidden neurons, k-fold cross-validation method is used where k is adjusted to be 10.
The results of model selection phase averaged over 50 runs of repeated experiments
are presented in Fig. 6.5. The number of hidden neurons is varied between [20, 400].
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Figure 6.5: Results of model selection phase using k-fold validation method. The
model achieves the smallest validation error where the number of hidden neurons
equals 160.

As it can be seen in Fig. 6.5, the model achieves the lowest validation error when
the number of neurons in the hidden layer equals 160. As a result, the same param-
eter is utilized for training the intrusion detection system with the defined training set.

After the initial training, the trained model must be validated by a human expert.
The validation includes the task of verifying the correctness of the assigned labels
and choosing the appropriate thresholds which will be used by Fault Detector to
detect possible errors in future decisions. As a result, the validated model can be
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used to classify the future test data. In this thesis, the verification of the assigned
labels are performed based on the labels provided by NSL-KDD data set i.e. the
current training samples are classified according to their original labels.

In order to evaluate the performance of the intrusion detection system we consider
two types of testing as supervised and unsupervised. In supervised testing, it is
assumed that the system update is performed under the supervision of a human
security expert. In this case, the labeled data is served into the system as the input
and the correction proposals offered by the Fault Detector can be accepted or rejected
by the human expert. On the other hand, unsupervised testing is conducted in
the absence of the expert’s supervision while having unlabeled data as the input.
As a result, all the corrections proposed by the Fault Detector are applied to the model.

In each of the aforementioned experiments, we consider two scenarios for testing
the intrusion detection system as follows.

In the first scenario, the trained model is evaluated using part of NSL-KDD test
set containing the samples of known attack types which are normal, DoS, Probe and
U2R. In this case, we are able to assess the accuracy of system decisions where there
is no novel attack in the input data.

The second scenario focuses on the case where the input data comes from an
unknown attack class which is R2L. In this case, the model is updated using the
instances of R2L class in NSL-KDD train set.

The experimental results of these scenarios for supervised and unsupervised mode
are presented in the following subsections.

6.2.2 Unsupervised Testing

The unsupervised testing of the system is conducted in the absence of the human
expert. As a result, in this evaluation all the corrections proposed by Fault Detector
are assumed to be accepted and applied in system update. Assuming the model is
already trained using the samples of four traffic classes of normal, DoS, Probe and
U2R, the results of the system evaluation are presented for each scenario as follows.

Scenario 1: Known Traffic Type

In this scenario, the performance of the system in categorizing the data which comes
from existing traffic types is evaluated. In addition, the adaptivity of the system in re-
sponse to the injection of new data into the learning model is taken into consideration.
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For this purpose, an unlabeled data set which contains a number of samples from
three classes of normal, DoS and Probe is used as the input. As described in Chapter
5, the system tries to discover the best cluster for each sample in the data set. The
results of the initial classification of data are presented in tables 6.1 and 6.2.

Actual

Predicted

Normal DoS Probe U2R
Normal 9406 2310 276 0
DoS 11 2023 234 0
Probe 275 3125 1911 0
U2R 19 0 0 0

Table 6.1: Confusion Matrix of Multiclass Classification by The Initial System

Actual

Predicted
Normal Malicious

Normal 9406 2586
Malicious 305 7293

Table 6.2: Confusion Matrix of Binary Classification by The Initial System

Considering the values in tables above, the total rates of detection (recall) and
false alarms for all the malicious samples can be depicted as in table 6.3

Detection Rate False Positive Rate
0.76 0.0314

Table 6.3: Evaluation Results of The Initial System

As the system is being tested in an unsupervised state, all the labeling proposals
provided by the Fault Detector are assumed to be accepted. As a result, the system
is updated by incorporating the newly arrived samples to the learning model while
being labeled according to table 6.1.

In order to discover how the applied updates regarding the new samples affected
the accuracy of system decisions, the above experiment is repeated by serving the
same data set into the updated system as unlabeled input. The confusion matrices
of the new experiment are presented in tables 6.4 and 6.5

According to the values presented in the above tables, the new rates of detection
(recall) and false positives are calculated as in table 6.6

A comparison of the values in the confusion matrices of the initial and updated
system presented in tables 6.1 and 6.4 shows that the new system provides a higher
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Actual

Predicted

Normal DoS Probe U2R
Normal 9418 1733 55 0
DoS 10 5623 206 0
Probe 264 102 2160 0
U2R 19 0 0 0

Table 6.4: Confusion Matrix of Multiclass Classification by The Updated System

Actual

Predicted
Normal Malicious

Normal 9406 1788
Malicious 293 8091

Table 6.5: Confusion Matrix of Binary Classification by The Updated System

detection rate in predicting the correct labels for all the three classes of normal, DoS
and Probe. This can be observed specially for DoS samples where the detection rate
has a great improvement.

Moreover, the same improvement can be seen in the total rates of detection and
false alarms of the system. Considering the results presented in tables 6.3 and 6.6, it
can be seen that the updated system provides a higher detection rate comparing to
the initial system. In addition, the updated model offers an improvement to the rate
of false alarms as well. Considering these observation, it is obvious that the system
was able to adapt to the new data coming from existing traffic classes.

Scenario 2: Unknown Traffic Type

The main focus of this scenario is to assess the effectiveness of the system in detecting
novel attacks. In addition, the ability of the system for adapting to the new traffic
class is evaluated. For this purpose, a data set containing the samples of the new
traffic class of R2L is served into the system as unlabeled input. As discussed in
Chapter 5, the system first tries to find the best cluster among the existing ones
for the unlabeled samples. The results of the initial decisions of the system can be
found in table. 6.7.

Among the classified samples, the Fault Detector reported that 81 % of the newly
arrived samples have a very similar likelihood of being in any of the existing clusters.
In addition, about 8 % of the sample have very low scores for being in any of the
existing classes. Finally, a proportion of 89 % of all the new samples are considered
to be the candidates of being in a new cluster.

As the system is being tested in an unsupervised mode, all the proposals offered
by the Fault Detector are assumed to be approved and applied in system update. As
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Detection Rate False Positive Rate
0.84 0.0302

Table 6.6: Evaluation Results of The Updated System

Predicted Label Ratio (%)
Normal 91
DoS 1.5
Probe 6
U2R 1.5

Table 6.7: The Results of The Initial Classification for R2L Samples

a result, the learning model is updated by adding a new cluster and mapping 89 %
of the new samples into the newly added cluster.

In order to evaluate the effectiveness of the updates applied to the learning model
regarding the new cluster, the accuracy of system decisions is taken into consideration
by using an unlabeled data set containing both normal and R2L instances as the
test set. The results of this evaluation can be seen in table 6.8

Actual

Predicted
Normal R2L

Normal 1776 557
R2L 56 1966

Table 6.8: Confusion Matrix of Binary Classification by The Updated System

According to the numbers in table 6.8, the rates of detection and false alarms for
R2L class can be calculated as below.

Considering the results presented above, it can be seen that the system is able to
detect 89 % of the samples of the new attack type. In addition, as depicted in table
6.9, the system provides an acceptable detection rate of 77 % as well as a low false
positive rate in categorizing the samples of the newly added class. This approves
that the system was able to adapt to the updates regarding the new attack type.

6.2.3 Supervised Testing

As discussed earlier, the supervised testing of the system is performed in the presence
of a human expert who can approve or reject the corrections proposed by Fault
Detector and provide input to the learning model. Assuming the model is already
trained using the samples of four traffic classes of normal, DoS, Probe and U2R, the
results of the system performance are presented for each scenario as follows.
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Detection Rate False Positive Rate
0.77 0.0305

Table 6.9: Evaluation Results of The Updated System

Scenario 1: Known Traffic Type

As mentioned earlier, the main objective of this scenario is to evaluate the ability
of the system in adapting to the new data coming from existing traffic classes. As
in the unsupervised case, here we use a data set which contains samples from three
classes of normal, DoS and Probe as the input to the system.

As this experiment is being conducted in the presence of a human expert, it is
assumed that the new samples are already labeled according to their original labels
provided by NSL-KDD data set. In this case, the Fault Detector tries to modify the
current labels by offering corrections as in the unsupervised case presented in table
6.1. However, the correction proposals are rejected as the expert trusts NSL-KDD
labeling. As a result, the system is updated using the new samples labeled as their
original classes.

In order to assess the adaptivity of the system in response to the applied updates,
the experiment is repeated by serving the same data set into the updated system
as unlabeled input. The confusion matrices of the updated system decisions are
presented in tables 6.10 and 6.11.

Actual

Predicted

Normal DoS Probe U2R
Normal 9412 2084 6 0
DoS 11 3598 48 0
Probe 269 1776 2367 0
U2R 19 0 0 0

Table 6.10: Confusion Matrix of Multiclass Classification by The Updated System

Actual

Predicted
Normal Malicious

Normal 9406 2090
Malicious 299 7789

Table 6.11: Confusion Matrix of Binary Classification by The Updated System

In this case, the rates of detection and false alarms of the updated system are
depicted in table 6.12
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Detection Rate False Positive Rate
0.81 0.0308

Table 6.12: Evaluation Results of The Updated System

Considering the results of the repeated experiment, it can be seen that the system
was able to update part of its decisions in categorizing the data set. This can be
observed by comparing the values of the confusion matrix of the initial system in
table 6.1 to the matrix presented in 6.10. For example, the number of samples
correctly detected as DoS had a great improvement after the system update.

In addition, the total values of detection false positive rates shows the same
improvement in system performance which verifies the effectiveness of system in
adapting to the modifications added from an external source.

Scenario 2: Unknown Traffic Type

In this scenario, the adaptivity of the system in response to adding a new class of
traffic is evaluated. For this purpose, a data set containing the instances of the new
class of R2L is added to the system. This data set is the same as the set used in the
unsupervised case. As a result, the Fault Detector generates the same results as in
the unsupervised case i.e. only 89 % of the new samples are the candidates of being
in a new cluster.

However, as this evaluation is being conducted in the presence of a security expert,
it is assumed that the original labels of the samples provided by NSL-KDD data set
are trusted. Therefore, the correction proposals of the Fault Detector can be assumed
to be ignored. In this case, upon expert’s request, first a new cluster is added to
the system and secondly all the samples of the new data set are mapped into that
cluster. As a result, the output of this phase is an updated model containing five
classes of normal, DoS, Probe, U2R and newly added R2L.

In order to discover how the system adapts itself to the new updates, the same
unlabeled data set as in the unsupervised case is served into the system for testing
purpose. As mentioned before, this data set contains samples of both normal and
R2L classes. The evaluation results of this phase can be seen in table 6.13.

Actual

Predicted
Normal R2L

Normal 1734 737
R2L 98 1786

Table 6.13: Confusion Matrix of Binary Classification by The Updated System

Therefore, the rates of detection and false alarms for R2L class can be calculated
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as in table 6.14.

Detection Rate False Positive Rate
0.70 0.05

Table 6.14: Evaluation Results of The Updated System

Considering the results of the above experiment, it can be seen that after being
updated according to the expert input regarding the new traffic class, the system
provides an acceptable detection rate of 70 % and 5% of false positives in the test
phase. This shows that the system is adapted to the changes regarding the new
cluster.

6.2.4 Discussion

A comparison of the results obtained in supervised and unsupervised testings in-
dicates that in many cases, the system achieves a better performance after being
updated in the unsupervised mode. For instance, in the first scenario where the
system is being tested using the new data from existing classes, the detection rate
of the system is improved by 8 % when it is updated according to the corrections
provided by Fault Detector. On the other hand, in the same scenario in supervised
mode, the system offers only 3 % of improvement to the detection rate comparing to
the detection rate of the initial system. A similar phenomenon can also be observed
in the second test scenario where the system is tested using data from a new attack
class. In this case, the system achieves a higher detection rate and lower rate of false
alarms when the new samples are labeled according to the proposals of Fault Detector.

Plausible Explanation

As mentioned earlier, in supervised testing, the expert uses the labels of the original
NSL-KDD data set in order to classify the data into different classes. Considering this
fact and assuming that the original labels are trusted, we expected to achieve a higher
performance in supervised testing rather than unsupervised. However, the obtained
results do not meet this expectation. The above observations can be interpreted
as if in supervised testing, the human expert tries to bias the learning model by
injecting wrongly labeled data into the system. As a result, the system which tries
to learn from the wrong input data achieves a lower detection rate comparing to the
unsupervised case. In addition to these observations, in the initial training of the
system, we faced a similar challenge. Although in the initial phase of training, the
correct labels of the samples were used, lots of samples were detected as being in the
wrong traffic class by the Fault Detector. This happened for many of the samples in
all the existing classes.
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From the aforementioned remarks, we may conjecture that the samples of NSL-
KDD data set are not correctly labeled or the data set does not fit into our problem
context for evaluating the performance of the proposed system.

Separability of Classes in the Data Set

In order to verify the validity of the decisions of Fault Detector in correcting the
labels of the training data, a new clustering is conducted on the same training
set using k-means clustering method. The new clustering provides similar results
e.g. many of the samples of DoS class can already be labeled as normal and vice versa.

In addition, the similarity of samples in different classes is taken into consideration
by measuring Euclidean distance between each pair of samples in the data set. The
distance matrix of the data set is presented in Fig. 6.6 as a heatmap where the
larger distances are mapped into warmer colors. In the constructed matrix, outlier
distances over 60 are removed.

Figure 6.6: Heatmap of the pairwise Euclidean distance matrix of Samples in NSL-
KDD data set. Outlier distances over 60 are removed



56

Although the resolution of Fig. 6.6 does not permit to see individual lines, the
trends are visible enough. In spite of the fact that the distances inside a class are
expected to be smaller comparing to the distances between samples of different
classes, the above heatmap depicts slightly different results. As it can be seen in
Fig. 6.6, although the majority of samples in normal and DoS classes have similar
inner-class distances, there are still many samples which are the same distance from
the samples of other classes as well. This can be derived by observing many straight
lines of the same color sketched from one class to the other. In addition, many of
the points in the inner-class squares have the same color as the inter-class points i.e.
they have similar distances.

A similar phenomenon can also be observed in the points corresponding to the
distances in classes of Probe and U2R. As it can be seen in the heatmap, these classes
have warmer colors in their inner class points comparing to the two aforementioned
classes. This means that it is even more difficult to distinguish the samples of these
classes from others as they are very similar.

Concluding Remarks on NSL-KDD Data Set

The aforementioned remarks verify the obtained results that many samples of one
class are as similar to each other as to the samples of other classes in NSL-KDD data
set. It is necessary to note that any learning method relying on Euclidean distances to
discriminate between classes will likely be affected by this fact. In addition, manual
checking of individual records from the data set shows that samples belonging to
different classes (DoS and normal, e.g.), have absolutely identical feature values. As
a result, they have a similar likelihood to be classified into different classes and hence
in our case, they can be detected as wrongly labeled by Fault Detector in the training
phase. Considering this fact, it can be concluded that NSL-KDD data set does not
properly fit into the requirements of the proposed IDS to be evaluated although it
may represent the behavior of real network traffic.

In addition, in the context of this thesis, each traffic class in the data set is
modeled by a single cluster. However, in real networks and possibly in NSL-KDD
data set as well there may be different clusters for a single traffic type e.g. multiple
clusters can be labeled as normal. Therefore, we may get slightly different results in
the evaluation phase using this new scheme.

6.3 Summary
This chapter provided an evaluation of the proposed intrusion detection system.
Firstly, the performance of the two novel update approaches of UM-Procedure-2
and UM-Procedure-3 were studies in comparison with the traditional method of
full retraining in terms of computational time. The results indicated that the novel
update approaches perform faster than the old method with a slight difference when
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the number of samples in the training set exceeds a certain point. In addition, the
experiments showed that the size of the updated samples does not have a major
impact on the computational time of the update procedures.

Further, the evaluation results of the system performance in terms of accuracy
measures of intrusion detection were presented in this chapter. The experimental
results indicated that the system is capable of detecting novel attacks and being
updated according to the new patterns of data available as the input. In addi-
tion, the system is able to provide proper correction proposals for modifying the
labels of the input data. The obtained results indicated that the system achieves a
higher detection rate as well as lower rate of false alarms while being updated in an
unsupervised mode rather than the supervised mode. In other words, the system
provides a higher accuracy when the human input data is modified according to the
corrections proposed by the Fault Detector prior to system update. Considering
such counter-intuitive observations, this chapter also provided a discussion about the
NSL-KDD data set and its suitability the purpose of evaluating this work.

The following chapter concludes this thesis by providing a summary of key
outcomes and possible improvements for future work.



Chapter 7

Summary and Conclusion

This thesis addressed the problem of adaptability in the field of intrusion detection
by proposing a new intrusion detection system. The proposed IDS is an adaptive
solution which provides the capability of detecting known and novel attacks as well
as being updated according to the new input from human experts in a cost-effective
manner.

Two novel approaches were proposed for updating the system according to the
new available information with a low computational cost. Each of these approaches
was introduced as a method which can update the learning model without being fully
retrained. The first approach called “UM-Procedure-2” focuses on cases where a new
class of traffic is detected in the input data. In such cases, this approach modifies the
system by adding a new cluster to the existing ELM model and updates the output
weights with regards to that. The second approach which is called “UM-Procedure-3”
is used for cases where a human expert requests for modifying the cluster assignment
of existing data. In these cases, the proposed approach updates the model without
performing a full retraining. The experiments done as part of this thesis indicate
that both of these methods perform slightly faster than the traditional method of
full retraining when the size of the training set exceeds a certain point, although
they do not offer a significant improvement to the computational time of the update
process. In addition, the experimental results showed that the number of the updated
samples in any of the proposed approaches does not have a major impact on the
computational time of the update procedure.

Further, a scoring mechanism was presented in this thesis which enables the
proposed IDS to detect novel traffic types. In addition, using such mechanism,
the proposed system is capable of detecting human errors and providing correction
proposals for labeling the data. Applying the scoring mechanism along with the two
aforementioned update approaches assists the system to adapt to the new information
available as input. In order to evaluate the performance of the proposed IDS in this
thesis, the experiments were done in two modes of supervised and unsupervised. In
supervised mode, the information arriving to the system is based on the knowledge
of a human expert who ignores the correction proposals offered by the IDS. On the
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other hand, in the unsupervised mode all the corrections proposed by the IDS are
assumed to be approved and applied to the system.

The experiments conducted in this thesis using NSL-KDD data set indicated
that the system was capable of detecting novel traffic types while offering acceptable
rates of detection and false positives. In addition, using the update approach of
“UM-Procedure-2”, the proposed IDS was able to adapt itself in response to adding
the new traffic type to the learning model.

On the other hand, the experimental results showed that the performance of the
system was improved after being updated according to the newly arrived informa-
tion. This could be inferred from the enhanced rates of detection and false positives
achieved by the updated system. These results were obtained for both supervised and
unsupervised cases. However, in all the conducted experiments, the system achieved
a higher performance while being tested in an unsupervised mode.

Future Work
As mentioned earlier, the two proposed update approaches perform slightly faster
than the traditional retraining method of ELM when the size of the training data
exceeds a specific point. In spite of this fact, we expected to see a more noticeable
improvement to the computational time of the update procedure using the proposed
approaches. One possible area of future work can be to explore the variation of time
difference of the novel and old approaches in cases where the number of samples
grows toward the size of training data in real world applications of intrusion detection.

As discussed in previous chapter, the suitability of NSL-KDD data set for the
purpose of evaluating this work cannot be assured. Considering this fact, a potential
area for continuing this work in future is to evaluate the performance of the proposed
system using real network traffic data. For this purpose, various traffic analysis
tools such as Argus [1] can be used for extracting required features from network
flows. In addition, in order to enhance the relevance of the extracted features to the
problem domain the use of appropriate feature selection techniques could be taken
into consideration.
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Appendix A

Feature Description of The
NSL-KDD Data Set

Feature Name Description

duration length of the connection
protocol_type type of the protocol, e.g. tcp, udp, etc.

service network service on the destination, e.g., http, telnet,
etc.

flag normal or error status of the connection
src_bytes number of bytes from source to destination
dst_bytes number of bytes from destination to source

land 1 if connection is from/to the same host/port; 0
otherwise

wrong_fragment number of wrong fragments
urgent number of urgent packets
hot number of hot indicators

num_failed_logins number of failed login attempts
logged_in 1 if successfully logged in; 0 otherwise

num_compromised number of compromised conditions
root_shell 1 if root shell is obtained; 0 otherwise

su_attempted 1 if ”su root” command attempted; 0 otherwise
num_root number of “root” accesses

num_file_creations number of file creation operations
num_shells number of shell prompts

num_access_files number of operations on access control files
num_outbound_cmds number of outbound commands in an ftp session

is_host_login 1 if the login belongs to the “hot” list; 0 otherwise
is_guest_login 1 if the login is a “guest”login; 0 otherwise

count number of connections to the same host as the
current connection in the past two seconds
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srv_count number of connections to the same service as the
current connection in the past two seconds

serror_rate % of connections that have “SYN” errors
srv_serror_rate % of connections that have “SYN” errors

rerror_rate % of connections that have “REJ” errors
srv_rerror_rate % of connections that have “REJ” errors
same_srv_rate % of connections to the same service
diff_srv_rate % of connections to different services

srv_diff_host_rate % of connections to different hosts
dst_host_count number of connections between destination and host

dst_host_srv_count number of connections between destination and host
with the same service

dst_host_same_srv_rate % of connections between destination and host with
the same service

dst_host_diff_srv_rate % of connections between destination and host with
a different service

dst_host_same_src_port_rate % of connections with ”SYN” rate between
destination and host with the same source port

dst_host_srv_diff_host_rate % of connections between destination and host with
different host and service

dst_host_serror_rate % of connections with ”SYN” rate between
destination and hos

dst_host_srv_serror_rate % of connections with ”SYN” rate between
destination and host with the same service

dst_host_rerror_rate % of connections with ”REJ” rate between
destination and host

dst_host_srv_rerror_rate % of connections with ”REJ” rate between
destination and host with same service




