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Abstract 

The recent article by Dijkstra and Henseler (2015b) presents a consistent partial least squares 

(PLSc) estimator that corrects for measurement error attenuation and provides evidence showing 

that, generally, PLSc performs comparably to a wide variety of more conventional estimators for 

structural equation models (SEM) with latent variables. However, PLSc does not adjust for other 

limitations of conventional PLS, namely: (1) bias in estimates of regression coefficients due to 

capitalization on chance; and (2) overestimation of composite reliability due to the 

proportionality relation between factor loadings and indicator weights. In this article, we 

illustrate these problems and then propose a simple solution: the use of unit-weighted 

composites, rather than those constructed from PLS results, combined with errors-in-variables 

regression (EIV) by using reliabilities obtained from factor analysis. Our simulations show that 

these two improvements perform as well as or better than PLSc. We also provide examples of 

how our proposed estimator can be easily implemented in various proprietary and open source 

software packages. 

Keywords: partial least squares, structural equation modeling, composite variables, latent 

variables, measurement error, reliability, correction for attenuation, capitalization on chance, 

errors-in-variables regression
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1. Introduction  

Partial least squares (PLS) is currently one of the most popular techniques for the 

estimation of structural equation models in Information Systems (IS) research (Ringle, Sarstedt, 

& Straub, 2012). Although appealing due to their lower computational demands relative to 

conventional maximum-likelihood (ML) approaches, the traditional PLS methods are 

inconsistent and biased estimators of latent variable models (Dijkstra, 2010). These biases occur 

because composite loadings overestimate factor loadings (McDonald, 1996), and approximating 

latent variables with composites leads to the well-known measurement error bias in estimates of 

structural relationships (Bollen, 1989, Chapter 5). 

To address these long-standing issues, Dijkstra and Henseler (2015b) build on the 

classical correction for measurement error and present a new consistent PLS (PLSc) estimator. 

The results of their simulation study show that PLSc performs comparably to ML and a wide 

variety of other SEM estimators. Although these findings seem promising, earlier research 

(Goodhue, Lewis, & Thompson, 2012; Huang, 2013) showed that corrected PLS may not always 

work well. Particularly – although using a slightly different correction – Goodhue, Lewis, and 

Thompson (2012) demonstrated that when adjusted for measurement error, PLS path estimates 

may actually be positively biased. To clarify these concepts further, a consistent estimator is one 

that converges in probability to the true population value as the sample size approaches infinity. 

On the other hand, unbiasedness means that the expected value of the estimator (i.e., average 

after repeated samples from the same population) is the true population value, and this concept 

applies regardless of the sample size (Bollen, 2011). Therefore, it is possible to have a consistent 

but biased estimator, that is, one that tends to over or underestimate the true population 
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parameter in finite samples, but which still approaches the true value as the sample size increases 

toward infinity. 

Due to several issues that we explain in this article, and illustrate via simulated datasets, 

PLSc can be characterized as a consistent but biased estimator. First, we demonstrate that the 

PLS weights are susceptible to a small-sample bias, which inflates the correlations between 

adjacent composites (Rönkkö, 2014; see also Goodhue, Lewis, & Thompson, 2015). Second, we 

show that the reliability indices used in PLSc, although consistent, only partially address the 

issues in the estimation of composite reliability in PLS when using sample data (Aguirre-Urreta, 

Marakas, & Ellis, 2013), leading to a positive bias in these estimates. Third, we build on ideas 

presented in various prior works (Aguirre-Urreta et al., 2013; Dijkstra, 2010; Dijkstra & 

Schermelleh-Engel, 2014; Lu, Kwan, Thomas, & Cedzynski, 2011) to propose further 

corrections to PLSc, in order to overcome the tripartite problems of measurement error, 

capitalization on chance, and positively biased reliability estimates. These corrections lead to 

errors-in-variables regression (EIV) with unit-weighted composites and reliabilities obtained 

from factor analysis. Although factor models can be estimated in a number of ways, we focus on 

the maximum likelihood confirmatory factor analysis (ML-CFA) and minres approaches because 

these follow logically from applying the recommendations in the existing literature to the PLSc 

factor loading correction. Fourth, we replicate Dijkstra and Henseler’s (2015b) simulation study, 

comparing EIV with PLSc and maximum likelihood estimation of the full structural equation 

model (ML-SEM). Further, we extend the simulation study to conditions with weaker 

nomological networks, thus providing a direct answer to the call for future research by Dijkstra 

and Henseler (2015b, p. 17). We conclude our work with a discussion of our findings and 
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recommendations for researchers and provide examples on how to apply the proposed techniques 

using different statistical software. 

Our research is directly relevant for readers of MIS Quarterly for two reasons. First, 

although PLS is commonly used in the IS discipline, it is largely ignored by the leading research 

methods journals (Rönkkö & Evermann, 2013); consequently, a large share of current 

methodological writings on PLS have appeared in MIS Quarterly (Rönkkö, 2014). In addition to 

providing a direct answer to a call for future research by Dijkstra and Henseler (2015b, p. 17), 

we contribute to the methodological discussion by explaining the reason why the PLSc results 

obtained by Dijkstra and Henseler (2015b) differ from the positively biased results for 

disattenuated PLS presented by Goodhue et al. (2012).  Second, and more importantly, IS 

researchers rely on composite-based approximations of factor models perhaps more than 

practitioners in any other discipline. Therefore, it is important that they use composites that are 

robust, as well as estimation techniques that take measurement error into account. We thus 

contribute to applied practice by outlining a more robust estimation approach, which can be used 

immediately with either existing commercial statistical packages or freely available software. 

2. Issue 1: Capitalization on chance by PLS weights 

A number of recent studies have shown that traditional PLS is highly susceptible to 

capitalization on chance in finite samples (Goodhue et al., 2015; Goodhue, Thompson, & Lewis, 

2013; Rönkkö, 2014; Rönkkö & Evermann, 2013). We explain this issue using the simple 

structural equation model shown in Figure 1. When applied to data produced by this model, the 

PLS algorithm produces two composites (weighted sums) of the indicators. The correlation 

between these composites, which serves as the starting point for the PLSc path estimate, depends 

on both the indicator weights as well as the between-block indicator correlations. In finite 
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samples, these correlations vary around the population values due to natural sampling variability. 

This creates a problem because the weights also depend on these correlations: if a correlation 

between indicators ai and bj happens to be large simply by chance, both indicators receive larger 

weights. Conversely, small correlations lead to decreased weights. This overweighting of highly 

correlated indicators at the expense of indicators with smaller correlations leads to an overall 

positive bias in the composite correlation (Rönkkö, 2014; Rönkkö & Ylitalo, 2010). To be sure, 

sampling error affects other types of correlational and multiple regression-based analyses 

(including ML-SEM and regression with unit-weighted summed scales), but only by increasing 

the variance of the estimates, and not their bias (Charles, 2005; Rönkkö, 2014; Stanley & 

Spence, 2014). In the case of PLS, however, sample fluctuations in the raw data-based 

correlations lead to both bias and increased variance of the estimates (Goodhue et al., 2015; 

Rönkkö, 2014). 

----- Insert Figure 1 about here ----- 

We will next provide two numerical examples to demonstrate this issue. In the population 

model, all between-block correlations are 0.147 but, as stated above, the sample correlations, 

from which the PLS estimates are calculated, are never at the exact population values, and their 

variance depends on the sample size. When the sample size is 100, the standard error of the 

correlation is 0.100, which means that an observed between-block correlation falls outside the 

0.147 ± 0.1 range about one third of the time. To demonstrate the effects that these small sample 

fluctuations have on PLS weights, we increase one between-block item correlation by 0.1 and 

decrease another by 0.1(that is, one standard error). These manipulations are marked with dashed 

lines in Figure 1. Because all other elements of the correlation matrix are exactly at their 

population values, the two small departures represent controlled conditions that can be used to 
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demonstrate the issues occasioned by the natural sampling variability that arises in any real 

dataset. We then used the correlation matrix thus modified to calculate the PLS Mode A weights 

and the disattenuated correlation between the composites2  using the matrixpls package for R 

(Rönkkö, 2015) because, unlike most other PLS software implementations, the matrixpls 

package can obtain estimates directly from a correlation matrix without recourse to raw data. 

The PLS Mode A algorithm converged in six iterations. Table 1 shows the weight 

calculation history and the PLSc estimates of both the factor loadings and the path coefficient for 

each set of weights. The table also shows the PLSc-specific correction factors (c’s) used to 

rescale the indicator weights to factor loadings, and both Dijkstra and Henseler’s (2015b) ρA 

coefficient as well as the true reliabilities (R’s) for the composite variables. Because all 

indicators were equally reliable, unit weights, which are used as starting values in the PLS 

algorithm, produce the most reliable composites. In this scenario, the two manipulated 

correlations also cancel each other out exactly and all estimates using the starting weights are 

exactly correct. However, with the PLS indicator weighting system, the indicators with larger 

correlations receive higher weights and those with smaller correlations receive lower weights 

(Rönkkö, 2014), leading to a positive estimation error in the PLSc parameter estimates, as shown 

in Table 1. 

----- Insert Table 1 about here ----- 

In the second example, we further illustrate the effect of small-sample idiosyncrasies by 

using a different approach. Instead of taking the population correlation matrix and manipulating 

it directly, we drew 10000 multivariate normal samples of 100 observations from the unaltered, 

correct population matrix. Next, the model in Figure 1 was estimated using PLSc under two 

                                                
2 In a simple univariate regression such as that used in this demonstration, the correlation is equivalent to the 
standardized regression coefficient. 
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distinct scenarios: (1) the usual case where the indicator weights are calculated and the 

regression coefficient estimated within the same sample; and (2) a case where the PLS weights 

are first computed from a calibration sample, and are then applied to an independent or “hold-

out” sample to calculate the PLSc regression coefficient. Figure 2 shows that these two 

approaches produce markedly different distributions for the estimates: When the PLS weights 

and the PLSc regression coefficients are estimated from the same sample, the regression 

coefficients are biased away from zero and have a small secondary mode on the negative side of 

the x-axis, as also documented in prior IS research (Goodhue, Lewis, & Thompson, 2007; 

Goodhue et al., 2012). Contrarily, when these weights are applied to a new sample, the effect 

disappears and the resulting coefficient estimates are approximately normally distributed, but 

negatively biased, due to bias in the reliability estimates that we discuss in the next section. In 

both scenarios, the weights are based on estimated indicator reliabilities, but in the first scenario 

those weights also capitalize on idiosyncratic variation present in the sample from which the 

weights were calculated. In the second scenario, this does not happen because the characteristics 

of the hold-out sample are not the same as in the sample that was originally used to calculate the 

weights. If the weights were not affected by small-sample idiosyncrasies under the first scenario, 

then we would expect the two approaches to estimating the regression coefficient to yield 

identical distributions, which is clearly not the case. Through a different approach than before, 

this second example also clearly demonstrates that PLS weights capitalize on the idiosyncratic 

features of a given sample (e.g., correlations that are large by chance only), and that these affect 

the accuracy of the resulting estimates. In the interest of allowing for the replication of our 

results, the R source code for both examples is available in Appendix D. 

----- Insert Figure 2 about here ----- 
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3. Issue 2: Biasedness of reliability estimates 

An unbiased correction for measurement error attenuation in correlational and regression 

analyses requires unbiased reliability estimates for the variables involved (cf., Borneman, 2010; 

Muchinsky, 1996). In PLS analyses, these reliability estimates are typically calculated with the 

composite reliability (CRU
3) index – a measure of reliability of unweighted composites 

historically associated with latent variable SEM (Fornell & Larcker, 1981; Raykov, 1997; Werts, 

Linn, & Jöreskog, 1974). However, as pointed out by Dijkstra and Henseler (2015b), the CRU 

index is inconsistent when calculated from PLS estimates because the well-known 

overestimation of factor loadings by composite loadings will in turn inflate CRU. Therefore, they 

propose an alternative reliability coefficient, ρA, where the subscript A refers to the fact that 

Mode A estimation is used to generate the weights required for calculating the index. Although 

Dijkstra and Henseler do provide evidence of the consistency of ρA in their Figure 3, they do not 

provide evidence of unbiasedness – recall our earlier discussion on the difference between these 

two properties. Moreover, Dijkstra and Henseler address only some of the problems associated 

with the use of the CRU in a PLS analysis. As recently pointed out by Aguirre-Urreta, Marakas, 

and Ellis (2013), there are three issues with the way composite reliability is typically estimated 

following a PLS analysis. 

The first problem in using the CRU with PLS analysis is that the formula for the 

composite reliability statistic reported in the output of PLS analyses is the one given by Fornell 

and Larcker (1981; see also Chin, 1998) for equally-weighted composites. In the case of PLS 

analyses, however, the composites involved in the estimates are not equally-weighted 

combinations of individual indicators, but are rather created using weights derived with the PLS 

                                                
3 We use the acronym CRU for the unweighted version of composite reliability and CRW for a weighted version that we will 
introduce later. The acronyms CRW and CRU are not conventional terms from the psychometric literature, but were used here to 
make a simple distinction between reliability indices for the weighted and unweighted case, respectively.  
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algorithm. As a result, the composite reliability formula that is commonly employed is biased. 

For an unbiased estimation, an alternative version that does take into account the particular 

weights used to construct the composite is necessary (CRW; c.f. Aguirre-Urreta et al., 2013).  

Given that the CRW index is not as well-known as CRU, some further elaboration is 

warranted here. The most general version of CRW was developed over 70 years ago by Mosier 

(1943, Equation 5, p. 162; for other variants, see Rozeboom, 1989; Webb, Shavelson, & Haertel, 

2006), and can be expressed as follows for the unstandardized case:		

 
CR$	=	1 − 	

()
*+)

* − ()
*+)

*,)
*

()
*+)

*-
) + 2 ()(0+)+01)0-

02*
-34
)24

	(with	i≠j	),		 
[1] 

where for a given weighted composite, (), +)*, +)and	,)* are, respectively, the weight, variance, 

standard deviation and reliability of the ith indicator (a squared standardized factor loading is the 

indicator reliability); (0	and	+0 are the weight and standard deviation of the jth indicator; and 1)0 

is the correlation between the ith and jth indicators (i	≠j ). Therefore, the CRW index is 

essentially a modified version of the CRU that takes differential indicator weights into account, 

whatever their origin. Like the CRU index, CRW is an estimate of the ratio of true score variance 

in the composite to the total variance of the composite. It is evident from Equation [1] that CRW 

is the more appropriate measure of composite reliability for PLS-based analyses, which rest on a 

differential indicator weighting scheme (cf., Aguirre-Urreta et al., 2013). Another difference 

between these two indices is that CRU uses the estimated variance of a composite in the 

denominator, conditional on indicator error terms being exactly uncorrelated in the sample, 

whereas CRW uses the variance of the actual composite. Therefore, for standardized composites, 

which are always the case in the PLS context, CRW reduces to the square of the sum of products 

of the loadings and weights for the composite, that is: 
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 CRA = (),) *.  [2] 

When the indicator weights and loadings originate from a PLSc analysis, CRW is equivalent to 

the ρA index presented by Dijkstra and Henseler (2015b).  

The second concern expressed by Aguirre-Urreta et al. (2013), which was also noted by 

Dijkstra and Henseler (2015b), is that in traditional PLS analysis the loadings are estimated with 

correlations between the individual items and the composite of which they are a part, leading to 

biased estimation. To solve this second issue, the PLSc correction does not use the correlations 

between indicators and composites as loading estimates, rather, the loadings are consistenly 

estimated by scaling the weights as follows (Dijkstra, 2010):  

 B) = C) ∙ E), [3] 

where E) is the weight vector for the ith block of indicators, B)	is a parallel vector of estimated 

factor loadings, and C) is the  scaling factor.4 Unfortunately, consistency does not guarantee 

unbiasedness in finite samples, and the study by Huang (2013) demonstrates that the PLSc 

loading estimates are biased, mostly negatively. The same effect can be seen in our second 

example, where the mean PLSc corrected factor loading over 10 000 replications was 0.653, 

a -7% bias compared to the population value of 0.75. 

                                                
4 Our notation differs from that used by Dijkstra and Henseler (2015b), who deviate from other papers on PLSc (e.g., Dijkstra & 
Henseler, 2015a; Dijkstra & Schermelleh-Engel, 2014) in that they do not refer directly to the scaling factor c in the adjustment 
formulas. We follow the approach from earlier papers on PLSc of using c, given that it simplifies the presentation of the formulas 
and also directly sets the stage for our improved estimator. However, we follow Dijkstra and Henseler (2015b) in using ρA to 
denote the PLSc reliability coefficient rather than the less intuitive q index used in other PLSc studies.  
5 Huang (2013) does not provide an explanation for the bias. Two mechanisms may lead to bias in the factor loading estimates 
obtained using Equation 3. First, the indicators with loadings having positive estimation error are over-weighted at the expense of 
other indicators, a phenomenon which is illustrated by our first example model from the previous section. It would intuitively 
appear that if two pairs of indicators (e.g. a1, b1 and a2, b2) are affected by error with the same magnitude but different directions, 
and the third pair (a3, b3) is unaffected by the error, the weights assigned to the third pair would remain at the original values, but 
this is not the case: The variance of a weighted sum depends on the squares of all weights, and therefore increasing one weight 
while decreasing another by the same amount leads to increasing the variance of the composite. To compensate for this increase, 
the standardization step must downscale all weights, leading to an overall decrease in the mean standardized weight. Second, the 
same mechanism affects the factor loading correction factors (C’s), which also depend on squares of weights and therefore further 
downscale the loading estimates. More methodological research addressing the small sample properties of the weights and the 
correction factor is clearly needed. 
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The final concern expressed by Aguirre-Urreta et al. (2013) is the non-independence of 

weights and loading estimates. In a traditional PLS estimation, loadings are obtained as 

correlations between the indicators and composites. Because loading estimates depend on the 

weights, choosing different weights (e.g. Mode A vs. Mode B) leads to different loading 

estimates. Because loadings are fixed population parameters that are estimated, the estimates 

should not depend on the way a researcher chooses to form the composites. To break the explicit 

dependency between loadings and weights, Aguirre-Urreta et al. (2013) recommended that 

loadings be obtained through alternative procedures, such as maximum likelihood estimates from 

a confirmatory factor analysis of each set of items separately, following Raykov (1997). This 

final concern, in the form presented by Aguirre-Urreta et al. (2013), is not directly applicable to 

PLSc because weights are always calculated by Mode A and are thus proportional to estimated 

loadings, and because just one weight algorithm is allowed there is no choice of weights 

involved.  

Unfortunately, the non-independence of weights and loadings leads to an additional but 

slightly different problem in small samples for the case of PLSc. Assume an ideal scenario where 

the estimated loadings are unbiased, normally distributed, and independent from one another. In 

this case, the estimation error associated with a single loading estimate can be either positive or 

negative. A negative estimation error leads to a weight that is smaller than the “correct” weight, 

whereas a positive error leads to a weight that is larger. Therefore, indicators with overestimated 

loadings are over-weighted and those with underestimated loadings are under-weighted, leading 

to an overall positive bias in the composite reliability estimates (i.e., ρA) by inflating the effects 

of positive estimation error and reducing the effects of negative estimation error so that they no 

longer cancel out as would be expected if the weights were independent of the reliability 
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estimates. The effect is clearly seen in our example in Table 1 where the reliabilities are over 

estimated by 0.039, or by +5%. 

Thus, although the composite reliabilities are estimated with an appropriate formula in 

PLS, the issues of biased loading estimates and non-independence of weights and loadings 

remain. Because the effect of the two biases – negative bias of loadings and positive bias due to 

proportionality of loadings and weights – are in opposing directions, their net effect on the 

estimated reliabilities (ρA) is not obvious. However, it is safe to say that these two biases would 

only cancel each other out exactly by chance, and that is not something on which researchers 

should be willing to rely. In the next section, therefore, we propose further corrections to the new 

PLSc estimator that address these issues and later pit our corrected estimator against PLSc to 

compare their performance in a study that replicates the simulation done by Dijkstra and 

Henseler (2015b). 

4. Proposed corrections to PLSc 

In order to resolve the issues presented above, we now propose some simple 

improvements to PLSc, beginning with the factor loading estimation. The first correction is to 

estimate the factor loadings using traditional factor analysis techniques instead of by rescaling 

the indicator weights6. This leads to general confirmatory factor analysis-based techniques for 

disattenuation (e.g., Croon, 2002; Lu et al., 2011). The proposed technique has three advantages 

over the per-block correction proposed by Dijkstra, namely, it: (1) breaks the explicit 

dependency between weights and loadings; (2) does not depend on the initial indicator weights, 

                                                
6 This improvement can be motivated in at least two different ways. First, the scaling factor C) should be estimated to minimize 
the Euclidean distance between the sample and model-implied correlation matrices for the ith block of indicators. However, we 
can get closer to the minimum by replacing the single scalar	C), which is applied to an entire block of indicators, with a vector H, 
such that each loading is corrected separately. Estimating the corrections for each indicator block separately essentially leads to 
minimum residuals or minres (cf., Nunnally, 1978, Chapter 11) estimates of loadings for multiple single-factor models. Second, 
the PLSc factor loading estimator can be considered as a special case of minres estimator, constrained to produce loadings 
proportional to PLS weights. All corrections can also be estimated simultaneously and, with appropriate weighting of the distance 
function, lead to maximum likelihood confirmatory factor analysis. See Appendix B for how these corrections can be derived. 
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and is therefore more general and can also be applied to other composite-based SEM estimators 

(e.g. PLS Mode B), which may not have the same asymptotic properties for weights as PLS 

Mode A; and (3) is a full-information estimator in the scenario where all loadings are estimated 

simultaneously, and would therefore be expected to estimate the factor loadings more efficiently, 

that is, the estimates should be more precise. 

Although estimating the loadings with factor analysis breaks the explicit dependency 

between loadings and weights, this change is insufficient to make weights and loadings 

independent. To completely sever this connection, we introduce a second correction, which 

entails constructing the composites with unit weights (i.e., sums of standardized indicators, e.g., 

Bobko, Roth, & Buster, 2007; Cohen, 1990; Cohen, Cohen, West, & Aiken, 2003, pp. 97–98) 

scaled to produce standardized composites, instead of using PLS weights to construct the 

composites. Even though there may be some situations where this choice leads to a marginal 

decrease in the reliability of the composites (Henseler et al., 2014), unit-weighted composites 

have been shown to be robust in a broad range of scenarios (e.g., Bobko et al., 2007; Cohen, 

1990; Cohen et al., 2003, pp. 97–98; Raju, Bilgic, Edwards, & Fleer, 1999). Moreover, 

regardless of how the indicators are weighted, the correction for attenuation should eliminate any 

effect that indicator weights have on the estimated composite correlation matrix, and therefore 

there is little if any loss in estimation accuracy7. Another advantage of this second correction is 

that it eliminates the biasing effects of chance correlations from the results, as unit-weighted 

composites do not exhibit the same sensitivity for these correlations as PLS weights do (Rönkkö, 

2014). 

                                                
 
7 We note that starting with less reliable composites may have an effect on the estimates because less reliable composites require 
a higher disattenuation coefficient, and this same coefficient is also used to multiply sample imperfections such as chance 
fluctuations in indicator correlations. We will address the overall effect of the correction on estimation accuracy later in the 
paper. 
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Our more refined correction obviates the need for calculating the PLS weights as the 

initial step during estimation, but follows the remaining steps used in PLSc, that is, 

disattenuation of the composite correlation matrix using estimated composite reliabilities, 

followed by applying regression analysis to estimate the structural coefficients. This technique is 

equivalent to errors-in-variables (EIV) regression (Fuller & Hidiroglou, 1978; Warren, White, & 

Fuller, 1974), and also better known by this name8. Reliability can be estimated using either of 

the CR indices presented above, or any other model-based formulas appropriate for unit-

weighted composites (Cho & Kim, 2015; Green & Yang, 2009). In the remainder of this research 

we will focus on two estimators of this class, namely EIV regression using unit-weighted 

composites with reliability estimates from maximum likelihood factor analysis (EIVML-CFA) and 

per-block minres factor analysis (EIVminres), which is closer to PLSc, but requires at least three 

indicators per block9.  

5. Replication of Dijkstra and Henseler 

In the simulations that follow, we compare EIVML-CFA and EIVminres with PLSc as well as 

simultaneous maximum likelihood estimation of the full structural equation model (ML-SEM). 

As explained in the previous section, our corrections to PLSc focus on unbiased reliability 

estimation and eliminating the small sample bias due to PLS weights from the initial composite 

correlations. Therefore, in addition to focusing on the bias, efficiency, and power of the 

estimators themselves, we also analyzed the performance of the three different reliability 

estimates discussed so far (Cronbach’s alpha, CRU, and CRW) for both PLS and unit-weighted 

composites as well as designed the simulation to isolate the effects of capitalization on chance by 

                                                
8 These techniques are sometimes referred to as the “bias correcting” (Croon, 2002) or “two-step” (Oberski & Satorra, 2013) 
method in the SEM literature. 
9 We also studied a number of other confirmatory factor analysis estimators including GLS, WLS, DWLS, and ULS. Because 
these estimators are rarely used in IS research and did not show any advantage over the ML estimator in our simulations, these 
results are omitted from the article, but are available upon request from the first author. 
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the PLS weights. The true population model for the simulation is taken directly from Figure 4 in 

Dijkstra and Henseler’s (2015b) study, and is comprised of the following set of structural 

equations: 

 I3 = K23L2 + M3 
I4 = K14L1 + K24L2 + M4 
I5 = K15L1 + K25L2 + P35I3 + M5, 

[3] 

where Q4* = 0.70, K23= 0.0, K14= 0.0, K24= 0.70, K15= 0.22, K25= -0.70, and PUV= 0.35. All 

measurement equations were of the form y = λη + δ and x = λξ + ε, with λ’s ranging widely in 

value from 0.40 to 0.94. The number of indicators also varied considerably. Both L1and I4were 

only measured by two indicators each; L4and IW by six indicators each; and IW by four indicators. 

To be able to analyze the performance (i.e., bias and efficiency) of reliability estimates, 

we constructed our datasets sequentially by first generating all latent variables and then 

calculating the indicators as weighted sums of their respective latent variables and random error 

terms. This approach is similar to past research on PLS (e.g., Goodhue et al., 2007, 2012), and 

was used here because it allows for straightforward calculation of true composite reliabilities, 

that is, the squared correlations between the latent variables and their respective composite 

proxies, which can then be compared to the estimated reliabilities in order to assess the 

performance of different reliability indices. In the rare cases where a composite correlated 

negatively with the latent variable, we coded the reliability as negative. 

For the conventional multivariate-normal scenario, it was assumed that all exogenous 

latent variables (i.e., factors and errors) were joint-normally distributed, and that measurement 

and structural errors were mutually independent; factors were also assumed to be independent of 

all error vectors. In line with Dijkstra and Henseler (2015b), sample sizes were set at N = 100, N 

= 200, and N = 500. The non-normal data condition was constructed using the method described 
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by Vale and Maurelli (1983), as implemented in the R package simsem (version 0.5-9, 

Pornprasertmanit, Miller, & Schoemann, 2014). Because the data were generated sequentially 

rather than drawing samples from a covariance matrix as in Dijkstra and Henseler’s (2015b) 

study, we could not directly specify the degree of excess kurtosis in the observed variables; 

rather, only the distributions of the exogenous latent variables could be manipulated directly, 

followed by generating the indicators as weighted sums of the non-normal latent variables.  

However, a sum of leptokurtic variables generally has smaller excess kurtosis than the raw 

variables. Therefore, to ensure that our observed data were sufficiently non-normal to be 

comparable with the datasets used by Dijkstra and Henseler, we set all exogenous latent 

variables to have excess kurtosis of 5. 

In addition to replicating past research, we also introduced two additional experimental 

conditions. The first involved the use of three different scaling factors (0, 0.5, 1) for the true 

parameter values, in order to examine the behavior of the estimators with respect to each model 

structure when the population effect sizes for the relationships between the latent variables are 

weaker or non-existent. This is a relevant experimental manipulation because the PLSc estimator 

requires the latent variables to be correlated in the population in order to calibrate the indicator 

weights (Dijkstra & Henseler, 2015b), but this requirement may not always be fulfilled in real 

datasets. Moreover, this strategy allowed us to examine the null distribution of the estimates, 

which will help shed further light on the appropriateness of assuming a reference distribution 

based on normality – the current practice in PLS – to obtain p-values for parameter estimates 

(Rönkkö & Evermann, 2013). 

However, one complication with applying the scaling factor of 0 to Dijkstra and 

Henseler’s (2015b) population model is that there are two factors (L1and I4) with only two 
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indicators each. As is well known, a common factor model with only two indicators is identified 

only if the factor is embedded in a larger system of non-zero relationships (Bollen, 1989, pp. 

238–246). Therefore, setting all factors to be uncorrelated leads to empirically underidentified 

measurement models for both L1and I4 (Rindskopf, 1984; see e.g., Kline, 2011, p. 147).  

Resolving this identification problem by imposing equality constraints on loadings was not a 

viable option, as such a modification would deviate too much from the original model. 

Therefore, to solve this issue, we followed the example by Huang (2013) and implemented the 

simulations also using an alternative, larger model where the indicators x11, x12, y41, and y42 were 

each included twice in the population model such that all latent variables had at least four 

indicators, rendering each factor individually overidentified. 

As the second additional experimental condition, we implemented a manipulation aimed 

at quantifying the effects of capitalization on chance across the different estimators. Rönkkö 

(2014) argues that the effect is mostly caused by chance correlations between the measurement 

errors in the indicator variables. Following his approach, we created two versions of each 

dataset, which we refer to here as original and manipulated data. The original data were 

generated using the sequential data generation approach described above, which entailed first 

generating the latent variable values and then generating the indicators based on these values. 

For each generated dataset, the corresponding manipulated data were constructed by 

orthogonalizing the error terms in the original data (but maintaining their variances), and then 

calculating a new set of indicators using the original latent variable values and error terms that 

were artificially restricted to be uncorrelated in the sample, thereby removing any chance 

correlations between measurement errors. Similarly to the recent study by Rönkkö (2014) and 

the second example presented above, when estimating the model with manipulated data we 
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always used the original data for calculating the indicator weights and then used the manipulated 

data for the estimation of the structural paths.  This design allowed us to quantify the extent to 

which chance correlations inflated the estimates of the relationships between the latent variables, 

which are the effects of primary substantive interest.  This comparison was done only for PLSc 

and the EIV estimators, which are the main focus of the paper, but not for ML-SEM because the 

estimator does not use indicator weights that could be retained from one sample to another. 

For the PLSc and EIV estimators, all simulations were conducted within the R statistical 

programming environment (version 3.1.0, R Core Team, 2015) using the matrixpls package 

(version 0.6.0, Rönkkö, 2015). In line with the approach of Dijkstra and Henseler (2015b), the 

factor weighting scheme was used for inner estimation and Mode A for outer estimation. ML-

SEM estimations were performed with the lavaan package (version 0.5-17, Rosseel, 2014). The 

number of Monte Carlo replications was set at 1000 for all simulation conditions. 

5.1. Experiment results 

We compared the composite-based PLSc, EIVML-CFA, and EIVminres estimators, and ML-

SEM, in terms of their ability to estimate factor loadings, composite reliabilities, and path 

coefficients, as well as accuracy of confidence intervals and their statistical power. These results 

are further disaggregated by the experimental manipulations: (1) Dijkstra and Henseler’s (2015b) 

original model (Small Model) vs. a model with duplicated indicators for each of L1and I4 (Large 

Model); (2) scaling factors (0, 0.5, 1) for effect sizes; (3) original vs. orthogonalized 

measurement errors; and (4) sample size. Given that the results for the normal and non-normal 

data conditions were virtually identical, only the results for normal data are presented here (see 

Appendix A for comprehensive results tables, including those for the non-normal condition).  
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5.1.1. Inadmissible values 

In contrast to Dijkstra and Henseler (2015b), who studied only conditions where all 

estimators are expected to perform well, we also included conditions where the estimators can be 

expected to encounter difficulties. Particularly, the two-indicator measurement model is 

empirically underidentified in the scenario where the latent variables are uncorrelated in the 

population. In these scenarios, the data do not provide sufficient information to estimate the 

loadings, resulting in arbitrary estimates with a large number of inadmissible values for all 

estimators, as shown in Table 2 below. For the Small Model (where EIVminres cannot be used 

because a factor analysis requires at least three observed variables), the number of replications 

with inadmissible loadings exceeded 90% for all estimation techniques at all three sample sizes 

when the population path coefficients were set to zero. The number of replications showing 

inadmissible loadings declined with increased effect and sample size for all four of the above 

estimators, but this effect was weaker for PLSc than for the other estimators. In the original, 

unscaled model, PLSc always produced more than 2.5 times as many inadmissible loadings than 

any of the competing techniques. These findings are also consistent with prior research showing 

that having only two indicators per factor leads to increased rates of inadmissible solutions 

(Ding, Velicer, & Harlow, 1995; Gagne & Hancock, 2006; Jackson, Voth, & Frey, 2013; Marsh, 

Hau, Balla, & Grayson, 1998). Highly similar patterns of inadmissible results were found under 

the Small Model for the composite reliability indices, which are only relevant for PLSc and 

EIVML-CFA because the latent variable-based ML-SEM estimation technique does not use 

composites. 

--- Insert Table 2 about here ---- 



19 
 

With respect to factor correlations under the Small Model, inadmissible solutions were 

much less frequent, which is the expected result; model underidentification does not necessarily 

mean that all model parameters are not identified and, in these models, the factor correlations 

remain identified. Inadmissible correlations were produced in two scenarios. First, when the 

factors were uncorrelated in the population, the uncorrected correlations between PLS 

composites were strongly biased away from zero due to the capitalization on chance effect 

discussed earlier. At the same time some of the reliability estimates were very small, producing 

larger correction factors. The combination of these two issues leads to inadmissible correlation 

estimates (i.e., greater than 1.0)10. The second scenario that produced inadmissible correlations 

involved the original, unscaled model. In this scenario, inadmissibility of correlations is a 

consequence of the fact that some of the population correlations were very large, which in 

situations where estimates are normally distributed and have large variances, inevitably leads to 

some estimates that exceed the range of admissible values. The latent variable-based ML-SEM 

technique resulted in a slightly smaller number of inadmissible estimates in the unscaled models 

because the technique is generally more efficient than the traditional correction for attenuation 

(Charles, 2005; Kline, 2011, pp. 70–71; Muchinsky, 1996; Schmidt & Hunter, 1996; 

Schumacker, 2010, sec. 3.2.5). 

For the Large Model, which simply duplicates each of the original indicators for L1and 

I4, the proportions of inadmissible results under PLSc closely paralleled those of the Small 

Model for all three types of statistics (i.e., loadings, factor correlations, and composite 

reliabilities). However, there was a large difference in the performance of EIVML-CFA and ML-

SEM in estimating loadings and reliabilities, which results from the fact that a latent variable 

                                                
10 The disattenuation correction is known to produce inadmissible correlations when the observed composite correlation is greater 
than the square root of the product of the two composite reliabilities (cf., Charles, 2005; Nimon, Zientek, & Henson, 2012) 
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with three or more indicators is identified without requiring any information from the larger 

model, and therefore empirical underidentification is no longer an issue. The PLSc results are 

largely unaffected by increasing the number of indicators because only the between-block 

correlations are used to estimate the proportionalities of the indicator weights, and therefore the 

new information that the added indicators bring to model estimation is underutilized. The pattern 

of results is very similar to the results by Huang (2013). That EIVminres never produced any 

inadmissible loadings is explained by the fact that the minres implementation we used (the fa 

function in the psych package of R; Revelle, 2015) is constrained to always yield admissible 

loadings.  

We will next focus on the performance of the parameter estimates. In doing so, we chose 

to include the inadmissible estimates in the computation of our descriptive statistics. The reason 

for this is two-fold. First, Dijkstra and Henseler (2015b) did not report dropping inadmissible 

estimates and we prefer our study to be as comparable to theirs as possible. Second, because the 

model contained a few very large loadings or correlations, dropping inadmissible estimates 

would have effectively truncated their sampling distributions, causing artificial bias in estimates 

that would be otherwise unbiased. 

5.1.2. Factor loadings 

Because the models examined here contained large numbers of factor loadings, results 

needed to be reported selectively. Therefore, in order to make the analysis of patterns in the 

results more manageable, we focus on examining six loading estimates. Of the two 

underidentified factors, ξ1 and η4, we chose to focus on the latter because the indicator loadings 

have larger variances, and thus the results may be more generalizable than in the case of ξ1, 

which had two exceptionally reliable indicators. Of the remaining three identified factors, we 
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chose to focus on η3 and η5, which are, respectively, the least and most correlated with the other 

factors.  Therefore we expect to see large differences here between PLSc estimates – whose 

proportionality depends solely on the between-block correlations – and other factor loadings 

estimates, which are either completely unaffected (minres) or relatively less affected (ML-CFA) 

by the between-block correlations. With these two factors, we chose to focus on the largest and 

smallest (i.e., first and last) factor loadings. Table 3 shows the results for the selected loadings. 

(The full table of estimated loadings is presented in Appendix A). Because both estimation 

strategies that relied on ML estimation of the full factor model (EIVML-CFA and ML-SEM) 

produced nearly identical estimates, we only report results for EIVML-CFA. 

--- Insert Table 3 about here --- 

As shown in Table 3, the EIVML-CFA estimates were unbiased and more efficient than the 

PLSc estimates, across all conditions and both Models 1 and 2 for those factors that were 

identified (i.e., had 3 or more indicators); under the Large Model, the EIVminres estimates and SDs 

were virtually identical to those of EIVML-CFA. EIVML-CFA faced serious difficulties with the 

empirically underidentified loadings in the Small Model. However, the same problem arose in 

PLSc where all loading estimates were biased and varied widely from sample to sample.  

When discussing the three problems in estimation of composite reliabilities in PLSc (i.e., 

assumption of equal weights, biased estimates of loadings, and dependencies between weights 

and loadings; see Aguirre-Urreta et al., 2013). Except for the non-identified factors, all PLSc 

loading estimates are negatively biased and the magnitude of the bias depends on the strength of 

the correlations between the factors. The pattern of results is again very similar to the results by 
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Huang (2013), where the PLSc loadings were negatively biased except for doublet factors where 

the bias was positive11. 

5.1.3. Reliabilities 

We analyzed the performance of several different reliability statistics for all composite-

based techniques: (1) the classical Cronbach’s alpha; (2) the composite reliability index (CRU) 

for the unweighted case, commonly used in PLS studies; and (3) the CRW index, designed 

specifically for the case of weighted composites. With the CRU index, we estimated the variance 

of the composite assuming uncorrelated errors in the sample, in keeping with how the index has 

been used in the PLS literature; whereas with the CRW index, we use the real composite variance 

so that the index is equivalent to the ρA used by Dijkstra and Henseler (2015b). Both CRU and 

CRW indices were calculated using the corrected loading estimates instead of using the indicator 

composite correlations, which Dijkstra and Henseler used for the CRU (labeled as Jöreskog’s ρ or 

ρc in their article). 

Table 4 shows the estimation errors of the reliabilities calculated as differences between 

reliability estimates and the true reliabilities (i.e., squared correlations between the composites 

and the latent variable scores used to generate the data). Because the results for reliability 

estimates calculated with minres loading estimates were identical to the third decimal place with 

the reliability indices calculated with ML-CFA, only the latter are reported. We focus on the 

Small Model, because it is expected to show the largest discrepancies among the different 

reliability estimates. This approach also allowed us to compare the reliability results for the 

doublet factors (ξ4	and	ηW) to those with 4+ indicators. For the two doublet factors (where minres 
                                                

11 The positive bias in the two-indicator case may be an outcome of the PLSc correction, stemming from the fact that the scaling 
factor C) reduces to the square root of the indicator correlation divided by the product of the two weights. Because the weights are 
scaled so that the resulting composite is standardized, this can lead to an effect where larger weights are scaled up less than 
smaller weights, leading to an overall positive bias in the loadings. As noted in footnote 5, more research on the small sample 
characteristics of the weights and the PLSc corrections is required before any definite statements about the source of the bias in 
the loadings can be made. 
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estimation was not possible), both PLSc and EIVML-CFA yielded large numbers of inadmissible 

values for CRU and CRW. For both estimators, the values for CRU and CRW in the doublet case 

improved appreciably as the scaling factor and sample size increased, and ultimately achieved 

less bias under EIVML-CFA than PLSc. 

For the remaining composites, which corresponded to identified factors with 4 or more 

indicators, the EIVML-CFA-based CRU and CRW outperformed those obtained under PLSc by a 

wide margin, being unbiased and more efficient in all scenarios. As would be expected, 

Cronbach’s alpha tended to underestimate reliability, given that it is a lower bound on reliability 

when the assumption of tau-equivalency (i.e., equal loadings) is violated (Green & Hershberger, 

2000), as in the present case. However, this underestimation was not severe, with the bias still 

being substantially less than in the case of CRU and CRW under PLSc. Interestingly, in scenarios 

where the latent variables were uncorrelated, alpha overestimated reliability. This result is due to  

the fact that alpha is an estimate of  reliability for equally weighted composites, which are more 

reliable than PLS composites in some scenarios (Rönkkö & Evermann, 2013). The CRU and CRW 

produce differing results for the empirically-weighted PLS composites and show an interesting 

pattern. Consistent with our expectations, the unweighted CRU index is negatively biased 

because the effects of indicator weights are ignored. A more interesting finding – but one that is 

expected because weights depend on the reliability estimates – is that the CRW indices are always 

positively biased. 

--- Insert Table 4 about here --- 

The results show that estimating the reliability of empirically-weighted composites used 

by PLSc is substantially more difficult than estimating the reliabilities of unit-weighted 

composites used by the EIV estimators. This can be intuitively explained by considering that 
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with PLSc, there are two sources of sampling variability, namely the variance of the weights and 

the variance of the loadings estimates, whereas with unit-weighted composites, only the variance 

of the loading estimates affects the results. 

5.1.4. Path coefficients 

Table 5 and Table 6 show the estimates for both the Small Model and Large Model with 

normally distributed data, under all modeling conditions. We start by comparing the estimates 

obtained with the original data to estimates obtained with manipulated data, where the 

correlations between the indicator error terms were artificially restricted to be zero in the sample, 

because the comparison reveals important differences between the estimators. As explained 

earlier, this manipulation was not performed for ML-SEM because the estimator does not use 

weighted composites. The tables demonstrate that, generally and across all conditions, the 

differences in the estimated path coefficients (and their SDs) across the original and manipulated 

data were greatest for PLSc, as compared to EIVML-CFA and EIVminres. When the population value 

was different from zero, estimates with original data were generally further from zero than with 

the manipulated data. The effect can be seen most clearly for β35 and γ24, which are correlations 

in the population12, and γ25, which is the strongest predictor of η4. This effect is caused by PLS 

weights capitalizing on chance, as discussed earlier in Section 2, which is a source of bias that 

remains unaddressed by the PLSc correction. The differences between estimates using the 

manipulated and normal data with the EIV estimators are small and non-systematic, 

demonstrating that using unit weights instead of PLS weights in the estimator corrects for this 

bias. The only effect of using unit weights is a decrease in the variance of the estimates 

                                                
12 A standardized regression coefficient equals the zero-order correlation between the predictor and the crierion, if a predictor is 
uncorrelated with all other predictors in the model (β35). The same applies if a given predictor is the only predictor with a non-
zero regression coefficient (γ24). 
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(particularly in small samples), which is consistent with earlier results using the same 

manipulation (Rönkkö, 2014).  

Overall, the ML-SEM estimator is the most efficient across both models and both normal 

and non-normal data (See Appendix A for the results tables for non-normal data). For γ23 and γ14, 

which were both zero in the population, none of the estimators produced mean estimates that 

deviated markedly from the true value; however, PLSc was less efficient than EIVML-CFA or ML-

SEM. A closer inspection of the distribution diagrams revealed that this difference was largely 

attributed to the bimodal shape of the PLSc estimates for these paths with two peaks on both 

sides of zero, and only a few estimates were very close to zero (Rönkkö & Evermann, 2013). The 

same effect is clearly visible in the results that were obtained after scaling the latent variable 

paths to half or zero. 

--- Insert Table 5 and Table 6 about here --- 

Generally, the PLSc estimates where chance correlations between the error terms were 

removed were biased toward zero in nearly all scenarios. The result is expected because 

positively biased reliability estimates lead to undercorrecting for attenuation. However, when 

chance correlations were not eliminated from the data, the results were most often slightly biased 

away from zero. Therefore, in this case, the positive bias due to chance correlations happened to 

yield close to optimal recovery of the true value by compensating for the biases in reliability 

estimates, but of course one would not be able to rely routinely on this type of effect (Rönkkö, 

2014). 

5.1.5. Statistical inference 

Because the sampling distribution of the PLS weights is unknown (Dijkstra, 1983), null 

hypothesis significance testing using a known, theoretical distribution is not possible with PLSc 
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(see McIntosh, Edwards, & Antonakis, 2014; Rönkkö & Evermann, 2013; Rönkkö, McIntosh, & 

Antonakis, 2015). Therefore, following Dijkstra and Henseler (2015b), we assess the 

performance of bootstrapped confidence intervals as a tool for statistical inference. Table 7 and 

Table 8 show the bootstrapped 95% percentile confidence intervals for PLSc, EIVminres, and 

EIVML-CFA. Each cell in Tables 7 and 8 represents 1000 replications with 1000 bootstrap samples 

each, for a total of more than a million estimations each. Because of the extent of the required 

computational effort, we did not bootstrap the ML-SEM estimates. Given that the ML estimator 

has known closed-form solutions for standard errors, ML estimates are rarely bootstrapped in 

research practice.  

Instead of focusing solely on whether zero was included in the confidence intervals, we 

also addressed the validity of the confidence intervals themselves by including statistics on 

coverage and balance of the intervals (DiCiccio & Efron, 1996): A well-constructed confidence 

interval should contain the population value at the stated degree of confidence and fall above and 

below the confidence limits in a balanced way. For the 95% intervals used here, the coverage 

should be close to 95% and the population value should be below or above the confidence limits 

for 2.5% of the time. There are no notable differences between the normal and non-normal 

condition or the Small Model and Large Model. The mean coverage statistics over all scenarios 

are .021/.962/.01413 for PLSc, .029/.946/.026 for EIVML-CFA and .030/.944/.026 for EIVminres. The 

coverage values of the EIV estimator confidence intervals are closer to their nominal values and 

also better-balanced. These very small differences are explained by the fact that capitalization on 

chance by the PLS weights often created a small secondary mode in the bootstrap replications 

(See Figure 2), leading to skewed bootstrap distributions, which are known to cause problems for 

                                                
13 % replications with population value under lower limit of CI/% replications with population value within CI/% replications 
with population value over upper limit of CI. The balance values of the negative path γ25 are reversed. Because of rounding, the 
proportions do not sum to 1 exactly. 
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the simple percentile method (Davison & Hinkley, 1997, Chapter 5). This is an issue that can 

potentially be resolved by using more advanced methods for calculating the confidence intervals 

such as the BCa intervals which Henseler, Dijkstra, and colleagues (2014) have experimented 

with. 

--- Insert Table 7 and Table 8 about here --- 

We also assessed the false positive rates and statistical power of the confidence intervals 

of the three techniques by inspecting how frequently zero was not included within the confidence 

interval when an effect was zero or non-zero in the population, respectively. The mean false 

positive rates for the three techniques over both distribution conditions and models were .021 for 

PLSc, .055 for EIVML-CFA, and .056 for EIVminres. The EIV estimators were only slightly over the 

nominal 5% level, whereas the confidence intervals for PLSc were clearly too wide compared to 

their nominal coverage when no effects existed in the population. The difference in statistical 

power over all conditions was .720 for PLSc, .770 for EIVML-CFA, and .778 for EIVminres. Because 

all techniques can reliably detect the largest paths, the difference is attributed to PLSc having 

smaller power to detect weaker effects. These patterns in statistical power are similar to the 

results presented by Dijkstra and Henseler (2015b). 

6. Conclusions 

Ever since its introduction into mainstream IS research more than twenty years ago, PLS 

has become one of the most commonly employed techniques for the estimation of structural 

equation models in the discipline. However, the technique is not without its weaknesses. Some of 

these, such as the biased and inconsistent estimation of factor loadings and structural parameters 

unless the limiting condition of ‘consistency-at-large’ (an infinitely large number of indicators 

measuring each construct and an infinitely large sample size) applies, have been well-known 
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since the technique was originally developed (Wold, 1982b). Other problems, such as bias due to 

between-block chance correlations that are present in finite samples, have only been recently 

recognized (Goodhue et al., 2015; Rönkkö, 2014).  

Given the increased recognition of the presence of a number of unresolved issues in the 

PLS approach (McIntosh et al., 2014; Rönkkö et al., 2015), researchers are left with essentially 

three alternatives. First, they could continue employing the technique while acknowledging that 

the results obtained would be biased and inaccurate, which leads to questioning their validity 

altogether. Second, researchers could opt to stop using the approach for the estimation of 

structural equation models, which would limit those to the conditions that can be examined with 

conventional latent variable approaches, and such a position has also been advocated in the 

literature (e.g., Antonakis, Bendahan, Jacquart, & Lalive, 2010). Finally, PLS could be further 

developed and enhanced in order to do away with, or at the very least mitigate, these issues 

(Dijkstra & Henseler, 2015b). A pivotal step in this direction was taken by Dijkstra and 

colleagues (Dijkstra & Henseler, 2015a, 2015b; Dijkstra & Schermelleh-Engel, 2014) in the 

form of consistent PLS.  

Though certainly an important development in this literature, and one that addresses the 

best-known issues with PLS outlined above, the procedure proposed by Dijkstra and colleagues 

suffers from two important limitations. First, PLSc fails to consider bias due to capitalization on 

between-block chance correlations in finite samples, which result in composites that over-weight 

those items that, in a given sample, happened to be more strongly correlated with items in a 

different block, even if those correlations are solely the result of natural sampling variability 

(Rönkkö, 2014). Because the weights resulting from a PLS analysis are the starting point in the 

PLSc algorithm, any resulting biases carry over to PLSc as well. Second, the reliability estimates 
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employed in the PLSc procedure to correct for the effects of measurement error are biased due to 

biases in loading estimates and a dependency between the indicator weights and loading 

estimates. As a result, any adjustments made based on biased reliability statistics will also affect 

the resulting estimates (e.g., path coefficients). 

Fortunately, both of these issues can be resolved. While developing new innovations or 

reusing existing, well-known results to refine our estimation techniques, we should also avoid 

dogmatically following past research practices. In the present research, we have shown that PLSc 

can be further improved by eliminating the PLS indicator weighting system from the estimator 

by using unit weights to form the composites (e.g., Bobko et al., 2007; Cohen, 1990; Cohen et 

al., 2003, pp. 97–98), and by estimating the indicator loadings directly with well-known factor 

analytical techniques without constraining the loadings to be proportional to the indicator 

weights. In doing this, we also derived an estimator that is more general than PLSc. As explained 

by Dijkstra and Henseler (2015b), the PLS indicator weighting system requires a strong 

nomological network for accurate weight calibration. What this means is that to apply PLSc or 

any other estimator that uses PLS weights, a researcher must have a strong theory that the 

constructs represented by the latent variables in the model are highly correlated. However, the 

need for highly correlated latent variables seems to be at odds with current PLS practice. In 

particular, PLS is most commonly used to test whether relationships between latent variables are 

non-zero (Rönkkö & Evermann, 2013), and is often recommended for exploratory research 

(Gefen, Rigdon, & Straub, 2011; Ringle et al., 2012), which is defined by Hair et al as the 

“search for latent patterns in the data in case there is no or only little prior knowledge on how 

the variables are related” (2014, p. 3). Moreover, the review by Goodhue et al (2015) revealed 

that models estimated with PLS and published in MIS Quarterly often contained composites that 
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were calibrated based on just one path that was also tested and therefore cannot be assumed to be 

non-zero. Considering that EIV techniques presented in this article do not assume highly 

correlated latent variables (provided that at least three indicators are available for each factor), 

these estimation techniques are generally more useful for the purposes and scenarios where IS 

researchers typically use composite-based SEM estimation. 

We compared the proposed two EIV estimators with PLSc and ML-SEM by means of a 

simulation study, which led to several interesting findings. First, we examined the presence of 

inadmissible solutions for all estimators and simulation conditions, in the form of loadings 

greater than one, reliability estimates greater than one, or corrected correlations greater than one. 

Extending the work of Dijkstra and Henseler (2015b), who focused only on well-behaved 

scenarios, we followed their suggestion (Dijkstra & Henseler, 2015b, p. 17) and also examined 

the various estimators under conditions where they were not expected to perform well, such as 

when all latent variable pathways are null in the population. Our results show that the EIV 

estimators performed as well as or better than PLSc for the different models, sample sizes, and 

scaling factors (for effect sizes) that were studied. Second, we examined bias in the estimation of 

factor loadings. As was the case before with regards to inadmissible estimates, both versions of 

our proposed estimator performed as well as or better than PLSc for all the conditions examined, 

and on par with ML-SEM included in the comparison. Considering that the factor loadings from 

the EIV estimators are estimated directly with well-known factor analysis tools, the result is not 

very surprising. 

Third, given that the disattenuation of structural path coefficients, which are of prime 

theoretical interest for researchers, is dependent on the accuracy of the reliability estimates used 

in the process, we compared two composite reliability statistics, CRW and CRU (for the weighted 
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and unweighted formulations, respectively; see Aguirre-Urreta et al., 2013) – calculated from the 

output of ML confirmatory factor analysis, per-block minres factor analysis, and  PLSc – with 

the true reliability of each composite, which was known from the data generation process, and 

with Cronbach’s alpha as an additional benchmark. Our results indicate that both versions of our 

estimator performed similarly and were superior to PLSc under all conditions. Though it is well-

known that Cronbach’s alpha would underestimate the true reliability under the conditions 

examined here (i.e., uncorrelated measurement errors in the population, non-tau-equivalent 

items), the underestimation observed here was not severe, and bias was nonetheless substantially 

lower than either the unweighted or weighted composite reliability estimates when those were 

calculated from PLSc outputs. These results are in agreement with a recent review demonstrating 

that in practice, the differences between Cronbach’s alpha and CR are often small (Peterson & 

Kim, 2013), which means that alpha may also be a practical option in many research scenarios. 

Fourth, our results demonstrated that the path coefficient estimates from the EIV 

approaches were nearly always less biased and substantially more efficient than PLSc, 

particularly for weak effects. With regard to statistical inference in particular, the bootstrapped 

confidence intervals from the EIV estimators also provided slightly more statistical power than 

PLSc, without deviating from the nominal false positive rates.  Given that PLSc was able to 

reliably detect large paths, its slightly lower statistical power in relation to EIV is due to PLSc 

being the relatively underpowered approach in the case of weaker effects.  Indeed, the 

suboptimal performance of the bootstrapped CIs under PLSc was especially notable in the case 

of null pathways among the latent variables, where the CIs were far too wide compared to their 

nominal coverage. 
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Given these results, we can now explain the contradictory findings by Goodhue et al 

(2012, pp. 996–997), who noted that some of their disattenuated PLS results were positively 

biased, and those from Dijkstra and Henseler (2015b), which did not show a similar effect. 

Goodhue and colleagues explain the bias by stating that “when a small effect size is involved […] 

the reliability correction sometimes seems to over correct for PLS.” (2012, p. 996), whereas 

Dijkstra and Henseler (2015b) attribute the discrepancies  in the results to the different 

disattenuation approaches used in the studies. It is easy to see that neither explanation is 

complete because the positive bias in the estimates is already present in Figure 8a (Goodhue et 

al., 2012, p. 997) that shows the uncorrected estimates. This bias is due to the effect of 

capitalizing on chance discussed in our research, and it is a feature of the PLS weights, not any 

disattenuation correction. Dijkstra and Henseler (2015b) explain the differences by suggesting 

that Goodhue et al. used an incorrect formula and claiming that the Cronbach’s alpha is a poor 

estimate of the reliability of PLS composites. However, considering that all paths in the model 

used by Goodhue et al. were correlations in the population, direct disattenuation of the path 

estimates using the classical formula is consistent in this scenario. The results of our research 

suggest that alpha works much better than given credit for, and the partial replication of the study 

by Goodhue et al. (2012) presented in Appendix E shows that the bias of alpha is negligible. 

Rather, the differences in the estimates can be attributed to positive bias in the reliability 

estimates used in disattenuation in PLSc. The same conditions that lead to the positive bias due 

to chance correlations also lead to positively biased reliability estimates and therefore attenuation 

is undercorrected, with these two sources of bias nearly canceling each other out in some 

scenarios, such as the ones studied by Dijkstra and Henseler. 
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The EIV estimators have a few additional advantages over PLSc that have not been 

discussed thus far. First, although we only addressed statistical inference with empirical 

confidence intervals in this study, the EIV estimators can also be used with null hypothesis 

significance testing. Because the estimates were approximately normal under the null hypothesis 

of no effects, the parametric one sample t-test can be used to calculate p-values to be used for 

inferential purposes. Second, the EIV estimators do not require specialized software because 

these estimators are available in many commonly used statistical packages such as Stata. 

Moreover, although we used the minres and ML estimators for our factor models, any other well-

known factor analysis technique can be used. Considering the availability of both more 

computationally effective principal axis factoring and more statistically appealing ML, the 

minres technique can be considered obsolete and is no longer included in many statistical 

packages (Bartholomew, Knott, & Moustaki, 2011, sec. 3.9). Because different factor analysis 

techniques generally yield highly similar estimates14, using a different factor analysis technique 

should not affect the final path estimates. Third, the regression part of the EIV estimator has been 

thoroughly studied (Fuller, 1987) and the method has known closed-form solutions for 

estimating standard errors15, thereby obviating the need for obtaining these with bootstrapping. 

This does not of course mean that bootstrapping cannot be used, but simply that EIV provides a 

broader array of inferential tools than are available with PLSc. 

Our research provides clear evidence that the EIV estimators should be preferred over 

PLSc. Our results also show that the performance of EIV in terms of unbiasedness is comparable 

with ML-SEM, but the estimator is slightly less efficient. Nevertheless, the broader 

                                                
14 We note that principal component analysis should not be confused with factor analysis. If the goal is to obtain the parameters 
of  a latent variable model (i.e., factor loadings and intercorrelations), then factor analysis should be used (cf. Widaman, 1993). 
15 The conventional procedures for calculating standard errors for errors-in-variables models may be biased in small samples 
because they do not take the uncertainty of the reliability estimates into consideration. Although adjustments for this issue have 
been proposed in the literature (Devlieger, Mayer, & Rosseel, 2015; Oberski & Satorra, 2013), as far as we know, these 
corrections have not been implemented in any of the commonly used software packages. 



34 
 

methodological literature provides conflicting advice on the usefulness of the technique. On one 

extreme, Moosbrugger, Schermelleh-Engel, and Klein (1997) declare that the “correction for 

attenuation […] in multiple regression analysis has become obsolete with the development of 

structural equation models” (p. 97). However, others still see value in EIV (Antonakis et al., 

2010; Oberski & Satorra, 2013) and the composite-approximation followed by disattenuation is 

presented as a viable estimation option even in some recent SEM textbooks as well 

(Schumacker, 2010, Chapter 9). These differing opinions are not new, as the various techniques 

based on the correction for attenuation have been surrounded with controversies since its 

introduction in the early 20th century (Spearman, 1904; see Charles, 2005; LeBreton, Scherer, & 

James, 2014; Muchinsky, 1996). 

However, despite the availability of full ML-SEM, which is the most unbiased and 

efficient estimator of latent variable models, there are a number of reasons why the EIV 

techniques should still have a place in the statistical toolbox of IS researchers. First, it is clear 

that IS researchers have a long history of estimating factor models by composite approximations, 

and this is unlikely to change overnight. Therefore, introducing new and better composite-based 

techniques to the discipline is valuable; two critical requirements for these techniques are the 

ability to correct for measurement error and to produce robust composites that do not capitalize 

on sample idiosyncrasies. Another pragmatic reason to apply EIV instead if ML-SEM is that 

techniques based on composites are intuitively easier to understand and sometimes easier to 

apply (Oberski & Satorra, 2013), as well as more computationally feasible.  Therefore, EIV may 

provide a simple and accurate alternative in cases where ML may be too computationally 

intensive to be practical, for example, with large models containing high numbers of observed 

indicators and latent variables. As a composite-approximation, the EIV technique also provides 
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straightforward diagnostics of observational residuals (e.g., Cohen et al., 2003, Chapter 4), a 

useful set of techniques that are more complex to implement with latent variable techniques 

(Bollen & Arminger, 1991); these techniques remain underutilized in the current PLS literature 

as well. The EIV estimators are also limited information techniques, which means that the effects 

of model misspecification are local and do not spread through the model, as might occur when 

using full information estimators (Antonakis et al., 2010). However, rather than immediately 

resorting to estimators that may be more robust to model misspecification, we strongly 

recommend that researchers first strive for correct model specification (cf., Kline, 2011, Chapter 

8). Also, small sample size is not a good reason to resort to EIV over ML-SEM. The EIV 

techniques have been shown to perform poorly in small samples and when used with composites 

with poor reliabilities, and are therefore not recommended for these scenarios. For example, 

Zimmerman and Williams (1997) suggest a reliability cutoff of .7 and a minimum sample size of 

100. On the other hand, ML-SEM has been shown to be fairly robust in small samples (e.g., 

Goodhue et al., 2012). Nonetheless, simulation studies on the EIV techniques demonstrate that 

the techniques work well, as long as both the sample sizes and composite reliabilities are 

reasonable (e.g., Devlieger, Mayer, & Rosseel, 2015).  Thus, on balance, EIV methods should 

not be viewed as a routine replacement for full ML-SEM, but rather as pragmatic alternatives in 

certain modeling situations.  

Furthermore, in order to use the EIV techniques effectively, researchers require a set of 

model quality statistics. Although EIV does not provide the overall model tests that ML-SEM 

does, there is still a large portfolio of statistics that can be used. For instance, the factor analyses 

used for calculating the indicator reliabilities can also be used to assess scale dimensionality, and 

the CR and AVE statistics used in the Fornell-Larcker (1981) testing system can be readily 
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calculated from the factor loadings and compared against the disattenuated correlations between 

the composites. The new HTMT discriminant validity statistic (Henseler, Ringle, & Sarstedt, 

2015) is similarly applicable because it is calculated from raw data correlations, and therefore 

does not depend on any particular way of estimation. Finally, the bootstrap-based model tests 

suggested by Dijkstra and Henseler (2015a) should work well for evaluating model specification, 

although this is something to be tested in future research. 

To encourage the adoption of the EIV techniques presented in this research, we have 

made these techniques available in the free and open source matrixpls (Rönkkö, 2015) package 

for R, which also provides an implementation of the PLSc estimator and Monte Carlo features to 

facilitate future comparisons (for a tutorial for using matrixpls, see Aguirre-Urreta & Rönkkö, 

2015). The package also calculates all the model quality statistics listed in the previous 

paragraph. Additionally, we have included several examples of how to specify an EIV analysis 

with several popular statistical software packages in Appendix C.   
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8. Tables and Figures 

Table 1 Estimation history of two LV model with two chance correlations 
 γ λ1, λ4 λ2, λ5 λ3, λ6 w1, w4 w2, w5 w3, w6 c1, c2 ρA1, ρA2 R1, R2 
Start .300 .700 .700 .700 .410 .410 .410 1.706 .742 .742 
1 .305 .537 .851 .694 .316 .501 .409 1.698 .773 .736 
2 .305 .554 .859 .672 .326 .505 .395 1.701 .774 .736 
3 .304 .551 .861 .673 .324 .506 .395 1.701 .775 .736 
4 .304 .551 .861 .672 .324 .506 .395 1.701 .775 .736 
5 .304 .551 .861 .672 .324 .506 .395 1.701 .775 .736 
6 .304 .551 .861 .672 .324 .506 .395 1.701 .775 .736 

Note: The model is symmetric for the latent variables. 

Table 2 Inadmissible replications over 1000 replications for normal data 
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Small 
Model 

0 100 944 935 N/A 941 762 741 N/A 93 0 N/A 2 
200 936 938 N/A 937 769 749 N/A 44 0 N/A 0 
500 957 939 N/A 936 754 746 N/A 22 0 N/A 0 

.5 100 855 673 N/A 650 537 243 N/A 11 0 N/A 0 
200 780 446 N/A 429 448 73 N/A 3 0 N/A 0 
500 612 187 N/A 184 250 2 N/A 0 0 N/A 0 

1 100 438 166 N/A 152 72 2 N/A 27 19 N/A 15 
200 268 44 N/A 45 11 0 N/A 0 0 N/A 0 
500 54 1 N/A 1 0 0 N/A 0 0 N/A 0 

Large 
Model 

0 100 964 43 0 40 580 0 0 144 0 0 0 
200 968 4 0 4 570 0 0 52 0 0 0 
500 975 0 0 0 598 0 0 28 0 0 0 

.5 100 943 42 0 42 398 0 0 24 0 0 1 
200 904 3 0 3 364 0 0 3 0 0 0 
500 817 0 0 0 143 0 0 1 0 0 0 

1 100 554 21 0 20 21 0 0 10 9 9 5 
200 311 0 0 0 2 0 0 0 0 0 0 
500 79 0 0 0 0 0 0 0 0 0 0 

Note: Loadings and reliabilities are invalid if any value in a replication exceeds one in absolute 
value. Factor correlations are inadmissible if any disattenuated composite correlation matrix 
exceeds one in absolute value. Small Model: Original model, Large Model: Model with 
duplicated indicators for ξ1 and η4. N/A = not estimated. 
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Table 3 Loadings over 1000 replications for normal data 

Pa
ra

m
. 

Sc
al

e 

N
 

Small Model Large Model 
PLSc EIVML-CFA PLSc EIVML-CFA EIVminres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ31 
 

.490 

0 100 -.059 .398 -.003 .087 -.096 .413 -.005 .084 -.003 .083 
200 -.047 .397 -.001 .061 -.041 .410 .000 .059 .001 .059 
500 -.064 .387 -.000 .039 -.083 .402 -.000 .037 -.000 .037 

.5 100 -.065 .346 -.003 .089 -.070 .351 -.001 .087 .000 .086 
200 -.028 .302 -.002 .060 -.021 .291 -.001 .058 -.001 .058 
500 -.021 .212 -.000 .037 -.010 .205 .001 .037 .001 .037 

1 100 -.027 .241 -.003 .088 -.014 .242 -.000 .087 .000 .086 
200 -.014 .167 -.002 .060 -.016 .160 -.002 .058 -.001 .058 
500 -.006 .101 -.000 .037 -.009 .107 .001 .037 .001 .037 

λ34 
 

.900 

0 100 -.354 .361 .000 .056 -.341 .345 .004 .055 .000 .049 
200 -.336 .344 .001 .037 -.328 .342 .001 .035 -.000 .034 
500 -.340 .362 -.001 .022 -.327 .346 -.000 .023 -.001 .023 

.5 100 -.217 .314 -.000 .055 -.220 .314 .004 .053 .001 .049 
200 -.122 .238 .001 .036 -.137 .248 -.000 .035 -.001 .035 
500 -.045 .144 -.000 .022 -.043 .135 -.000 .023 -.001 .023 

1 100 -.060 .160 -.000 .052 -.059 .158 .002 .048 .001 .049 
200 -.019 .099 .001 .034 -.018 .100 -.000 .033 -.001 .035 
500 -.008 .063 -.000 .020 -.006 .064 -.000 .022 -.001 .023 

λ41 
 

.630 

0 100 .218 1.507 4.880 11.634 -.107 .397 -.005 .070 -.005 .070 
200 .188 1.104 4.668 10.970 -.103 .399 -.001 .049 -.001 .049 
500 .195 1.258 4.252 9.601 -.100 .402 -.002 .031 -.002 .031 

.5 100 .018 .245 .633 4.785 -.033 .227 -.004 .072 -.004 .072 
200 .008 .132 .075 1.636 -.016 .159 .001 .048 .001 .049 
500 -.001 .075 -.004 .078 -.006 .101 -.002 .032 -.002 .032 

1 100 -.001 .089 -.005 .090 -.010 .109 -.002 .070 -.002 .071 
200 -.001 .064 -.001 .064 -.005 .074 -.002 .049 -.002 .050 
500 -.001 .039 -.001 .038 -.002 .046 -.001 .031 -.002 .032 

λ42 
 

.840 

0 100 -.073 .768 4.594 11.563 -.273 .366 -.002 .050 -.001 .049 
200 .118 4.488 4.314 10.964 -.258 .346 -.000 .034 .000 .034 
500 .022 1.581 3.658 9.464 -.237 .356 -.000 .021 -.000 .021 

.5 100 .078 .813 1.715 7.406 -.047 .177 .000 .048 .001 .048 
200 .021 .228 .383 3.362 -.025 .122 -.000 .034 .001 .034 
500 .008 .103 .012 .107 -.002 .073 .000 .021 .000 .021 

1 100 .003 .102 .009 .113 -.007 .070 -.001 .046 -.001 .050 
200 .000 .064 .001 .063 -.005 .052 -.001 .031 -.000 .034 
500 .000 .040 .000 .039 -.000 .032 .000 .019 .000 .021 

λ51 

 
.650 

0 100 -.069 .358 .001 .063 -.074 .356 -.001 .061 -.001 .061 
200 -.080 .354 -.000 .044 -.077 .360 -.003 .044 -.003 .044 
500 -.062 .351 .001 .029 -.073 .347 -.001 .028 -.001 .028 

.5 100 -.004 .198 -.001 .060 -.010 .212 -.003 .062 -.003 .062 
200 -.008 .154 -.001 .043 -.004 .150 .000 .042 .000 .042 
500 .000 .096 -.000 .028 -.010 .098 -.002 .028 -.002 .028 

1 100 -.003 .120 -.001 .063 -.007 .123 -.003 .065 -.002 .065 
200 -.003 .090 .001 .044 -.001 .086 -.001 .045 -.001 .045 
500 -.000 .055 .001 .027 -.007 .056 -.003 .028 -.003 .028 

λ56 

 
.900 

0 100 -.196 .276 -.000 .026 -.175 .250 -.000 .028 -.001 .028 
200 -.198 .268 -.000 .019 -.188 .281 -.000 .019 .000 .019 
500 -.186 .265 .000 .012 -.186 .253 .000 .011 .000 .011 

.5 100 -.044 .134 -.001 .027 -.043 .121 -.000 .026 -.000 .026 
200 -.026 .090 -.000 .019 -.026 .093 .000 .019 .000 .019 
500 -.010 .060 .000 .011 -.010 .061 .000 .012 .000 .012 

1 100 -.012 .072 -.001 .026 -.009 .070 -.000 .026 -.001 .027 
200 -.007 .054 -.001 .019 -.008 .051 -.001 .019 -.001 .020 
500 -.002 .032 .000 .011 -.003 .032 -.001 .011 -.000 .011 
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Table 4 Estimation error of reliabilities with normal data for Small Model  
V

ar
ia

bl
e 

Sc
al

e 

N
 

PLS composites Unit weighted composites 
CRU CRW Alpha CRU CRW Alpha 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
ξ1 0 100 .153 3.037 .207 1.666 .004 .054 39.658 89.198 39.813 89.675 -.002 .020 

200 .067 .524 .149 .517 .005 .065 35.897 76.062 35.960 76.229 -.002 .013 
500 .067 .434 .175 .815 .003 .021 25.644 55.709 25.662 55.762 -.001 .008 

.5 100 .012 .047 .040 .136 -.003 .022 2.765 26.790 2.776 26.924 -.002 .020 
200 .007 .043 .026 .132 -.003 .014 .461 9.120 .461 9.134 -.002 .014 
500 -.000 .009 .006 .015 -.004 .009 .002 .010 .002 .010 -.002 .008 

1 100 -.001 .020 .004 .023 -.004 .021 .001 .021 .001 .021 -.002 .020 
200 -.002 .014 .002 .015 -.004 .014 .000 .014 .000 .014 -.002 .014 
500 -.002 .008 .001 .009 -.004 .009 .000 .008 .000 .008 -.002 .008 

ξ2 0 100 -.114 .115 .054 .147 .117 .142 -.000 .047 -.002 .048 -.009 .048 
200 -.114 .105 .051 .142 .112 .135 -.000 .032 -.000 .032 -.007 .033 
500 -.127 .106 .038 .114 .116 .127 -.000 .021 -.000 .021 -.006 .022 

.5 100 -.037 .053 .020 .051 -.016 .050 -.000 .046 -.001 .046 -.009 .048 
200 -.028 .035 .012 .035 -.021 .034 -.000 .032 -.000 .032 -.008 .033 
500 -.023 .022 .005 .022 -.024 .022 -.000 .021 -.000 .021 -.006 .022 

1 100 -.028 .046 .004 .045 -.031 .047 -.001 .045 -.002 .045 -.009 .047 
200 -.023 .032 .002 .031 -.028 .033 -.001 .031 -.000 .031 -.008 .033 
500 -.022 .021 .000 .021 -.027 .021 -.000 .021 -.000 .020 -.006 .022 

η3 0 100 -.065 .117 .086 .205 .032 .149 -.000 .030 -.001 .030 -.016 .034 
200 -.060 .122 .089 .236 .028 .133 -.001 .022 -.001 .021 -.016 .024 
500 -.062 .114 .095 .236 .031 .130 .000 .013 -.000 .013 -.015 .015 

.5 100 -.062 .103 .067 .180 .007 .109 -.000 .031 -.001 .030 -.017 .035 
200 -.053 .079 .055 .134 -.012 .076 -.000 .022 -.000 .021 -.016 .025 
500 -.050 .058 .031 .060 -.030 .040 -.000 .013 -.000 .013 -.015 .015 

1 100 -.051 .072 .042 .118 -.026 .065 -.000 .030 -.000 .030 -.017 .035 
200 -.045 .046 .026 .074 -.037 .042 -.000 .022 -.000 .021 -.016 .025 
500 -.043 .028 .015 .034 -.044 .025 -.000 .013 -.000 .012 -.015 .015 

η4  0 100 .563 5.925 .979 6.689 .011 .119 107.477 194.713 108.461 197.203 -.020 .060 
200 .673 5.700 1.113 6.048 .019 .115 96.219 169.132 96.640 170.095 -.018 .044 
500 .960 15.428 2.508 47.453 .022 .115 73.438 127.609 73.571 127.925 -.017 .026 

.5 100 .202 2.227 .420 2.785 -.025 .077 31.438 123.968 31.765 125.597 -.020 .058 
200 .072 1.422 .162 1.365 -.031 .056 4.942 43.370 4.965 43.621 -.018 .043 
500 -.008 .075 .044 .213 -.037 .032 .011 .050 .011 .050 -.017 .026 

1 100 -.020 .067 .020 .116 -.043 .064 .250 7.749 .251 7.770 -.020 .059 
200 -.024 .045 .005 .056 -.042 .047 .000 .045 .000 .045 -.018 .043 
500 -.025 .027 .001 .033 -.041 .028 -.001 .027 -.001 .027 -.016 .026 

η5 0 100 -.041 .076 .057 .093 .021 .085 -.000 .016 -.000 .015 -.004 .016 
200 -.043 .086 .054 .099 .017 .077 -.000 .011 -.000 .010 -.004 .011 
500 -.043 .104 .054 .116 .019 .093 -.000 .007 -.000 .007 -.003 .007 

.5 100 -.017 .020 .015 .022 -.011 .018 -.000 .015 -.000 .015 -.004 .016 
200 -.014 .012 .009 .014 -.012 .012 -.000 .010 -.000 .010 -.004 .011 
500 -.012 .007 .003 .008 -.013 .007 -.000 .007 -.000 .007 -.003 .007 

1 100 -.012 .015 .001 .015 -.015 .016 -.000 .015 -.000 .015 -.004 .016 
200 -.012 .011 .000 .010 -.015 .011 -.000 .011 -.000 .010 -.004 .011 
500 -.011 .007 -.000 .006 -.014 .007 -.000 .007 -.000 .006 -.003 .007 

Note: Loadings for PLS composites are estimated with PLSc and loadings for unit weighted composites are 
estimated with ML-CFA. 
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Table 5 Path estimates with normal data for Small Model 

Pa
ra

m
. 

Sc
al

e 

N
 

PLSc EIVML-CFA ML SEM 
Original Manipulated Original Manipulated Original 

Bias SD Bias SD Bias SD Bias SD Bias SD 
γ23 

 
0 

 

0 100 -.025 .521 .002 .259 -.004 .133 -.006 .135 -.004 .126 
200 -.012 .357 -.015 .173 -.005 .097 -.009 .098 -.005 .093 
500 -.001 .321 -.002 .171 -.000 .061 .001 .060 -.001 .057 

.5 100 -.033 .232 -.007 .165 -.005 .133 -.001 .137 -.005 .126 
200 -.009 .124 -.005 .097 .002 .097 -.006 .096 .001 .092 
500 -.005 .067 -.000 .060 -.002 .065 -.001 .061 -.000 .060 

1 100 -.018 .147 .002 .130 -.000 .135 .006 .133 -.000 .122 
200 -.001 .094 .001 .089 .008 .095 .001 .091 .003 .085 
500 -.001 .061 .002 .060 .002 .063 .001 .062 .002 .056 

γ14 

 
0 

0 100 -.087 2.719 .001 .147 .002 .101 .002 .091 .003 .097 
200 -.005 .168 .007 .206 -.003 .069 -.000 .062 -.004 .067 
500 .012 .438 -.001 .063 -.003 .042 -.001 .037 -.002 .041 

.5 100 .023 .629 .001 .118 -.004 .125 -.007 .120 -.004 .129 
200 .010 .084 .010 .080 .000 .094 .002 .090 .001 .094 
500 .002 .055 .004 .054 -.001 .061 .001 .059 -.002 .060 

1 100 -.022 .202 .010 .178 -.026 .220 -.023 .296 -.020 .212 
200 -.007 .136 .007 .121 -.007 .144 -.003 .133 -.005 .136 
500 -.004 .085 -.000 .080 -.004 .089 -.004 .084 -.002 .083 

γ24 

 
.7 

0 100 -.073 2.710 .008 .228 .002 .120 .002 .110 .003 .121 
200 -.001 .333 -.003 .226 -.001 .086 .002 .070 -.002 .084 
500 .008 .485 .004 .121 -.002 .053 .002 .046 -.001 .053 

.5 100 .007 .594 -.019 .146 -.016 .168 -.021 .160 -.023 .170 
200 .007 .106 -.022 .097 -.009 .115 -.012 .106 -.011 .115 
500 .002 .068 -.011 .061 -.002 .069 -.005 .062 -.002 .069 

1 100 .035 .203 -.017 .174 .028 .219 .023 .293 .020 .215 
200 .013 .135 -.011 .119 .008 .142 .003 .130 .005 .137 
500 .006 .086 -.001 .076 .004 .089 .005 .081 .002 .085 

γ15  

 
.22 

0 100 -.117 3.363 -.011 .381 -.002 .103 -.003 .096 -.001 .096 
200 -.363 12.085 .007 .451 -.005 .069 -.002 .066 -.006 .065 
500 -.016 .833 -.003 .102 -.002 .045 -.002 .044 -.002 .043 

.5 100 .035 1.385 -.016 .149 -.001 .121 .001 .116 -.006 .120 
200 -.008 .145 -.015 .083 .000 .088 .002 .085 -.000 .086 
500 -.004 .050 -.006 .050 .002 .050 .002 .052 .001 .049 

1 100 .008 .194 -.004 .176 .017 .208 .032 .252 .010 .194 
200 .008 .127 -.003 .118 .012 .133 .010 .126 .008 .127 
500 .008 .077 -.001 .073 .010 .078 .005 .076 .007 .075 

γ25 

 
-.7 

0 100 -.194 8.184 .004 .575 -.004 .129 .002 .130 -.001 .128 
200 -.766 22.527 .003 .880 -.001 .089 .001 .087 -.000 .087 
500 -.061 1.231 .009 .163 -.001 .057 .001 .057 -.001 .055 

.5 100 -.179 4.659 .001 .342 -.001 .137 -.005 .131 .002 .132 
200 -.017 .258 .013 .091 -.001 .094 -.002 .092 -.000 .091 
500 -.003 .055 .006 .054 .001 .057 -.001 .055 .001 .054 

1 100 -.023 .192 .003 .176 -.024 .205 -.037 .253 -.015 .192 
200 -.014 .123 .004 .117 -.014 .129 -.010 .125 -.009 .122 
500 -.010 .078 .002 .072 -.010 .080 -.004 .076 -.007 .076 

β35 

 
.35 

0 100 .268 7.348 .011 .590 -.005 .119 .000 .120 -.002 .115 
200 -.626 18.853 .028 .887 -.002 .086 -.001 .083 -.001 .081 
500 -.045 .881 .003 .104 -.002 .052 -.001 .053 -.002 .049 

.5 100 -.106 4.455 -.009 .329 .001 .116 .006 .116 .000 .112 
200 .030 .248 -.001 .090 .003 .081 .004 .077 .002 .076 
500 .008 .049 -.001 .051 .001 .051 .001 .051 .002 .048 

1 100 .013 .112 .004 .102 .003 .108 .011 .106 .001 .092 
200 .008 .072 -.005 .072 .004 .076 -.001 .074 -.001 .067 
500 .002 .047 -.001 .044 .001 .048 -.000 .045 -.001 .041 
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Table 6 Path estimates with normal data for Large Model 
Pa

ra
m

. 

Sc
al

e 

N
 

PLSc EIVML-CFA EIVminres ML SEM 
Original Manipulated Original Manipulated Original Manipulated Original 

Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD 
γ23 

 
0 
 

0 100 -.016 .709 -.003 .406 -.009 .136 .001 .132 -.009 .136 .001 .131 -.007 .131 
200 -.047 1.037 -.001 .358 -.005 .097 -.006 .096 -.005 .097 -.006 .096 -.004 .092 
500 .009 .283 .002 .117 -.001 .057 -.002 .057 -.001 .057 -.002 .057 -.002 .055 

.5 100 -.024 .236 -.003 .166 -.003 .134 -.003 .133 -.003 .134 -.003 .133 -.004 .127 
200 -.008 .135 -.002 .106 -.002 .100 -.004 .095 -.002 .100 -.004 .095 -.000 .094 
500 -.007 .064 -.000 .057 -.003 .062 .000 .060 -.003 .062 .000 .060 -.002 .059 

1 100 -.015 .141 .002 .129 .002 .130 .001 .129 .002 .130 .001 .129 .002 .120 
200 -.005 .097 .002 .087 .002 .097 .002 .091 .002 .097 .002 .091 .002 .087 
500 -.003 .060 .003 .058 .001 .061 .003 .060 .001 .061 .003 .060 -.000 .056 

γ14 

 
0 

0 100 -.071 2.449 .008 .344 .000 .119 .004 .118 .000 .119 .004 .118 .001 .115 
200 -.005 .279 -.004 .129 .000 .080 -.003 .081 .000 .080 -.003 .081 -.001 .079 
500 .002 .164 -.018 1.219 -.001 .050 -.001 .049 -.001 .050 -.001 .049 -.001 .049 

.5 100 -.004 .153 .011 .188 -.006 .122 -.003 .125 -.006 .123 -.002 .125 -.005 .119 
200 .005 .081 .005 .081 -.001 .083 -.000 .085 -.001 .083 .000 .085 -.001 .082 
500 .003 .051 .002 .058 -.001 .053 .000 .053 -.001 .053 .000 .053 -.001 .052 

1 100 -.015 .183 .004 .168 -.019 .193 -.021 .198 -.020 .199 -.018 .191 -.014 .184 
200 -.008 .120 .002 .112 -.008 .122 -.010 .121 -.008 .124 -.009 .120 -.009 .121 
500 -.006 .076 -.001 .071 -.005 .078 -.005 .075 -.006 .079 -.005 .074 -.005 .075 

γ24 

 
.7 

0 100 -.088 2.856 .006 .389 .004 .139 .001 .130 .004 .139 .001 .130 .005 .137 
200 .011 .389 -.001 .165 -.001 .093 .000 .092 -.001 .093 .000 .092 .001 .090 
500 .006 .267 -.012 1.243 .002 .058 -.000 .058 .002 .058 -.000 .058 .002 .056 

.5 100 .051 .157 -.013 .201 .009 .137 .008 .134 .009 .138 .008 .134 .008 .135 
200 .018 .091 -.011 .093 .000 .096 -.000 .094 .000 .096 -.000 .094 -.000 .093 
500 .005 .058 -.008 .060 -.001 .058 -.003 .058 -.001 .058 -.003 .058 -.002 .056 

1 100 .031 .180 -.007 .163 .021 .191 .022 .192 .022 .197 .020 .185 .016 .183 
200 .013 .119 -.004 .110 .007 .123 .011 .119 .006 .125 .010 .117 .008 .121 
500 .009 .076 .000 .069 .006 .079 .005 .073 .006 .080 .005 .072 .006 .076 

γ15  

 
.22 

0 100 .050 .708 -.003 .322 -.003 .108 -.004 .106 -.003 .108 -.004 .106 -.004 .106 
200 .050 1.670 -.012 .176 -.003 .075 -.003 .074 -.003 .075 -.003 .074 -.003 .073 
500 -.001 .150 .004 .210 -.002 .049 -.002 .048 -.002 .049 -.002 .048 -.002 .048 

.5 100 .005 .166 -.018 .260 .006 .118 .002 .116 .006 .118 .002 .116 .004 .114 
200 .001 .095 -.004 .087 .003 .085 .003 .083 .003 .085 .003 .083 .002 .083 
500 -.001 .059 -.001 .054 .001 .052 .003 .051 .001 .052 .003 .051 .001 .050 

1 100 .019 .188 -.011 .163 .026 .198 .020 .201 .027 .203 .017 .193 .016 .189 
200 .008 .120 -.002 .113 .012 .123 .012 .124 .012 .125 .011 .123 .007 .118 
500 .005 .078 -.000 .069 .007 .080 .005 .073 .007 .081 .005 .073 .004 .076 

γ25 

 
-.7 

0 100 -.012 1.223 .026 .472 .002 .132 -.002 .128 .002 .132 -.002 .128 .001 .127 
200 .227 5.259 .023 .779 .004 .088 .001 .085 .004 .089 .001 .085 .003 .087 
500 .025 .485 -.000 .250 .003 .056 .001 .056 .003 .056 .001 .056 .002 .054 

.5 100 -.016 .675 .002 .308 -.002 .137 -.004 .128 -.002 .137 -.004 .128 -.001 .133 
200 -.016 .096 .008 .096 -.002 .096 -.001 .091 -.003 .096 -.001 .091 -.001 .093 
500 -.004 .063 .004 .056 .001 .057 -.001 .054 .001 .057 -.001 .054 .001 .055 

1 100 -.036 .197 .008 .172 -.031 .203 -.024 .206 -.032 .209 -.021 .198 -.022 .190 
200 -.014 .120 .004 .112 -.013 .123 -.012 .122 -.013 .126 -.011 .121 -.008 .117 
500 -.007 .079 .004 .070 -.006 .081 -.002 .074 -.007 .082 -.002 .074 -.004 .077 

β35 

 
.35 

0 100 -.009 1.122 .001 .309 -.002 .120 -.004 .120 -.002 .120 -.004 .119 -.002 .114 
200 -.245 5.612 -.030 .760 -.004 .085 -.001 .082 -.004 .085 -.001 .082 -.002 .081 
500 -.015 .445 .005 .136 -.001 .053 .000 .053 -.001 .053 .000 .053 -.001 .050 

.5 100 .023 .698 .006 .336 .002 .118 .004 .117 .002 .118 .004 .117 .001 .110 
200 .020 .102 -.003 .092 .003 .079 .002 .079 .003 .079 .002 .079 .001 .074 
500 .008 .049 -.002 .051 .001 .051 .001 .051 .001 .051 .001 .051 .000 .048 

1 100 .016 .109 -.001 .106 .007 .110 .004 .107 .006 .110 .004 .106 .002 .091 
200 .007 .073 -.007 .070 .003 .077 -.003 .072 .003 .077 -.003 .072 .002 .064 
500 .002 .046 -.000 .042 .001 .047 .002 .044 .001 .047 .002 .044 -.000 .041 
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Table 7 95% percentile confidence intervals with normal data for Small Model 

Pa
ra

m
. 

Sc
al

e 

N
 

PLSc EIVML-CFA 
Coverage Incl. 

zero 
Coverage Incl. 

zero Under Within Over Under Within Over 
γ23 

 
0 
 

0 100 .008 .979 .013 .979 .024 .951 .025 .951 
200 .014 .972 .014 .972 .029 .938 .033 .938 
500 .011 .977 .012 .977 .026 .945 .029 .945 

.5 100 .008 .962 .030 .962 .017 .959 .024 .959 
200 .014 .954 .032 .954 .032 .943 .025 .943 
500 .021 .936 .043 .936 .043 .925 .032 .925 

1 100 .007 .947 .046 .947 .025 .941 .034 .941 
200 .015 .958 .027 .958 .033 .945 .022 .945 
500 .023 .938 .039 .938 .040 .931 .029 .931 

γ14 

 
0 

0 100 .004 .995 .001 .995 .028 .942 .030 .942 
200 .007 .988 .005 .988 .029 .943 .028 .943 
500 .005 .987 .008 .987 .016 .957 .027 .957 

.5 100 .011 .977 .012 .977 .019 .953 .028 .953 
200 .024 .967 .009 .967 .027 .947 .026 .947 
500 .027 .963 .010 .963 .025 .954 .021 .954 

1 100 .013 .955 .032 .955 .015 .955 .030 .955 
200 .021 .947 .032 .947 .026 .940 .034 .940 
500 .031 .941 .028 .941 .026 .952 .022 .952 

γ24 

 
.7 

0 100 .013 .979 .008 .979 .033 .943 .024 .943 
200 .011 .980 .009 .980 .026 .946 .028 .946 
500 .009 .980 .011 .980 .025 .946 .029 .946 

.5 100 .041 .955 .004 .427 .011 .962 .027 .350 
200 .041 .951 .008 .115 .018 .950 .032 .106 
500 .031 .941 .028 .000 .023 .944 .033 .001 

1 100 .046 .944 .010 .033 .033 .955 .012 .086 
200 .043 .942 .015 .002 .030 .952 .018 .002 
500 .034 .946 .020 .000 .031 .945 .024 .000 

γ15  

 
.22 

0 100 .000 1.000 .000 1.000 .025 .948 .027 .948 
200 .001 .998 .001 .998 .016 .951 .033 .951 
500 .005 .985 .010 .985 .025 .942 .033 .942 

.5 100 .002 .989 .009 .951 .014 .958 .028 .849 
200 .009 .961 .030 .828 .031 .939 .030 .722 
500 .010 .968 .022 .486 .023 .964 .013 .430 

1 100 .017 .958 .025 .768 .034 .947 .019 .739 
200 .032 .953 .015 .489 .035 .953 .012 .515 
500 .039 .938 .023 .100 .040 .942 .018 .115 

γ25 

 
-.7 

0 100 .002 .997 .001 .997 .029 .948 .023 .948 
200 .004 .995 .001 .995 .031 .949 .020 .949 
500 .005 .990 .005 .990 .023 .949 .028 .949 

.5 100 .000 .970 .030 .618 .026 .932 .042 .274 
200 .006 .958 .036 .137 .025 .937 .038 .051 
500 .011 .950 .039 .000 .025 .948 .027 .000 

1 100 .011 .957 .032 .081 .015 .943 .042 .060 
200 .011 .960 .029 .000 .008 .957 .035 .000 
500 .015 .948 .037 .000 .013 .949 .038 .000 

β35 

 
.35 

0 100 .000 .999 .001 .999 .030 .938 .032 .938 
200 .001 .997 .002 .997 .028 .936 .036 .936 
500 .001 .989 .010 .989 .018 .949 .033 .949 

.5 100 .027 .973 .000 .845 .034 .950 .016 .681 
200 .060 .938 .002 .552 .034 .939 .027 .426 
500 .046 .952 .002 .117 .025 .947 .028 .074 

1 100 .022 .975 .003 .295 .022 .965 .013 .208 
200 .041 .950 .009 .018 .036 .944 .020 .009 
500 .029 .947 .024 .000 .025 .947 .028 .000 
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Table 8 95% percentile confidence intervals with normal data for Large Model 

Pa
ra

m
. 

Sc
al

e 

N
 

PLSc EIVML-CFA EIVminres 
Coverage Incl. 

zero 
Coverage Incl. 

zero 
Coverage Incl. 

zero Under Within Over Under Within Over Under Within Over 
γ23 

 
0 
 

0 100 .007 .972 .021 .972 .026 .934 .040 .934 .026 .934 .040 .934 
200 .010 .977 .013 .977 .028 .933 .039 .933 .028 .933 .039 .933 
500 .008 .980 .012 .980 .018 .953 .029 .953 .018 .953 .029 .953 

.5 100 .007 .971 .022 .971 .028 .949 .023 .949 .028 .949 .023 .949 
200 .014 .943 .043 .943 .033 .928 .039 .928 .033 .928 .039 .928 
500 .009 .957 .034 .957 .025 .945 .030 .945 .025 .945 .030 .945 

1 100 .008 .950 .042 .950 .033 .944 .023 .944 .033 .944 .023 .944 
200 .012 .944 .044 .944 .029 .942 .029 .942 .029 .942 .029 .942 
500 .013 .941 .046 .941 .028 .937 .035 .937 .028 .937 .035 .937 

γ14 

 
0 

0 100 .004 .993 .003 .993 .030 .940 .030 .940 .030 .940 .030 .940 
200 .007 .990 .003 .990 .029 .949 .022 .949 .029 .949 .022 .949 
500 .004 .988 .008 .988 .017 .958 .025 .958 .017 .958 .025 .958 

.5 100 .014 .977 .009 .977 .020 .948 .032 .948 .019 .950 .031 .950 
200 .022 .973 .005 .973 .024 .956 .020 .956 .024 .956 .020 .956 
500 .027 .969 .004 .969 .023 .952 .025 .952 .024 .950 .026 .950 

1 100 .013 .947 .040 .947 .013 .949 .038 .949 .015 .949 .036 .949 
200 .021 .942 .037 .942 .018 .944 .038 .944 .019 .943 .038 .943 
500 .017 .950 .033 .950 .016 .950 .034 .950 .016 .955 .029 .955 

γ24 

 
.7 

0 100 .011 .976 .013 .976 .039 .929 .032 .929 .039 .928 .033 .928 
200 .007 .985 .008 .985 .023 .944 .033 .944 .023 .944 .033 .944 
500 .012 .979 .009 .979 .027 .947 .026 .947 .027 .947 .026 .947 

.5 100 .088 .912 .000 .384 .052 .927 .021 .283 .047 .930 .023 .281 
200 .064 .934 .002 .074 .030 .946 .024 .061 .030 .946 .024 .061 
500 .032 .957 .011 .000 .020 .954 .026 .000 .019 .954 .027 .000 

1 100 .054 .941 .005 .016 .047 .942 .011 .052 .048 .938 .014 .045 
200 .048 .937 .015 .000 .035 .949 .016 .000 .034 .951 .015 .000 
500 .039 .943 .018 .000 .033 .945 .022 .000 .028 .949 .023 .000 

γ15  

 
.22 

0 100 .001 .999 .000 .999 .025 .953 .022 .953 .025 .952 .023 .952 
200 .004 .994 .002 .994 .019 .950 .031 .950 .019 .950 .031 .950 
500 .009 .979 .012 .979 .026 .941 .033 .941 .026 .941 .033 .941 

.5 100 .005 .992 .003 .955 .030 .955 .015 .824 .030 .955 .015 .823 
200 .028 .963 .009 .819 .040 .940 .020 .721 .040 .941 .019 .719 
500 .018 .956 .026 .482 .025 .952 .023 .406 .024 .953 .023 .409 

1 100 .031 .959 .010 .713 .041 .949 .010 .699 .049 .939 .012 .696 
200 .034 .945 .021 .469 .034 .949 .017 .494 .038 .944 .018 .503 
500 .028 .945 .027 .112 .028 .943 .029 .121 .031 .941 .028 .125 

γ25 

 
-.7 

0 100 .005 .995 .000 .995 .032 .942 .026 .942 .032 .942 .026 .942 
200 .005 .993 .002 .993 .031 .949 .020 .949 .031 .949 .020 .949 
500 .007 .990 .003 .990 .026 .952 .022 .952 .026 .952 .022 .952 

.5 100 .000 .979 .021 .631 .022 .937 .041 .294 .026 .935 .039 .291 
200 .003 .950 .047 .142 .024 .937 .039 .042 .024 .936 .040 .042 
500 .011 .945 .044 .000 .025 .945 .030 .000 .025 .944 .031 .000 

1 100 .005 .951 .044 .066 .007 .932 .061 .052 .008 .935 .057 .050 
200 .012 .950 .038 .001 .017 .950 .033 .000 .014 .953 .033 .000 
500 .016 .940 .044 .000 .023 .939 .038 .000 .021 .940 .039 .000 

β35 

 
.35 

0 100 .000 1.000 .000 1.000 .029 .940 .031 .940 .029 .940 .031 .940 
200 .002 .996 .002 .996 .025 .935 .040 .935 .024 .936 .040 .936 
500 .000 .993 .007 .993 .029 .948 .023 .948 .029 .948 .023 .948 

.5 100 .033 .967 .000 .841 .033 .945 .022 .685 .034 .943 .023 .683 
200 .045 .953 .002 .541 .022 .944 .034 .417 .021 .947 .032 .417 
500 .047 .952 .001 .106 .031 .944 .025 .072 .031 .944 .025 .071 

1 100 .029 .967 .004 .282 .026 .952 .022 .183 .026 .951 .023 .179 
200 .037 .955 .008 .009 .032 .944 .024 .004 .032 .946 .022 .004 
500 .032 .937 .031 .000 .028 .940 .032 .000 .028 .942 .030 .000 
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Figure 1 Example of chance correlations 
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Figure 2 Normal PLSc estimates (solid line) and estimates with weights and reliabilities estimated from hold-out 
sample (dashed lines) 
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Appendix A: Full results tables 

This appendix contains the full results tables for both normal and non-normal data, 

excluding the tables that are included in the main document. 

Table 1 Inadmissible replications over 1000 replications for non-normal data 

M
od

el
 

Sc
al

e 

N
 

Inadmissible loadings Inadmissible reliabilities Inadmissible factor correlations 

PL
Sc

 

EI
V

M
L-

C
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V
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s 

M
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V

M
L-

C
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m
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re
s 

PL
Sc

 

EI
V

M
L-

C
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EI
V

m
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s 

M
L-

SE
M

 

Small 
Model 

0 100 949 936 N/A 935 749 747 N/A 102 0 N/A 2 
200 938 935 N/A 945 768 748 N/A 37 0 N/A 0 
500 947 937 N/A 930 767 749 N/A 20 0 N/A 0 

.5 100 849 679 N/A 636 517 238 N/A 16 0 N/A 0 
200 780 433 N/A 416 451 79 N/A 6 0 N/A 0 
500 614 186 N/A 183 238 2 N/A 1 0 N/A 0 

1 100 438 170 N/A 162 71 3 N/A 23 18 N/A 14 
200 281 43 N/A 43 10 0 N/A 0 0 N/A 0 
500 62 1 N/A 1 0 0 N/A 0 0 N/A 0 

Large 
Model 

0 100 976 43 0 35 603 0 0 131 0 0 0 
200 971 6 0 5 592 0 0 63 0 0 0 
500 973 0 0 0 572 0 0 23 0 0 0 

.5 100 931 38 0 38 386 0 0 14 0 0 4 
200 903 2 0 1 359 0 0 1 0 0 0 
500 811 0 0 0 140 0 0 0 0 0 0 

1 100 559 18 0 18 20 0 0 7 6 9 5 
200 303 1 0 2 3 0 0 0 0 0 0 
500 83 0 0 0 0 0 0 0 0 0 0 

Note: Loadings and reliabilities are invalid if any value in a replication has absolute value 
greater than one. Reliabilities are inadmissible if any index exceeds one in absolute value. 
Linear effects are inadmissible if the disattenuated composite covariance matrix is invalid. 
Small Model: Original model, Large Model: Model with duplicated indicators for ξ1 and η4. 
N/A = not estimated. 
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Table 2 Loadings over 1000 replications for normal data 

Pa
ra

m
. 

Sc
al

e 

N
 

Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ11 

 
.870 

 

0 100 .117 .776 2.649 7.864 -.068 .366 -.002 .028 -.003 .028 
200 .116 .695 2.717 7.685 -.055 .354 -.001 .020 -.001 .020 
500 .112 .731 2.245 6.434 -.062 .353 -.001 .012 -.001 .012 

.5 100 .073 .528 .164 2.259 -.075 .335 -.001 .028 -.002 .028 
200 .081 .706 .036 .968 -.045 .309 -.001 .020 -.001 .020 
500 .009 .227 -.000 .044 -.030 .192 -.001 .012 -.001 .012 

1 100 .001 .070 -.002 .050 -.008 .085 -.002 .027 -.002 .028 
200 -.001 .051 -.001 .035 -.001 .057 -.000 .019 -.001 .019 
500 -.001 .029 -.000 .020 -.003 .037 -.001 .012 -.002 .012 

λ11b 

 
.870 

0 100 N/A N/A N/A N/A -.096 .361 -.002 .028 -.002 .028 
200 N/A N/A N/A N/A -.059 .351 -.000 .020 -.000 .020 
500 N/A N/A N/A N/A -.069 .356 -.000 .012 -.000 .012 

.5 100 N/A N/A N/A N/A -.066 .323 -.001 .029 -.001 .029 
200 N/A N/A N/A N/A -.036 .290 -.000 .020 -.001 .020 
500 N/A N/A N/A N/A -.021 .220 -.000 .013 -.001 .013 

1 100 N/A N/A N/A N/A -.002 .088 -.001 .029 -.002 .029 
200 N/A N/A N/A N/A -.002 .060 -.000 .019 -.001 .019 
500 N/A N/A N/A N/A .000 .037 -.000 .012 -.001 .013 

λ12 
 

.940 

0 100 .034 .901 2.486 7.718 -.110 .321 -.000 .017 -.000 .017 
200 .021 .759 2.264 7.072 -.115 .297 -.001 .012 -.001 .012 
500 -.007 .821 1.896 5.984 -.095 .287 .000 .007 .000 .007 

.5 100 .022 .540 .287 2.689 -.079 .277 .000 .017 .000 .017 
200 .037 .799 .036 .903 -.076 .244 -.001 .012 -.001 .012 
500 .019 .260 .001 .048 -.032 .173 -.000 .007 .000 .008 

1 100 .001 .073 .001 .048 -.005 .068 -.000 .017 .000 .017 
200 .002 .052 .001 .033 -.002 .046 -.001 .012 -.000 .012 
500 .001 .029 -.000 .019 -.001 .029 -.000 .007 .000 .007 

λ12b 
 

.940 

0 100 N/A N/A N/A N/A -.114 .305 -.001 .017 -.000 .017 
200 N/A N/A N/A N/A -.112 .288 -.001 .012 -.000 .012 
500 N/A N/A N/A N/A -.107 .303 -.000 .007 .000 .008 

.5 100 N/A N/A N/A N/A -.104 .281 .000 .017 .000 .017 
200 N/A N/A N/A N/A -.068 .235 -.001 .012 -.001 .012 
500 N/A N/A N/A N/A -.027 .172 -.000 .007 -.000 .007 

1 100 N/A N/A N/A N/A -.001 .066 -.000 .017 .000 .017 
200 N/A N/A N/A N/A -.003 .047 -.001 .011 -.001 .012 
500 N/A N/A N/A N/A -.001 .028 -.000 .007 -.000 .007 

λ21 

 
.410 

0 100 -.144 .303 -.000 .107 -.142 .292 -.006 .106 -.005 .105 
200 -.150 .293 .001 .076 -.153 .284 -.002 .076 -.002 .075 
500 -.153 .290 -.001 .047 -.167 .280 .001 .046 .001 .046 

.5 100 -.033 .195 -.001 .106 -.036 .199 -.005 .107 -.003 .109 
200 -.023 .146 -.004 .072 -.019 .144 -.004 .069 -.003 .070 
500 -.007 .093 -.001 .044 -.006 .090 -.002 .046 -.001 .047 

1 100 -.007 .122 -.000 .097 -.006 .121 -.001 .097 -.002 .104 
200 .001 .087 .001 .066 -.005 .084 -.003 .067 -.003 .073 
500 -.001 .054 -.000 .043 -.005 .053 -.003 .043 -.002 .046 
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Pa
ra

m
. 

Sc
al

e 

N
 

Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ22 

 
.410 

0 100 -.159 .292 -.002 .110 -.160 .295 -.011 .111 -.010 .110 
200 -.160 .289 -.002 .075 -.153 .299 .002 .074 .002 .074 
500 -.159 .284 -.002 .046 -.152 .299 -.004 .047 -.004 .047 

.5 100 -.026 .196 -.003 .105 -.038 .193 -.007 .104 -.006 .104 
200 -.021 .151 -.005 .073 -.008 .140 .003 .075 .003 .077 
500 -.007 .092 -.002 .044 -.003 .086 -.001 .045 -.002 .047 

1 100 -.006 .122 -.004 .096 -.008 .119 -.003 .098 -.004 .107 
200 -.005 .085 -.003 .067 -.006 .082 .000 .068 .002 .075 
500 .001 .058 -.001 .043 -.001 .052 -.000 .041 -.001 .047 

λ23 

 
.470 

0 100 -.190 .298 -.008 .100 -.192 .289 -.002 .104 -.001 .102 
200 -.195 .287 -.004 .074 -.181 .291 -.003 .071 -.003 .071 
500 -.200 .284 -.000 .046 -.187 .285 -.002 .043 -.002 .044 

.5 100 -.045 .191 -.008 .101 -.030 .182 .002 .100 .001 .103 
200 -.021 .142 -.002 .071 -.014 .131 -.002 .067 -.001 .068 
500 -.005 .088 .001 .042 -.009 .086 -.002 .042 -.002 .043 

1 100 -.013 .115 -.007 .094 .001 .110 .004 .090 .004 .103 
200 -.008 .081 -.002 .064 -.003 .077 -.002 .062 -.001 .069 
500 -.002 .052 .000 .040 -.000 .048 -.001 .039 -.001 .044 

λ24 

 
.600 

0 100 -.288 .289 -.001 .093 -.271 .288 -.005 .094 -.004 .093 
200 -.265 .284 .002 .063 -.289 .278 -.003 .062 -.003 .061 
500 -.287 .290 -.001 .040 -.294 .285 -.000 .039 .000 .039 

.5 100 -.053 .169 -.002 .089 -.044 .161 .001 .085 .003 .090 
200 -.035 .123 -.002 .059 -.027 .121 -.003 .061 -.003 .063 
500 -.014 .078 -.001 .038 -.013 .078 .001 .037 .002 .039 

1 100 -.013 .098 -.002 .077 -.010 .100 .002 .078 -.000 .090 
200 -.009 .070 -.003 .053 -.006 .068 -.002 .053 -.002 .063 
500 -.004 .047 -.002 .035 -.002 .044 .000 .034 .000 .040 

λ25 

 
.630 

0 100 -.303 .292 -.002 .093 -.286 .290 -.003 .095 -.004 .092 
200 -.300 .285 -.000 .063 -.291 .279 -.001 .064 -.001 .064 
500 -.296 .275 -.001 .039 -.294 .284 -.000 .038 -.000 .038 

.5 100 -.062 .173 .001 .086 -.053 .164 -.006 .086 -.007 .090 
200 -.025 .120 .003 .060 -.031 .111 .000 .057 -.000 .062 
500 -.012 .078 -.001 .038 -.010 .074 -.002 .037 -.002 .040 

1 100 -.010 .093 .003 .074 -.019 .094 -.008 .076 -.006 .092 
200 -.006 .069 .002 .053 -.004 .065 .001 .050 .001 .061 
500 -.005 .045 -.001 .034 -.005 .042 -.003 .032 -.002 .039 

λ26 
 

.650 

0 100 -.323 .284 -.002 .094 -.294 .283 -.001 .094 -.001 .092 
200 -.305 .287 -.001 .060 -.301 .292 -.000 .060 -.001 .060 
500 -.306 .282 -.000 .039 -.319 .279 -.002 .039 -.002 .038 

.5 100 -.056 .162 -.004 .086 -.062 .160 -.004 .088 -.004 .091 
200 -.022 .116 -.001 .058 -.024 .109 -.000 .057 -.000 .060 
500 -.009 .077 .001 .038 -.011 .072 -.001 .037 -.001 .039 

1 100 -.014 .096 -.003 .073 -.013 .094 -.003 .078 -.001 .094 
200 -.008 .065 -.001 .051 -.005 .066 -.000 .051 -.001 .061 
500 -.003 .045 .001 .034 -.004 .040 -.001 .032 -.001 .039 

λ31 
 

.490 

0 100 -.059 .398 -.003 .087 -.096 .413 -.005 .084 -.003 .083 
200 -.047 .397 -.001 .061 -.041 .410 .000 .059 .001 .059 
500 -.064 .387 -.000 .039 -.083 .402 -.000 .037 -.000 .037 

.5 100 -.065 .346 -.003 .089 -.070 .351 -.001 .087 .000 .086 
200 -.028 .302 -.002 .060 -.021 .291 -.001 .058 -.001 .058 
500 -.021 .212 -.000 .037 -.010 .205 .001 .037 .001 .037 

1 100 -.027 .241 -.003 .088 -.014 .242 -.000 .087 .000 .086 
200 -.014 .167 -.002 .060 -.016 .160 -.002 .058 -.001 .058 
500 -.006 .101 -.000 .037 -.009 .107 .001 .037 .001 .037 
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Pa
ra

m
. 

Sc
al
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N
 

Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ32 
 

.600 

0 100 -.135 .406 -.003 .074 -.123 .411 -.006 .076 -.005 .074 
200 -.122 .407 -.002 .053 -.136 .384 -.002 .052 -.002 .052 
500 -.133 .403 -.002 .033 -.132 .398 .000 .033 .000 .033 

.5 100 -.096 .349 -.004 .072 -.093 .339 -.005 .074 -.003 .073 
200 -.076 .279 -.002 .051 -.078 .287 -.001 .053 -.001 .053 
500 -.038 .200 .000 .034 -.019 .181 -.000 .032 -.000 .032 

1 100 -.037 .204 -.004 .072 -.038 .215 -.004 .073 -.003 .073 
200 -.018 .149 -.001 .052 -.016 .150 -.002 .053 -.001 .053 
500 .000 .089 .001 .034 -.004 .090 -.000 .032 -.000 .032 

λ33 
 

.800 

0 100 -.270 .374 -.001 .059 -.261 .360 -.003 .060 -.000 .056 
200 -.260 .361 .001 .041 -.279 .365 -.000 .040 .001 .040 
500 -.257 .381 .001 .026 -.251 .365 .000 .024 .001 .024 

.5 100 -.178 .311 -.001 .058 -.185 .308 -.003 .058 -.001 .055 
200 -.119 .255 -.000 .040 -.109 .246 -.001 .041 -.000 .041 
500 -.036 .161 .001 .025 -.038 .142 .001 .024 .001 .024 

1 100 -.043 .174 -.001 .056 -.054 .173 -.002 .054 -.001 .055 
200 -.022 .116 -.000 .038 -.019 .110 -.001 .040 -.000 .041 
500 -.008 .070 .001 .024 -.006 .069 .001 .023 .001 .024 

λ34 
 

.900 

0 100 -.354 .361 .000 .056 -.341 .345 .004 .055 .000 .049 
200 -.336 .344 .001 .037 -.328 .342 .001 .035 -.000 .034 
500 -.340 .362 -.001 .022 -.327 .346 -.000 .023 -.001 .023 

.5 100 -.217 .314 -.000 .055 -.220 .314 .004 .053 .001 .049 
200 -.122 .238 .001 .036 -.137 .248 -.000 .035 -.001 .035 
500 -.045 .144 -.000 .022 -.043 .135 -.000 .023 -.001 .023 

1 100 -.060 .160 -.000 .052 -.059 .158 .002 .048 .001 .049 
200 -.019 .099 .001 .034 -.018 .100 -.000 .033 -.001 .035 
500 -.008 .063 -.000 .020 -.006 .064 -.000 .022 -.001 .023 

λ41 
 

.630 

0 100 .218 1.507 4.880 11.634 -.107 .397 -.005 .070 -.005 .070 
200 .188 1.104 4.668 10.970 -.103 .399 -.001 .049 -.001 .049 
500 .195 1.258 4.252 9.601 -.100 .402 -.002 .031 -.002 .031 

.5 100 .018 .245 .633 4.785 -.033 .227 -.004 .072 -.004 .072 
200 .008 .132 .075 1.636 -.016 .159 .001 .048 .001 .049 
500 -.001 .075 -.004 .078 -.006 .101 -.002 .032 -.002 .032 

1 100 -.001 .089 -.005 .090 -.010 .109 -.002 .070 -.002 .071 
200 -.001 .064 -.001 .064 -.005 .074 -.002 .049 -.002 .050 
500 -.001 .039 -.001 .038 -.002 .046 -.001 .031 -.002 .032 

λ41b 
 

.630 

0 100 N/A N/A N/A N/A -.096 .408 -.002 .075 -.002 .074 
200 N/A N/A N/A N/A -.122 .402 -.003 .049 -.003 .049 
500 N/A N/A N/A N/A -.120 .395 .001 .031 .000 .031 

.5 100 N/A N/A N/A N/A -.034 .229 -.001 .071 -.000 .071 
200 N/A N/A N/A N/A -.009 .164 -.001 .051 -.001 .051 
500 N/A N/A N/A N/A -.011 .104 -.000 .030 -.000 .030 

1 100 N/A N/A N/A N/A -.009 .109 -.004 .070 -.003 .071 
200 N/A N/A N/A N/A -.003 .076 -.000 .049 -.000 .050 
500 N/A N/A N/A N/A -.003 .049 -.001 .030 -.001 .030 

λ42 
 

.840 

0 100 -.073 .768 4.594 11.563 -.273 .366 -.002 .050 -.001 .049 
200 .118 4.488 4.314 10.964 -.258 .346 -.000 .034 .000 .034 
500 .022 1.581 3.658 9.464 -.237 .356 -.000 .021 -.000 .021 

.5 100 .078 .813 1.715 7.406 -.047 .177 .000 .048 .001 .048 
200 .021 .228 .383 3.362 -.025 .122 -.000 .034 .001 .034 
500 .008 .103 .012 .107 -.002 .073 .000 .021 .000 .021 

1 100 .003 .102 .009 .113 -.007 .070 -.001 .046 -.001 .050 
200 .000 .064 .001 .063 -.005 .052 -.001 .031 -.000 .034 
500 .000 .040 .000 .039 -.000 .032 .000 .019 .000 .021 
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N
 

Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ42b 
 

.840 

0 100 N/A N/A N/A N/A -.247 .359 -.001 .048 -.001 .047 
200 N/A N/A N/A N/A -.240 .373 -.001 .035 -.001 .035 
500 N/A N/A N/A N/A -.242 .360 -.001 .022 -.000 .022 

.5 100 N/A N/A N/A N/A -.043 .179 -.000 .048 .000 .047 
200 N/A N/A N/A N/A -.015 .112 -.000 .033 .000 .034 
500 N/A N/A N/A N/A -.008 .074 -.001 .022 -.000 .022 

1 100 N/A N/A N/A N/A -.004 .074 -.001 .045 -.001 .048 
200 N/A N/A N/A N/A -.001 .049 -.001 .031 -.001 .034 
500 N/A N/A N/A N/A -.002 .032 -.000 .020 .000 .023 

λ51 

 
.650 

0 100 -.069 .358 .001 .063 -.074 .356 -.001 .061 -.001 .061 
200 -.080 .354 -.000 .044 -.077 .360 -.003 .044 -.003 .044 
500 -.062 .351 .001 .029 -.073 .347 -.001 .028 -.001 .028 

.5 100 -.004 .198 -.001 .060 -.010 .212 -.003 .062 -.003 .062 
200 -.008 .154 -.001 .043 -.004 .150 .000 .042 .000 .042 
500 .000 .096 -.000 .028 -.010 .098 -.002 .028 -.002 .028 

1 100 -.003 .120 -.001 .063 -.007 .123 -.003 .065 -.002 .065 
200 -.003 .090 .001 .044 -.001 .086 -.001 .045 -.001 .045 
500 -.000 .055 .001 .027 -.007 .056 -.003 .028 -.003 .028 

λ52 

 
.670 

0 100 -.063 .340 -.001 .056 -.065 .351 -.003 .063 -.003 .063 
200 -.069 .344 -.002 .043 -.088 .347 -.001 .041 -.001 .041 
500 -.062 .347 -.000 .026 -.075 .338 -.000 .027 -.000 .027 

.5 100 -.030 .194 -.003 .057 -.038 .204 -.005 .059 -.004 .059 
200 -.004 .140 .001 .043 -.005 .143 .000 .044 -.000 .044 
500 -.007 .095 -.000 .027 -.003 .098 .000 .026 .000 .026 

1 100 -.010 .120 -.004 .061 -.015 .123 -.004 .061 -.004 .061 
200 -.002 .085 -.000 .042 -.000 .086 -.001 .045 -.001 .045 
500 -.002 .052 -.001 .026 .000 .056 .000 .026 .000 .026 

λ53 

 
.750 

0 100 -.118 .326 .001 .049 -.104 .296 .002 .048 .002 .048 
200 -.123 .330 -.001 .033 -.110 .319 -.002 .034 -.002 .034 
500 -.116 .310 -.000 .022 -.114 .325 .000 .022 -.000 .022 

.5 100 -.031 .182 -.002 .050 -.022 .171 -.001 .046 -.001 .046 
200 -.003 .122 .001 .034 -.018 .133 -.002 .035 -.002 .035 
500 -.008 .079 -.001 .023 -.002 .083 .001 .022 .001 .022 

1 100 -.011 .100 -.001 .048 -.002 .099 -.000 .047 -.000 .047 
200 -.002 .072 -.000 .035 -.008 .075 -.002 .035 -.002 .035 
500 -.003 .046 -.001 .022 -.000 .047 .000 .021 .000 .021 

λ54 

 
.750 

0 100 -.112 .326 .000 .050 -.120 .321 .001 .049 .001 .049 
200 -.101 .318 -.000 .035 -.115 .323 -.000 .035 -.001 .035 
500 -.115 .323 -.001 .022 -.102 .326 -.000 .021 -.000 .021 

.5 100 -.022 .171 -.002 .050 -.029 .173 -.002 .048 -.002 .048 
200 -.019 .132 -.000 .034 -.018 .135 -.000 .035 -.000 .035 
500 -.005 .084 -.000 .023 -.006 .084 -.001 .021 -.001 .021 

1 100 -.006 .103 -.002 .050 -.010 .103 -.001 .047 -.001 .047 
200 -.006 .073 -.002 .036 -.007 .075 -.001 .037 -.002 .037 
500 -.003 .047 -.001 .022 -.002 .047 -.001 .021 -.001 .021 

λ55 

 
.900 

0 100 -.185 .262 .000 .028 -.183 .265 -.001 .026 -.001 .026 
200 -.180 .253 -.001 .020 -.192 .278 .000 .019 .000 .019 
500 -.187 .271 -.000 .012 -.189 .264 .001 .012 .001 .012 

.5 100 -.044 .130 -.001 .028 -.046 .132 -.002 .027 -.003 .027 
200 -.026 .092 -.001 .019 -.019 .091 .000 .019 .000 .019 
500 -.008 .061 -.000 .011 -.008 .060 .000 .011 .000 .012 

1 100 -.012 .072 .000 .026 -.014 .073 -.002 .027 -.002 .027 
200 -.008 .050 -.001 .019 -.006 .050 -.000 .018 .000 .019 
500 -.002 .033 -.001 .012 -.002 .032 -.000 .011 -.000 .012 
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N
 

Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ56 

 
.900 

0 100 -.196 .276 -.000 .026 -.175 .250 -.000 .028 -.001 .028 
200 -.198 .268 -.000 .019 -.188 .281 -.000 .019 .000 .019 
500 -.186 .265 .000 .012 -.186 .253 .000 .011 .000 .011 

.5 100 -.044 .134 -.001 .027 -.043 .121 -.000 .026 -.000 .026 
200 -.026 .090 -.000 .019 -.026 .093 .000 .019 .000 .019 
500 -.010 .060 .000 .011 -.010 .061 .000 .012 .000 .012 

1 100 -.012 .072 -.001 .026 -.009 .070 -.000 .026 -.001 .027 
200 -.007 .054 -.001 .019 -.008 .051 -.001 .019 -.001 .020 
500 -.002 .032 .000 .011 -.003 .032 -.001 .011 -.000 .011 

Note: N/A = not estimated. 
 

Table 3 Loadings over 1000 replications for non-normal data 

Pa
ra

m
. 

Sc
al

e 

N
 

Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ11 

 
.870 

 

0 100 .107 .743 2.540 7.480 -.061 .355 -.002 .028 -.003 .028 
200 .123 1.001 2.547 7.346 -.054 .352 -.001 .020 -.001 .020 
500 .114 .773 2.269 6.470 -.063 .346 -.001 .012 -.001 .012 

.5 100 .081 .554 .209 2.340 -.065 .327 -.001 .028 -.002 .028 
200 .115 .943 .087 1.529 -.043 .303 -.000 .020 -.001 .020 
500 .012 .200 -.001 .045 -.027 .197 -.001 .012 -.001 .013 

1 100 .002 .070 -.001 .049 -.008 .086 -.002 .027 -.002 .028 
200 -.001 .051 -.002 .035 -.001 .057 -.000 .019 -.001 .019 
500 -.001 .029 -.000 .020 -.003 .037 -.001 .012 -.001 .012 

λ11b 

 
.870 

0 100 N/A N/A N/A N/A -.084 .355 -.002 .028 -.002 .028 
200 N/A N/A N/A N/A -.068 .350 .000 .020 -.000 .020 
500 N/A N/A N/A N/A -.065 .350 -.000 .012 -.000 .012 

.5 100 N/A N/A N/A N/A -.068 .318 -.001 .029 -.001 .029 
200 N/A N/A N/A N/A -.038 .294 -.000 .020 -.000 .020 
500 N/A N/A N/A N/A -.023 .220 -.000 .012 -.001 .013 

1 100 N/A N/A N/A N/A -.003 .089 -.001 .029 -.002 .029 
200 N/A N/A N/A N/A -.002 .059 -.000 .019 -.000 .020 
500 N/A N/A N/A N/A -.000 .038 -.000 .012 -.001 .013 

λ12 
 

.940 

0 100 .031 .908 2.596 8.092 -.109 .312 -.000 .017 .000 .017 
200 .010 .654 2.163 6.864 -.120 .297 -.001 .012 -.001 .012 
500 .029 .966 1.843 5.877 -.098 .297 .000 .007 .000 .007 

.5 100 .052 .878 .209 2.246 -.085 .289 .000 .017 .001 .017 
200 .027 .717 .034 .856 -.077 .244 -.001 .012 -.001 .012 
500 .053 1.062 .002 .048 -.031 .173 -.000 .007 -.000 .007 

1 100 .001 .074 .001 .049 -.005 .069 .000 .017 .000 .017 
200 .002 .052 .001 .033 -.002 .046 -.001 .012 -.001 .012 
500 .000 .030 -.001 .020 -.001 .028 -.000 .007 .000 .007 

λ12b 
 

.940 

0 100 N/A N/A N/A N/A -.112 .296 -.001 .017 -.001 .017 
200 N/A N/A N/A N/A -.109 .297 -.001 .012 -.001 .012 
500 N/A N/A N/A N/A -.105 .297 .000 .007 .000 .008 

.5 100 N/A N/A N/A N/A -.105 .278 -.000 .017 .000 .017 
200 N/A N/A N/A N/A -.070 .239 -.001 .012 -.001 .012 
500 N/A N/A N/A N/A -.027 .171 -.000 .007 -.000 .007 

1 100 N/A N/A N/A N/A -.001 .067 -.000 .017 -.000 .017 
200 N/A N/A N/A N/A -.003 .047 -.001 .011 -.001 .012 
500 N/A N/A N/A N/A -.001 .028 -.000 .007 -.000 .007 
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Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ21 

 
.410 

0 100 -.148 .302 .001 .108 -.141 .294 -.007 .108 -.006 .107 
200 -.151 .291 .001 .075 -.149 .284 -.002 .076 -.002 .076 
500 -.150 .290 -.002 .048 -.160 .284 .001 .046 .001 .046 

.5 100 -.032 .193 -.000 .105 -.034 .196 -.005 .106 -.004 .109 
200 -.022 .143 -.003 .072 -.020 .145 -.004 .070 -.003 .071 
500 -.005 .094 .000 .044 -.006 .089 -.001 .046 -.001 .047 

1 100 -.008 .123 .000 .097 -.006 .121 -.001 .098 -.003 .104 
200 .001 .088 .001 .066 -.005 .084 -.003 .068 -.003 .074 
500 -.000 .054 .001 .043 -.005 .053 -.003 .043 -.002 .046 

λ22 

 
.410 

0 100 -.160 .293 -.002 .109 -.153 .291 -.010 .111 -.009 .111 
200 -.153 .291 -.002 .074 -.157 .291 .002 .075 .003 .075 
500 -.153 .282 -.002 .045 -.146 .295 -.004 .047 -.004 .047 

.5 100 -.025 .196 -.003 .105 -.034 .194 -.006 .104 -.006 .104 
200 -.022 .150 -.005 .073 -.007 .140 .003 .075 .003 .077 
500 -.007 .091 -.002 .044 -.003 .086 -.002 .045 -.003 .047 

1 100 -.007 .124 -.003 .096 -.007 .119 -.002 .097 -.003 .107 
200 -.005 .085 -.003 .067 -.005 .082 .001 .068 .003 .075 
500 .000 .057 -.001 .044 -.001 .052 -.000 .041 -.002 .047 

λ23 

 
.470 

0 100 -.192 .295 -.008 .100 -.190 .288 -.002 .104 -.001 .103 
200 -.194 .286 -.004 .074 -.183 .289 -.003 .072 -.003 .071 
500 -.206 .287 -.000 .046 -.186 .288 -.002 .043 -.002 .043 

.5 100 -.044 .189 -.008 .102 -.031 .180 .002 .100 .001 .103 
200 -.019 .141 -.002 .071 -.013 .131 -.001 .067 -.001 .069 
500 -.006 .088 .001 .042 -.009 .085 -.002 .041 -.002 .043 

1 100 -.013 .116 -.006 .095 .000 .110 .004 .090 .004 .103 
200 -.007 .082 -.002 .064 -.003 .076 -.002 .062 -.001 .069 
500 -.002 .053 .000 .040 -.000 .048 -.001 .039 -.001 .043 

λ24 

 
.600 

0 100 -.290 .288 -.002 .095 -.268 .292 -.005 .095 -.005 .094 
200 -.257 .286 .002 .063 -.291 .284 -.003 .062 -.003 .061 
500 -.284 .290 -.001 .040 -.293 .283 -.000 .040 -.000 .039 

.5 100 -.051 .169 -.002 .089 -.043 .159 .001 .085 .003 .091 
200 -.034 .122 -.002 .059 -.026 .120 -.003 .061 -.003 .063 
500 -.014 .078 -.001 .038 -.014 .078 .000 .038 .002 .039 

1 100 -.013 .097 -.003 .077 -.010 .100 .002 .078 -.000 .091 
200 -.008 .070 -.002 .053 -.006 .069 -.002 .053 -.002 .063 
500 -.004 .047 -.002 .035 -.002 .044 .000 .034 .000 .040 

λ25 

 
.630 

0 100 -.311 .293 -.001 .093 -.283 .293 -.003 .096 -.004 .093 
200 -.299 .283 .000 .063 -.294 .276 -.001 .063 -.001 .063 
500 -.288 .267 -.002 .040 -.295 .286 -.000 .037 -.000 .037 

.5 100 -.061 .171 .001 .086 -.051 .164 -.005 .086 -.007 .090 
200 -.024 .120 .003 .061 -.032 .112 -.000 .057 -.000 .062 
500 -.012 .077 -.001 .037 -.010 .074 -.002 .037 -.002 .039 

1 100 -.010 .094 .003 .074 -.018 .095 -.007 .075 -.005 .091 
200 -.005 .070 .003 .053 -.004 .065 .001 .050 .002 .061 
500 -.005 .045 -.002 .034 -.005 .042 -.003 .032 -.002 .039 

λ26 
 

.650 

0 100 -.320 .288 -.002 .093 -.298 .291 -.000 .092 -.001 .090 
200 -.303 .288 -.002 .060 -.310 .291 -.001 .060 -.001 .059 
500 -.299 .281 -.000 .039 -.323 .275 -.003 .038 -.003 .038 

.5 100 -.055 .161 -.003 .086 -.062 .158 -.003 .088 -.003 .090 
200 -.022 .117 -.001 .058 -.026 .110 -.001 .057 -.001 .060 
500 -.009 .077 .002 .037 -.011 .070 -.001 .036 -.002 .038 

1 100 -.014 .096 -.002 .073 -.014 .094 -.003 .078 -.000 .093 
200 -.008 .066 -.002 .051 -.005 .066 -.000 .050 -.001 .061 
500 -.003 .045 .001 .034 -.003 .040 -.001 .032 -.001 .038 
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Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ31 
 

.490 

0 100 -.058 .393 -.003 .086 -.088 .399 -.005 .084 -.003 .082 
200 -.048 .396 -.000 .060 -.044 .437 .000 .059 .001 .059 
500 -.065 .380 -.000 .039 -.081 .400 -.000 .037 -.000 .037 

.5 100 -.068 .352 -.003 .089 -.067 .354 -.000 .086 .001 .085 
200 -.031 .304 -.002 .060 -.019 .286 -.002 .059 -.002 .058 
500 -.020 .211 -.000 .037 -.008 .203 .001 .037 .001 .037 

1 100 -.030 .244 -.003 .088 -.012 .239 .000 .086 .001 .085 
200 -.015 .171 -.002 .060 -.015 .160 -.002 .059 -.002 .058 
500 -.005 .101 -.000 .037 -.008 .105 .001 .037 .001 .037 

λ32 
 

.600 

0 100 -.128 .387 -.002 .074 -.114 .394 -.005 .075 -.004 .074 
200 -.124 .403 -.002 .053 -.131 .391 -.002 .052 -.001 .052 
500 -.127 .404 -.002 .033 -.138 .389 -.000 .032 -.000 .032 

.5 100 -.089 .333 -.003 .073 -.090 .338 -.004 .074 -.003 .073 
200 -.074 .282 -.002 .052 -.076 .292 -.002 .053 -.002 .053 
500 -.039 .200 .001 .033 -.021 .186 -.000 .032 -.000 .032 

1 100 -.034 .206 -.003 .072 -.039 .217 -.004 .073 -.003 .073 
200 -.017 .147 -.002 .052 -.018 .149 -.002 .053 -.002 .053 
500 -.001 .088 .001 .033 -.004 .090 -.000 .032 -.000 .032 

λ33 
 

.800 

0 100 -.259 .368 -.001 .060 -.267 .373 -.003 .060 -.000 .056 
200 -.264 .374 .001 .041 -.274 .356 -.000 .040 .001 .040 
500 -.239 .367 .001 .026 -.247 .366 .000 .024 .001 .024 

.5 100 -.173 .304 -.000 .059 -.181 .305 -.004 .057 -.001 .055 
200 -.120 .250 -.000 .040 -.106 .246 -.001 .040 .000 .040 
500 -.035 .160 .001 .025 -.039 .149 .001 .024 .001 .024 

1 100 -.044 .173 -.000 .056 -.054 .170 -.003 .054 -.001 .055 
200 -.022 .116 -.000 .038 -.020 .110 -.001 .039 .000 .040 
500 -.008 .069 .001 .024 -.005 .069 .001 .023 .001 .024 

λ34 
 

.900 

0 100 -.342 .362 .000 .057 -.341 .348 .004 .055 .000 .049 
200 -.333 .344 .001 .037 -.327 .337 .000 .036 -.001 .034 
500 -.334 .360 -.000 .022 -.329 .348 -.000 .023 -.001 .022 

.5 100 -.219 .312 -.001 .055 -.213 .308 .003 .053 .001 .050 
200 -.123 .244 .001 .036 -.136 .243 -.001 .035 -.001 .035 
500 -.044 .141 .000 .021 -.045 .141 -.000 .023 -.001 .023 

1 100 -.059 .160 -.001 .052 -.057 .155 .002 .048 .001 .050 
200 -.020 .098 .001 .034 -.018 .102 -.000 .034 -.001 .035 
500 -.007 .063 .000 .020 -.007 .064 -.000 .021 -.001 .023 

λ41 
 

.630 

0 100 .225 1.542 4.875 11.864 -.105 .393 -.005 .070 -.005 .070 
200 .167 1.123 4.849 11.164 -.108 .408 -.001 .049 -.002 .049 
500 .218 1.194 4.002 9.325 -.108 .399 -.002 .031 -.002 .031 

.5 100 .016 .229 .934 5.645 -.035 .229 -.004 .072 -.003 .072 
200 .008 .130 .096 1.741 -.017 .161 .001 .049 .001 .049 
500 -.001 .074 -.004 .077 -.006 .102 -.002 .032 -.002 .032 

1 100 -.002 .090 -.005 .090 -.011 .108 -.002 .070 -.002 .071 
200 -.001 .064 -.001 .064 -.005 .075 -.002 .049 -.002 .050 
500 -.001 .039 -.001 .038 -.002 .047 -.001 .031 -.001 .032 

λ41b 
 

.630 

0 100 N/A N/A N/A N/A -.107 .416 -.001 .074 -.001 .074 
200 N/A N/A N/A N/A -.119 .402 -.003 .050 -.003 .050 
500 N/A N/A N/A N/A -.108 .397 .000 .031 -.000 .031 

.5 100 N/A N/A N/A N/A -.033 .226 -.000 .071 -.000 .071 
200 N/A N/A N/A N/A -.007 .164 -.000 .052 -.001 .052 
500 N/A N/A N/A N/A -.011 .104 -.000 .030 -.000 .030 

1 100 N/A N/A N/A N/A -.008 .108 -.003 .070 -.003 .071 
200 N/A N/A N/A N/A -.002 .077 .000 .049 -.000 .050 
500 N/A N/A N/A N/A -.003 .049 -.001 .030 -.001 .030 
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Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ42 
 

.840 

0 100 -.017 .907 4.954 12.049 -.269 .362 -.002 .050 -.001 .049 
200 -.004 1.423 4.339 11.042 -.253 .351 -.000 .034 .000 .034 
500 -.046 .890 3.404 9.181 -.247 .367 -.000 .021 -.000 .021 

.5 100 .052 .559 1.521 6.870 -.047 .176 .001 .048 .001 .048 
200 .020 .217 .338 3.191 -.025 .122 -.000 .033 .001 .034 
500 .008 .104 .013 .108 -.003 .073 .000 .021 .000 .021 

1 100 .004 .103 .009 .103 -.006 .070 -.001 .045 -.000 .050 
200 .000 .064 .001 .064 -.005 .052 -.001 .031 -.001 .034 
500 -.000 .041 -.000 .039 .000 .032 .000 .019 .000 .021 

λ42b 
 

.840 

0 100 N/A N/A N/A N/A -.253 .364 -.001 .049 -.001 .048 
200 N/A N/A N/A N/A -.233 .365 -.001 .035 -.001 .035 
500 N/A N/A N/A N/A -.252 .357 -.001 .022 -.000 .022 

.5 100 N/A N/A N/A N/A -.042 .174 -.000 .048 -.000 .048 
200 N/A N/A N/A N/A -.016 .111 -.000 .033 -.000 .034 
500 N/A N/A N/A N/A -.008 .073 -.000 .022 .000 .022 

1 100 N/A N/A N/A N/A -.003 .073 -.001 .045 -.001 .049 
200 N/A N/A N/A N/A -.002 .049 -.001 .031 -.001 .034 
500 N/A N/A N/A N/A -.001 .032 -.000 .020 .000 .022 

λ51 

 
.650 

0 100 -.070 .364 .001 .063 -.085 .371 -.001 .061 -.001 .061 
200 -.082 .358 -.000 .044 -.069 .355 -.003 .044 -.003 .044 
500 -.064 .356 .001 .029 -.065 .355 -.001 .028 -.001 .028 

.5 100 -.003 .195 -.001 .060 -.012 .213 -.003 .062 -.003 .062 
200 -.010 .157 -.001 .043 -.002 .149 .000 .043 -.000 .043 
500 -.001 .096 .000 .028 -.010 .096 -.002 .027 -.002 .027 

1 100 -.003 .119 -.001 .062 -.009 .123 -.003 .065 -.003 .065 
200 -.004 .091 .001 .044 -.001 .086 -.000 .045 -.000 .045 
500 -.001 .055 .001 .027 -.007 .055 -.002 .028 -.002 .028 

λ52 

 
.670 

0 100 -.069 .335 -.001 .056 -.065 .358 -.003 .063 -.003 .063 
200 -.064 .344 -.002 .043 -.091 .347 -.001 .041 -.002 .041 
500 -.067 .338 -.000 .026 -.087 .352 -.000 .027 -.000 .027 

.5 100 -.028 .193 -.003 .057 -.038 .208 -.005 .060 -.004 .059 
200 -.004 .141 .000 .043 -.005 .144 -.000 .044 -.000 .044 
500 -.006 .095 -.000 .027 -.003 .097 .000 .026 .000 .027 

1 100 -.009 .119 -.003 .061 -.015 .121 -.004 .061 -.004 .061 
200 -.002 .085 -.000 .042 .000 .086 -.001 .044 -.002 .044 
500 -.002 .052 -.001 .026 .000 .055 .000 .026 .000 .026 

λ53 

 
.750 

0 100 -.123 .327 .000 .050 -.109 .301 .002 .048 .001 .048 
200 -.122 .326 -.001 .033 -.112 .327 -.002 .034 -.002 .034 
500 -.112 .322 -.000 .022 -.116 .323 -.000 .022 -.000 .022 

.5 100 -.031 .181 -.002 .050 -.024 .177 -.001 .047 -.001 .047 
200 -.003 .122 .001 .034 -.018 .133 -.001 .035 -.002 .035 
500 -.007 .080 -.001 .023 -.001 .082 .000 .022 .000 .022 

1 100 -.011 .101 -.001 .047 -.001 .098 -.000 .047 -.001 .047 
200 -.002 .073 -.000 .035 -.007 .074 -.002 .035 -.002 .035 
500 -.003 .046 -.001 .022 -.000 .047 .000 .021 -.000 .021 

λ54 

 
.750 

0 100 -.108 .330 .000 .049 -.119 .321 .001 .049 .001 .049 
200 -.109 .337 -.000 .035 -.121 .322 -.001 .034 -.001 .034 
500 -.116 .322 -.001 .022 -.098 .321 -.000 .021 -.000 .021 

.5 100 -.020 .170 -.002 .050 -.029 .176 -.002 .048 -.002 .048 
200 -.020 .132 -.000 .035 -.018 .133 -.000 .035 -.000 .035 
500 -.004 .083 -.001 .023 -.006 .084 -.001 .021 -.001 .021 

1 100 -.006 .103 -.002 .049 -.010 .102 -.001 .047 -.001 .047 
200 -.006 .074 -.001 .036 -.007 .074 -.001 .036 -.002 .036 
500 -.002 .047 -.001 .022 -.002 .047 -.001 .022 -.001 .022 
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Small Model Large Model 
PLSc ML-CFA PLSc ML-CFA minres 

Bias SD Bias SD Bias SD Bias SD Bias SD 

λ55 

 
.900 

0 100 -.187 .262 .000 .028 -.184 .267 -.001 .026 -.001 .026 
200 -.189 .263 -.001 .019 -.191 .266 .000 .019 .000 .019 
500 -.194 .273 -.000 .012 -.185 .262 .001 .012 .001 .012 

.5 100 -.046 .128 -.001 .028 -.048 .133 -.002 .027 -.002 .027 
200 -.025 .091 -.001 .019 -.019 .091 .000 .018 .000 .019 
500 -.008 .060 -.000 .011 -.008 .060 .000 .012 .001 .012 

1 100 -.013 .072 .000 .026 -.015 .074 -.002 .027 -.002 .027 
200 -.008 .050 -.001 .019 -.007 .051 -.000 .018 -.000 .019 
500 -.002 .032 -.001 .012 -.002 .032 -.000 .011 .000 .012 

λ56 

 
.900 

0 100 -.195 .277 -.000 .026 -.179 .262 -.001 .028 -.001 .028 
200 -.202 .273 -.000 .019 -.190 .274 -.000 .019 -.000 .019 
500 -.197 .271 .001 .012 -.188 .253 .000 .011 .000 .011 

.5 100 -.044 .132 -.002 .027 -.046 .134 -.000 .026 -.001 .026 
200 -.026 .090 -.000 .019 -.026 .095 .000 .018 .000 .018 
500 -.010 .060 .000 .012 -.009 .061 .000 .012 .000 .012 

1 100 -.013 .071 -.001 .026 -.009 .070 -.001 .026 -.001 .027 
200 -.007 .054 -.001 .019 -.008 .052 -.001 .019 -.001 .020 
500 -.003 .032 .000 .011 -.003 .032 -.001 .011 -.000 .012 

Note: N/A = not estimated. 
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Table 4 Estimation error of reliabilities with normal data for Large Model 

V
ar

ia
bl

e 

Sc
al

e 

N
 

PLS composites Unit weighted composites 
CRU CRW Alpha CRU CRW Alpha 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
ξ1 0 100 -.005 .023 .043 .059 .002 .012 -.000 .009 -.000 .009 -.001 .009 

200 -.003 .036 .047 .082 .004 .056 .000 .006 .000 .006 -.000 .006 
500 -.005 .031 .044 .062 .002 .009 .000 .004 .000 .004 -.000 .004 

.5 100 -.002 .009 .015 .019 -.001 .009 -.000 .009 -.000 .009 -.001 .009 
200 -.001 .006 .008 .010 -.001 .006 .000 .006 .000 .006 -.000 .006 
500 -.001 .004 .004 .005 -.002 .004 .000 .004 -.000 .004 -.000 .004 

1 100 -.002 .009 .002 .009 -.002 .009 -.000 .009 -.000 .009 -.001 .009 
200 -.001 .006 .001 .006 -.002 .006 .000 .006 .000 .006 -.000 .006 
500 -.001 .004 .000 .004 -.002 .004 .000 .004 .000 .004 -.000 .004 

ξ2 0 100 -.113 .109 .052 .127 .108 .139 -.003 .047 -.005 .048 -.012 .049 
200 -.115 .104 .049 .130 .116 .137 .000 .032 -.000 .032 -.007 .033 
500 -.114 .099 .048 .121 .110 .129 -.000 .020 -.000 .020 -.007 .021 

.5 100 -.039 .054 .016 .051 -.021 .050 -.003 .048 -.004 .048 -.012 .049 
200 -.028 .036 .011 .034 -.021 .034 .000 .032 -.000 .032 -.007 .033 
500 -.023 .022 .004 .021 -.024 .022 -.000 .020 -.000 .020 -.007 .021 

1 100 -.030 .048 .001 .047 -.034 .050 -.004 .047 -.004 .047 -.012 .049 
200 -.024 .033 .002 .031 -.028 .034 -.000 .031 -.001 .031 -.007 .033 
500 -.022 .021 .000 .020 -.027 .022 -.001 .020 -.001 .020 -.007 .021 

η3 0 100 -.066 .122 .088 .242 .026 .131 .000 .030 -.001 .030 -.016 .034 
200 -.064 .112 .076 .210 .021 .113 .000 .021 -.000 .021 -.015 .024 
500 -.066 .115 .077 .212 .019 .105 .000 .013 -.000 .013 -.015 .015 

.5 100 -.068 .107 .052 .132 -.003 .084 .001 .029 .000 .029 -.016 .033 
200 -.053 .080 .053 .127 -.014 .064 .000 .021 .000 .021 -.015 .024 
500 -.045 .050 .035 .081 -.030 .048 -.000 .013 -.000 .013 -.015 .015 

1 100 -.054 .077 .035 .087 -.024 .065 .001 .029 .000 .029 -.016 .033 
200 -.046 .048 .026 .060 -.038 .037 .000 .021 -.000 .020 -.015 .024 
500 -.041 .026 .014 .033 -.043 .026 -.000 .013 -.000 .013 -.015 .015 

η4  0 100 -.036 .098 .097 .232 .030 .107 -.001 .027 -.001 .026 -.008 .028 
200 -.043 .098 .092 .208 .026 .092 .000 .019 .000 .019 -.006 .020 
500 -.034 .085 .098 .202 .023 .087 .000 .012 .000 .012 -.006 .013 

.5 100 -.026 .052 .041 .070 -.008 .044 -.001 .026 -.001 .026 -.008 .028 
200 -.021 .034 .028 .040 -.013 .025 .000 .018 -.000 .018 -.006 .020 
500 -.018 .016 .014 .023 -.020 .015 .000 .012 .000 .012 -.006 .013 

1 100 -.020 .029 .006 .029 -.024 .030 -.001 .026 -.001 .026 -.008 .028 
200 -.017 .019 .004 .020 -.022 .020 .000 .018 .000 .018 -.006 .020 
500 -.017 .013 .002 .013 -.022 .013 .000 .012 .000 .012 -.006 .013 

η5 0 100 -.040 .069 .052 .081 .012 .041 -.000 .016 -.000 .015 -.004 .016 
200 -.045 .079 .051 .088 .015 .050 .000 .011 -.000 .011 -.003 .012 
500 -.042 .071 .056 .087 .013 .046 -.000 .007 -.000 .007 -.003 .007 

.5 100 -.016 .020 .015 .023 -.011 .018 -.000 .016 -.000 .016 -.004 .017 
200 -.013 .012 .008 .013 -.012 .012 .000 .011 .000 .011 -.003 .011 
500 -.012 .007 .003 .008 -.013 .007 -.000 .007 -.000 .007 -.003 .007 

1 100 -.012 .015 .001 .015 -.015 .016 -.000 .016 -.000 .015 -.004 .016 
200 -.011 .011 .001 .011 -.014 .011 .000 .011 .000 .010 -.003 .012 
500 -.011 .007 .000 .007 -.014 .007 -.000 .007 .000 .006 -.003 .007 

Note: Loadings for PLS composites are estimated with PLSc and loadings for unit weighted 
composites are estimated with ML-CFA. 
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Table 5 Estimation error of reliabilities with non-normal data for Small Model 

V
ar

ia
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PLS composites Unit weighted composites 
CRU CRW Alpha CRU CRW Alpha 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
ξ1 0 100 .125 1.482 .210 1.031 .007 .086 39.676 89.480 39.839 89.993 -.002 .020 

200 .093 1.300 .165 .805 .003 .021 33.200 71.734 33.256 71.886 -.002 .013 
500 .061 .311 .188 1.066 .002 .018 25.384 54.363 25.399 54.403 -.002 .009 

.5 100 .011 .041 .039 .114 -.003 .022 2.429 23.863 2.439 23.986 -.002 .020 
200 .007 .060 .026 .197 -.003 .014 .433 8.180 .434 8.189 -.002 .013 
500 -.000 .010 .007 .016 -.004 .009 .002 .010 .002 .010 -.002 .009 

1 100 -.001 .020 .004 .022 -.004 .021 .001 .020 .001 .020 -.002 .020 
200 -.002 .013 .002 .014 -.004 .014 .000 .013 .000 .013 -.002 .013 
500 -.003 .009 .001 .009 -.004 .009 -.000 .009 -.000 .009 -.002 .009 

ξ2 0 100 -.116 .111 .054 .139 .119 .141 .000 .048 -.001 .049 -.008 .049 
200 -.116 .106 .048 .125 .109 .130 .000 .032 -.000 .033 -.007 .033 
500 -.122 .106 .042 .115 .116 .136 -.000 .021 -.000 .021 -.007 .022 

.5 100 -.037 .055 .021 .053 -.015 .051 .000 .047 -.001 .047 -.008 .049 
200 -.027 .035 .012 .035 -.020 .034 .000 .032 -.000 .032 -.007 .033 
500 -.023 .022 .005 .022 -.024 .022 -.000 .021 -.000 .021 -.006 .022 

1 100 -.028 .047 .004 .045 -.031 .049 -.001 .046 -.001 .046 -.009 .048 
200 -.023 .032 .002 .031 -.028 .033 -.000 .031 -.000 .031 -.007 .033 
500 -.022 .021 .000 .021 -.027 .022 -.000 .021 -.000 .020 -.006 .022 

η3 0 100 -.061 .123 .090 .231 .029 .150 .000 .030 -.001 .030 -.016 .033 
200 -.058 .118 .096 .263 .030 .134 -.000 .022 -.000 .022 -.016 .025 
500 -.060 .119 .100 .286 .030 .126 .000 .013 .000 .013 -.015 .015 

.5 100 -.059 .104 .076 .274 .006 .104 .000 .030 -.001 .030 -.016 .034 
200 -.055 .082 .051 .129 -.012 .071 -.000 .022 -.000 .022 -.016 .025 
500 -.049 .054 .032 .059 -.030 .044 .000 .013 -.000 .013 -.015 .015 

1 100 -.052 .074 .044 .134 -.025 .065 .000 .030 -.000 .030 -.016 .034 
200 -.045 .045 .028 .077 -.036 .043 -.000 .022 -.000 .022 -.016 .025 
500 -.042 .030 .016 .041 -.044 .026 -.000 .013 -.000 .012 -.015 .015 

η4  0 100 .377 2.095 .809 4.139 .009 .114 114.486 204.100 115.591 206.757 -.020 .060 
200 .670 4.721 1.247 7.536 .020 .111 98.905 171.021 99.345 171.991 -.018 .043 
500 .901 10.264 1.357 9.972 .016 .107 68.564 124.292 68.688 124.588 -.017 .026 

.5 100 .151 1.136 .399 2.550 -.024 .078 32.788 125.404 33.118 127.022 -.020 .057 
200 .081 1.429 .194 1.658 -.031 .054 5.460 50.155 5.489 50.474 -.018 .042 
500 -.008 .072 .043 .201 -.037 .032 .011 .050 .011 .050 -.017 .026 

1 100 -.020 .065 .020 .106 -.044 .063 .271 8.414 .272 8.436 -.020 .058 
200 -.024 .044 .006 .055 -.042 .047 .000 .044 .000 .044 -.018 .043 
500 -.025 .027 .001 .033 -.041 .028 -.001 .027 -.001 .027 -.017 .026 

η5 0 100 -.044 .081 .056 .109 .021 .078 -.000 .016 -.000 .015 -.004 .016 
200 -.040 .087 .054 .102 .017 .086 -.000 .011 -.000 .010 -.004 .011 
500 -.042 .084 .055 .135 .017 .079 -.000 .007 -.000 .007 -.003 .007 

.5 100 -.017 .021 .015 .022 -.011 .018 -.000 .015 -.001 .015 -.004 .016 
200 -.014 .012 .009 .014 -.012 .012 -.000 .010 -.000 .010 -.004 .011 
500 -.012 .007 .003 .008 -.013 .007 -.000 .007 -.000 .007 -.003 .007 

1 100 -.012 .015 .001 .015 -.015 .016 -.000 .015 -.001 .015 -.004 .016 
200 -.012 .010 .000 .010 -.015 .011 -.000 .010 -.000 .010 -.004 .011 
500 -.011 .007 -.000 .006 -.014 .007 -.000 .007 -.000 .006 -.003 .007 

Note: Loadings for PLS composites are estimated with PLSc and loadings for unit weighted composites are 
estimated with ML-CFA. 
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Table 6 Estimation error of reliabilities with non-normal data for Large Model 

V
ar

ia
bl

e 

Sc
al

e 

N
 

PLS composites Unit weighted composites 
CRU CRW Alpha CRU CRW Alpha 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
ξ1 0 100 -.005 .032 .045 .079 .002 .012 -.000 .009 -.000 .009 -.001 .009 

200 -.005 .033 .044 .067 .002 .010 .000 .006 .000 .006 -.000 .006 
500 -.004 .027 .042 .050 .002 .008 .000 .004 .000 .004 -.000 .004 

.5 100 -.002 .009 .015 .019 -.001 .009 -.000 .009 -.000 .009 -.001 .009 
200 -.001 .006 .009 .011 -.001 .006 .000 .006 .000 .006 -.000 .006 
500 -.001 .004 .004 .005 -.002 .004 .000 .004 .000 .004 -.000 .004 

1 100 -.002 .009 .002 .009 -.002 .009 -.000 .009 -.000 .009 -.001 .009 
200 -.001 .006 .001 .006 -.002 .006 .000 .006 .000 .006 -.000 .006 
500 -.001 .004 .000 .004 -.002 .004 .000 .004 .000 .004 -.000 .004 

ξ2 0 100 -.112 .110 .052 .135 .111 .144 -.003 .048 -.004 .049 -.012 .049 
200 -.118 .106 .046 .130 .120 .142 .000 .032 -.000 .032 -.007 .033 
500 -.116 .100 .048 .121 .111 .129 -.000 .020 -.000 .020 -.007 .021 

.5 100 -.038 .055 .017 .052 -.020 .050 -.002 .048 -.003 .049 -.011 .050 
200 -.027 .036 .011 .033 -.021 .034 .000 .032 -.000 .032 -.007 .033 
500 -.023 .021 .004 .021 -.024 .021 -.001 .020 -.000 .020 -.007 .021 

1 100 -.030 .048 .001 .047 -.033 .050 -.003 .047 -.004 .047 -.011 .050 
200 -.024 .032 .001 .031 -.028 .034 -.000 .031 -.000 .031 -.007 .033 
500 -.022 .021 .000 .020 -.027 .021 -.001 .020 -.001 .020 -.007 .021 

η3 0 100 -.065 .113 .090 .217 .027 .131 .000 .030 -.001 .030 -.016 .034 
200 -.063 .156 .087 .521 .023 .112 .000 .021 -.000 .021 -.015 .024 
500 -.067 .112 .071 .173 .018 .107 -.000 .013 -.000 .013 -.015 .015 

.5 100 -.065 .101 .054 .127 -.001 .087 .001 .030 -.000 .030 -.016 .034 
200 -.050 .075 .056 .140 -.015 .062 .001 .021 .000 .021 -.015 .025 
500 -.045 .051 .035 .080 -.029 .048 -.000 .013 -.000 .013 -.015 .015 

1 100 -.055 .081 .037 .095 -.022 .071 .000 .030 .000 .030 -.016 .034 
200 -.046 .047 .026 .057 -.038 .037 .001 .021 .000 .020 -.015 .025 
500 -.041 .027 .014 .033 -.044 .026 -.000 .013 -.000 .013 -.015 .015 

η4  0 100 -.038 .093 .088 .183 .028 .098 -.000 .027 -.000 .027 -.007 .029 
200 -.044 .107 .084 .202 .025 .089 .000 .018 .000 .018 -.006 .019 
500 -.036 .091 .098 .202 .024 .088 .000 .012 .000 .012 -.006 .013 

.5 100 -.025 .052 .042 .078 -.009 .044 -.001 .027 -.001 .027 -.008 .029 
200 -.021 .036 .029 .040 -.013 .025 .000 .018 .000 .018 -.006 .019 
500 -.018 .015 .014 .022 -.019 .015 .000 .012 .000 .012 -.006 .013 

1 100 -.020 .029 .006 .029 -.024 .030 -.001 .027 -.001 .027 -.008 .029 
200 -.017 .019 .004 .020 -.022 .020 .000 .018 .000 .018 -.006 .019 
500 -.017 .013 .002 .013 -.022 .013 .000 .012 .000 .012 -.006 .013 

η5 0 100 -.040 .076 .052 .082 .014 .067 -.000 .016 -.001 .015 -.004 .016 
200 -.046 .087 .051 .095 .017 .071 .000 .011 -.000 .011 -.003 .012 
500 -.040 .083 .058 .131 .016 .070 -.000 .007 -.000 .007 -.003 .007 

.5 100 -.017 .020 .015 .022 -.011 .018 -.000 .016 -.001 .015 -.004 .016 
200 -.013 .012 .008 .014 -.012 .012 .000 .011 -.000 .011 -.003 .011 
500 -.012 .007 .003 .008 -.013 .007 -.000 .007 -.000 .007 -.003 .007 

1 100 -.012 .015 .000 .015 -.015 .016 -.000 .015 -.000 .015 -.004 .016 
200 -.011 .011 .001 .011 -.014 .011 .000 .011 -.000 .010 -.003 .012 
500 -.011 .007 .000 .006 -.014 .007 -.000 .007 .000 .006 -.003 .007 

Note: Loadings for PLS composites are estimated with PLSc and loadings for unit weighted 
composites are estimated with ML-CFA. 
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Table 7 Path estimates with non-normal data for Small Model 

Pa
ra

m
. 

Sc
al

e 

N
 

PLSc EIVML-CFA ML SEM 
Original Manipulated Original Manipulated Original 

Bias SD Bias SD Bias SD Bias SD Bias SD 
γ23 

 
0 

 

0 100 -.015 .769 -.016 .381 -.005 .133 -.007 .135 -.005 .127 
200 -.015 .359 -.008 .176 -.006 .097 -.007 .098 -.006 .093 
500 -.008 .231 -.001 .099 -.000 .061 .001 .059 -.001 .058 

.5 100 -.021 .308 -.010 .186 -.005 .132 -.002 .138 -.006 .126 
200 -.013 .149 -.006 .105 .001 .098 -.007 .096 -.000 .092 
500 -.005 .067 -.000 .060 -.001 .065 -.001 .061 -.000 .060 

1 100 -.020 .146 .001 .132 -.001 .134 .004 .134 -.000 .122 
200 -.002 .094 -.000 .088 .008 .094 -.001 .090 .003 .085 
500 -.001 .061 .001 .060 .002 .063 .000 .061 .002 .056 

γ14 

 
0 

0 100 -.017 .522 .008 .241 .002 .101 .002 .090 .003 .098 
200 .003 .221 .002 .089 -.003 .069 -.000 .062 -.004 .068 
500 -.006 .087 -.001 .098 -.003 .043 -.002 .038 -.002 .041 

.5 100 .005 .118 .002 .111 -.004 .124 -.009 .119 -.002 .129 
200 .009 .084 .011 .079 -.001 .094 .003 .090 -.000 .095 
500 .002 .056 .003 .054 -.002 .061 -.000 .059 -.002 .060 

1 100 -.025 .203 .012 .179 -.028 .222 -.024 .376 -.023 .215 
200 -.009 .137 .006 .120 -.008 .144 -.005 .132 -.007 .137 
500 -.004 .086 .001 .078 -.004 .089 -.003 .082 -.003 .084 

γ24 

 
.7 

0 100 .007 .639 .005 .276 .002 .119 .004 .109 -.000 .118 
200 .001 .350 .008 .143 .001 .086 .003 .071 -.000 .085 
500 -.012 .205 .011 .142 -.001 .054 .002 .047 -.001 .053 

.5 100 .026 .151 -.023 .143 -.018 .170 -.025 .161 -.024 .171 
200 .007 .106 -.023 .097 -.008 .115 -.014 .106 -.010 .115 
500 .002 .068 -.011 .061 -.002 .069 -.004 .061 -.003 .069 

1 100 .037 .203 -.021 .174 .029 .220 .022 .376 .023 .217 
200 .014 .137 -.012 .119 .009 .143 .002 .130 .006 .138 
500 .006 .086 -.002 .075 .004 .089 .004 .079 .003 .086 

γ15  

 
.22 

0 100 -.017 .370 -.006 .214 -.003 .104 -.003 .097 -.001 .097 
200 -.000 1.094 -.006 .145 -.006 .068 -.003 .066 -.005 .065 
500 -.003 .109 .002 .191 -.002 .045 -.002 .043 -.002 .043 

.5 100 .032 1.018 .011 1.009 -.001 .121 .001 .117 -.006 .119 
200 -.004 .163 -.028 .505 .001 .088 .003 .085 -.000 .087 
500 -.003 .052 -.005 .051 .002 .051 .003 .052 .001 .049 

1 100 .007 .193 -.005 .170 .017 .212 .033 .287 .009 .195 
200 .007 .126 -.003 .118 .011 .130 .010 .125 .008 .126 
500 .008 .077 -.001 .074 .010 .078 .005 .077 .007 .076 

γ25 

 
-.7 

0 100 -.044 1.003 .019 .468 -.003 .130 .003 .129 -.001 .128 
200 -.019 3.279 .019 .586 -.000 .090 -.001 .088 .000 .088 
500 -.005 .320 .015 .296 -.001 .057 .001 .057 -.001 .055 

.5 100 .024 1.058 .008 .313 -.001 .136 -.005 .131 .002 .131 
200 -.016 .162 .017 .149 -.001 .094 -.001 .091 .000 .091 
500 -.003 .055 .005 .055 .001 .057 -.001 .056 .001 .055 

1 100 -.023 .197 .006 .174 -.023 .211 -.037 .289 -.015 .194 
200 -.013 .122 .006 .116 -.012 .127 -.009 .123 -.008 .121 
500 -.010 .077 .002 .073 -.010 .079 -.004 .077 -.007 .076 

β35 

 
.35 

0 100 -.052 .915 -.009 .433 -.004 .119 .001 .120 -.002 .115 
200 .053 3.051 .021 .566 -.002 .086 .001 .083 -.001 .081 
500 -.014 .327 .007 .249 -.002 .052 -.001 .053 -.002 .049 

.5 100 .020 1.636 .038 .990 .002 .116 .005 .115 .001 .112 
200 .016 .177 -.019 .475 .003 .081 .003 .078 .002 .076 
500 .010 .056 -.001 .050 .001 .051 .001 .051 .002 .048 

1 100 .013 .106 .004 .107 .004 .107 .011 .106 .002 .092 
200 .007 .072 -.004 .072 .004 .076 -.000 .074 -.001 .067 
500 .002 .047 -.002 .043 .001 .049 -.000 .044 -.000 .041 
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Table 8 Path estimates with non-normal data for Large Model 

Pa
ra

m
. 

Sc
al

e 

N
 

PLSc 
 

EIVML-CFA EIVminres ML SEM 

Original Manipulated Original Manipulated Original Manipulated Original 
Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD 

γ23 

 
0 
 

0 100 .092 4.365 -.008 .429 -.009 .136 -.001 .133 -.009 .136 -.001 .133 -.007 .132 
200 -.023 .395 -.000 .263 -.005 .096 -.005 .095 -.005 .096 -.005 .095 -.004 .092 
500 -.010 .700 -.001 .185 -.002 .057 -.002 .058 -.002 .057 -.002 .058 -.002 .055 

.5 100 -.025 .206 -.002 .148 -.003 .134 -.003 .133 -.003 .134 -.003 .132 -.003 .128 
200 -.011 .122 -.002 .096 -.002 .100 -.005 .094 -.002 .100 -.005 .094 -.000 .094 
500 -.007 .064 .000 .058 -.003 .062 -.000 .060 -.003 .062 -.000 .060 -.002 .059 

1 100 -.015 .140 .001 .126 .002 .130 -.000 .129 .002 .130 -.000 .128 .002 .121 
200 -.005 .097 .002 .086 .002 .097 .002 .090 .002 .097 .002 .090 .002 .086 
500 -.002 .060 .003 .058 .002 .061 .003 .059 .002 .061 .003 .059 .000 .056 

γ14 

 
0 

0 100 -.051 1.393 .022 .494 .001 .118 .004 .118 .001 .118 .004 .118 .002 .115 
200 .004 .260 -.006 .142 -.000 .081 -.004 .081 -.000 .081 -.004 .081 -.001 .079 
500 .004 .119 .001 .093 -.001 .050 -.001 .049 -.001 .050 -.001 .049 -.001 .049 

.5 100 -.001 .176 .008 .134 -.005 .123 -.002 .124 -.005 .123 -.002 .124 -.003 .120 
200 .005 .080 .003 .081 -.002 .083 -.002 .085 -.002 .083 -.002 .085 -.001 .082 
500 .003 .050 .003 .051 -.001 .053 .000 .053 -.001 .053 .000 .053 -.001 .052 

1 100 -.014 .179 .004 .168 -.017 .189 -.020 .193 -.018 .195 -.019 .190 .257 8.509 
200 -.008 .119 .003 .110 -.008 .123 -.010 .119 -.008 .124 -.008 .117 -.009 .121 
500 -.005 .076 -.002 .071 -.005 .078 -.006 .075 -.005 .079 -.006 .074 -.005 .075 

γ24 

 
.7 

0 100 .049 1.492 .025 .560 .004 .140 .001 .130 .004 .140 .001 .130 .004 .138 
200 .002 .465 -.003 .206 -.001 .093 .001 .092 -.001 .093 .001 .092 .001 .090 
500 .017 .217 .001 .136 .002 .058 -.000 .058 .002 .058 -.000 .058 .002 .056 

.5 100 .046 .190 -.012 .143 .007 .137 .005 .133 .007 .138 .005 .133 .007 .132 
200 .017 .091 -.008 .093 -.000 .096 .002 .095 -.000 .096 .002 .095 -.001 .093 
500 .005 .057 -.009 .057 -.001 .059 -.004 .057 -.001 .059 -.004 .058 -.002 .057 

1 100 .029 .176 -.007 .161 .019 .187 .021 .185 .020 .194 .020 .182 -.255 8.516 
200 .013 .119 -.004 .108 .007 .124 .010 .117 .007 .126 .009 .115 .008 .121 
500 .008 .077 -.000 .069 .005 .079 .005 .073 .005 .080 .005 .072 .005 .076 

γ15  

 
.22 

0 100 -.003 .759 .019 .316 -.003 .108 -.004 .108 -.003 .108 -.004 .108 -.003 .106 
200 .008 .523 -.010 .133 -.003 .075 -.004 .074 -.003 .075 -.004 .074 -.003 .073 
500 -.005 .100 -.002 .080 -.002 .049 -.002 .048 -.002 .049 -.002 .048 -.002 .048 

.5 100 -.010 .369 .009 1.033 .005 .118 .002 .116 .005 .118 .002 .116 .004 .114 
200 .001 .090 -.004 .083 .003 .085 .004 .084 .003 .085 .004 .084 .002 .083 
500 -.001 .053 -.002 .052 .001 .052 .002 .051 .001 .052 .002 .051 .001 .050 

1 100 .016 .183 -.011 .175 .023 .193 .016 .197 .024 .199 .015 .194 -.263 8.710 
200 .008 .118 .000 .116 .011 .121 .015 .126 .011 .124 .014 .125 .006 .116 
500 .006 .078 -.000 .068 .007 .081 .005 .073 .007 .082 .005 .073 .005 .077 

γ25 

 
-.7 

0 100 .061 1.317 -.018 .543 .002 .131 -.001 .128 .001 .131 -.001 .128 .001 .127 
200 -.018 1.554 .009 .228 .003 .089 .001 .085 .003 .089 .001 .085 .002 .087 
500 .003 .222 -.002 .127 .003 .056 .001 .056 .003 .056 .001 .056 .002 .054 

.5 100 -.026 .535 -.089 3.280 -.001 .137 -.004 .127 -.001 .137 -.004 .127 -.000 .133 
200 -.015 .099 .008 .091 -.002 .096 -.001 .092 -.002 .096 -.001 .092 -.002 .093 
500 -.005 .057 .004 .056 .001 .057 -.000 .055 .001 .057 -.000 .055 .001 .055 

1 100 -.032 .188 .010 .173 -.028 .198 -.020 .200 -.029 .204 -.019 .198 .257 8.708 
200 -.013 .118 .001 .113 -.012 .122 -.014 .123 -.012 .125 -.014 .122 -.006 .116 
500 -.007 .080 .004 .070 -.007 .082 -.002 .074 -.007 .083 -.002 .073 -.005 .079 

β35 

 
.35 

0 100 -.041 1.067 .012 .470 -.002 .121 -.001 .119 -.002 .120 -.001 .118 -.002 .114 
200 -.031 1.514 -.001 .168 -.004 .086 -.001 .083 -.004 .086 -.001 .083 -.003 .082 
500 -.001 .199 -.002 .087 -.001 .053 .000 .053 -.001 .053 .000 .053 -.001 .049 

.5 100 .025 .654 .094 3.086 .002 .118 .004 .116 .002 .118 .004 .115 .001 .110 
200 .023 .096 -.002 .082 .003 .079 .002 .078 .003 .079 .002 .078 .001 .074 
500 .008 .050 -.002 .052 .001 .051 .001 .051 .001 .051 .001 .051 .000 .048 

1 100 .015 .105 -.003 .114 .007 .108 .002 .108 .007 .109 .002 .107 .002 .091 
200 .007 .073 -.007 .070 .003 .076 -.003 .073 .003 .077 -.003 .073 .002 .064 
500 .002 .046 -.000 .043 .001 .047 .001 .044 .001 .047 .001 .044 -.000 .041 
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Table 9 95% percentile confidence intervals with non-normal data for Small Model 

Pa
ra

m
. 

Sc
al

e 

N
 

PLSc EIVML-CFA 
Coverage Incl. 

zero 
Coverage Incl. 

zero Under Within Over Under Within Over 
γ23 

 
0 
 

0 100 .006 .980 .014 .980 .022 .952 .026 .952 
200 .010 .972 .018 .972 .028 .937 .035 .937 
500 .011 .975 .014 .975 .023 .950 .027 .950 

.5 100 .006 .964 .030 .964 .019 .961 .020 .961 
200 .015 .955 .030 .955 .031 .937 .032 .937 
500 .023 .932 .045 .932 .038 .927 .035 .927 

1 100 .007 .947 .046 .947 .023 .945 .032 .945 
200 .013 .954 .033 .954 .026 .954 .020 .954 
500 .023 .941 .036 .941 .047 .923 .030 .923 

γ14 

 
0 

0 100 .003 .995 .002 .995 .030 .940 .030 .940 
200 .009 .987 .004 .987 .025 .942 .033 .942 
500 .005 .985 .010 .985 .018 .950 .032 .950 

.5 100 .012 .976 .012 .976 .022 .953 .025 .953 
200 .024 .965 .011 .965 .026 .946 .028 .946 
500 .024 .966 .010 .966 .022 .954 .024 .954 

1 100 .013 .954 .033 .954 .016 .952 .032 .952 
200 .020 .944 .036 .944 .022 .946 .032 .946 
500 .028 .943 .029 .943 .028 .943 .029 .943 

γ24 

 
.7 

0 100 .010 .983 .007 .983 .032 .945 .023 .945 
200 .012 .979 .009 .979 .026 .946 .028 .946 
500 .009 .978 .013 .978 .023 .953 .024 .953 

.5 100 .043 .953 .004 .421 .014 .958 .028 .351 
200 .039 .952 .009 .113 .017 .961 .022 .104 
500 .033 .945 .022 .001 .027 .946 .027 .001 

1 100 .041 .952 .007 .031 .029 .960 .011 .074 
200 .043 .941 .016 .002 .036 .945 .019 .002 
500 .035 .943 .022 .000 .031 .944 .025 .000 

γ15  

 
.22 

0 100 .000 1.000 .000 1.000 .028 .946 .026 .946 
200 .001 .998 .001 .998 .017 .949 .034 .949 
500 .006 .984 .010 .984 .024 .945 .031 .945 

.5 100 .002 .989 .009 .950 .013 .954 .033 .851 
200 .010 .954 .036 .827 .031 .941 .028 .725 
500 .006 .967 .027 .492 .021 .964 .015 .446 

1 100 .018 .957 .025 .763 .030 .949 .021 .740 
200 .036 .949 .015 .492 .041 .944 .015 .505 
500 .037 .940 .023 .096 .035 .946 .019 .114 

γ25 

 
-.7 

0 100 .001 .999 .000 .999 .030 .947 .023 .947 
200 .006 .994 .000 .994 .029 .946 .025 .946 
500 .004 .989 .007 .989 .022 .948 .030 .948 

.5 100 .000 .976 .024 .605 .020 .944 .036 .280 
200 .006 .954 .040 .136 .030 .930 .040 .048 
500 .013 .947 .040 .000 .021 .948 .031 .000 

1 100 .012 .959 .029 .075 .018 .936 .046 .066 
200 .009 .957 .034 .001 .011 .952 .037 .000 
500 .015 .949 .036 .000 .016 .951 .033 .000 

β35 

xs 
.35 

0 100 .000 1.000 .000 1.000 .030 .940 .030 .940 
200 .002 .997 .001 .997 .027 .935 .038 .935 
500 .002 .992 .006 .992 .015 .953 .032 .953 

.5 100 .028 .972 .000 .844 .030 .952 .018 .674 
200 .061 .937 .002 .547 .037 .937 .026 .425 
500 .048 .949 .003 .122 .028 .944 .028 .075 

1 100 .020 .977 .003 .289 .020 .964 .016 .191 
200 .042 .950 .008 .019 .036 .944 .020 .010 
500 .034 .946 .020 .000 .026 .944 .030 .000 
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Table 10 95% percentile confidence intervals with non-normal data for Large Model 

Pa
ra

m
. 

Sc
al

e 

N
 

PLSc EIVML-CFA EIVminres 
Coverage Incl. 

zero 
Coverage Incl. 

zero 
Coverage Incl. 

zero Under Within Over Under Within Over Under Within Over 
γ23 

 
0 
 

0 100 .013 .962 .025 .962 .030 .933 .037 .933 .030 .933 .037 .933 
200 .012 .972 .016 .972 .029 .931 .040 .931 .029 .931 .040 .931 
500 .009 .979 .012 .979 .018 .958 .024 .958 .018 .958 .024 .958 

.5 100 .006 .973 .021 .973 .031 .946 .023 .946 .031 .946 .023 .946 
200 .013 .944 .043 .944 .034 .928 .038 .928 .034 .928 .038 .928 
500 .013 .946 .041 .946 .029 .941 .030 .941 .029 .941 .030 .941 

1 100 .011 .951 .038 .951 .034 .943 .023 .943 .034 .943 .023 .943 
200 .013 .941 .046 .941 .029 .946 .025 .946 .029 .946 .025 .946 
500 .017 .942 .041 .942 .023 .944 .033 .944 .023 .944 .033 .944 

γ14 

 
0 

0 100 .004 .991 .005 .991 .030 .937 .033 .937 .030 .937 .033 .937 
200 .004 .989 .007 .989 .026 .950 .024 .950 .026 .949 .025 .949 
500 .005 .990 .005 .990 .020 .949 .031 .949 .020 .949 .031 .949 

.5 100 .016 .977 .007 .977 .022 .941 .037 .941 .022 .940 .038 .940 
200 .024 .971 .005 .971 .023 .957 .020 .957 .023 .958 .019 .958 
500 .028 .966 .006 .966 .022 .955 .023 .955 .022 .955 .023 .955 

1 100 .017 .945 .038 .945 .015 .948 .037 .948 .017 .949 .034 .949 
200 .023 .939 .038 .939 .022 .940 .038 .940 .022 .946 .032 .946 
500 .018 .947 .035 .947 .017 .949 .034 .949 .018 .948 .034 .948 

γ24 

 
.7 

0 100 .012 .976 .012 .976 .040 .923 .037 .923 .040 .923 .037 .923 
200 .007 .986 .007 .986 .025 .946 .029 .946 .025 .946 .029 .946 
500 .008 .982 .010 .982 .029 .944 .027 .944 .029 .944 .027 .944 

.5 100 .082 .917 .001 .379 .043 .936 .021 .280 .045 .935 .020 .277 
200 .063 .934 .003 .070 .032 .941 .027 .057 .031 .942 .027 .057 
500 .033 .956 .011 .000 .023 .949 .028 .000 .023 .950 .027 .000 

1 100 .052 .943 .005 .013 .043 .941 .016 .046 .044 .941 .015 .043 
200 .045 .939 .016 .000 .037 .947 .016 .000 .034 .948 .018 .000 
500 .041 .942 .017 .000 .033 .944 .023 .000 .035 .938 .027 .000 

γ15  

 
.22 

0 100 .002 .998 .000 .998 .027 .951 .022 .951 .027 .950 .023 .950 
200 .005 .993 .002 .993 .021 .949 .030 .949 .021 .949 .030 .949 
500 .010 .979 .011 .979 .024 .939 .037 .939 .024 .939 .037 .939 

.5 100 .004 .994 .002 .961 .028 .961 .011 .822 .028 .961 .011 .818 
200 .025 .965 .010 .816 .039 .944 .017 .709 .039 .946 .015 .710 
500 .017 .960 .023 .475 .025 .951 .024 .407 .026 .951 .023 .401 

1 100 .027 .961 .012 .711 .046 .943 .011 .688 .043 .943 .014 .693 
200 .030 .949 .021 .472 .036 .949 .015 .482 .036 .946 .018 .488 
500 .026 .943 .031 .106 .031 .939 .030 .119 .036 .935 .029 .126 

γ25 

 
-.7 

0 100 .005 .995 .000 .995 .032 .938 .030 .938 .032 .938 .030 .938 
200 .007 .991 .002 .991 .028 .951 .021 .951 .028 .951 .021 .951 
500 .009 .986 .005 .986 .030 .946 .024 .946 .030 .946 .024 .946 

.5 100 .000 .975 .025 .626 .023 .937 .040 .276 .024 .938 .038 .274 
200 .003 .959 .038 .133 .027 .933 .040 .042 .027 .931 .042 .042 
500 .011 .947 .042 .002 .023 .948 .029 .000 .022 .950 .028 .000 

1 100 .006 .957 .037 .062 .007 .938 .055 .053 .007 .941 .052 .049 
200 .014 .952 .034 .001 .015 .953 .032 .000 .014 .954 .032 .000 
500 .021 .939 .040 .000 .021 .941 .038 .000 .020 .940 .040 .000 

β35 

 
.35 

0 100 .000 .998 .002 .998 .030 .937 .033 .937 .030 .936 .034 .936 
200 .002 .997 .001 .997 .025 .931 .044 .931 .025 .932 .043 .932 
500 .002 .992 .006 .992 .030 .945 .025 .945 .030 .945 .025 .945 

.5 100 .031 .969 .000 .834 .033 .945 .022 .678 .033 .944 .023 .671 
200 .045 .955 .000 .536 .017 .950 .033 .409 .017 .949 .034 .409 
500 .047 .950 .003 .108 .032 .946 .022 .067 .032 .946 .022 .067 

1 100 .030 .968 .002 .258 .027 .953 .020 .172 .027 .953 .020 .168 
200 .034 .961 .005 .009 .035 .946 .019 .004 .036 .947 .017 .005 
500 .036 .943 .021 .000 .033 .941 .026 .000 .031 .942 .027 .000 
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Appendix B – Deriving the Refined Factor Loading Corrections 

In this appendix we explain how applying the refined per-indicator correction leads to 

well-established factor analysis techniques. The PLSc correction for factor loadings was derived 

from the asymptotic case, leading to a consistent estimator. In PLSc, the loadings are estimated 

(rescaled) as follows (Dijkstra, 2010):  

 !" = $" ∙ &", [B1] 

where &" is the weight vector for the ith block of indicators, !"	is a parallel vector of factor 

loading estimates, and $" is the scaling factor.  Because the indicator covariances are implied by 

the products of factor loadings,$" is chosen to minimize the Euclidean distance (i.e., sum of 

squared discrepancies) between (Dijkstra & Henseler, 2015b, p. 12):  

 ("" − *+,-(("") 	and	 ($" ∙ &")($" ∙ &")3 − *+,-(($" ∙ &")($" ∙ &")3) ,  [B2] 

where S"" is the within-block sample covariance matrix of the observed indicators, the superscript 

t is the transposition operator, and diag is an operator that zeroes the off-diagonal elements of a 

matrix. The current estimator of choice for	$" is (Dijkstra, 2014. Equation 11): 

 
	$i =

w"
3 S"" − *+,-(S"") w"

w"
3 w"w"

3 − *+,-(w"w"
3) w"

	.												 
[B3] 

A more refined correction can be developed by replacing the single scalars	$" with a 

vector 8, such that each loading is corrected separately. Unfortunately, there is no closed form 

solution for minimizing the Euclidean distance after this modification, and thus numerical 

optimization must be used. Another complication arises from the fact that two of the LVs in the 

model specified by Dijkstra and Henseler (2015b) have only two indicators, and correcting the 

loadings on these latent variables using information from only one indicator block is not possible 

because the minimization problem is not identified; it is well known that at least three indicators 
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are required for identification of a single factor model, that is, to obtain a unique solution for the 

parameter estimates (Bollen, 1989, pp. 238–246)1. Given these two considerations, we can 

estimate all of the correction factors simultaneously by using the full covariance matrix S for all 

p observed indicators of the q latent variables (q < p), and therefore the distance to be minimized 

becomes: 

 ( − *+,-(() 	and	 9* 8 ∘ & ;9*(8 ∘ &)3 − *+,-(9* 8 ∘ & ;9*(8 ∘ &)3) , [B4] 

where 8 is a p x 1 vector of estimated scaling factors, & is a parallel vector of indicator weights, 

the symbol ∘ denotes the Hadamard product of vectors (i.e., element-wise multiplication of 8 and 

&), ;	is a q x q correlation matrix with freely estimated elements, and bd is an operator that 

transforms a p-dimensional vector into a block-diagonal p x q matrix, where a given value on the 

ith column and jth row is the ith element of the input vector if the ith indicator is linked to the jth 

latent variable, and zero otherwise. In other words, bd converts the product vector 8 ∘ & into a 

factor loading matrix (or its transpose) with zero cross-loadings. Because minimizing the 

Euclidean distance is equivalent to minimizing the sum of squares, the minimization problem can 

be expressed conveniently as:  

 <= [9* 8 ∘ & ;9*(8 ∘ &)3 − *+,-(9* 8 ∘ & ;9*(8 ∘ &)3)] − ( − *+,- (
@
, [B5] 

Raising a symmetric matrix to the second power collects the sums of squares of rows on the 

diagonals and tr is the trace operator that sums the elements on the main diagonal of the 

resulting matrix, thus giving the distance to be minimized.  

Numerical minimization requires starting values. A reasonable assumption is to set all 

elements of 8 to 1. We can further simplify the equations to be minimized by considering that the 

                                                
1 Identification can be achieved for smaller models by constraining some of the free parameters. A typical example would be 
constraining the loadings of a two-indicator factor to be equal.  However, such models are rare and are not encouraged, as they 
are unlikely to be capable of providing useful substantive information about the phenomenon under study.   
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products of weights and correction factors equal factor loadings, as per Equation [B1] above. The 

9* 8 ∘ &  terms in the equation can therefore be replaced with the factor loading matrix Λ, 

which we initially populate with PLS weights. This alternative representation would be 

equivalent to using the PLS weights as starting values for numerical optimization, which was 

originally suggested by Dijkstra (1981) and later developed by Huang (2013; see also Bentler & 

Huang, 2014). Equation [B5] can therefore be equivalently and more compactly written in terms 

of loadings that would be estimated. Dijkstra (Dijkstra & Schermelleh-Engel, 2013) further 

suggests that the distance minimization problem can be refined by differentially weighting each 

element of the indicator covariance matrix.  Given these considerations, the distance to be 

minimized can be written as: 

 <= [ B;B3) − *+,-(B;B3 ] − ( − *+,- ( C
@

 ,  
[B6] 

where V is a weight matrix that can be chosen in multiple ways. Using the inverse of S leads to 

Generalized Least Squares (GLS) estimation. Another alternative would be to use estimation 

weights V calculated based on the inverse of the model-implied correlations, updating the 

estimation weights V after each estimation round. This iteratively reweighted least squares 

(IRLS) approach is equivalent to maximum likelihood estimation (ML) for correctly specified 

models (Yuan & Chan, 2005) and is used to obtain ML estimates in, for example, the EQS 

software package for covariance-based SEM (Bentler, 1995, pp. 134–135). 

Finally, consistent estimates of the factor correlations, which are required for consistent 

estimation of the paths between latent variables, can also be estimated more directly without 

requiring calculation of the composites. In the Handbook of Partial Least Squares, Dijkstra 

(Dijkstra, 2010, p. 38, eq. 1.33) suggests that although disattenuation could be used to produce 

consistent estimators of the factor correlations, a more direct way to estimate the correlations 
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between factors would be to minimizing the difference between the model-implied and observed 

between-block correlation matrix. This approach can be further extended from estimating all 

between-factor correlations separately to estimating the full factor correlation matrix, which is 

equivalent to using ; from our Equation [B6]. We tested also an estimator where we calculated 

regressions directly from this correlation matrix without calculating any composites variables. 

The results were in all respect nearly identical with maximum likelihood SEM estimates. The 

similarity is explained by the fact that the SEM model studied by Dijkstra and Henseler (2015b, 

fig. 4) only imposes two additional constraints over the CFA model: the correlation between ξ1 

and η3 equals the product of correlations between ξ1,  ξ2 , ξ2 and η3. Similarly, the correlation 

between η3 and η4 equals the product of correlations between η4, ξ2, ξ2, and η3
2. Therefore the 

constraints on the model implied correlation matrix by these two estimators are very similar. 
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Appendix C – Examples of Applying the EIV Estimators 

In this appendix, we provide several examples of how the errors-in-variables 

(EIV) estimators can be implemented with commonly used statistical software. The 

general workflow of the analysis is to first estimate either a series of single-–block 

factor analyses or one multi-block confirmatory factor analysis and either print out or 

programmatically store the standardized factor loadings. Next, the indicators are 

standardized and summed by block as composites, followed by standardization of 

those composites. A simple way to calculate the weights that can be used to calculate 

a standardized composite from standardized indicators is to regress each standardized 

composite on its standardized indicators. Equation [2] from the main document is then 

used to calculate estimated reliabilities for the composites. 

The procedures for performing EIV regression vary between statistical 

packages. A popular approach that can be used with nearly any commonly used 

statistical package is to estimate the EIV model with a SEM function or software 

package. In this procedure, each variable in the regression analysis is replaced with a 

latent variable, which has the corresponding composite as a single indicator. The 

loadings are fixed at the square roots of the reliability estimates and error variances 

are fixed at 1-reliability estimates. Because the resulting model is just-identified, all 

estimators converge to the same solution and the model fits perfectly. This is a well-

known model configuration and is documented in the user manuals of many 

commonly-used SEM software packages (e.g., SAS Institute Inc., 2010, pp. 1317–

1342; SPSS Inc, 2009; StataCorp, 2013, pp. 275–278). 

We will next provide self-contained example analysis files written for R, SAS, 

and Stata using data generated based on the indicator covariance matrix reported by 

Chin, Johnson, and Schwarz (2008, Appendix C). 
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1 Example in R.R

1 # This file contains example analyses using the EIV estimator in various
2 # configurations using the data from Appendix C of
3 #
4 # Chin , W. W., Johnson , N., & Schwarz , A. (2008). A Fast Form Approach to
5 # Measuring Technology Acceptance and Other Constructs. MIS Quarterly , 32(4),
6 # 687 7 0 3 .
7 #
8
9 # Load libraries

10 library(psych)
11 library(matrixpls)
12 library(lavaan)
13 library(MASS)
14 library(boot)
15
16 # Set up the data
17
18 covariances <- matrix(NA , 16, 16)
19
20 covariances[upper.tri(covariances , diag = TRUE)] <- c(
21 2.111 ,
22 1.694 , 1.903 ,
23 1.662 , 1.551 , 1.875 ,
24 1.675 , 1.570 , 1.581 , 1.985,
25 0.880 , 0.798 , 0.851 , 0.757, 2.137,
26 0.929 , 0.877 , 0.800 , 0.765, 1.619, 1.846,
27 0.938 , 0.895 , 0.853 , 0.815, 1.541, 1.437, 1.760,
28 0.920 , 0.864 , 0.850 , 0.794, 1.199, 1.248, 1.251, 1.648 ,
29 0.922 , 0.864 , 0.889 , 0.850, 1.535, 1.428, 1.443, 1.258 , 1.964 ,
30 0.912 , 0.873 , 0.806 , 0.838, 1.620, 1.543, 1.579, 1.346 , 1.640 , 2.032,
31 1.007 , 0.939 , 0.925 , 0.985, 0.644, 0.743, 0.679, 0.676 , 0.703 , 0.708, 1.436,
32 1.026 , 0.896 , 0.893 , 0.883, 0.669, 0.661, 0.666, 0.694 , 0.739 , 0.693, 1.086, 1.503,
33 0.895 , 0.864 , 0.836 , 0.842, 0.564, 0.587, 0.583, 0.641 , 0.554 , 0.538, 0.956, 0.897, 1.212,
34 0.934 , 0.945 , 0.804 , 0.902, 0.526, 0.615, 0.568, 0.602 , 0.554 , 0.574, 0.978, 0.844, 0.874, 1.311 ,
35 0.831 , 0.815 , 0.811 , 0.856, 0.497, 0.537, 0.576, 0.559 , 0.551 , 0.528, 0.857, 0.781, 0.778, 0.800 ,

1.106 ,
36 0.734 , 0.740 , 0.677 , 0.771, 0.505, 0.535, 0.555, 0.528 , 0.531 , 0.498, 0.748, 0.705, 0.731, 0.773 ,

0.714 , 1.015)
37
38 covariances[lower.tri(covariances)] <- t(covariances)[lower.tri(covariances)]
39 colnames(covariances) <- rownames(covariances) <- c("LU4", "LU3", "LU2", "LU1", "EOU1", "EOU2", "EOU3", "

EOU4", "EOU5", "EOU6", "Use6", "Use5", "Use4", "Use3", "Use2", "Use1")
40
41 # Create multivariate normal dataset with the exact covariance structure
42
43 rawData <- mvrnorm (283, mu = rep(0,16), Sigma = covariances , empirical = TRUE)
44
45 ################################################################################
46 #
47 # Examples using matrixpls package
48 #
49 ################################################################################
50
51 # Specify the model using Lavaan syntax. (http :// lavaan.ugent.be/tutorial/syntax1.html)
52
53 modelSpecification <- "
54
55 # Define the factors
56 PredictedUsage =~ LU1 + LU2 + LU3 + LU4
57 Usefulness =~ Use1 + Use2 + Use3 + Use4 + Use5 + Use6
58 EaseOfUse =~ EOU1 + EOU2 + EOU3 + EOU4 + EOU5 + EOU6
59
60 # Regression between factors
61 PredictedUsage ~ Usefulness + EaseOfUse
62 "
63
64 # EIV_minres with matrixpls
65
66 est1 <- matrixpls(covariances , modelSpecification ,
67 # Use unit weights
68 weightFunction = weight.fixed ,
69
70 # Use disattenuation
71 disattenuate = TRUE ,
72
73 # Use blockwise EFA with minres to estimate the reflective part of
74 # the model
75 parametersReflective = estimator.EFALoadings)



76
77 summary(est1)
78
79 # EIV_ML -CFA with matrixpls
80
81 est2 <- matrixpls(covariances , modelSpecification ,
82 # Use unit weights
83 weightFunction = weight.fixed ,
84
85 # Use disattenuation
86 disattenuate = TRUE ,
87
88 # Full model CFA with ML to estimate the reflective part of
89 # the model
90 parametersReflective = estimator.CFALoadings)
91
92 summary(est2)
93
94 # Bootstrap EIVminres
95
96 est1.boot <- matrixpls.boot(rawData , modelSpecification ,
97 # Use unit weights
98 weightFunction = weight.fixed ,
99

100 # Use disattenuation
101 disattenuate = TRUE ,
102
103 # Use blockwise EFA with minres to estimate the reflective part
104 # of the model
105 parametersReflective = estimator.EFALoadings ,
106
107 # 500 bootstrap replications
108 R = 500)
109
110 # Calculate percentile confidence intervals from bootstrap results
111
112 CIs <- lapply (1: length(est1), function(i){
113 CI <- boot.ci(est1.boot , type = "perc", index = i)$percent [,4:5]
114 names(CI) <- c("lower","upper")
115 CI
116 })
117
118 cbind(est1 ,do.call(rbind ,CIs))
119
120 # Calculate two -tailed t-tests based on bootstrap SEs
121
122 se <- apply(est1.boot$t ,2,sd)
123 t <- est1 / se
124 p <- (1-pt(abs(t), 283-1))*2
125 cbind(est1 , se, t, p)
126
127
128 ################################################################################
129 #
130 # Examples using psych and lavaan packages
131 #
132 ################################################################################
133
134 # Calculate three different reliability estiamtes
135
136 reliabilities.alpha <- list(LU = alpha(covariances [1:4 ,1:4]) $total$std.alpha ,
137 EOU = alpha(covariances [5:10 ,5:10]) $total$std.alpha ,
138 Use = alpha(covariances [11:16 ,11:16]) $total$std.alpha)
139
140
141 loadings.minres <- list(LU = fa(covariances [1:4 ,1:4]) $loadings ,
142 EOU = fa(covariances [5:10 ,5:10]) $loadings ,
143 Use = fa(covariances [11:16 ,11:16]) $loadings)
144
145 # Calculate unit weights
146
147 correlations <- cov2cor(covariances)
148
149 weights <- list(LU = 1/sqrt(sum(correlations [1:4 ,1:4])),
150 EOU = 1/sqrt(sum(correlations [5:10 ,5:10])),
151 Use = 1/sqrt(sum(correlations [11:16 ,11:16])))
152
153 # Use the equation from the article to calculate reliabilities
154
155 reliabilities.minres <- mapply(function(loadings , weight){
156 sum(weight * loadings)^2



157 }, loadings.minres , weights)
158
159
160 # Specify the CFA model using Lavaan syntax.
161
162 modelSpecification <- "
163
164 # Define the factors
165 PredictedUsage =~ LU1 + LU2 + LU3 + LU4
166 Usefulness =~ Use1 + Use2 + Use3 + Use4 + Use5 + Use6
167 EaseOfUse =~ EOU1 + EOU2 + EOU3 + EOU4 + EOU5 + EOU6"
168
169 cfa1 <- cfa(modelSpecification , sample.cov = correlations ,
170 sample.cov.rescale = FALSE , sample.nobs = 283, std.lv = TRUE)
171
172 loadings.CFA <- list(LU = inspect(cfa1 ,"est") $lambda [1:4,1],
173 EOU = inspect(cfa1 ,"est") $lambda [11:16 ,3] ,
174 Use = inspect(cfa1 ,"est") $lambda [5:10 ,2])
175
176 reliabilities.CFA <- mapply(function(loadings , weight){
177 sum(weight * loadings)^2
178 }, loadings.CFA , weights)
179
180
181 #
182 # Calculate unit weighted composites
183 #
184
185 composites <- scale(cbind(PredictedUsage = rowSums(scale(rawData)[ ,1:4]),
186 Usefulness = rowSums(scale(rawData)[ ,11:16]),
187 EaseOfUse = rowSums(scale(rawData)[ ,5:10])))
188
189
190 # Estimate errors in variables model using lavaan and the minres reliability
191 # estimates
192
193 modelSpecification <- paste ("
194 PredictedUsage_star =~ ",sqrt(reliabilities.minres ["LU"]) ,"* PredictedUsage
195 Usefulness_star =~ ",sqrt(reliabilities.minres ["Use"]) ,"* Usefulness
196 EaseOfUse_star =~ ",sqrt(reliabilities.minres ["EOU"]) ,"*EaseOfUse
197
198 PredictedUsage ~~ ",1-reliabilities.minres ["LU"],"* PredictedUsage
199 Usefulness ~~ ",1- reliabilities.minres ["Use"],"* Usefulness
200 EaseOfUse ~~ ",1-reliabilities.minres ["EOU"],"* EaseOfUse
201
202 PredictedUsage_star ~ Usefulness_star + EaseOfUse_star
203 ",sep ="")
204
205 eiv <- sem(modelSpecification ,composites)
206 summary(eiv)

2 Example in SAS.sas

1 /*
2
3 This file contains example analyses using the EIV estimator in various
4 configurations using the data from Appendix C of
5
6 Chin , W. W., Johnson , N., & Schwarz , A. (2008). A Fast Form Approach to
7 Measuring Technology Acceptance and Other Constructs. MIS Quarterly , 32(4),
8 687 7 0 3 .
9

10 */
11
12
13 /* Set up the data */
14
15 FILENAME foo URL ’http :// www.ats.ucla.edu/stat/sas/macros/corr2data.sas ’;
16 %INCLUDE foo;
17
18 DATA C;
19 INPUT LU4 LU3 LU2 LU1 EOU1 EOU2 EOU3 EOU4 EOU5 EOU6 Use6 Use5 Use4 Use3 Use2 Use1;
20 DATALINES;
21 2.111 . . . . . . . . . . . . . . .
22 1.694 1.903 . . . . . . . . . . . . . .
23 1.662 1.551 1.875 . . . . . . . . . . . . .
24 1.675 1.570 1.581 1.985 . . . . . . . . . . . .
25 0.880 0.798 0.851 0.757 2.137 . . . . . . . . . . .
26 0.929 0.877 0.800 0.765 1.619 1.846 . . . . . . . . . .



27 0.938 0.895 0.853 0.815 1.541 1.437 1.760 . . . . . . . . .
28 0.920 0.864 0.850 0.794 1.199 1.248 1.251 1.648 . . . . . . . .
29 0.922 0.864 0.889 0.850 1.535 1.428 1.443 1.258 1.964 . . . . . . .
30 0.912 0.873 0.806 0.838 1.620 1.543 1.579 1.346 1.640 2.032 . . . . . .
31 1.007 0.939 0.925 0.985 0.644 0.743 0.679 0.676 0.703 0.708 1.436 . . . . .
32 1.026 0.896 0.893 0.883 0.669 0.661 0.666 0.694 0.739 0.693 1.086 1.503 . . . .
33 0.895 0.864 0.836 0.842 0.564 0.587 0.583 0.641 0.554 0.538 0.956 0.897 1.212 . . .
34 0.934 0.945 0.804 0.902 0.526 0.615 0.568 0.602 0.554 0.574 0.978 0.844 0.874 1.311 . .
35 0.831 0.815 0.811 0.856 0.497 0.537 0.576 0.559 0.551 0.528 0.857 0.781 0.778 0.800 1.106 .
36 0.734 0.740 0.677 0.771 0.505 0.535 0.555 0.528 0.531 0.498 0.748 0.705 0.731 0.773 0.714 1.015
37 ;
38 RUN;
39
40 /* Create multivariate normal dataset with the exact covariance structure. */
41
42 %corr2data(rawData , C, 283, FULL=’F’, corr=’F’);
43
44 DATA rawData;
45 SET rawData;
46 RENAME COL1=LU4 COL2=LU3 COL3=LU2 COL4=LU1 COL5=EOU1 COL6=EOU2 COL7=EOU3 COL8=EOU4 COL9=EOU5

COL10=EOU6 COL11=Use6 COL12=Use5 COL13=Use4 COL14=Use3 COL15=Use2 COL16=Use1;
47 RUN;
48
49
50 /********************************************************************************
51
52 Example using FACTOR and CALIS
53
54 ********************************************************************************/
55
56 /* Create unit weighted composites and standardize */
57
58 PROC STANDARD DATA=rawData MEAN=0 STD=1 OUT=zrawData;
59 RUN;
60
61 DATA zrawData;
62 SET zrawData;
63 PredictedUsage = LU4 + LU3 + LU2 + LU1;
64 Usefulness = Use6 + Use5 + Use4 + Use3 + Use2 + Use1;
65 EaseOfUse = EOU1 + EOU2 + EOU3 + EOU4 + EOU5 + EOU6;
66 RUN;
67
68 PROC STANDARD DATA=zrawData MEAN=0 STD=1 OUT=zrawData;
69 RUN;
70
71 /* minres based reliability estimate for PredictedUsage */
72
73
74 PROC FACTOR data=zrawData NFACTORS =1 METHOD=ULS OUTSTAT=factorResults;
75 VAR LU4 LU3 LU2 LU1;
76 RUN;
77
78 PROC REG DATA=zrawData OUTEST=regressionResults PLOTS=none;
79 MODEL PredictedUsage = LU4 LU3 LU2 LU1;
80 RUN;
81
82 DATA _null_;
83 SET regressionResults;
84 CALL symput (" PredictedUsageWeight",LU4);
85 RUN;
86
87 DATA _null_;
88 SET factorResults;
89 IF _NAME_ NE "Factor1" THEN DELETE;
90 Reliability = ((LU4 + LU3 + LU2 + LU1) * &PredictedUsageWeight)**2;
91 CALL symput (" PredictedUsageReliability",Reliability);
92 RUN;
93
94 /* minres based reliability estimate for Usefulness */
95
96
97 PROC FACTOR data=zrawData NFACTORS =1 METHOD=ULS OUTSTAT=factorResults;
98 VAR Use6 Use5 Use4 Use3 Use2 Use1;
99 RUN;

100
101 PROC REG DATA=zrawData OUTEST=regressionResults PLOTS=none;
102 MODEL Usefulness = Use6 Use5 Use4 Use3 Use2 Use1;
103 RUN;
104
105 DATA _null_;
106 SET regressionResults;



107 CALL symput (" UsefulnessWeight",Use6);
108 RUN;
109
110 DATA _null_;
111 SET factorResults;
112 IF _NAME_ NE "Factor1" THEN DELETE;
113 Reliability = ((Use6 + Use5 + Use4 + Use3 + Use2 + Use1) * &UsefulnessWeight)**2;
114 CALL symput (" UsefulnessReliability",Reliability);
115 RUN;
116
117
118 /* minres based reliability estimate for EaseOfUse */
119
120 PROC FACTOR data=zrawData NFACTORS =1 METHOD=ULS OUTSTAT=factorResults;
121 VAR EOU1 EOU2 EOU3 EOU4 EOU5 EOU6;
122 RUN;
123
124 PROC REG DATA=zrawData OUTEST=regressionResults PLOTS=none;
125 MODEL EaseOfUse = EOU1 EOU2 EOU3 EOU4 EOU5 EOU6;
126 RUN;
127
128 DATA _null_;
129 SET regressionResults;
130 CALL symput (" EaseOfUseWeight",EOU1);
131 RUN;
132
133 DATA _null_;
134 SET factorResults;
135 IF _NAME_ NE "Factor1" THEN DELETE;
136 Reliability = ((EOU1 + EOU2 + EOU3 + EOU4 + EOU5 + EOU6) * &EaseOfUseWeight)**2;
137 CALL symput (" EaseOfUseReliability",Reliability);
138 RUN;
139
140 /* ML -CFA based reliability estimates for all variables */
141
142 PROC CALIS DATA=zrawData OUTMODEL=cfaResults;
143 FACTOR
144 FPredictedUsage ---> LU4 -LU1 ,
145 FUsefulness ---> Use6 -Use1 ,
146 FEaseOfUse ---> EOU1 -EOU6;
147 PVAR
148 FPredictedUsage FUsefulness FEaseOfUse = 3 * 1;
149 RUN;
150
151 DATA cfaLoadings;
152 SET cfaResults;
153 IF _TYPE_ NE "LOADING" THEN DELETE;
154 RUN;
155
156 PROC MEANS DATA=cfaLoadings NWAY;
157 CLASS _VAR2_;
158 VAR _ESTIM_;
159 OUTPUT OUT=loadingSums SUM=sum;
160 RUN;
161
162 DATA _null_;
163 SET loadingSums;
164 IF _VAR2_ NE "FPredictedUsage" THEN DELETE;
165 Reliability = (sum * &PredictedUsageWeight)**2;
166 CALL symput (" PredictedUsageReliabilityCFA",Reliability);
167 RUN;
168
169 DATA _null_;
170 SET loadingSums;
171 IF _VAR2_ NE "FEaseOfUse" THEN DELETE;
172 Reliability = (sum * &EaseOfUseWeight)**2;
173 CALL symput (" EaseOfUseReliabilityCFA",Reliability);
174 RUN;
175
176 DATA _null_;
177 SET loadingSums;
178 IF _VAR2_ NE "FUsefulness" THEN DELETE;
179 Reliability = (sum * &UsefulnessWeight)**2;
180 CALL symput (" UsefulnessReliabilityCFA",Reliability);
181 RUN;
182
183
184 /* Errors in variables regression */
185
186 PROC CALIS DATA=zrawData;
187 LINEQS



188 FPredictedUsage = b1 * FUsefulness+ b2 * FEaseOfUse + DFPredictedUsage ,
189 PredictedUsage = %SYSEVALF (& PredictedUsageReliability **2) * FPredictedUsage +

EPredictedUsage ,
190 Usefulness = %SYSEVALF (& UsefulnessReliability **2) * FUsefulness + EUsefulness ,
191 EaseOfUse = %SYSEVALF (& EaseOfUseReliability **2) * FEaseOfUse + EEaseOfUse;
192 VARIANCE
193 EPredictedUsage = %SYSEVALF (1-& PredictedUsageReliability),
194 EUsefulness = %SYSEVALF (1-& UsefulnessReliability),
195 EEaseOfUse = %SYSEVALF (1-& EaseOfUseReliability);
196 RUN;
197
198 /* List the user macros to see the reliability estimates */
199 %PUT _USER_;

3 Example in Stata.do

1 // This file contains example analyses using the EIV estimator in various
2 // configurations using the data from Appendix C of
3 //
4 // Chin , W. W., Johnson , N., & Schwarz , A. (2008). A Fast Form Approach to
5 // Measuring Technology Acceptance and Other Constructs. MIS Quarterly , 32(4) ,
6 // 687 7 0 3 .
7 //
8
9

10 // Estout is used to extract unit weights from regression. Install if not already installed.
11 capture which estout
12 if _rc ==111 ssc install estout
13
14 // Set up the data
15
16 clear
17
18 matrix input C = (2.111 , ///
19 1.694 , 1.903 , ///
20 1.662 , 1.551 , 1.875 , ///
21 1.675 , 1.570 , 1.581 , 1.985, ///
22 0.880 , 0.798 , 0.851 , 0.757, 2.137, ///
23 0.929 , 0.877 , 0.800 , 0.765, 1.619, 1.846, ///
24 0.938 , 0.895 , 0.853 , 0.815, 1.541, 1.437, 1.760, ///
25 0.920 , 0.864 , 0.850 , 0.794, 1.199, 1.248, 1.251, 1.648 , ///
26 0.922 , 0.864 , 0.889 , 0.850, 1.535, 1.428, 1.443, 1.258 , 1.964 , ///
27 0.912 , 0.873 , 0.806 , 0.838, 1.620, 1.543, 1.579, 1.346 , 1.640 , 2.032, ///
28 1.007 , 0.939 , 0.925 , 0.985, 0.644, 0.743, 0.679, 0.676 , 0.703 , 0.708, 1.436, ///
29 1.026 , 0.896 , 0.893 , 0.883, 0.669, 0.661, 0.666, 0.694 , 0.739 , 0.693, 1.086, 1.503, ///
30 0.895 , 0.864 , 0.836 , 0.842, 0.564, 0.587, 0.583, 0.641 , 0.554 , 0.538, 0.956, 0.897, 1.212, ///
31 0.934 , 0.945 , 0.804 , 0.902, 0.526, 0.615, 0.568, 0.602 , 0.554 , 0.574, 0.978, 0.844, 0.874, 1.311 , ///
32 0.831 , 0.815 , 0.811 , 0.856, 0.497, 0.537, 0.576, 0.559 , 0.551 , 0.528, 0.857, 0.781, 0.778, 0.800 , 1.106 ,

///
33 0.734 , 0.740 , 0.677 , 0.771, 0.505, 0.535, 0.555, 0.528 , 0.531 , 0.498, 0.748, 0.705, 0.731, 0.773 , 0.714 ,

1.015)
34
35 // Create multivariate normal dataset with the exact covariance structure
36
37 corr2data LU4 LU3 LU2 LU1 EOU1 EOU2 EOU3 EOU4 EOU5 EOU6 Use6 Use5 Use4 Use3 Use2 Use1 , n(283) cov(C)

cstorage(lower)
38
39 ////////////////////////////////////////////////////////////////////////////////
40 //
41 // Examples using sem , factor , alpha and eivreg
42 //
43 ////////////////////////////////////////////////////////////////////////////////
44
45
46 // Calculate three different reliability estimates
47
48
49 // Alphas
50
51 alpha LU4 -LU1 , std gen(PredictedUsage)
52 scalar alpha_PredictedUsage = r(alpha)
53
54 alpha Use6 -Use1 , std gen(Usefulness)
55 scalar alpha_Usefulness = r(alpha)
56
57 alpha EOU1 -EOU6 , std gen(EaseOfUse)
58 scalar alpha_EaseOfUse = r(alpha)
59
60 // Create standardized the composites



61
62 egen zPredictedUsage = std(PredictedUsage)
63 egen zUsefulness = std(Usefulness)
64 egen zEaseOfUse = std(EaseOfUse)
65
66 // Exploratory factor analysis based reliability estimates
67
68 // Stata ’s factor command does not do minres factor analysis , but we can use maximum likelihood instead
69 // (minres is possible with the sem command because minres is equivalent to ULS)
70
71 factor LU4 -LU1 , factors (1) ml
72 matrix define loadings = e(L)
73
74 qui regress PredictedUsage LU4 -LU1
75 estadd beta
76 matrix define weights_PredictedUsage = e(beta)
77 matrix define r = weights_PredictedUsage [1 ,1..4] * loadings
78 scalar CRefa_PredictedUsage = r[1 ,1]^2
79
80
81 factor Use6 -Use1 , factors (1) ml
82 matrix define loadings = e(L)
83
84 qui regress Usefulness Use6 -Use1
85 estadd beta
86 matrix define weights_Usefulness = e(beta)
87 matrix define r = weights_Usefulness [1 ,1..6] * loadings
88 scalar CRefa_Usefulness = r[1 ,1]^2
89
90
91 factor EOU1 -EOU6 , factors (1) ml
92 matrix define loadings = e(L)
93
94 qui regress EaseOfUse EOU1 -EOU6
95 estadd beta
96 matrix define weights_EaseOfUse = e(beta)
97 matrix define r = weights_EaseOfUse [1 ,1..6] * loadings
98 scalar CRefa_EaseOfUse = r[1 ,1]^2
99

100 // Errors in variables regression using reliabilities based on EFA
101 // Note that eivreg does not adjust for error in the dependent variable.
102 // To get results that are fully standardized with respect to the error
103 // free variables , the dependent variable needs to be adjusted before
104 // estimation so that the reliable part has unit variances
105
106 gen sPredictedUsage = zPredictedUsage / sqrt(CRefa_PredictedUsage)
107
108 eivreg sPredictedUsage zUsefulness zEaseOfUse , reliab(zUsefulness ‘=CRefa_Usefulness ’ zEaseOfUse ‘=

CRefa_EaseOfUse ’)
109
110
111 //
112 //The following example requires Stata 12 or later
113 //
114
115
116 // Confirmatory factor analysis based reliability estimates
117
118 sem (PredictedUsage -> LU4 -LU1) (Usefulness -> Use6 -Use1) (EaseOfUse -> EOU1 -EOU6), nocapslatent latent(

PredictedUsage Usefulness EaseOfUse)
119
120 // Get the reliabilities from the factor loading matrix
121 estat framework , standardized
122 matrix define loadings = r(Gamma)
123
124 // Calculate reliabilities
125
126 matrix define r = weights_PredictedUsage [1 ,1..4] * loadings [1..4 ,1]
127 scalar CRcfa_PredictedUsage = r[1 ,1]^2
128
129 matrix define r = weights_Usefulness [1 ,1..6] * loadings [5..10 ,2]
130 scalar CRcfa_Usefulness = r[1 ,1]^2
131
132 matrix define r = weights_EaseOfUse [1 ,1..6] * loadings [11..16 ,3]
133 scalar CRcfa_EaseOfUse = r[1 ,1]^2
134
135 // Errors in variables model in the SEM framework
136
137 sem (PredictedUsage_star <- Usefulness_star EaseOfUse_star) ///
138 (PredictedUsage_star -> zPredictedUsage) ///
139 (Usefulness_star -> zUsefulness) ///



140 (EaseOfUse_star -> zEaseOfUse), ///
141 reliability(zPredictedUsage ‘=CRcfa_PredictedUsage ’ ///
142 zUsefulness ‘=CRcfa_Usefulness ’ zEaseOfUse ‘=CRcfa_EaseOfUse ’) ///
143 standardized
144
145 // List all reliability estimates
146 scalar list



Appendix D - Full R code for the

simulations

This appendix contais the full R code for the simulations used in the paper. The

simulation consists of two files. Parameters.R defines the simulation paremeter-

ization and simulations.R implements the simulation.

The files to implement bootstrapping were very similar to these files and are

available from the first author by request.

The source code for the two small examples presented in the theory section

of the paper is availble in the file example.R after the main analysis files.

1 parameters.R

#
# Model 1 and Model 2 in Lavaan syntax
#

MODELS <- c("

f1 =~ .87*i11 + .94*i12

f2 =~ .40*i21 + .41*i22 + .47*i23 + .60*i24 + .63*i25 + .65*i26

f3 =~ .49*i31 + .60*i32 + .80*i33 + .90*i34

f4 =~ .63*i41 + .84*i42

f5 =~ .65*i51 + .67*i52 + .75*i53 + .75*i54 + .90*i55 + .90*i56

f3 ~ 0*f2

f3 ~~ 1*f3

f4 ~ 0*f1 + .7*f2

f4 ~~ .51*f4

f5 ~ .22*f1 + -.7*f2 + .35*f3

f5 ~~ 0.5547*f5

f1 ~~ .7*f2

f1 ~~ 1*f1

f2 ~~ 1*f2

i11~~(1-.87^2)*i11

i12~~(1-.94^2)*i12

i21~~(1-.40^2)*i21

i22~~(1-.41^2)*i22

i23~~(1-.47^2)*i23

i24~~(1-.60^2)*i24

i25~~(1-.63^2)*i25

i26~~(1-.65^2)*i26

i31~~(1-.49^2)*i31

i32~~(1-.60^2)*i32

i33~~(1-.80^2)*i33

i34~~(1-.90^2)*i34

i41~~(1-.63^2)*i41
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i42~~(1-.84^2)*i42

i51~~(1-.65^2)*i51

i52~~(1-.67^2)*i52

i53~~(1-.75^2)*i53

i54~~(1-.75^2)*i54

i55~~(1-.90^2)*i55

i56~~(1-.90^2)*i56",

"f1 =~ .87*i11a + .94*i12a +.87*i11b + .94*i12b

f2 =~ .40*i21 + .41*i22 + .47*i23 + .60*i24 + .63*i25 + .65*i26

f3 =~ .49*i31 + .60*i32 + .80*i33 + .90*i34

f4 =~ .63*i41a + .84*i42a + .63*i41b + .84*i42b

f5 =~ .65*i51 + .67*i52 + .75*i53 + .75*i54 + .90*i55 + .90*i56

f3 ~ 0*f2

f3 ~~ 1*f3

f4 ~ 0*f1 + .7*f2

f4 ~~ .51*f4

f5 ~ .22*f1 + -.7*f2 + .35*f3

f5 ~~ .1235*f5

f1 ~~ .7*f2

f1 ~~ 1*f1

f2 ~~ 1*f2

i11a~~(1-.87^2)*i11a

i12a~~(1-.94^2)*i12a

i11b~~(1-.87^2)*i11b

i12b~~(1-.94^2)*i12b

i21~~(1-.40^2)*i21

i22~~(1-.41^2)*i22

i23~~(1-.47^2)*i23

i24~~(1-.60^2)*i24

i25~~(1-.63^2)*i25

i26~~(1-.65^2)*i26

i31~~(1-.49^2)*i31

i32~~(1-.60^2)*i32

i33~~(1-.80^2)*i33

i34~~(1-.90^2)*i34

i41a~~(1-.63^2)*i41a

i42a~~(1-.84^2)*i42a

i41b~~(1-.63^2)*i41b

i42b~~(1-.84^2)*i42b

i51~~(1-.65^2)*i51

i52~~(1-.67^2)*i52

i53~~(1-.75^2)*i53

i54~~(1-.75^2)*i54

i55~~(1-.90^2)*i55

i56~~(1-.90^2)*i56")

designMatrix <- expand.grid(sample = c(100, 200, 500),

scalingFactor = c(1, 0.5, 0),

excessKurtosis = c(5,0),

estimator = c("PLSc","DRminres","DRml","SEMml",
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"CFAml"),

model = 1:2)

2 simulations.R

library(matrixpls)

library(psych)

library(simsem)

library(lavaan)

library(parallel)

library(MASS)

library(Matrix)

library(heplots)

MULTICORE <- FALSE

DEBUG <- FALSE

SAVERESULTS <- TRUE

REPLICATIONS <- 1000

# 1 = normal, 2 = orthogonalized errors
ESTIMATESETS <- 1:2

source("parameters.R")

# Read the condition number from the command line if given. Otherwise run all
# conditions.

args <- commandArgs(trailingOnly = TRUE)

if(length(args) == 0){
designNumbers <- 1:nrow(designMatrix)

} else {
designNumbers <- (as.numeric(args[1]))

}

############################################################################
#
# Loop over designs
#
############################################################################

for(designNumber in designNumbers){

set.seed(12345)

design <- designMatrix[designNumber, ]

print(paste("Starting design number", designNumber))

print(design)

# Prepare data generation template
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MODEL <- MODELS[design$model]

parTable <- lavaanify(MODEL)

loadingsParTable <- parTable[parTable$op == "=~",]

observedVariableNames <- unique(loadingsParTable$rhs)

# Derive a SimSem model from lavaan parameter table by fitting a model to
# a diagonal matrix

cvMat <- diag(length(observedVariableNames))

colnames(cvMat) <- rownames(cvMat) <- observedVariableNames

fit <- lavaan::lavaan(MODEL, sample.cov = cvMat, sample.nobs = 100)

dataTemplate <- simsem::model.lavaan(fit)

# Rescale the data template

BE <- rawDraw(dataTemplate@dgen[[1]]$BE)$param * design$scalingFactor

PS <- rawDraw(dataTemplate@dgen[[1]]$PS)$param

i <- diag(nrow(PS)) == 0

PS[i] <- PS[i] * design$scalingFactor

diag(PS) <- 1 - diag(BE %*% PS %*% t(BE))

dataTemplate@dgen[[1]]$PS@free <- apply(PS, 2, as.character)

dataTemplate@dgen[[1]]$BE@free <- apply(BE, 2, as.character)

Lambda <- rawDraw(dataTemplate@dgen[[1]]$LY)$param

dist <- bindDist("norm", kurtosis = design$excessKurtosis)

# Generate the datasets

print("Generating datasets")

dataSets <- sim(REPLICATIONS, dataTemplate, design$sample, dataOnly = TRUE,

factDist = dist, errorDist = dist,

sequential = TRUE, saveLatentVar = TRUE,

multicore = MULTICORE)

############################################################################
#
# Estimation
#
############################################################################

estimator <- design$estimator

# SEM and regressions with factor correlation matrix after CFA

if(substr(estimator,1,3)=="CFA" || substr(estimator,1,3)=="SEM"){

if(substr(estimator,1,3)=="SEM"){
estimatedModel <- (gsub("f[0-9] ~~ f[0-9]","",gsub("[.0-9]+\\*","",gsub("\ni.*","",MODEL))))
lavaanfun <- "sem"

}
else{

estimatedModel <- gsub("f[0-9] ~ .*$","",gsub("[.0-9]+\\*","",gsub("\ni.*","",MODEL)))
lavaanfun <- "cfa"
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}

inner <- matrixpls:::parseModelToNativeFormat(MODEL)$inner

exog <- which(rowSums(inner) == 0)

#
# Do the actual simulations
#

sim.res <- sim(model = estimatedModel, rawData = dataSets, lavaanfun = lavaanfun,

outfundata = function(fit,data){

var.lv <- diag(inspect(fit,"cov.lv"))

var.ov <- unlist(lapply(data,function(x){
sum((x-mean(x))^2)/length(x)

}))

sd.lv <- sqrt(var.lv)

sd.ov <- sqrt(var.ov)

C <- cov2cor(inspect(fit,"cov.lv"))

S <- matrix(0,0,0,dimnames = list(c(),c()))

#
# Regressions from LV correlation matrix. We do this for ML
# estimation as well because it simplifies the code when
# we do not need to treat regression from CFA and ML
# as separate special cases
#

regressions <- matrixpls:::estimatesMatrixToVector(

estimator.regression(S, inner, W = NULL, C = C),inner, "~")

# Standardize loadings

lambda <- inspect(fit,"coef")$lambda * ((1/sd.ov) %o% sd.lv)

loadings <- lambda[lambda != 0]

names(loadings) <-

paste(colnames(lambda)[col(lambda)[lambda != 0]],

"=~",

rownames(lambda)[row(lambda)[lambda != 0]],sep="")

exogC <- C[exog,exog]

correlations <- exogC[lower.tri(exogC)]

names(correlations) <-

paste(colnames(exogC)[col(exogC)[lower.tri(exogC)]],

"~~",

rownames(exogC)[row(exogC)[lower.tri(exogC)]],sep="")

# Check the admissibility of the correlation matrix
inadmissible <- ifelse(any(eigen(C)$values < 0),1,0)

# Return the standardized estimates from this replication
c(inadmissible,regressions,loadings,correlations)

},
multicore = MULTICORE)
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# Add the estimated regressions

sim.res@coef <- as.data.frame(do.call(rbind,lapply(sim.res@extraOut, function(x){
if(is.null(x)) return(NA)

x[-1]

})))

# Save paths. (Loadings are saved later)

estimates <- sim.res@coef[grep("~f",names(sim.res@coef))]

results <- cbind(inaadmissible = unlist(lapply(sim.res@extraOut, function(x){
if(is.null(x)) return(1)

x[1]

})), estimates)

print(paste("Saving file: Paths",designNumber,estimator,1,".Rdata", sep="_"))

print(results)

print(apply(results,2,mean))

if(SAVERESULTS) save(results, file = paste("Paths",designNumber,estimator,1,".Rdata", sep="_"))

}

# Composite based estimators, PLSc and EIVxx

else{
print(paste("Estimating. Estimator:", estimator))

# Loadings - 1: PLSc loadings, 2: CFA loadings, 3: minres loadings
estimatorIndex <- (estimator == "PLSc") + 1 * grepl("EIV",estimator) + 1

if(estimator == "EIVminres") estimatorIndex <- 3

# Weights - 1: PLS weights, 2: unit weights

modeIndex <- (estimator == "PLSc") + 1

sim.res <- matrixpls.sim(model = MODEL, rawData = dataSets,

# PLSc estimation with 2 stage least squares where applicable
disattenuate = (estimator == "PLSc" ||

grepl("EIV",estimator)),

# Use the factor method
innerEstimator = inner.factor,

# How to calculate loadings
parametersReflective = switch(estimatorIndex,

estimator.PLScLoadings,

estimator.CFALoadings,

estimator.EFALoadings),

# PLS Mode A or unit weights
weightFunction = switch(modeIndex,

weight.fixed,

weight.pls),
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# We are not interested in bootstrap SEs or fit indices
boot.R = FALSE, fitIndices = NULL,

# Use parallel processing
multicore = MULTICORE,

stopOnError = DEBUG

)

print(paste(sum(sim.res@converged != 0), "non-convergent results"))

#
# True reliabities and a few reliability indices for all composites
#

results <- do.call(ifelse(MULTICORE,"mclapply","lapply"),list(sim.res@extraOut, function(pls.res){

if(is.null(pls.res)) return(NA)

R <- attr(pls.res,"R")

names(R) <- paste("R",names(R))

W <- attr(pls.res,"W")

l <- loadings(pls.res)

Q <- colSums(l * t(W))^2

names(Q) <- paste("Q",names(Q))

CR <- CR(pls.res)

names(CR) <- paste("CR",names(CR))

S <- attr(pls.res,"S")

a <- apply(W,1,function(x){alpha(S[x!=0,x!=0])$total[1]})
temp <- paste("Alpha",names(a))

a <- unlist(a)

names(a) <- temp

c(trueR = R,Q,CR,a)

}))

results <- do.call(rbind, results)

results <- cbind(inadmissible = apply(results[,c(6:10)],1,function(x){any(abs(x)>1)}), results)

print(paste("Saving file: QR",designNumber,estimator,".Rdata", sep="_"))

print(results)

if(SAVERESULTS) save(results, file = paste("QR",designNumber,estimator,".Rdata", sep="_"))

#
# Two sets of manipulated estimates (1: normal, 2:orthogonalized errors)
#

for(estimateSet in ESTIMATESETS){
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results <- do.call(ifelse(MULTICORE,"mcmapply","mapply"), list(function(pls.res, data){

if(is.null(pls.res)) return(NA)

# Possibly disattenuated composite correlations
C <- attr(pls.res,"C")

# Choose exogenous correlations from C
exog = apply(attr(pls.res, "model")$inner == 0,1,all)

# Return two sets of regression estimates and R2s
# 1) The original estimates
# 2) Estimates with orthogonalized errors

# The first estimate set is with the original C.

if(estimateSet != 1){

d <- attr(data,"latentVar")

Eta <- as.matrix(attr(data,"latentVar")[,grepl("^f[0-9]+",names(d))])

Epsilon <- attr(data,"latentVar")[,grepl("^res_i[0-9]+",names(d))]

# Orthogonalize the errors
EpsilonOrth <- gsorth(Epsilon)

colnames(EpsilonOrth) <- rownames(EpsilonOrth) <- NULL

data <- Eta %*% t(Lambda) + EpsilonOrth

S <- cor(data)

# Weight matrix
W <- attr(pls.res,"W")

# Composite correlation matrix with orthogonalized error data
C <- cov2cor(W %*% S %*% t(W))

# Estimated composite reliabilities
Q <- attr(pls.res,"Q")

if(! is.null(Q)){
# Determination of consistent estimates for the correlation between the
# latent variables, see (15) and (16) of Dijkstra, April 7, 2011.

C <- C / sqrt(Q) %*% t(sqrt(Q))

diag(C) <- 1

}
}

# Check the admissibility of the correlation matrix
inadmissible <- ifelse(any(eigen(C)$values < 0),1,0)

if(estimateSet != 1){

model <- attr(pls.res,"model")
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a <- tryCatch(

matrixpls:::regressionsWithCovarianceMatrixAndModelPattern(

C,model$inner)[model$inner == 1],

error=function(cond) {
print(cond)

print(pls.res)

# Choose a return value in case of error
return(NA)

})

# Substitute the new estimates and new C
pls.res[1:sum(model$inner == 1)] <- a

beta <- model$inner

beta[beta == 1] <- a

attr(pls.res,"beta") <- beta

attr(pls.res,"C") <- C

}
estimates <- pls.res[grep("~f",names(pls.res))]

R2 <- R2(pls.res)

R2 <- R2[R2 != 0]

names(R2) <- paste("R2",names(R2))

# Exogenous correlations

exogC = C[exog,exog, drop=FALSE]

indices <- which(lower.tri(exogC))

n <- paste(colnames(exogC)[col(exogC)[indices]],"~~",

rownames(exogC)[row(exogC)[indices]],sep="")

exogC <- exogC[indices]

names(exogC) <- n

c(inadmissible,estimates,exogC,R2)

}, sim.res@extraOut, dataSets, SIMPLIFY = FALSE))

results <- do.call("rbind", results)

print(paste("Saving file: Paths",designNumber,estimator,estimateSet,

".Rdata", sep="_"))

# print(results)
print(apply(results,2,mean))

print(apply(results,2,sd))

if(SAVERESULTS) save(results, file =

paste("Paths",designNumber,estimator,estimateSet,

".Rdata", sep="_"))

} # End of looping manipulations

} # End of saving composite specific results

##############################################################################
#
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# Start processing results that are common to composite and latent variable
# based techniques
#
# This is just the loadings
#
##############################################################################

results <- sim.res@coef[,grep("=~",colnames(sim.res@coef))]

results <- cbind(inadmissible = apply(results,1,function(x){any(abs(x)>1)}),
results)

print(paste("Saving file: Loadings",designNumber,estimator,".Rdata", sep="_"))

print(results)

if(SAVERESULTS) save(results, file = paste("Loadings",designNumber,estimator,

".Rdata", sep="_"))

# Clean up
rm(results)

rm(sim.res)

} # End of looping conditions

3 examples.R

library(matrixpls)

library(parallel)

library(MASS)

library(simsem)

SAMPLE <- 100

MODEL <- "\nA =~ x1 + x2 + x3\nB =~ x4 + x5 + x6\nB ~ A\n"

Lambda <- (diag(2) * 0.7)[rep(1:2, each = 3), ]

Psi <- matrix(c(1, 0.3, 0.3, 1), 2, 2)

Sigma <- Lambda %*% Psi %*% t(Lambda)

diag(Sigma) <- 1

rownames(Sigma) <- colnames(Sigma) <- paste("x", 1:6, sep = "")

se <- sqrt((1 - Sigma[6, 1]^2)/(SAMPLE - 2))

# Adjust one correlation by +1 SD and other by -1 SD
SigmaAdj <- Sigma

SigmaAdj[4, 1] <- SigmaAdj[1, 4] <- SigmaAdj[4, 1] - se

SigmaAdj[5, 2] <- SigmaAdj[2, 5] <- SigmaAdj[5, 2] + se

converged = FALSE

iter <- 0

res <- NULL

while (!converged) {
plsc <- matrixpls(SigmaAdj, MODEL, iter = iter, parametersReflective = estimator.PLScLoadings,
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disattenuate = TRUE)

res <- rbind(res, c(plsc, attr(plsc, "c"), attr(plsc, "Q"), diag(attr(plsc,

"W") %*% Lambda)^2))

iter <- iter + 1

converged <- attr(plsc, "converged")

}

print(res)

dataSets <- mclapply(1:10000, function(x) {
mvrnorm(100, rep(0, 6), Sigma)

})

sim.res <- matrixpls.sim(model = MODEL, rawData = dataSets, multicore = TRUE,

parametersReflective = estimator.PLScLoadings, disattenuate = TRUE, boot.R = FALSE,

fitIndices = NULL)

# Estimate taking weights from a different sample

estimates <- mcmapply(function(matrixpls.res, data) {
if (is.null(matrixpls.res))

return(NA)

W <- attr(matrixpls.res, "W")

Q <- attr(matrixpls.res, "Q")

S <- cor(data)

C <- cov2cor(W %*% S %*% t(W))

C[1, 2]/(sqrt(Q[1]) * sqrt(Q[2]))

}, sim.res@extraOut, dataSets[c(10000, 1:9999)])

plot(density(sim.res@coef[, 1], na.rm = TRUE), xlim = c(-0.5, 1))

lines(density(unlist(estimates), na.rm = TRUE), lty = 2)
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1. Appendix E – Partial Replication of Goodhue et al 2012 

In this appendix we provide a partial replication of the study by Goodhue, Lewis, and 

Thompson (2012) to assess the performance of Cronbach’s alpha in the conditions that they 

used. Goodhue et al. implemented disattenuation by correcting the regression estimates with 

Cronbach’s alphas calculated using the population values of indicator reliabilities. Because the 

exogenous latent variables are uncorrelated in their model, the regression coefficients converge 

to bivariate correlations, and so applying the disattenuation formula directly to regression 

estimates produces a consistent estimator. However, as also noted by Dijkstra and Henseler 

(2015), Cronbach’s alpha is an inconsistent estimator for PLS Mode A composites. The 

population reliabilities for the PLS Mode A composites for the Goodhue et al. model are all .856, 

whereas Cronbach’s alpha from the population correlation matrix is .84, leading to bias of -.016. 

However, this provides an incomplete picture of how Cronbach’s alpha performs as a reliability 

estimate for PLS composites in the small sample scenarios studied by Goodhue and colleagues. 

To examine this issue further, we replicated their Study 1 using 1000 Monte Carlo replications 

for each of the sample sizes used in their Figure 8. The R code for our replication is available in 

the end of this appendix. Comparing the true reliabilities of the PLS composites and Cronbach’s 

alphas calculated for each sample produced a rather different set of results than what asymptotic 

comparison would suggest: Instead of being negatively biased, Cronbach’s alpha showed a small 

positive bias of .012, .007, and .004 averaged over all composites for the three sample sizes of 

90, 150, and 200 respectively. The direction of bias is positive because the PLS weights can vary 

widely in small samples and therefore it is possible that a single set of weights may not be close 

to the optimal weights, leading to decreased composite reliability (Rönkkö & Evermann, 2013). 
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library(matrixpls)

library(simsem)

library(psych)

MODEL <- "

Ksi1 =~ .7*x1 + .8*x2 + .9*x3

x1 ~~ .51*x1

x2 ~~ .36*x2

x3 ~~ .19*x3

Ksi1 ~~ 1*Ksi1

Ksi2 =~ .7*x4 + .8*x5 + .9*x6

x4 ~~ .51*x4

x5 ~~ .36*x5

x6 ~~ .19*x6

Ksi2 ~~ 1*Ksi2

Ksi3 =~ .7*x7 + .8*x8 + .9*x9

x7 ~~ .51*x7

x8 ~~ .36*x8

x9 ~~ .19*x9

Ksi3 ~~ 1*Ksi3

Ksi4 =~ .7*x10 + .8*x11 + .9*x12

x10 ~~ .51*x10

x11 ~~ .36*x11

x12 ~~ .19*x12

Ksi4 ~~ 1*Ksi4

Eta1 =~ .7*y1 + .8*y2 + .9*y3

y1 ~~ .51*y1

y2 ~~ .36*y2

y3 ~~ .19*y3

Eta1 ~ .48*Ksi1 + .314*Ksi2 + .114*Ksi3

Eta1 ~~ .658008*Eta1

"

for(N in c(90, 150, 200)){
simres <- matrixpls.sim(1000, MODEL, N, boot.R = FALSE, multicore = TRUE,

sequential = TRUE,

fitIndices = function(matrixpls.res){
R <- attr(matrixpls.res, "R")

S <- attr(matrixpls.res, "S")

for(i in 1:5){
a <- alpha(S[i*3-0:2,i*3-0:2])

R[i] <- R[i] - a$total[[1]]

}
R

})

f <- inspect(simres,"fit")

print(paste("N:",N,"mean bias:",print(mean(as.matrix(f)))))

}
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