

Aalto University

School of Science

Department of Computer Science and Engineering

TIMO PUNKKA

Flexible New Product Development: Using Knowledge Transfer from Agile

Software Development as a Catalyst for Adaptation

- Case Study and Systematic Literature Review

Licentiate Thesis submitted for official examination for the degree of Licentiate

in Technology.

Espoo, December 11, 2015

Supervisor: Casper Lassenius

Instructor: Casper Lassenius

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80718623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract of Licentiate
Thesis

Author

Timo Punkka

Title of Thesis

Flexible New Product Development: Using Knowledge Transfer from Agile Software Development as a
Catalyst for Adaptation – Case Study and Systematic Literature Review

Abstract

The life cycle of products is getting shorter and product development projects are more than ever
challenged by frequent change. In response to this evolution, Agile software development is gaining a
foothold in the software industry. Agile software development relies on iterations, collaboration between
organizational functions and re-planning based on feedback from past iterations. Product development
experts have suggested similar approaches to new product development in general. However, the
adaptation rate has been faster in the software domain. This work studied knowledge transfer from Agile
software development to product development involving other engineering disciplines. The research
consisted of two parts, a case study and systematic literature review.

The first part of the research was a case study in an industrial setting. The case project involved teams
developing electronics and mechanics. The study identified that the project benefited from knowledge
transfer from Agile software development. It resulted in accelerated learning, improved communication and
higher commitment. The study also identified several challenges remaining in knowledge transfer, such as
larger organizational change, documentation level and the need to adapt to engineering practices.

As a second part of the research, a systematic literature review was conducted to find out what is currently
known about the subject. The review found three common themes: co-design, testing and incremental
hardware development. Extended collaboration between engineering disciplines was seen as important, but
iterative development relying on experimentation needs new techniques for continuous testing. Despite the
challenges, iterative hardware development is seen to be beneficial to system development projects. The
synthesis part of the review identified an enforcing cycle between the three themes, resulting in diminishing
difference between engineering disciplines.

Based on the results, it is recommended to transfer knowledge from Agile software development to new
product development in general. The knowledge available accelerates the adaptation rate to a more flexible
approach to development. Furthermore, it was identified that the change in product development triggers a
need for change in other functions of the organization, leading toward an Agile organization. The results
from the studies were mapped to a conceptual framework on how an Agile organization works. During the
study, several future research avenues were identified, such as how Agile Development affects the whole
organization, the economics of frequent prototyping and engineering practices, particularly regarding test
automation and integration with quality assurance approaches and processes such as CMMI and ISO 9001.

Research field Key words

Computer Science and Engineering Agile, Scrum, new product development,
hardware development

Supervising professor Pages

Casper Lassenius 102

Thesis advisor Language

Casper Lassenius English

Thesis examiner Date
Tommi Mikkonen 11.12.2015

 The thesis can be read at https://aaltodoc.aalto.fi/handle/123456789/27

 Lisensiaatintutkimuksen
tiivistelmä

Tekijä

Timo Punkka

Lisensiaatintutkimuksen nimi

Flexible New Product Development: Using Knowledge Transfer from Agile Software Development as a
Catalyst for Adaptation – Case Study and Systematic Literature Review

Tiivistelmä

Tuotteiden elinkaari lyhenee jatkuvasti ja tuotekehityksen haasteisiin kuuluu jatkuva muutos nyt enemmän
kuin koskaan aiemmin. Vastauksena tähän haasteeseen ketterä ohjelmistokehitys yleistyy ohjelmistoalalla.
Ketterä ohjelmistokehitys pohjautuu iteraatioihin, yhteistyöhön organisaation eri funktioiden välillä ja
jatkuvaan palautteen perusteella tehtävään suunnitteluun. Vastaavien menetelmien yleistyminen
ohjelmistokehityksen ulkopuolella on ollut huomattavasti hitaampaa. Tässä työssä tutkittiin tiedon siirtämistä
ketterästä ohjelmistokehityksestä tuotekehitykseen joka vaatii panosta myös muilta insinöörialoilta.
Tutkimus koostui kahdesta osasta; case–tutkimuksesta ja systemaattisesta kirjallisuuskatsauksesta.

Tutkimuksen ensimmäinen osa oli case -tutkimus teollisuusympäristössä. Kohdeprojekti sisälsi elektroniikan
ja mekaniikan kehitystä. Tutkimus paljasti, että projekti hyötyi tiedon siirrosta Ketterästä
ohjelmistokehityksestä. Tuloksena oli nopeampi oppiminen, parantunut kommunikointi ja vahvempi
sitoutuminen. Lisäksi tutkimus paljasti haasteita tiedon siirtämisessä. Esimerkkejä ovat koko organisaation
laajuinen muutos, dokumentaation määrä ja rooli sekä tarve uusille suunnittelukäytännöille.

Tutkimuksen toisen osan muodosti systemaattinen kirjallisuuskatsaus. Tavoitteena oli selvittää mitä
aiheesta tiedetään aiemman tutkimuksen perusteella. Katsaus löysi kolme yhteistä teemaa olemassa
olevassa kirjallisuudessa; co-design, testaus ja inkrementaalinen hardware –kehitys. Laajempi yhteistyö eri
insinöörialojen välillä nähdään tärkeänä, mutta iteratiivinen kehitys vaatii uusia käytäntöjä ja tekniikoita
jatkuvaan testaamiseen. Haasteista huolimatta, iteratiivinen hardware –kehitys nähdään hyödyllisenä
systeemikehitysprojekteissa. Katsauksen synteesivaihe tunnisti vahvistavan syklin kolmen teeman välillä, ja
tämä johti eri insinöörialojen välisten erojen vähentymiseen.

Tutkimuksen tulosten perusteella voidaan sanoa, että tuotekehitys yleisesti hyötyy tiedonsiirrosta Ketteristä
ohjelmistokehitysmenetelmistä. Saatavilla oleva tieto nopeuttaa joustavampien kehitystapojen yleistymistä.
Lisäksi havaittiin, että muutos tuotekehityksessä aiheuttaa muutostarpeita myös muissa organisaation
osissa. Tämä kokonaisvaltaisempi muutos johtaa ketterään organisaatioon. Molempien tutkimusten
tulokset sijoitettiin konseptuaaliseen kehysmalliin, joka kuvastaa kuinka ketterä organisaatio toimii.
Tutkimuksen aikana tunnistettiin useita mielenkiintoisia jatkotutkimusaiheita, kuten kuinka ketterä kehitys
vaikuttaa koko organisaatioon, ekonominen ajattelu prototyyppien käytössä, kehityskäytäntöjen
kehittäminen erityisesti testaukseen liittyen ja toimintatavan yhdistäminen laadunvalvonta prosesseihin ja
menetelmiin, kuten CMMI ja ISO 9001.

Tutkimusala Avainsanat

Ohjelmistoliiketoiminta- ja tuotanto Ketterät menetelmät, Scrum, tuotekehitys,
laitteistokehitys, elektroniikkasuunnittelu,
mekaniikkasuunnittelu

Vastuuprofessori Sivumäärä

Casper Lassenius 102

Ohjaaja Kieli

Casper Lassenius Englanti

Työn tarkastaja Päiväys
Tommi Mikkonen 11.12.2015

 Luettavissa verkossa osoitteessa https://aaltodoc.aalto.fi/handle/123456789/27

1

Acknowledgements

Wow. I cannot believe it is more than ten years since I was introduced to Agile

methods. I can still remember the visiting lecturer at the university pulling out

slides about something called “Agile.” It was that moment that I felt, “this is

how development should always have been done” -coming from a person who

had had high hopes on detailed processes and detailed up-front requirement

specifications signed with blood. They had all failed me miserably and I was

losing hope. Agile methods were like a breath of fresh air.

I want to thank Mikko Kaijärvi, my former colleague, for being the visionary

who saw the applicability of Agile methods to hardware development from my

early writings on the applicability of Agile development to firmware

development. He trusted the idea enough to involve me in his endeavors and

gave me an opportunity to gain a deeper understanding of Agile methods on a

fast track.

Special gratitude belongs to the whole product development/research

ecosystem during the case study. People around the world welcomed the novel

ideas and welcomed me as part of this experience. You are too many to

mention, but a special thank you to Scrum Masters, Stanley Sitao-Ma and

Ernesto Gomez. Cheers, Stanley and Kim: I hope our paths cross again one

day.

A special thank you to James Grenning is in order. James, you have been in

the role of Wise Owl for me for nearly a decade now. Starting early in the

millennium as the author of the first Embedded Agile papers I was able to find,

you have become a mentor and a great friend. We have experienced great

adventures together. I hope there remains plenty more to be Done.

I really appreciate the many hours that Kristian Rautiainen put into guiding

me while struggling to get the paper to at least resemble an academic style and

quality. I was amazed by your expertise on the practical side and capability of

understanding how a person from industry has trouble presenting ideas with

the precision that academia requires. I truly believe that the paper reached a

whole different level with your guidance.

Professor Casper Lassenius, like you once said, the delivery of the thesis got

delayed by a “few” weeks. Thank you for believing in this project despite this

and not – totally – giving up on me!

Thanks to my many reviewers, Nancy Van Schooenderwoert, James Grenning,

Rolf Østergaard, Niel Johnsson and Tobias Leisgang. Thanks also to you as a

group on behalf of the Agile system engineering community for your

contribution to the body of knowledge on knowledge transfer. It’s been a great

2

honor to be accepted as an equal practitioner (at least I have felt it has been

like that). Keep up the great work!

Last, but definitely not least, I want to thank my family, my wife Pia and my

son Nico, for believing that I could finally get the thesis completed. I know it

took a lot of my time away from you, and I truly appreciate you giving me the

chance to accomplish this. I hope from now on you will hear a bit less of, “I’ll

be there in a sec” from behind the computer from me.

Finns are known for being people of few words. On that note, I close this part

of my journey.

Helsinki, December 2015

Timo Punkka

3

Contents

ACKNOWLEDGEMENTS.. 1

CONTENTS ... 3

1 INTRODUCTION .. 5

1.1 MOTIVATION ... 5

1.2 OBJECTIVES AND SCOPE OF THE RESEARCH ... 8

1.3 RESEARCH APPROACH .. 8

1.4 TERMINOLOGY ... 9

1.5 THE STRUCTURE OF THE THESIS ... 10

2 BACKGROUND .. 11

2.1 AGILE SOFTWARE DEVELOPMENT .. 11

2.1.1 Scrum ... 15

2.1.2 Extreme Programming .. 16

2.2 FLEXIBLE PRODUCT DEVELOPMENT .. 17

2.2.1 Motivation .. 19

2.2.2 Whole team approach ... 19

2.2.3 Emergent process and design .. 20

2.2.4 Change beyond engineering .. 21

2.3 KNOWLEDGE TRANSFER FROM SOFTWARE DOMAIN TO HARDWARE DOMAIN 22

3 RESEARCH DESIGN – CASE STUDY ... 25

3.1 RESEARCH APPROACH .. 25

3.2 CASE PROJECT .. 27

3.3 RESEARCH PROCESS AND DATA GATHERING .. 29

3.4 DATA ANALYSIS .. 31

3.5 THREATS TO VALIDITY ... 32

4 RESULTS – CASE STUDY ... 34

4.1 CASE PROJECT .. 34

4.1.1 The project’s front-end .. 34

4.1.2 First part of project: Proof of concept .. 36

4.1.3 Middle part of project: Validation of the architecture .. 39

4.1.4 Last part of project: Preparation for production ... 43

4.2 KEY FINDINGS... 45

4.2.1 Accelerated learning through up-front prototyping .. 46

4.2.2 Improved communication .. 53

4.2.3 Improved commitment .. 59

4.2.4 Remaining and new challenges ... 63

5 RESEARCH DESIGN – SYSTEMATIC LITERATURE REVIEW ... 70

5.1 RESEARCH METHOD ... 70

5.2 DATABASE SEARCH STRATEGY ... 71

5.3 PRIMARY STUDY SELECTION ... 75

4

5.4 CREATING A SECONDARY STUDY .. 76

6 RESULTS – SYSTEMATIC LITERATURE REVIEW ... 78

6.1 OVERVIEW .. 78

6.2 KEY FINDINGS .. 80

6.2.1 Co-design .. 80

6.2.2 Testing .. 82

6.2.3 Iterative hardware development ... 83

6.2.4 Secondary interpretation: Enforcing cycle .. 85

7 DISCUSSION .. 87

7.1 SUMMARY OF THE CASE AND LITERATURE STUDIES ... 87

7.2 COMPARISON OF THE CASE AND LITERATURE STUDIES ... 90

7.3 FURTHER DISCUSSION ON ORGANIZATIONAL IMPLICATIONS .. 92

7.4 ANSWERING THE RESEARCH QUESTIONS .. 95

7.4.1 Research question 1 .. 95

7.4.2 Research question 2 .. 96

7.4.3 Research question 3 .. 96

7.5 LIMITATIONS.. 97

8 CONCLUSIONS .. 99

8.1 SUMMARY AND CONCLUSIONS ... 99

8.2 FUTURE RESEARCH .. 100

9 REFERENCES ... 103

APPENDIX A – DATA EXTRACTION FROM PRIMARY STUDIES .. 109

APPENDIX B - INTERVIEW INSTRUMENT A.. 118

APPENDIX C - INTERVIEW INSTRUMENT B .. 119

5

1 Introduction

The opening chapter provides the overall motivation for the research and

thesis. It starts by illuminating the need to study the process of knowledge

transfer from the software industry to new product development in general.

The subsequent sub-sections present the research problem, specific research

questions, the research approach and the terminology used in the thesis.

Finally, the chapter introduces an overview of the structure of the whole thesis.

1.1 Motivation

Increasing uncertainty is one of the most daunting challenges organizations

and industries are facing today. Doz and Kosonen (2008) list destabilization

forces that have strongly changed the rules of the game for organizations

battling for revenue:

• Digitalization

• Globalization

• Deregulation

The uncertainty is present in multiple dimensions, such as technology,

competition and the market place. The change has led to a situation where

even industry boundaries are in flux (Hamel and Prahalad, 1994). In short,

uncertainty is increasing. Growing uncertainty affects all companies, not least

their new product development. Product development project management

practices have traditionally expected a linear execution from requirement

gathering through implementation to testing as final verification. The

simplicity of this linear model is defeated by the growing uncertainty and

accelerating rate of change that comes with it. It becomes clear that instead of

developing processes which try to avoid change, we need to develop processes

which cope with uncertainty. As early as 1994, Ogunnaike and Ray

distinguished these two approaches to process development as defined as

compared to empirical approaches:

“It is typical to adopt the defined (theoretical) modeling

approach when the underlying mechanisms by which a process

operates are reasonably well understood.

When the process is too complicated for the defined approach,

the empirical approach is the appropriate choice.”

The rest of the thesis will reference the empirical approach as flexible product

development (Smith, 2007). The need for flexible product development may

Introduction

6

be stronger today than ever before, but it is interesting that empirical, iterative

models have been promoted for a long time.

The term “Waterfall model” is used to describe a defined and sequential

approach to product development. In this model, the project is seen as

progressing through phases. A project only advances to the next phase after

fully completing the previous phase. Winston Royce’s paper “Managing the

Development of Large Software Systems” (Royce, 1970) is often referenced as

the source of the Waterfall model. This reference is at least questionable,

because Royce actually argued that this naïve approach fails in anything but

the most simplistic projects. Nevertheless, in his original paper, the phases

follow each other in order: requirement gathering, design, construction,

integration, testing and debugging, installation and maintenance.

Other sources that are claimed to “demand sequential processes” are, in

reality, not that restrictive, either. The Project Management Institute (PMI)

lists the sequential model in their Project Management Body of Knowledge

(PMBOK) as one of the possible project life cycle models. As equally

considerable alternatives, the guide presents models with overlapping phases

and iterative approaches.

The Stage-Gate process model was first introduced in 1986, when the first

edition of “Winning at New Products” was published by product development

expert Dr. Robert Cooper (Cooper, 1986). The name for the model comes from

the fact that it promotes dividing projects into stages. Stages are separated by

screening activity to make a go/kill decision; in other words, gates. The stages

were called scoping, building the business case, development, testing &

validation and launch. Like Winston Royce and PMI, Cooper also recommends

more iterative approaches. He does not, for example, see development as an

isolated effort, despite the fact that it has a separate stage:

“… parallel marketing and operations activities are also

undertaken. For example, market-analysis and customer-

feedback work continue concurrently with the technical

development, with customer opinion sought on the product as it

takes shape during development. These activities are back-and-

forth or iterative, with each development result – for example,

rapid prototype, working model, or first prototype – taken to the

customer for assessment and feedback."

Despite the above recommendations, new product development in general

(including development of physical products) has been slow in adopting

flexible product development. Cooper (2009) references studies conducted by

the Product Development and Management Association (PDMA) and the

American Productivity & Quality Center, and concludes that 70 percent of

product developers in North America use the State-Gate process model or

Introduction

7

similar. The referenced studies were conducted in 2004 and 2002 respectively.

In 2010, PMI’s Pulse of Profession white paper (PMI, 2010) stated that 39% of

respondents used a Waterfall model (survey of over 1,100). Based on this, it is

possible to conclude that the phased and sequential process model dominates

new product development in industry.

When we consider the recent history of software industry, we find it to be

significantly different in terms of process development compared to new

product development in general. The growing uncertainty has of course also

affected the software industry. The history of iterative and incremental

software development models is decades old, but public awareness increased

in the late 1990s (Larman and Basili, 2003). In 2001, the common name “Agile

software development” was coined to mean models that share similar values

and principles (Highsmith, 2001). Agile methods focus on exploration and

collaborative learning between business and development throughout product

creation. Incremental and iterative development is steered by continuous re-

planning based on feedback. Changes in requirements are welcome and seen

as an opportunity rather than a threat. Compared to trends in new product

development in general, Agile software development has become rapidly

popular. In 2010, the Forrester report concluded that based on their survey of

1,300 IT professionals, 35 percent are using some variant of Agile software

development (West and Grant, 2010). The percentage increases if we include

responses for iterative (16%), Rational Unified Process (3%) and Spiral (2%)

models. One-third of respondents used no formal methodology and only 13

percent claimed to use the Waterfall model. The results achieved with Agile

software development are also encouraging. The Agile Impact Report by QSM

Associates in 2008 concluded that there were on average improvements in

three main areas: a 37% faster time-to-market, 16% more productive and no

rise in defect count despite the compressed schedule (QSMA, 2008). The study

benchmarked 29 projects using Agile development methods against 7,500

primarily traditionally managed projects.

To sum up, flexible product development has been recommended for a long

time. Concrete guidance also exists (Smith and Reinertsen, 1997; Reinertsen,

1997). Nevertheless, Agile software development has been significantly more

popular in the industry than approaches developed for new product

development in general. In systems development, the problems that Agile

software development aims at helping are shared between multiple

engineering disciplines. Because of this, it is tempting to consider whether

there is something that industry as a whole can learn from Agile software

development and the software domain. Can the knowledge created in the

software domain be used to accelerate process development in other

engineering disciplines or product development in general? This is especially

interesting because of the trend of growing software intensity in the products

that companies develop (Boehm, 2006). This reasoning is further explored in

chapter 2.3.

Introduction

8

1.2 Objectives and scope of the research

The main objective of this thesis is to find out if the knowledge and ideas

behind Agile software development can be transferred to projects requiring

work from other engineering disciplines - helping the adaptation of flexible

product development. Therefore, the research problem is:

Can the knowledge from Agile software development be transferred

to supplement flexible product development processes and accelerate

their adoption in other engineering disciplines and system

development?

The research problem can be divided into three research questions:

RQ1. Can knowledge from Agile software development be transferred

to non-software new product development?

RQ2. What are the implications of introducing concepts familiar from

Agile software development in the development of physical products?

RQ3. Does Agile development impose larger organizational

implications?

In this study, we are only interested in knowledge transfer from Agile (as in

the software development domain) and its implications for non-software new

product development. The fact that the case study took place in a distributed

environment obviously affected the case, but distribution itself is outside the

scope of this study. The case study is introduced in detail in chapter 3.2.

1.3 Research approach

In order to answer the research questions, a two-part study was conducted.

The first part was a case study of hardware development using knowledge from

Agile software development. The case project was in a globally distributed

industrial setting. The project lead believed that the knowledge he had gained

from Agile software development would help in the project setting, although

the project was focused on the hardware domain. Because this was a project in

an industrial setting, there was no time for thorough research planning, but it

was decided that data should be collected for research purposes. During the

study, the author helped the project organization in the knowledge transfer

from Agile software development. After the case study, a systematic literature

review was conducted to learn what is already known about knowledge

transfer. The systematic literature study formed the second part of the

research for the thesis. The findings from the two parts were used to explore

the main research problem by analyzing the degree to which the existing

research supports the observations from this particular case. The limitations of

Introduction

9

conducting the two parts in this order, and not in the conventional order of

conducting the literature study first, are discussed in chapter 7.5. In summary,

the approach is justified simply because an opportunity for experimentation

was offered in an industrial setting. A more detailed research design for the

case study is presented in chapter 3 and for the literature study in chapter 5.

1.4 Terminology

This sub-chapter defines the terminology used in the thesis. The objective of

the list is not to be inclusive, but to provide sufficient understanding for the

reader to follow the text. For this reason, this section does not cover terms that

are adequately familiarized in the context.

Capability Maturity Model Integration (CMMI) is a process maturity and

improvement framework. It models organizational improvement using five

maturity levels, each containing a set of requirements for the organization.

Co-design stands for the parallel development of software and non-software

components of a system.

Cross-disciplined means different engineering disciplines working together

toward a shared goal.

Cross-functional means representatives from different organizational

functions (design, testing, manufacturing, marketing, etc.) working together

toward a shared goal.

Distributed development means development where the effort is divided

between two or more different sites, but still sharing the same goal.

Hardware development means the development of physical elements of

products, such as electronics, mechanics, industrial design or design for

manufacturing.

Incremental development means adding something to the design, for example,

a new feature.

ISO9001 is a standard developed by the International Organization for

Standardization (ISO), which defines how an organization defines, executes

and maintains a quality assurance system. Independent certification bodies

provide assessments for organizations looking to become certified.

Iterative development means refining, or reworking, a design.

Introduction

10

Iteration means a time-boxed (fixed time slot) activity delivering a coherent

set of value.

New Product Development (NPD) means any kind of development.

Development can be just software or can include hardware or any other non-

software elements as well.

Non-software means any other development goal than software, and can

include for example hardware or services development.

Project Management Body of Knowledge (PMBOK) is a collection of project

management knowledge maintained by the Project Management Institute.

Project Management Institute (PMI) is a non-profit organization

concentrating on knowledge creation for project management professionals.

1.5 The structure of the thesis

The thesis is structured into eight chapters: Introduction, Background,

Research design – case study, Results – case study, Research design –

systematic literature review, Results – systematic literature review, Discussion

and Conclusion. Chapter 2 gives deeper background information for the

research. Chapter 3 presents the chosen inquiry strategy for the case study.

Chapter 4 presents the conclusion of the case study. Chapter 5 presents the

framework for conducting the systematic literature review. Chapter 6 contains

the results of the systematic literature review. Chapter 7 summarizes the

individual studies and discusses the two studies together. The latter part

provides answers to the research questions and considers the limitations of the

research. Finally, chapter 8 provides a summary and contribution of the

research as a whole. The last sub-chapter lists identified areas for future

research.

11

2 Background

This chapter provides background information for a deeper understanding of

the research problem. The background begins with an overview of Agile

software development and continues with a specific introduction to two Agile

methods, Scrum and Extreme Programming. Following Agile software

development, the next sub-section reviews flexible product development in

other fields. The final sub-section considers Agile software development and

flexible product development together and examines the possibilities and

reasons for knowledge transfer between the two domains.

2.1 Agile software development

In the 1990s, several different lightweight methods were developed with the

goal of making software development more successful by adapting it better to

continuous change, which seemed inevitable. The common use of the term

Agile started after the creation of the Agile Manifesto in 2001 (Highsmith,

2001). The cover page of the manifesto states the values of Agile software

development as follows:

We are uncovering better ways of developing software by doing

it and helping others do it. Through this work, we have come to

value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following the plan

That is, while there is value in the items on the right, we value the

items on the left more.

The Agile Manifesto was the result of 17 software method developers meeting

to discuss their ideas on software development to see what they all have in

common. The manifesto summarizes the shared understanding of better

software development. Beyond the values stated above, the Agile Manifesto

lists twelve principles, explained in Table 1.

Background

12

Table 1. Agile principles (Highsmith, 2001; Cockburn, 2001).

Agile Manifesto Principle

Explanation

Satisfy customer through early and
frequent delivery of valuable
software

You can’t ship specifications or design models if the customer has
ordered product.

Welcome changing requirements
even late in the project

Rather than resist change, the Agile approach strives to
accommodate it as easily and efficiently as possible.

Keep delivery cycles short (e.g.,
every couple of weeks)

Each delivery should have some additional value to customer, but
deliver is not necessarily the same as release.

Business people and developers
work together daily throughout the
project

High level view of requirements is not enough for development, so
the gap is closed with frequent interaction between the business
people and the developers.

Build projects around motivated
individuals

People are the ultimate success factor for a project. People knowing
the most about the situation must be the ones making the decisions.

Place emphasis on face-to-face
communication

Usually the problem is not the lack of documentation, but the lack of
understanding. Face-to-face communication reduces the chances of
misconceptions.

Working software is the primary
measure of progress

The actual product provides milestones and accurate measures of
progress. By delivering often the details of requirements can be
captured in small steps.

Promote sustainable development
pace

Back in the days it was glamorous to put in long nights and
weekends, but Agile methods need alert people and those long
nights do not actually provide greater productivity anyway.

Continuous attention to technical
excellence and good design

Quality should be an integral part of development. Design issues
get more costly to handle over time.

Simplicity – the art of maximizing
the amount of work not done - is
essential

In an Agile project, it's particularly important to use simple
approaches, because they're easier to change. It is easier to add
something to something simple, than to take away something from
something that is complex.

The best results emerge from self-
organizing teams

The best architecture, requirements and design emerge from teams
in which interactions are high and the process rules are few.

Team reflects regularly where and
how to improve

An Agile team continuously refines its process and methods to
improve and to match the changing circumstances.

Agile development acknowledges that it is impossible to plan the project

completely in detail at the outset. The traditional model is based on the

opposite assumption that all information about the project is available in the

beginning. If this was true, then it would be most effective to plan the project

carefully and then execute accordingly. However, development is typically not

certain about how the technology works. Similarly, the business learns about

the markets continuously. New information arrives steadily throughout the

project, creating a need for change. Agile development addresses this change

by relying on people from multiple functions working together in short

iterations and gathering new information in terms of feedback from short

experiments. Experiments are targeted toward a functioning product, bringing

testing activities forward thus further increasing the feedback bandwidth. The

concept is only closed for change, frozen, when enough information has been

Background

13

gathered. In other words, the phases familiar to the traditional process model

are executed in parallel rather than sequentially, as illustrated in Figure 1.

Figure 1. Agile development creates information using short iterations and
feedback on the functioning product (MacCormack, Verganti and Iansiti,
2001).

As already stated, the parallel model implies that learning and knowledge

creation is required by everyone, including business and development. While

the business learns about the changing markets, the development learns from

technical feasibility. The new discoveries on either side further trigger the need

to experiment and refine the solution. The interesting characteristic of

disciplined Agile development is the simultaneous learning on the business

side (in terms of product features and capability) and technical solutions using

fast-paced, time-boxed experiments or iterations (Figure 2).

Background

14

Figure 2. Collaborative learning between the business and the
development .

Although the individual Agile practices are not new (Cockburn and Highsmith,

2001), the underlying philosophy is very different from traditional thinking in

many development organizations. Table 2 summarizes the differences between

traditional and Agile software development (Nerur, Mahapatra and

Mangalaraj, 2005).

Table 2. Traditional versus Agile software development (Nerur, Mahapatra
and Mangalaraj, 2005).

Traditional

Agile

Fundamental assumptions Systems are fully specifiable,
predictable, and can be built
through meticulous and extensive
planning

High-quality, adaptive software
can be developed by small
teams using the principles of
continuous design improvement
and testing based on rapid
feedback and change

Control Process centric People centric

Management Style Command-and-control Leadership and collaboration

Knowledge Management Explicit Tacit

Role Assignment Individual – favors specialization Self-organizing teams –
encourages role
interchangeability

Communication Formal Informal

Customer’s Role Important Critical

Project Cycle Guided by tasks or activities Guided by product features

Development Model Life cycle model (Waterfall,
Spiral, or some variation)

The evolutionary-delivery model

Desired Organizational
Form/Structure

Mechanistic (bureaucratic with
high formalization)

Organic (flexible and
participative encouraging
cooperative social action)

Technology No restriction

Favors object oriented
technology

Background

15

Today, Agile software development is a term used for a wide range of

incremental and iterative development methods, methodologies and

frameworks. Examples of Agile software development models are Scrum,

Extreme Programming (XP), Feature-Driven Development (FDD), DSDM and

Crystal Family. Out of these, Scrum is the mostly adopted in industry. The

training and tool company VersionOne has been conducting a survey on the

Annual State of Agile Development for many years. The 7th annual survey in

2013 revealed that 54% of practitioners are using Scrum (Versionone, 2013).

The significance of Scrum is even more visible, since an additional 11%

reported using a combination of Scrum and Extreme Programming. The next

sub-sections introduce Scrum and Extreme Programming in more detail.

2.1.1 Scrum

Scrum (Schwaber and Beedle, 2002; Schwaber, 2004) is a project

management framework illustrated in Figure 3. In Scrum, work is broken

down to fit short iterations called Sprints. The work to be done in a given

Sprint is planned in a Sprint Planning Meeting. In this meeting, work is pulled

from a Product Backlog, and moved into the team’s Sprint Backlog. The

Product Owner is responsible for prioritizing the Product Backlog containing

all the work to be done in a project. However, the work planned for a given

Sprint is managed by the self-organizing Scrum team. A Scrum team consists

of 10 or fewer members. Ideally, the team has all the skills necessary to

complete the Sprint. During the Sprint, the team has a Daily Scrum Meeting to

synchronize the information. The Scrum Master is responsible for keeping the

process fit and coaching the team in continuous improvement. At the end of

each Sprint, the Scrum team demonstrates its achievements to all stakeholders

in a Sprint Review meeting. Sprint Review serves two primary purposes. It

demonstrates the team’s progress in a concrete way, and it offers an

opportunity to give and receive feedback. Between Sprints, the team holds a

Retrospective meeting to gather improvement ideas. Scrum does not give

guidance on engineering practices. For this reason, teams often supplement it

with practices from other methods, such as Extreme Programming (Beck,

2000; Beck, 2004). Schwaber and Beedle (2002) express this thus: “If

practices were candy the Scrum is the wrapping paper for candy.” This fact

also makes Scrum interesting from the perspective of other engineering

practices. There is very little, if anything, in Scrum that is unique to

programming. Instead Scrum gives guidelines for incremental and iterative

planning in general. This guidance can be considered for any kind of work.

Background

16

Figure 3. Scrum Framework (Schwaber and Beedle, 2002; Schwaber,
2004).

2.1.2 Extreme Programming

While Scrum provides little guidance for actual programming, Extreme

Programming (XP) is very prescriptive on programming practices and

techniques. Extreme Programming was defined in a real project, and was

introduced to wider audience by Kent Beck (2000; second edition, Beck and

Andres, 2004). XP has five values forming the boundary: communication,

simplicity, feedback, courage and respect (the last was added in the second

edition).

Building on those values, XP provides a list of principles which define the

overall philosophy of the method: humanity, economics, mutual benefit, self-

similarity, improvement, diversity, reflection, flow, opportunity, redundancy,

failure, quality, baby steps and accepted responsibility.

The first edition (Beck, 2000) presented 12 practices that describe how to do

Extreme Programming. The practices can be thought as known good practices,

but executed at the extreme level. The original 12 practices are introduced in

Table 3, and some are referenced elsewhere in the thesis. The second edition

(Beck and Andres, 2004) defines even more practices. The first 13 are primary

practices, which are generally similar to the original 12 practices presented

below. The second edition further introduces corollary practices, which differ

in that they need support from other practices.

Background

17

Table 3. Original twelve practices in Extreme Programming (Beck, 2004).

Practice

Description

Planning Planning is collaborative activity between development and business. Business
provides the priority, while development provides the cost estimate.

Small Releases Product is launched iteratively in order to enable feedback as soon and frequently
as possible.

Metaphor The business and development need to be able to collaborate about the product
using a language they both understand.

Simple Design The design of the system is only what is needed for the current functionality.

Testing Automated testing is happening on many levels, such as unit tests and acceptance
tests.

Refactoring Code is under continuous refinement for better design.

Pair Programming Two programmers working on the same computer is an extreme way of peer
reviewing and continuous collaboration on design.

Collective
Ownership

Anyone on the project can work on any part of the system.

Continuous
Integration

Each change in the source code triggers an automated build process, including
automated test suites.

40-hour Week Overtime is avoided in order to achieve sustainable pace.

On-site Customer A customer, or a representative, is working all the time with the developers on the
team.

Coding standard When the team is working on the same source code, it is important to follow the
same coding conventions improving communication.

Although Extreme Programming is about exactly what the name suggests,

programming, it does not mean that we should overlook these practices in

hardware development domain. If you again take a look at the table above, you

can find that most of the practices are in fact applicable to other engineering

projects. Practices regarding iterative planning, continuous testing, and

working together collaboratively with other people are worth consideration in

any environment. We will see this in practice later in the thesis.

2.2 Flexible Product Development

Smith (2007) analyzed how teams developing other products than software

can use similar practices to those used in Agile software development. He

called this approach flexible product development, as an alternative to

traditional, linear, process models. Smith argued against using the term Agile

in this context. He felt that the Agile principles and practices from software

development do not directly translate to product development in general, but

the approach needs to be rebuilt. This argument resonates very well with the

objective of this study. However, we do not need to start this rebuilding from

scratch. We can build on knowledge created in different domains. In chapter 5,

we already concluded that general recommendations for flexible alternatives to

Background

18

the new product development process exist in the literature. In order to gain a

deeper understanding of what is already known and actually recommended,

we took a wider look at articles addressing flexible new product development.

The articles for the review were selected based on prior knowledge. Each of the

references was read through and summarized in writing. Similarities from

summaries were grouped into themes. Four themes emerged: motivation,

whole team approach, emerging process and design, and change beyond

engineering.

Table 4. Summary of articles in chronological order.

Reference

Summary

Takeuchi and Nonaka,
1986

Whole team
• Heavily relying on self-organizing teams

Emergent process and design

• Development acting as a source of change for the whole
organization

Change beyond engineering

• Management executes only subtle control
• Holistic approach is company-wide-learning-driven

Smith, 1990 Motivation

• Presents methods to justify increased cost, and reduced scope, to
get products to production faster

Whole team

• Calls for continuous collaboration across the organization’s
functional boundaries

Emergent process and design

• Promotes iterative model building

Change beyond engineering

• Even senior management works with development from the outset

Thomke and Reinertson,
1998

Motivation
• Identifies two major reasons for need for flexibility; products are

more complex and markets are more volatile

Emergent process and design

• Flexible design to tolerate the changing market needs

Clay and Smith, 2000 Motivation
• Iterative prototyping accelerates development, resulting in higher

quality

Emergent process and design

• Prototypes to be used for risk management and as measure of
progress resulting in faster time-to-market

• Concrete guidance on using prototypes for focused learning

Cooper and Edgett,
2009

Motivation
• Reasons for development failures, lack of user input, unstable

specifications and missing real teams

Whole team

• Holistic approach using cross-functional teams

Emergent process and design

• Focusing on customer and using iterations

Change beyond engineering

• Focused portfolio management using the funneling approach

Background

19

Table 4 summarizes the findings from the literature. The themes are well

aligned with Agile software development. Especially interesting is having the

development team in a central role, and acknowledging the need for

emergence in both the product being developed and the process itself. Agile

software development and flexible product development are further discussed

together in the last sub-section.

2.2.1 Motivation

Several authors state reasons why companies should move toward more

flexible product development, giving us the motivation to explore novel

approaches to product development. In his paper, “Fast-Cycle Product

Development,” Preston Smith (1990) makes the point of the increasing need

for development speed. He presents a model for the economics of development

speed, proposing a simple model to justify the development cost if it gets the

product to the market earlier, thus enabling cash flow sooner. Thomke and

Reinertson (1998) take a slightly different angle, but they call for development

speed as well. They identify two reasons for the increasing need of flexibility in

development. First, products are becoming more complex. Because devices

have more functionality, the task of specifying this functionality becomes more

difficult. Furthermore, they state that the rate of change in most markets is

increasing. The most obvious weapon to tackle the challenge of growing

complexity and increasing rate of change is reducing the development time.

This means that the time during which the product is vulnerable to change

shortens. Short increments using rapid iterative prototyping are also

recommended by Clay and Smith (2000). This is considered to be a method of

proactive risk management and to greatly accelerate product development and

lead to high, defect-free quality. Along similar lines are Cooper and Edgett

(2009), who propose a more flexible updated version of the Stage-Gate model

as a solution for product development failures. Reasons to these failures that

they list include lack of user input, unstable product specifications and no real

project team.

2.2.2 Whole team approach

Authors recommend a whole team approach utilizing cross-disciplined and

cross-functional teams. In the classic paper, “The New New Product

Development” published in Harvard Business Review, Hirotaka Takeuchi and

Ikujiro Nonaka (1986) present their findings from six successful product

development projects. As early as 1986, this paper presented ideas that may

sound novel to many product development organizations today. The projects

they studied developed copiers, cameras and a car. What they observed was

completely different from many less successful projects. They call this a

holistic approach. At the core of this approach is the self-organizing team. The

Background

20

team is truly cross-functional and consists, for example, of members from

development, production and sales. The team must have the autonomy to

decide its way of working. It must exhibit self-transcendence, the ability to

raise the bar and because of its cross-functional structure, has self-

fertilization, an ability to share and create knowledge. In the same way, several

of the suggestions by Smith (1990) to help organizations get faster focus on a

whole team approach with strong teams. A strong team has strong and creative

leadership. Members are full-time, to increase commitment and

accountability. The team is small and cross-functional, which fosters continual

direct communication. It enables frequent synchronization of partial

information, and, for example, joint specification. Keeping the communication

informal is encouraged to further speed things up compared to other

communication formats, such as written plans, specifications, reports and

reviews. Cooper and Edget (2009) have a similar message with their practice

of a holistic approach driven by effective cross-functional teams.

2.2.3 Emergent process and design

Emergent process and design is another common theme in the flexible

product development literature. Clay and Smith (2000) emphasize that the

biggest gains can be achieved at the beginning of the project. Quick

experiments with rapid prototyping techniques lead to consensus about the

optimal design, greatly shortening the overall design time. Every prototype

should be aimed at answering specific, quite narrow questions, and they

should be designed only at a level sufficient (detail, robustness, etc.) to answer

the question. Multiple competing solutions should be prototyped in parallel.

The answers from the current prototype are transferred as knowledge and

decisions to the next prototype round. In general, the faster the prototyping

rounds, and therefore learning, the faster the product development cycle. Clay

and Smith also report organizations using working prototypes as a project

management tool. Prototypes can be used as a vehicle for communication

between marketing, management, focus groups, etc. The prototype can be seen

as an emerging product, a living specification, as well as a progress report. An

updated Stage-Gate model guides us in the same direction (Cooper and Edget,

2009). The Stage-Gate model has evolved to incorporate more flexibility and

acknowledge fluid information and the need to experiment iteratively. Inside a

stage, the project progresses through a series of “build-test-feedback-and-

revisit” iterations. They call this spiral development. Smith (1990)

recommends model building with “cut-and-try” cycles. Thomke and

Reinertson (1998) have a slightly different angle. They make the point that the

design itself can also be suitable for late changes, especially in areas where we

can foresee a possible need for a change. They propose the following definition

for flexibility in the product development context:

Background

21

“Development flexibility can be expressed as a function of the

incremental economic cost of modifying a product as a response

to changes that are external (e.g. a change in customer needs) or

internal (e.g. discovering a better technical solution) to the

development process. The higher the economic cost of modifying

a product is, the lower the development flexibility is.”

Emergence acknowledges that product development is most of all about

learning. According to the research by Takeuchi and Nonaka (1986), successful

organizations engage in “Multi-Learning.” When the process happens in all

functions in a more parallel than sequential way, the organization learns at

different levels: individual, team and corporate. Furthermore, parallel

development creates a shared rhythm for the company. People also learn from

multiple functions, gaining knowledge from broader areas. Organizations

intensively enforce knowledge transfer. This can happen in multiple ways,

such as circulating project members and standardizing current practices.

2.2.4 Change beyond engineering

Many authors also suggest that changing product development to be more

flexible entails a change beyond engineering. Smith (1990) calls for senior

management involvement in the outset of the project, during the concepting

phase. This may be new in many organizations, because it involves being

comfortable with an uncertain and vague vision. Experimenting also requires

tolerance of failures. Too often companies have defined procedures and

controls to avoid mistakes. Protective processes and heavy governance hinder

the speed of decision-making, which is required in iterative experimenting.

Nonaka and Takeuchi (1986) remind us that management should execute only

subtle control, managing the environment and being responsible, for example,

for recruiting and educating external suppliers. This changes the traditional

line management responsibilities quite dramatically. The cost of involving a

large number of people, from senior management to floor-level engineering, is

earned back later because the traditional review phase in the end shrinks to a

mere final OK check, since everyone is already on the same page. Change

beyond engineering, and working more in parallel, is needed to optimize the

whole time it takes to transfer ideas to profit (Smith, 1990). Smith gives the

practice of limited product objectives as an example. The functionality of the

product is sacrificed (Limited Product Objectives) in order to keep the

complexity manageable and shorten the time-to-market. This is quite different

from the Waterfall model’s practice of trying to gather all the possible

requirements before beginning development. Another concrete example of

larger organizational impact is focused portfolio management using the

funneling approach to select targets for development investment (Cooper and

Edgett, 2009).

Background

22

2.3 Knowledge transfer from software domain to
hardware domain

So far we have looked at Agile software development in general, specific Agile

methods and literature on flexible product development. It is time to think

about what we can learn from all this. First, it seems that ideas in Agile

software development are not so strictly tied to the software domain. Second,

guidance for flexible product development is very similar to ideas in Agile

software development. In chapter 1.1 we already concluded that it might be

interesting to study the knowledge transfer from the software development

domain to the hardware development domain or product development in

general. Now is a good time to explore the motivation for the knowledge

transfer more thoroughly.

Interestingly, the Scrum framework introduced in chapter 2.1.1 was inspired

by the classic paper, “The New New Product Development Game” by Takeuchi

and Nonaka (1986) referenced in chapter 2.2. The paper in fact first used the

term Scrum. Therefore, the Scrum framework for software development

actually transferred knowledge from the field of physical product development

into the software industry. The paper by Takeuchi and Nonaka did not

describe software development, but product development characteristics in

general. Since then, the Scrum and Agile software development communities

have made a giant leap in defining the practices for software development in

more detail. Agile software development learned from the field of physical

product development. It makes one wonder whether it would work the other

way around as well. Authors have presented this idea, mapping values,

practices and even techniques from Agile software development into

development in other engineering disciplines (Smith, 2007; Highsmith, 2009).

Hence, these ideas are not new, but the evidence from industry is scarce. As

Smith (2007) states in his introduction chapter in “Flexible Product

Development,” “However, this presents a paradox for a new field with only

limited experience to present in demonstrating how the techniques apply to

development projects.” He reminds us that if there were plenty of experience

data, the idea would not be new.

Why would this be interesting now? Examples of reasons are that development

challenges are shared between engineering disciplines, Agile software

development is being rapidly adopted in industry and the software intensity in

products that we develop is growing. These three reasons are summarized in

Table 5.

Background

23

Table 5. Summary of reasons for knowledge transfer.

Reason

Description

Problems are shared and
similar

In system development the challenges are shared by different
engineering disciplines.
Agile software development aims at tackling these challenges.

Adoption rate of Agile
software development

Agile software development is being rapidly adopted in industry.

Increasing software intensity

In many organizations the share of software development, and therefore
Agile development, is growing, making Agile the dominating process
model.

First, development in different engineering disciplines shares similar

problems:

• Products need to get to market faster

• Increasing amount of change (or learning) during development
• Products to be developed are getting more complex

Agile software development addresses these challenges. It is being rapidly

adopted, and the results reported are very positive. Highsmith, one of the

original authors of the “Agile Manifesto,” proposes that in systems

development, the whole development team needs to be aligned with Agile

development. It is not just the software discipline of product development

(Highsmith, 2002).

Second, the adoption rate of Agile software development is much higher than

flexible product development in other areas (discussed in chapter 1.1). Of

course, software has characteristics that make it more suitable for rapid

experimenting, but one reason might be that the amount of knowledge on the

flexible development approach is higher for Agile software development.

Concrete, practical, example is the concept of iteration. The flexible product

development literature presents the need for it, but the practical

implementation details are left for the practitioner to figure out. In contrast,

the Agile software development literature is full of information on how to

conduct iterative and incremental development collaboratively across the

organization. In other words, the Agile software development community has

defined concrete practices, which enable a quick start. On the other hand,

Cockburn and Highsmith (2001) state that the practices collected under the

common name of Agile methods were not new, but the novelty came from the

focus on a new combination of values and principles. Agile software

development provides knowledge from that perspective as well.

Third, the software intensity in products is increasing all the time. Companies

developing products that have traditionally been conventional electrical

devices are facing a new situation, as software development is taking up

increasing effort in product development. Usually, the institutionalized

Background

24

product development process is aimed at traditional hardware development.

In many cases, this is rigid Stage-Gate implementation. As we see Agile

software development moving into the mainstream, there is a conflict of mind-

sets between the now-dominating software development and the rest of the

organization. It helps if we are able to explain Agile software development in

the context of other engineering disciplines.

All this makes it interesting to think about transferring knowledge from one

profession to the other, maybe bringing them closer to each other. Ovesen

(2012) presents the idea of transferring knowledge from the software domain

to the integrated product development domain. His study focuses on

identifying the challenges in this transfer. The challenges the study lists cannot

be said to be completely caused by the fact of developing a physical product.

For example, challenges faced by developers include: breakdown of work,

estimating, tangible achievements in Sprint Reviews and keeping design

flexible for future changes. Furthermore, when implementing Scrum in the

integrated product development environment, Ovesen identifies

organizational challenges such as motivating cross-functional teams, high-

performing team composition, changes in management approach, and

handling disturbances from the surrounding organization. Again, I do not

fully agree that these challenges are unique to transferring Agile development

from the software domain to other domains. Rather, I see these as quite

common challenges in organizational change.

As a summary, authors have presented the idea of knowledge transfer from

Agile software development to product development in general. There is an

evident promise, but the experimental data is very limited. This thesis

continues to explore this knowledge transfer.

25

3 Research design – Case study

This chapter discusses the research design for the case study. First, it presents

the selected research approach and introduces the case under study. The

middle part of the chapter describes the process for data gathering and data

analysis. The final sub-chapter considers the threats to the validity of the

research.

3.1 Research approach

The research questions were introduced in chapter 1.2. The key decision in

planning an inquiry is the application, or purpose, of the research. Yin (1994)

lists five different research applications; explaining, describing, illustrating,

exploring, and meta-evaluation. The applications are illustrated as a pyramid

in Figure 4. One can say that the higher in the pyramid the application gets,

the more needs to be known about the subject of the study. In that sense, the

applicability of quantitative methods seems to be higher at the top of the

pyramid.

The objective of this study is to add to the body of knowledge on knowledge

transfer from Agile software development to new product development in

general, as called for by Preston Smith (2007). Therefore, the research

application is explorative, as suggested for situations and phenomena in which

the intervention has no clear expected outcome (Yin, 1994).

Meta-Evaluation

Explore

Illustrate

Describe

Explain ...causal links in real-life setting

...an intervention as it happens in real-life context

...certain topics with less formality within an evaluation

...phenomenon in situation that has no clear expected outcome

...as a study of a study itself

Figure 4. Research applications (Yin, 1994) illustrated as a pyramid.

Yin (1994) defines the case study research method as an empirical inquiry that

investigates a contemporary phenomenon within its real-life context, when the

boundaries between the phenomenon and context are not clearly evident, and

in which multiple sources of evidence are used. Case studies can be single-case

or multiple-case studies. The main strength of the approach comes from using

Research design – Case study

26

multiple data gathering methods and several data sources. This increases the

validity of the research by enabling both data and method triangulation.

A single-case study was a natural choice for the research approach, because a

hardware development project in an industrial setting was interested in

experimenting with flexible product development. A case study also provided a

structure for the research in this situation, because the majority of the data

was qualitative and came from multiple sources. The data gathering process is

described in more detail in chapter 3.3.

The term “action research” describes a spectrum of approaches to study that

focus on research and learning through intervening and observing the process

of change. It is a continuous process of learning and change where researchers

and clients develop a long-term interest in understanding and resolving a

problem or issue (Cunningham, 1997). As a result of this collaboration, the

distinction between research and action becomes quite blurred, and the

research methods tend to be less systematic, more informal, and fairly specific

to the problem, people, and organization for which the research is undertaken.

There is no intention, typically, to generalize beyond the particular setting

(Patton, 2002). Several authors have described a process for action research.

These processes differ slightly, but they all share common characteristics of a

cyclic basic routine. Stringer (1999) uses the terms look, think, and act in his

cyclic model. It is important to note that action research is a continuous

recycling of these activities, not a single-shot linear process. The look stage

includes data gathering and building a current picture based on this data.

During the think stage, the researcher analyzes what is happening, and

explains why things are as they are. The final stage of the cycle, the act stage,

represents the action, and includes planning, implementing, and evaluating

the action. At the completion of each set of activities, participants will review

(look again), reflect (reanalyze), and re-act (modify their actions) (Stringer,

1999). While presented in a simple repeating three-step process, action

research in practice can take very complex forms as it is constantly re-shaped

according to the real-life setting.

Action research as defined by Stringer (1999) provided a cyclic framework for

the study. We were continuously gathering data about the process and the

collaboration between the different parties in the project (the look stage). We

used this data to analyze what was happening at the moment, what could be

the reason for what we were observing, and which areas should be given

improvement focus next (the think stage). From the results of this analysis, we

identified and planned change actions (the act stage). Similarly to action

research, AAgile development also provides a cyclic framework for reflecting

on the past and implementing identified actions for improvement. Because of

this and the distribution, the teams themselves took significant responsibility

for data gathering, analysis and implementing the planned changes. In this

process, the author’s role was focusing on being a research facilitator,

Research design – Case study

27

observer, data recorder and provider of specific process knowledge at each

action research stage. As best practices were not available for applying

concepts from Agile software development to hardware development, the

experimental and reflective analysis perspective of this process was vital. The

author was co-located with the project lead and the project had frequent

teleconference meetings, which made continuous refinement possible. Several

team members also participated in the deeper analysis of the data with the

author throughout the case project, aiming at understanding the project

better. This served both goals of the action research; improvement of the

performance of the project and contribution to the research.

3.2 Case project

The case study took place in a large global organization with its head office in

Europe. In recent years, the organization has invested in setting up several

Product Development Sites globally. The organization had an official product

development process model, which was an application of the Stage-Gate model

(Cooper, 2001). In addition, engineering sites were preparing for CMMI Level

2 auditing. The organization had a dedicated Technology Development Site in

Europe. The project under study was initiated to productize a novel technology

for creating and managing electricity from the user’s actions. The technology

was chosen to be used in a wireless building automation system. The

technology enables development of battery-less control devices. A business

case had been developed, and the complete offer would consist of several

devices enabling a simple control system for the European market. Each device

required electronics, mechanical, industrial design, firmware and embedded

application software development. The requirements were still vague and only

a very abstract specification was available.

The project lead worked in Finland. A pragmatic approach would have been to

get a co-located team with domain knowledge and experience on the

application, but the European engineers with these qualities were tied up in

other projects. The teams available for the project were from the company’s

global development sites in Mexico and China. The developers in Mexico

consisted initially of three industrial designers, three electronics engineers and

one mechanical engineer. Due to the resource management in Mexico, the

developers were only partly allocated to this project, 60-80% of a team

member’s time. The developers’ experience ranged from fresh out of school to

five years in the industry. The Chinese developers consisted of four electronics

engineers and two PCB layout designers. The average design experience was

three years. The electronics engineers were fully allocated to the project, but

the layout designers only for roughly 50% of their time. The responsibility for

the development of the underlying technology and firmware remained with the

Technology Development Site. Technology development could not be seen as

completely independent, because mechanical integration was needed. The

Research design – Case study

28

initial project organization is shown in Figure 5. The teams were formed based

on engineering disciplines. The mechanics team was in Mexico, but the

electronics team was distributed between Mexico and China.

Figure 5. Initial project organization.

The project lead knew that there was a huge amount of learning and

knowledge transfer to be done. First of all, the team member profiles he

received revealed that many of the development team members were junior

developers. Some of them were coming straight from school, ready for their

first real project. Secondly, the sites were very far from the targeted European

market. It was impossible for them to have the specific market knowledge

needed. Moreover, the requirements were very vague to start with. Thirdly,

due to the time differences, it would have been highly inefficient for the team

lead in Europe to work as a link between China and Mexico. The time

difference would have added a delay of 1-2 working days to transferring any

piece of information. The project lead was informed by his colleagues that the

sites in Mexico and China had been trained in the company’s official Stage-

Gate process model. They would be accustomed to a bureaucratic, sequential

process relying on paper hand-outs – an approach similar to a Waterfall

process. Nevertheless, the project lead felt it impossible to execute the project

Research design – Case study

29

in this fashion based on the challenges. He had some experience in Scrum with

cross-discipline teams developing embedded systems. These projects

sometimes had a dispersed team with 1-2 team members being located

elsewhere. Distributed projects of this scale were still completely new. There

were no guaranties that Agile methods would work, but according to earlier

experience with cross-discipline and dispersed development, it was worth

giving it a shot. As the project lead said,

“There really were no options according to my knowledge.”

At that point, the project lead contacted the author asking for an opinion on

applying Agile methods, and for further help training the teams and getting

things going. The author had been applying Agile methods to embedded

system development for many years, and had previously worked with the

project lead.

3.3 Research process and data gathering

Figure 6 gives an overview of how the research process progressed. The left-

hand side lists the events of interest from the research point of view. The right-

hand side does the same for the project-related events. The project can be seen

as having three phases: proof of concept, validation of the architecture and

preparation for production. The phases differ in significant ways regarding the

maturity of both the product and the project organization. The case project is

described in detail in chapter 4.1. The remainder of this chapter focuses on

describing the research activities.

A large part of the project organization got together in France roughly half way

through the project, as can be seen in the timeline in Figure 6. This event

combined the Sprint Review and Retrospective. During the event, 10 semi-

structured interviews were conducted. The selection of interviewees was

obviously convenience sampling based on everybody’s presence. The

interviews were short, around 30 minutes each. Interviewees consisted of

developers from different engineering disciplines and Scrum Masters. All

interviewees were asked to describe problems in the past and possible changes

that they have experienced since the introduction to Agile methods. The

interview instrument is presented in APPENDIX B. The interviews were audio

recorded and full transcripts written up afterwards. After the interviews, we

had a workshop with the project lead to identify major themes and categories

from the interview data.

Research design – Case study

30

1.1.2007

30.12.2007

1.4.2007

1.7.2007

1.10.2007

1.1.2009

30.6.2009

Project PerspectiveResearch Perspective

29.9.2007

Short interviews with the whole

team

25.10.2007

1-day workshop to create preliminary

categories from interview data.

5.2.2009

Post-experience interview (project lead)

11.2.2009 and 24.2.2009

Post-experience interviews (Scrummasters)

22.-23.1.2007

2-day training for team in Mexico

30.-31.1.2007

2-day training for team in China

First physical prototypes integrating

results from different disciplines

Integrating the technology started

Changes in organization

28.-29.9.2007

Whole team participated in Retrospective

and Planning session in Paris, France.

18.10.2007

1-day training for team leads in Grenoble,

France

Figure 6. Timeline of events and activities in the project and study.

One year after the project, the author conducted a second round of interviews.

The project lead and Scrum Masters were selected to be interviewed based on

purposeful sampling. The objective was to pinpoint the issues of interest, and

they had the best overall understanding of the project. These interviews were

longer, between 70 and 95 minutes each. The interview instrument for the

second interview round is included as APPENDIX C. Again, the interviews

were audio recorded and transcripts were written up.

Research design – Case study

31

In addition to above-mentioned major research events, observations were

continuously made during the normal project events. At the end of the project,

we gathered and stored all project-related documents regardless of their

purpose and format. Eventually, the additional qualitative data consisted of

memos, presentations, photos, recorded chat discussions, Product Backlog,

Sprint Backlogs, Sprint Review reports and presentations, and team

Retrospective summaries. The project lead and Scrum Masters also actively

presented their findings to the rest of the organization during the project.

These presentations became data for the research. The project’s data

management system was available for the research as well. Table 6

summarizes the data collection.

Table 6. Summary of data collection.

Collected Data

Interview round 1

Number of interviews

10

Interviewee role

Team members

Length Average 30 minutes / interview

Interview round 2

Number of interviews

3

Interviewee role

Project Lead, Scrum Masters

Length 70-95 minutes / interview

Additional material

Product and Sprint backlogs
Records from Sprint ceremonies
Other records (memos, photos, etc.)

591MB in total

3.4 Data analysis

Transcripts of all of the interviews were written up from the audio recordings.

Analysis of the interviews was done using the transcripts and ATLAS.ti

qualitative analysis software. Quotations from the interview data were created

and grouped into categories. All categories and quotes under them are fully

traceable to individual interviewee statements. Categories had already been

created during the project using the data from the first interview round. These

categories worked as a starting point. It soon became evident that this

categorization was not an optimal fit for the data. The data was now

supplemented with data from the later interviews and formal and informal

documents and recordings, forming grouped themes. Patton (2002) explains

this kind of analysis to be the inductive type. Themes and categories emerge

from data, in contrast to a pre-defined framework. Figure 7 is a simplified

illustration of the process for the research and the analysis of qualitative data.

Research design – Case study

32

Figure 7. Simplified research method and data analysis overview.

Grouped themes were used as variables when creating a causal network, a

cause and effect diagram. Examples of grouped themes are: shared vision and

goals, ownership and pride, more committed, continuous improvement, need

for new skills, Daily Scrum and time difference. The analysis had a total of 70

variables. Cause and effect diagrams make the cyclical, interdependent and

delayed relationships between observations (variables) visible. Narratives were

first written using the variables in natural language. This helped in

understanding the relationship between the variables, identifying their roles as

causes and effects. Having the narrative as an analytical text describing the

meaning of the connections is essential (Miles and Huberman, 1994). After the

initial version, the narratives and cause and effect diagrams were refined

through several iterations. Finally, key findings were identified by looking for

enforcing cycles in the diagrams. The key findings are presented in chapter

4.2.

3.5 Threats to validity

The researcher being part of the organization adds a threat of bias entering

into the research as early as the data gathering phase. While the author was

not an active project member, he was working in the business unit responsible

for the project. Coghlan and Brannick (2001) point out two specific issues in

the context of researching the author’s own organization: 1) clarifying the

research project in terms of both your personal and the system’s commitment

to learning in action, and 2) managing issues of role and secondary access1. To

help in these concerns, the objective of later writing a case study or experience

report was openly discussed throughout the project. On the other hand, this

situation enabled in-depth knowledge of the phenomenon to be captured, and

this was the priority in justifying the method. Furthermore, the validity of the

1 Secondary access: access to all specific parts of the organization which are

relevant to the research.

Research design – Case study

33

data gathering was increased by member checking with several people from

the project organization.

The validity of the data analysis had the same threats as the data gathering:

misconceptions and misunderstandings, but also bias from the author’s own

objectivity. To make things worse, mistakes made during the data gathering

would accumulate during the analysis. In addition to the earlier-mentioned

member checking during the data gathering, the subjects also reviewed the

results of the analysis to minimize the risk of any such issues.

34

4 Results – Case study

This chapter concentrates on presenting the case itself and the results of the

study. First, it describes the project in chronological order. The second half of

the chapter presents the key findings.

4.1 Case project

An overview of the project was presented in Figure 6, in chapter 3.3. This

chapter gives a more detailed explanation of the case project. The description

is divided into four phases: the project’s front-end, proof of concept, validation

of the architecture and preparation for production. The latter three explain the

changes in the case project from three perspectives: the emerging product,

organization and practices.

4.1.1 The project’s front-end

Bootstrapping

It was decided that the author should visit both sites for two days to give a

basic introduction to Agile development in general, and the Scrum framework

specifically. It was also hoped to conduct the first Sprint Planning. Two days

for training and planning was short, but nothing more was possible at short

notice, and we needed to get things going. At both sites, the technical project

manager was a natural choice to fulfill the role of Scrum Master. Mexico was

visited first. They were expected to follow the company’s process, but they did

not have an established design process at that time. This was contrary to the

briefing that the project lead had received before contacting the site. That may

have helped with their acceptance of Agile development, because it provides

guidance at the team level. After the training in Mexico, the Scrum Master and

another engineer also participated in the similar two-day training in China.

While in general the teams liked the ideas of Agile development, there was also

some skepticism. When the idea of up-front prototyping was introduced, it was

judged to be impossible. The reason was past experience. For example, in

Mexico, the prototyping was expected to take three months, because there was

a rather rigorous process to be followed when ordering development

prototypes. This was much too heavy for an approach investing in rapid and

frequent up-front prototyping. In earlier projects, we worked with partners to

shorten the prototype cycle. We knew that for simple printed circuit boards we

could achieve a prototype cycle of 24 hours from finishing drawings to

delivery. We decided that teams would send the drawings to Finland and the

project lead would take care of ordering and assembling the prototypes. The

prototypes were then distributed around the world using a fast delivery

Results – Case study

35

service. We convinced everyone that we just wanted to test this, and that we

need only commitment to trying, not promising to succeed. By doing this, we

were able to help the teams to move on despite the hesitation. We decided that

the project lead would act as a Product Owner for both teams. Both teams

would start having a four-week Sprint length, and Sprints would be

synchronized (both teams starting on the same day). We further agreed that

both teams would work from the same Product Backlog, and this would be

stored as a Excel sheet in the project’s data management system.

Working agreement

Guidelines for usage of electronic communication tools for different purposes

were set up from the beginning. A wiki was set up for informal

communication. The company data management system was also web-based

and was opened for the project’s QA process related documents. The

company’s database system for product-related information was used from the

beginning for schematics, PCB layout drawings, and product assemblies. The

Pro-Intralink system was used to store and share evolving mechanical

drawings. Skype was selected to be used for instant messaging. Team leads had

a Scrum of Scrums2 meeting twice a week over the phone.

Figure 8. Working hours due to the time difference and the schedule of
Daily Scrum meetings.

While all caution was taken to provide good means of communication, we

understood that the time difference and other responsibilities sometimes

2 A Scrum of Scrums meeting is a coordinating practice used when Scrum is

scaled to multiple teams. In addition to the Daily Scrums of individual teams,

each team sends a representative to Scrum of Scrums meeting to foster

knowledge synchronization across the teams (Cohn, 2010).

Results – Case study

36

made it impossible to contact someone for guidance. Without special

arrangements, practically speaking, no two teams were working at the same

time (see Figure 8). Because of this, we agreed that the site would make any

decision locally if issue resolution took more than 24 hours.

4.1.2 First part of project: Proof of concept

Emerging product

In the beginning, teams were encouraged to make the first prototype. At first,

they felt uneasy with this approach, because there were too many unknowns.

The products were developed for the European market. Many aspects were

unknown to the teams, for example regulations and standards and even the

size of the products. It was difficult for them to visualize what the project was

trying to achieve. The first Sprints consisted of a great deal of information

gathering. The team in Mexico, for example, needed some reference designs

from Europe to pick up the ideas. Furthermore, for most of the members of the

Mexico team, this was their first project with this business unit, first

mechanical work including development of electronics in parallel and first

project with the site in China. Considering this, it was remarkable that after

three Sprints the teams achieved a prototype by integrating work from both

teams.

From the first prototype, new prototypes were the goal for each Sprint (see

Figure 9 for an example of a set of prototypes after a Sprint). Despite the early

achievement, the teams still struggled with the idea of investing in early

prototypes. In particular, the team in China did not initially see the value of

prototyping in the middle of design, and developers were even slightly

frustrated by creating several mock-ups in the beginning. It was found difficult

to achieve a significant progress in just four weeks for the demonstration at the

Sprint Review. However, there were some very concrete benefits of using the

prototype as a measure of progress. The prototype was far from perfect, but it

provided an understanding of the magnitude of the knowledge gap. As said

above, the teams lacked knowledge on several areas: the market, regulations

and standards and even to some degree design for manufacturing. We noticed

this challenge early on in the project and tried to offer as much guidance on

domain expertise as possible. For example, we agreed to have a local

application specialist available on Skype or the phone for the teams.

Results – Case study

37

Figure 9. The emerging product after a Sprint.

Organization

The idea was that the electronics team would be distributed between Mexico

and China. This cooperation had problems. The Mexican developers were

much less experienced than the Chinese ones, and this resulted in a lack of

trust in younger group. Trust was not specifically measured during the project,

but blaming between the teams was a clear indication of this at this early stage

of the project. Communication between the teams was tried to be enforced by

arranging a company cell phone for a Mexican electronics engineer, but the

root cause was of course much deeper. Approximately three months after the

beginning of the project, the electronics design responsibility moved

completely to China, and the electronics engineers left the project in Mexico.

Practices

The inspect and adapt cycles are the focus of Scrum. The idea is that the team

continuously reflects on its performance and seeks improvement. The basic

practice is the Retrospective meeting where the team focuses on improvement

initiatives to be implemented in the next Sprint. It was difficult to observe the

Retrospective meetings because of the global distribution, but what the author

and project lead observed during the first couple of Sprints was that we did not

hear anything about improvement. We did however hear some complaints

about practices that were not working (examples are given below). We

emphasized the importance of holding Retrospectives, and proposed that a

short summary of Retrospectives should be given during the Sprint Review

meeting.

The Scrum Masters in both teams were disciplined to facilitate all the Sprint

meetings. The Sprint length was 4 weeks, and the Sprint rhythm was

synchronized between the teams. The Sprints ended on time (teams honestly

Results – Case study

38

presented what was done by the Sprint end) and both teams were committed

to meeting the Sprint goals.

Product Backlog was a simple Excel sheet. Each team had their own Sprint

Backlog, which was also stored in Excel. All Backlogs were distributed in the

project’s data management system. The Product Backlog was organized into

releases, each with a release goal. The first release goal for a release combining

three Sprints was very abstract:

“Proof of Concept with [technology] and ceiling relay.”

There was no Sprint goal defined, but Sprint Backlog Items (SBIs) were

defined on fairly high level and were quite unambitious, for example:

“Schematics Plan for [technology]. ”

From the beginning, both teams used relative user story points (Cohn, 2006)

for estimating the size of the work, and defined acceptance criteria for each

Backlog item. For example, for the above SBI, the acceptance criteria was:

“Draft (block diagram) to identify the job to be done.”

In the next Sprint, the SBI and the acceptance criteria were:

“Schematics for [technology].”

“Schematic enabling PCB work.”

At this point, the development process was more like a mini-Waterfall with

sequential tasks. The aim was toward more parallel work, but we did not want

to introduce too much demand for learning at the beginning. It was also

difficult to guide the planning, as the teams and their capabilities were

unknown. On the other hand, the teams were new to this kind of planning and

did not have experience of the vertical slicing3 of work.

The project lead was the Product Owner for both teams. He participated in

Sprint Reviews of both teams, but they were held separately for each team.

Sprint Reviews were conducted using teleconferencing and NetMeeting.

Teams presented their achievements using PowerPoint presentations of the

drawings. At first, the presentation was given by the Scrum Masters, but then

the developers were given their voice. This was considered to be a good thing

among developers. It gave an opportunity to take pride in their own

3 Vertical slicing means splitting a larger work item in such a way that

completing each split work item requires observable progress in all

components of the product (Ratner and Harvey, 2011).

Results – Case study

39

achievements. After the third Sprint, the prototype was ready in Finland and

participants could follow the presentation, but also have the concrete

prototype at hand. Participants included stakeholders from the technical and

business perspectives. However, this was not always easy. The project was not

following the standard process of the organization and was thus “unofficial.”

This made it challenging to engage stakeholders from the other functions. The

project had a Finnish product manager that was interested in both the

emerging products, and the new approach to developing it collaboratively with

business. He was present at the Sprint Plannings and Sprint Reviews. The

concrete feedback he could provide was appreciated. He also understood the

principles of Agile prioritization and scope management to meet the deadlines.

He was able to make the necessary trade-off decisions to focus on the minimal

marketable feature set. The technical project manager from the Technology

Development Site also attended Sprint Reviews over NetMeeting.

One significant concern reported by the Chinese team’s Scrum Master was that

the team was struggling with the Daily Scrum. The developers thought that it

was enough to give the schedule, and it was not necessary to follow up daily.

The result was that the Daily Scrum was not attended, and the Scrum Master

needed to gather people, or even walk to each person’s desk to gather the

information. At this point, it was not understood that the Daily Scrum is an

information synchronization event between team members, not an activity

reporting event for the Scrum Master.

4.1.3 Middle part of project: Validation of the architecture

Emerging product

The middle part consisted of two releases, each having three Sprints. While the

first part focused on proof of concept with two units, providing teams with

knowledge on the domain and application, the middle part aimed at widening

the offer. The second release, for example, had the release goal:

“Enable Complete Market Launch.”

This goal was understood as to limit the offer to a minimum marketable set of

devices, and this set was to be prototyped close to industrialization. The

middle part introduced several new devices, which of course used ideas from

devices done earlier, but the overall architecture also started to emerge. When

a new device required a different architectural concept, in many cases it was

necessary to redesign the existing prototypes to some degree.

The prototype level shifted from learning prototypes (which were later called

“first-level prototypes”) toward functioning prototypes more ready to be

installed and presented to a wider audience. This change made new kinds of

issues visible. The teams did not have 3D models of electronic components.

Results – Case study

40

The PCB layout was only done in 2D and design conflicts became visible in the

prototypes. There was a lack of understanding of production engineering in

general. For instance, it was not clear how the PCBs need to be supported. The

positive side was that this feedback was very concrete and real. The first part of

the project focused on basic skills in up-front prototyping. Now it was time to

learn how to use the information from prototypes and feedback.

Organization

Half way through the project, a more experienced electronics designer joined

the Mexican team and a mechanical designer joined the Chinese team. They

were both understood as communication bridges (see chapter 4.2.2), and were

identified as the key reason for accelerated development. This was experienced

as a real help in integrating the work of the teams. Trust had emerged between

the teams. The new project organization is illustrated in Figure 10. In contrast,

communication was affected negatively by the long vacation period in Europe.

This was problematic for the development teams, especially the Mexican team.

They were already used to moving really fast, but when they lacked the

feedback, they experienced the slowing down as demotivating. They were

empowered to make decisions, but if they were unsure they needed to wait for

certain decisions to avoid the risk of going too far in the wrong direction.

Figure 10. Global project organization and communication mechanisms.

Results – Case study

41

Firmware development was done at the Technology Development Site in

Europe along with maturing the technology. The teams used the Product

Backlog to synchronize their requests regarding the technology. These items

in the Backlog were estimated as zero effort from the product development

teams. From time to time, members of the Chinese team needed to make

changes and debugging to the firmware development. This was particularly

needed because the European team was not working with the incremental

rhythm of the teams in Mexico and China. The Technology Development Site

was considered more like an external supplier rather than the third team.

Furthermore, they behaved negatively toward the rest of the project

organization. This often came out as blame, starting the feedback with, “They

are not competent.” The negative feedback was targeted at different

organizational units, and even persons. In addition, they kept promising the

technology would be ready, but reported continuous delays. The lack of trust

identified between the teams in the early phase was now visible in the

relationship with the Technology Development Team. The technology team

lead discussed directly with the Scrum Masters, but it was not experienced as a

trusted equal relationship. Rather, the Technology Development Site was

experienced as trying to command and control the project. In retrospect, the

project lead felt that he should have monitored and guided the co-work toward

collaborative behavior. The problem with mixing Agile and Waterfall delivery

is illustrated in Figure 11.

Figure 11. Conflict between Agile and Waterfall delivery.

Practices

At this point both teams were comfortable with basic Agile and Scrum

practices and small adjustments were made continuously.

Results – Case study

42

The core Scrum meetings remained as in the beginning. The Sprint length

continued to be four weeks, and the teams were more comfortable with this.

Backlog practices had started to evolve. From Sprint 6, the Product Backlog

was modified to have a separate column for each team’s estimates. This was

needed because while both teams used story points for estimating, they did not

have a common reference. Naturally, their velocities also varied widely.

Product Backlog items were not interchangeable between the teams, as they

were based on different engineering disciplines. The single, shared, Product

Backlog was nevertheless used to create a rolling-wave plan, keeping the teams

synchronized and focused on the same higher-level goal. After the Sprint

Planning Meeting the teams did an engineering task breakdown at each site.

Both teams started to use a physical Scrum Board to do project planning and

monitoring during the Sprint more informally. For mechanical work in

particular, there were many dependencies between different tasks. We of

course tried to enforce figuring out as independent tasks as possible, but on

many occasions this was impossible. The Mexico team developed a method for

marking these dependencies, using colored Post-Its to indicate tasks that

belonged together. If there was a certain order of those tasks, they numbered

the tasks indicating the order. Both teams also used swim-lanes as a method of

grouping items, see Figure 12.

Figure 12. Physical Scrum Boards of teams in China (left) and Mexico
(right).

During this period, the Product Owner realized how much work the Product

Backlog needed. He was also the Project Lead. This took time away from

managing the Product Backlog and it started to show in the quality of the

Backlog. For this reason, we agreed to have a Product Backlog workshop with

all three parties, Europe, Mexico, and China. This helped the project, but

Product Backlog management remained an issue until the end of the project.

Results – Case study

43

4.1.4 Last part of project: Preparation for production

Emerging product

The project started to focus on production quality, and again new challenges

were revealed. Many of the designs still had remaining weaknesses. Issues

identified in the Sprint Review did not get handled during the next Sprint. The

project lead thought that this may be caused by the attitude toward

prototyping. Jeopardizing the quality of prototypes was considered acceptable,

even normal: they were “just prototypes.” On the other hand, prototyping

needed effort from the project team, so they were not eager to prototype a

minor change. In addition, because mass production quality was the goal, the

batch size of prototypes was growing. This caused even more overhead. As an

end result, a large amount of work remained that was not visible to everyone.

Only toward the end of the project could the Technology Development Site

start to provide fully functioning samples using the novel technology. This also

resulted in some additional design work. While the prototypes had been there

throughout the project, they were known to be partly designed using borrowed

technology. The technology that was said to be ready a year ago, and which

was promised to be ready soon throughout the project, was finally there. This

was one of the reasons for the difficulties in finding the stakeholders earlier in

the project. The shared trust was missing.

Organization

When it was time to start thinking about industrialization, it became evident

that the Technology Development Site lacked experience of the design process

for manufacturing. A Mexican designer traveled to work in France for two

weeks, mainly for tolerance analysis of mechanical parts. Due to the above-

mentioned lack of trust, he was directed to conduct the analysis in a way that

contradicted his own expertise. As a result, he conducted two different

analyses. When the first mechanical parts arrived, his original analysis was

proven to be the correct one. This lack of trust remained between Europe and

other sites throughout the project, and the project suffered from this.

The teams in Mexico and China were now used to very open communication

between each other, and it was hard for them to understand the reasons for

talking to team members through the team lead in Europe. Concrete evidence

of lack of understanding and weak communication was provided by the fact

that the technology team only realized at the end that the project actually

worked on several products, not just one. In this light, it is comprehensible

that they did not always understand the questions from Mexico or China.

On the other hand, observing the Mexican and Chinese teams now was very

different from the beginning. The teams were not competing with each other,

but working together toward the same goal. While it was understood that

Results – Case study

44

collocated working would be easier and more efficient, the counterpart was not

blamed for this. There was mutual trust. The trust had emerged throughout

the project, but there were some key enablers, such as everyone being

perceived as equal contributors to the shared goal and conscious avoidance of

blaming.

Practices

It was decided to have a larger Retrospective meeting and get everyone in the

project organization together to reflect on the past, and create a shared

understanding of the project’s direction. A meeting in Europe was scheduled at

the company’s premises, which was convenient for everyone. The

Retrospective meeting was held on the last Sprint, but also on the whole

project so far, to map the bigger picture. Several problems were identified

during that day together. As an example, one team had been using outdated

versions of drawings from the database. A simple naming convention was

agreed on to avoid this. The greatest achievement of this Retrospective was the

decision to look for local partners for prototyping. This did not work in Mexico

because the supplier was very expensive, and the quality poor. The saved time

compared to ordering mechanical parts from Finland was spent in sanding the

parts. However, in China, it was possible to find a reliable supplier for both

electronic and mechanical parts. This cut down the cycle time from drawings

to testing. A negative side effect was that managing the prototyping took more

time from the team. The conflict between the project management approaches

of the Technology Development Site and the rest of the project organization

was also discussed. As a result, Agile development training for the Technology

Development Site was agreed. The one-day training was well taken up, but the

case project was too far advanced and this did not affect working habits.

At this time, the teams also identified a need to do something about the Sprint

length, which had been four weeks. The planning had changed to include

several different time spans, as the individual devices kept maturing, but the

system architecture affecting all devices was also emerging. Several devices

were maturing at the same time, but at different levels, requiring different

amounts of precision. Because of all this complexity, teams felt that four weeks

was too long to get feedback. They did not move into actually shorter Sprints,

but they scheduled an “Intermediate Review” in the middle of the Sprint. This

event was even more informal and only involved the project lead. The normal

Sprint Review was still held at the end of the Sprint. Changes outside the

project organization also seemed to have a negative impact at the development

team level. According to one Scrum Master, there was a clear change in

atmosphere in the last Sprints. Earlier planning had been more open and

based on what the team felt was possible. Coming to the end, they experienced

more pushing to fit a larger scope into the Sprints.

Results – Case study

45

Backlog practices kept evolving. Items in the Product Backlog were defined on

a larger scale for the last Sprints. This was possible because the teams had

proven their capabilities to estimate and manage their work, even based on

fairly abstract goals. They were always able to get the details for the feature at

the moment when they started to work on it. Estimation was still done using

relative story points, but it was estimated together with members from both

teams. For example, Sprint 10 had a goal:

“Ceiling Mounted at production level.”

An example of a Product Backlog Item identified for this goal was:

“Ceiling-Mounted full functionality and installation with

[technology] prototypes.”

The Product Owner’s role was challenging at this point. The official objective

of the project had changed to proof of concept instead of actual commercial

launch. This had also lowered the priority and it was difficult to involve people

outside the development organization. He still acted as a representative of the

customer and business toward the team, but it was difficult to get real

feedback on his work from outside.

When China took responsibility for their prototyping, they also started a

practice of taking a video of the prototypes and distributing it prior to the

Sprint Review meeting. This worked very well, as the quality of the pre-sent

video was obviously much better than the live video using NetMeeting, and it

gave attendees a chance to familiarize themselves and prepare questions and

feedback prior to the meeting.

The mechanical team in Mexico also experimented with pair design. In

retrospect, this was considered a good technique for creating ideas and

sketches. Building the actual assemblies was considered to be more effective

when working solo again.

4.2 Key findings

The findings are grouped into four categories: accelerated learning, improved

communication, improved commitment, and remaining and new challenges.

They are presented in the following sub-chapters. Each sub-chapter begins

with a table presenting the summary of the category. The summary includes

the name of each finding, a description of the finding and the author’s

recommendation for the future based on the finding, but also on information

from other sources outside the case study.

Results – Case study

46

4.2.1 Accelerated learning through up-front prototyping

Table 7. Summary of accelerated learning.

Finding

Description

Recommendation

Up-front prototyping Early prototyping was used to
accelerate learning and to provide
proof of the chosen concept.

Early physical prototype provided
several additional benefits: trusted
measure of progress, creating the
shared goal, and creating a stronger
buy-in among the stakeholders.

Prototyping introduces overhead. For
this reason, communicate the
expected benefits clearly, streamline
your prototyping process and
maximize the use of prototypes.

Failure is an option People were encouraged to take the
initiative and make decisions locally. If
they failed, this was considered a
good thing working as a catalyst for
learning.

Great care should be taken to
develop an environment where it
feels safe to fail.

For knowledge creation, it is
important that the outcome of the
prototype cannot be fully anticipated.

Feedback Feedback from the product and
technical management was available
for the teams. It was seen as valuable,
and it contributed significantly to fast
learning.

Provide rich feedback for the
development team, both from a
business and a technical
perspective, and make the feedback
cycles as short as possible to
maximize learning.

Incremental development does not
have a detailed plan to provide
control, thus control is needed in the
form of feedback.

Emerging product Different products and the system
matured incrementally and iteratively,
while the project’s focus shifted.
Terminology developed to describe
varying prototype maturity levels.

At times, teams missed acting on
feedback, and the unresolved issues
resulted in uncertainty about the work
needed when moving into production.

The maturity of prototypes should
improve continuously throughout the
project.

Experiments should be narrowly
focused to acquire new knowledge,
and this knowledge needs to be used
in consequent prototypes.

Experimentation should be steered
by a clear vision. The path toward
the vision, however, is continuously
redefined based on learning.

Up-front prototyping

Description

In this project, prototyping was used for learning, not to validate existing

knowledge. What is traditionally negatively called rework, or scrap work, was

now considered valuable. This is called up-front prototyping, and is enabled by

today’s design tools and fast prototyping technologies. In the case project, up-

front planning seemed completely irrational, as the knowledge to base the plan

on was non-existent.

Results – Case study

47

Having only vague requirements is not uncommon at all according to Thomke

and Reinertson (1998):

“One of the authors has worked with hundreds of product

developers and has yet to find a single project in which the

requirements remained stable throughout the design. Surveying

more than 200 product developers over the past five years, he

found that fewer than 5% had a complete specification before

beginning product design. On average, only 58% of requirements

were specified before design activities began. The inevitable

result is changes.”

Experimenting with physical prototypes truly accelerated learning in the case

project. The first prototypes were assembled after just three Sprints. They

revealed the magnitude of the gap in domain and technology knowledge. This

challenge became evident in a matter of weeks. In the past, issues like this had

remained unrealized until the end of projects, for half a year or even more.

Domain knowledge was quickly transferred by providing direct access to

domain experts exactly when the information was needed (see Pull

information in chapter 4.2.2). The project applied “Just-in-Time” learning

(Hutchings et al., 1993) for technology and domain knowledge by letting the

developers try out the design with current knowledge. Learning was very fast

when the receiver of the new knowledge had the need for it in their daily

context. Early prototyping also had several other positive effects. The physical

prototypes provided a very reliable measure of progress. Because prototypes

needed input from both teams, it can be argued that this contributed to trust

building by creating shared goals and objectives. In addition, stakeholders got

to see the evolving products, and it created a stronger buy-in.

”I feel that it’s much better to have shorter cycles to actually have

something physical for people to see. That way it’s available for

all, not only marketing. It’s better than not achieving anything.”

 Developer, Mexico

The downside of frequent prototyping was the cycle cost. Working with

physical prototypes introduces costs in multiple ways. Design documents need

to be prepared for the prototype supplier. The prototype supplier has material

and labor costs when the prototypes are assembled. When the prototypes

arrive, they need to be tested and some rework may be required. The cycle cost

is illustrated in Figure 13. Having far more prototyping rounds compared to

the traditional process model caused several of these cycles in a short period of

time. This was mentioned in several interviews.

Results – Case study

48

Figure 13. Cycle cost of prototyping.

Recommendation

To address the concerns regarding cycle cost, the many benefits of early

prototyping need to be communicated to developers. On the other hand, the

overhead can be reduced by developing the prototyping process to be more

suitable for frequent prototyping (see chapter 4.2.4: Large-scale organizational

change is needed and Need for a change in engineering practices). Despite our

effort, cycle cost remained. Therefore, it is important to maximize the value of

prototypes. Prototypes can be used to replace traditional progress and status

reports, and to gain stronger buy-in across the organization.

Failure is an option

Description

As early as the first interviews, several interviewees mentioned that in this

project, it felt like it was alright if the developer did not get it right the first

time. Junior team members were encouraged to experiment through

communicating that failure is not to be blamed. This is very contrary to the so-

called get-it-right-first-time approach which tries to minimize mistakes. The

first prototype in this project was known to have many shortfalls. At first, the

engineers did not see the value in building a prototype which will likely not

work. However, it was extremely valuable in providing information about

areas where knowledge was lacking. A developer explained:

Results – Case study

49

“I like the Agile process. I think it’s the way that we have to

design, because experimentation is not making mistakes. I feel

that in the other projects, they are scared of getting something

wrong, so they inspected all the possibilities before saying, ‘Yes,

it’s OK. You can make a prototype.’ In [design brand], I think we

made a lot of mistakes, but they are happy mistakes because you

learn from them. So I like the freedom that we have. The process,

the Sprints, makes the design process faster.”

 Developer, Mexico

Recommendation

Failure is the single most effective way of learning. Create an environment

where developers feel safe to fail. To avoid calling experimentation a failure

which has a negative sound to it, one could think of adapting a new 5-point

test for failure. The test is adapted from Hamel and Prahalad (1994):

• Did we manage the risk appropriately?

• Did we possess reasonable expectations about the solution?
• Did we learn anything?
• Can we quickly react, and try again?
• Do we still believe that the opportunity is for real?

Failure should be declared only if the test has just NO answers. Donald

Reinertson presents a testing strategy for maximizing new information

creation in his book The Principles of Product Development Flow (2009). The

strategy is based on the idea that an event contains more information when it

is less likely to happen. In development, this means that if we are pretty sure

that our design works and after testing we are convinced it works, our

information creation was next to nothing. Reinertson suggests that we define a

test strategy aiming at tests that have a 50% probability of success. This

maximizes the creation of new information. In this strategy, failure is as

expected, but also as welcome, a result as success. “Our testing processes need

to have an adequate failure rate to generate sufficient information”

(Reinertson, 2009).

Feedback

Description

We enforced the continuous involvement of the business side in the project.

Because of this, product management representatives attended the review

meetings and planning sessions until the end of the project. Technical

managers participated as well. The feedback they were able to give, and the

reasoning for prioritization, was highly appreciated by the teams.

Results – Case study

50

“…also the monthly review, when you finish the Sprint. They also

give us a lot of feedback so it’s great, because we can improve

more, get things better and faster. If we wait until the last day

(duration of 2 months) and see a problem, you cannot fix it the

last day.”

 Developer, Mexico

In addition, the project lead was able to provide feedback from the customer

and technical points of view on day-to-day questions. The feedback the team

could get from many different angles was one of the key contributors to fast

learning, especially at the beginning of the project. The need for feedback in

this type of development was evident. For example, during the European

summer vacation, the teams experienced the lack of feedback as demotivating.

“..., we were moving very very fast and then we hit European

vacation and there was no information, no feedback, there was

nothing. We were waiting two months for information....

Especially with industrial design was very hard to come up with

a solution because it had a lot to do with European point of view.

We were aware of that.”

 Scrum Master, Mexico

Toward the end, the changes on the corporate level adjusted priorities and the

project was lacking a “real” business and customer role. The project lead in

particular experienced this as demotivating. In the post-project interview, he

questioned whether at that point the project should have been put on hold.

Recommendation

It is important to provide as rich feedback for the project team as possible. To

accelerate learning, the feedback should be available from both a business and

a technical perspective. Furthermore, the shorter the cycle from experimenting

to receiving feedback is, the faster the team can learn.

When the experimenting drives the design, instead of the up-front plan, it is

important to replace the plan with continuous feedback. If you do not have a

plan and you cannot get feedback, you will be lacking all of the controlling

elements in your process.

Results – Case study

51

Emerging product

Description

On the higher level, a certain sequential process characteristic was identifiable.

Different sequences are described in Table 8. These sequences were also

presented in the case description in chapter 4.1. However, each sequence was

executed through several iterations. While the overall goal or the primary

focus changed clearly between the sequences, the detailed planning for the

ways and scope of development was adaptive. In practice, the change in the

focus between the sequences was more of a smooth shift than a single event.

Table 8. Sequential phases in the case project.

Phase

Timing

Focus

Activity in the case project

Front-end Before Project Training / setting the
mission

Hands-on training on new method was
provided for both teams. Teams were
involved from the beginning in defining the
process.

First part Sprints 1-3 Selection and proof on
concept

Up-front prototyping was used to achieve
early victory and clear visibility of weak
points, for example, lack of domain
knowledge. Concepts were proven with non-
perfect “first-level prototypes.”

Middle part Sprints 4-6, and
Sprints 7-9

Validation of the
architecture

Focus shifted to “functioning prototypes”.
A system architecture evolved between
different devices.

Often prototype goals were over-ambitious.
For example, an improvement in
architectural concept was tested on the next
device. This meant that two goals were trying
to be achieved with one prototype cycle.

Last part Sprints 10-12 Prepare for production Industrialization for the mass market requires
a large amount of compromises from several
different disciplines. The team started to feel
the schedule pressure. Minor issues left
undone became visible at this point.

The project had its first physical prototype after just three Sprints. After that,

the prototypes followed to mature the design iteratively and incrementally.

Teams developed their own terminology to describe the level of prototyping:

first-level, and functioning prototype. The first-level prototype was typically

not intended to work perfectly. Sometimes it was not expected to function at

all. It was just for testing an architectural concept, for example. In contrast, a

functioning prototype was expected to function properly while unsolved issues

could remain in some areas, such as integration with plastics and electronics,

or maturity of plastic and mechanics parts. In the post-project interviews, all

three interviewees were able to describe what these different types meant.

Having this terminology is a great help to ensure that everyone understands

the expected maturity level and what the current prototype is trying to achieve.

Results – Case study

52

There was still something missing. During the Retrospective meeting in Paris,

a developer from one team approached the author in private:

“I have a question. How do we move from just prototypes to

production level?”

 Developer, China

It was not clear what was missing from the functioning prototype in terms of

production quality. The terminology had evolved during the project, so it did

not cover the product until production. Defining the levels of prototyping

showed promise, but it should be done for the whole life cycle. One contributor

to this gap in maturity was the fact that this project reached a point where it

felt like “prototyping for the sake of prototyping.” When you get the sense of

speed during fast prototyping, it is easy to get carried away. In the case project,

there was sometimes too little time for taking lessons from previous

increments into account. Identified issues were not taken care of. On the other

hand, occasionally there prototypes were intended to solve too many

uncertainties at once. This made testing more complicated.

Recommendation

The prototype as a term has a long history, and is often used in context of “it

doesn’t matter, it’s just a prototype.” When you use the prototype as a measure

of progress, the maturity of the product should improve almost linearly

throughout the project. An early prototype could be done with a larger PCB or

expensive integrated circuits. The first prototype might be far away from the

market for a simple reason like cost, but nevertheless, it gives a rough idea of

many parameters, such as bill of material and power consumption. The testing

strategy is different for each phase and each part. Some parts can be

thoroughly tested for validation early on, while some are just tested for

creating information. The main point is that the design matures continuously.

There should not be a single huge leap from prototyping to production.

It is recommended that prototyping is based on a clear goal. This goal is

preferably kept quite narrow. Clay and Smith (2000) recommend using the

prototypes to answer specific questions independently. When we obtain

answers, it is important to transfer the knowledge from the earlier prototype to

the next spin. Remembering the work left undone, or finding a fix for a

problem, becomes more difficult the longer the time between finding the issue

and dealing with it. The Agile literature uses “Technical Debt” as a term

describing quality issues that are not taken care of; for example, long

functions, architectural violations, or duplicated source code. Having too much

technical debt can lead to a situation when you find new issues faster than you

can fix them. Leaving small issues unfixed until the final prototype before

production resembles technical debt.

Results – Case study

53

A strong shared vision for the outcome is needed to keep the development

inside the preset boundaries, even while you adapt your plan according to the

new knowledge. Without these boundaries, there is a risk of endless series of

experimentations moving too far from the original goal. In other words, keep

thinking about the big picture, but narrow the scope for a Sprint to focus on

knowledge creation. For example, you need to keep thinking about a whole

product family sharing the architecture, but in an increment you can focus on

a single product according to the existing knowledge. You can then use the

acquired learning to redefine the big picture. It is true that in less flexible

engineering disciplines the dependencies are stronger than in software

development, but it is possible to plan the project simultaneously at different

levels of abstraction.

4.2.2 Improved communication

Table 9. Summary of improved communication.

Finding

Description

Recommendation

Trust Trust played a major role and affected
many other issues in the project. In
the beginning, trust was not
established inside the distributed
electronics team. Later, trust was built
with an experienced Mexican
engineer who was able to contribute
to the shared goal.

Trust needs conscious attention at
all phases of the project. An
environment in which blaming is
avoided is essential.

Pull information Team members were active
information searchers. They were
supported by a network of specialists
to provide the information exactly
when they needed it.

Scrum Masters held Scrum of Scrums
meetings twice a week to pull
information from the other team.

Communicate early the idea of pull
information to teams. This may need
coaching, as asking for help may be
considered as a weakness.

Create networks of expertise in
advance.

Communication Bridge Teams were formed by engineering
discipline. Teams developed a
practice they called Communication
Bridge. The Communication Bridge is
an engineer who represents the
engineering discipline of the other
team. They help the team to interpret
the other team’s perspective.

It is always better to establish cross-
discipline teams. If this is impossible,
make sure that each team has
access to a representative of each
engineering discipline.

Technology Many different tools were tried out. In
the end, email was considered to be
the most useful after some ground
rules for effective use were
established.

Create a working agreement on the
usage of tools, such as naming
conventions, email behavior, etc.
Encourage experimentation with
tools.

Results – Case study

54

“At the end it comes down to a way you want to work. If you

really want to work with the team, it doesn’t matter if you are

half a world away.”

 Scrum Master, Mexico

“The frequency and quality of communication is much higher for

[Case project]. I think it’s due to the contribution of all members

in all teams. Everyone works hard and pays attention to the

problems of others and is quick at giving feedback.”

 Developer, Mexico

Trust

Description

The best way to build trust at the beginning of a project is to meet face-to-face

(Paasivaara, 2005). In the case project, not all of the team members from both

teams met one another. In the beginning, two members of the Mexico team

attended the first training and planning session in Shanghai, China. They

stayed there for a couple of extra days to get to know the Chinese developers,

and to create the initial plan for engineering tasks for the first Sprint. During

the project, the meetings were scarce, and even the Retrospective Meeting in

Europe only involved part of the Chinese team. However, both teams had a

Scrum Master that was trusted, and the Scrum Masters had a good

relationship.

The distributed electronics team struggled with building trust initially.

Developers at both sites were new to this kind of working and there was a level

of competition between the development sites. The team members in China

were more experienced. These reasons, along with all the other challenges

teams were facing at that time, may have ignited the problems with co-

working. Later, when the Mexican team was joined by a more experienced

electronics engineer, trust was built without meeting face-to-face. He was well

respected, because he could provide value to the design. The teams came to

call this practice a Communication Bridge (see below). The other party was

seen as an equal contributor to the common goal, the project. This was enough

to build a strong bond between teams.

“Personally, what didn’t work for me is that I never felt like I was

part of the team …I didn’t feel that I was treated as an equal.

Probably the team didn’t have the need for an electronic

engineer. I know it worked out quite well for [Communication

Bridge, later]. I think they really needed him.”

 Developer, Mexico

Results – Case study

55

There were of course many other elements fostering trust and team building,

for instance, shared short-term goals between sites, conscious avoidance of

blaming, and synchronized product demonstrations between the China and

Mexico teams. Teams were empowered and encouraged to make decisions by

themselves if the project lead was not available in 24 hours. These decisions

were not criticized by the project lead, even if they turned out to be wrong, and

this built trust between the project lead and teams. The Scrum Master in

Mexico explained this in the first interview during the project:

“…you know when we find a mistake from my part, he [project

lead] says ‘no, no, it was my fault, I was not paying attention to

what you showed me’. Or something like that. I think it is good.

Because it is not about whose fault it is, but how to solve it.”

 Scrum Master, Mexico

The Scrum Master in China followed similar lines:

“... [Project lead] always said OK if you don’t do that or that, it is

your team and you do your team plan. I trust your team. This

was always the same voice we heard from [Project lead]. Also for

the demo, or Sprint Review, [Project lead] said the same, like if

the team says we had this kind of difficulties, we didn’t achieve

what we planned in the beginning of the Sprint. [Project lead’s]

comments were always like ‘OK, it’s like this, you did a good job,

…you did what you demoed and we need to do a Retrospective on

how to improve, but great work. Thanks to the team.’”

 Scrum Master, China

Recommendation

Trust plays a significant role in any project’s success. Agile methods have many

trust-building elements built in, such as shared goals and responsibilities, but

it does not happen automatically. Furthermore, it is not just that building the

trust is hard - losing already-achieved trust is surprisingly easy. It can happen

with a missed reply to a single email. For these reasons, trust needs attention

throughout the project. Avoiding blame, and instead focusing on solutions

together, is one of the most powerful techniques for this. “Leader’s role in this

is to safeguard teams from a blaming mentality so that they can transform into

an action mentality. To accomplish this, the leader should shepherd teams

from a practice of discussing blame to a practice of discussing solutions”

(Tabaka, 2008).

Results – Case study

56

Pull information

Description

The overarching idea for communication management was to create teams

that actively sought the information they need at a given time. The objective

was to make this information easily available. In the beginning of the project,

domain and regional standards knowledge were taken for granted by the

European leadership. The need for knowledge transfer became visible through

trial and error (see Up-front prototyping, chapter 4.2.1). The lack of domain

and application knowledge could have triggered different behavior, for

example, blame for being incompetent or massive pre-specification. Instead,

the project teams were allowed to experiment and ask for more information

when needed (see Failure is an option in chapter 4.2.1 and Trust in chapter

4.2.2). The project lead did not decide when and what information to send to

the teams, but rather made all the information easily accessible by request.

Jim Highsmith differentiates the two approaches as push and pull information

respectively (Highsmith, 1999). As an example of pull information, anytime an

engineer needed help on detailed technical issue, he was able to contact

experts in Finland directly. The pull information approach was also enforced

through Scrum Masters having a Scrum of Scrums meeting twice a week by

phone.

“When I saw an opportunity for self-organization, to activate the

development teams to pull data, it felt like it could work. We

shouldn’t even try to control it, but just give them a target and

activate them in gathering information.”

 Project Lead

Written specifications were scarce during the project, but when there was a

clear need for a document, it was created. A good example is the creation of a

specification for so-called “push and push” – the concept of pairing two

devices in the wireless network. The general principle was given in a matter of

minutes while the implementation was being planned, in the Sprint Planning

Meeting for Sprint 4. When more detail was needed during the actual

development, the site in need requested the detailed information. A

teleconference was arranged, and the help and information were made

available. The implementing site asked the questions they needed clarification

for, and wrote the specification themselves. Version 0.0 was available in one

day, and the development could proceed. The specification was ready in four

days. The site got exactly the paper they needed. It was not less, but also not

more. It was at the time when they needed it, not sooner, but not later either.

Recommendation

Effective communication, collaboration, and coordination are the main

contributing factors for success in Agile methods (Mishra and Mishra, 2009).

A product development team developing a product requiring cross-discipline

Results – Case study

57

engineering tries to capture the collective intelligence about the best way of

turning market requirements into a product. The views of different

stakeholders and each engineering discipline have dependencies, and

continuous trade-off decisions are necessary during the development. The idea

of pull information needs to be communicated clearly and early to developers.

Encouragement and coaching are most likely necessary in the beginning.

Asking for help, and therefore, admitting incapability, may be experienced as a

sign of weakness in the existing culture. The bar for asking help should be

lowered. You should also identify the people that can help in advance, so that

you have a network of specialists ready for the developers.

Communication bridge

Description

After the initial communication problems, a person representing the

engineering discipline from the other site was chosen for both teams to

improve communication. This Communication Bridge practice was embraced

by the teams, and was still being used in new projects at the time of writing

this paper.

“Normally he only does the communication work between the

mechanical designer, the hardware designer, and

industrialization, and pcb designer. This person is only the

bridge between the two sites ... Hardware people only speak the

hardware language and mechanical people speak mechanical

language. To communicate, they need to spend huge amounts of

time to get understood.”

 Scrum Master, China

“We considered him the bridge. When we received a database

from China and the mechanical specs …then we made some

changes and he translated those changes to China. He was more

like a bridge. It was very good. I could feel that he worked very

well with China, they actually took him as part of the team. They

took his design suggestions. They took him seriously. So, it was

good.”

 Scrum Master, Mexico

When studying inter-organizational product development, Paasivaara (2005)

identified a practice called “communication through a resident engineer” in

two case projects. In both cases, an engineer from the sub-contractor company

worked closely with the customer company. The personnel in the first case

project did not have enough practical experience to clearly say how valuable it

is. The personnel in the second case project, however, were able to state

benefits in several areas: speeding up the project, explaining the effect of

Results – Case study

58

changes in design, finding contacts, lowering the bar for asking for help and

translating the language between the two companies. Martin Fowler (2006)

describes the practice of an Ambassador in his online essay “Using an Agile

Software Process with Offshore Development.” An Ambassador is a person

from another country in an offshore setting helping teams to communicate on

technical and business issues. The Communication Bridge practice in the case

project resembles this, but the Ambassador is within the same country, only

from a different engineering principle. Their role, however, is very similar to

what Fowler describes. She helps by providing engineering discipline context.

She fills small holes in information, which seem too insignificant for more

formal communication between teams, and helps build trust between the

teams.

Recommendation

A team must have all the necessary resources ready for use to achieve its goal.

Developers from all the needed disciplines must be available for the team. If

you have to do distributed development, you still have to solve this somehow.

A solution can be an ambassador, a communication bridge or even distributed

teams. A distributed team is an extreme variation of this communication

practice. A case applying distributed teams is described in Sutherland,

Viktorov and Blount (2006) and Sutherland et.al (2007). The teams were

intentionally formed with members from two continents. The project had

several teams, each divided between Utah and St. Petersburg. The objective

was to solve the challenge of synchronizing work between sites in a distributed

project setting. The results were excellent. The relative productivity of this

large distributed project was almost the same as that of a small co-located

Agile team used as a reference. The productivity was much higher than the

industry average.

Technology

Description

Many technologies were tried in communication; blog, wiki, project document

management system, product data management (PDM) system, Pro-Intralink,

NetMeeting, Skype, and Acrobat 3D. Most of the tools that were officially

supported by the corporate were experienced to be considerably complex or

slow to use in daily collaboration. In addition to this, developers in Europe did

not use the tools. Even technical files were transferred via email, which led to a

version control nightmare.

“They [corporate tools] were slow. Nobody actually started to

use them. They were lacking structures. Everyone was supposed

to know how to use them, but in reality nobody knew. I felt,

experience and training on tools was missing.”

 Project Lead

Results – Case study

59

Despite the availability of different tools, email became the primary

communication tool between the teams. This was mainly due to the time

difference. Instant messaging did not have a major role, since the teams were

not working at the same time. For this reason, teams developed a practice to

use email effectively by keeping the discussion focused and response times

short. A Scrum Master explained:

“It’s kind of Daily Scrum but using emails.”

 Scrum Master, Mexico

Recommendation

The project team discovered a way of working as they proceeded. Similarly,

tools should be evaluated continuously. Sticking with a tool which was

mandated or decided in the beginning, but hinders the current progress, does

not make sense. Defining rules on how to use these tools is also important. For

example, simple matters such as naming conventions help a great deal in

finding information, as was discovered in the whole project Retrospective

meeting. Even when something is found out or generally considered to be bad,

such as email, it can be tried again. In this project, email was found to be

valuable because of the time difference. Emails were started again, after trying

instant messaging, and the practice of efficient short emails emerged.

4.2.3 Improved commitment

Table 10. Summary of improved commitment.

Finding

Description

Recommendation

Collective
product/project
ownership

All team members took responsibility
for and pride in the design and
project. They felt equal in the project
organization.

The whole team needs to be involved
in activities regarding project, product
and process.

Explain the decisions the team is
expected to make and why they are
considered to be the best people to
make those decisions.

Improvement through
retrospectives

Several process improvements were
made, mainly concerning
communication, the prototyping
process and the delivery of physical
prototypes.

The project lead was also active in
removing the impediments outside the
team’s sphere of influence.

Enforce retrospectives to identify
issues that are outside the team’s
sphere of influence. If possible, try to
arrange cross-team retrospectives to
improve the cooperation between
teams.

When the teams identify impediments,
work promptly to remove them.

Help from an external coach or
facilitator can help in identifying the
opportunities for improvement.

Results – Case study

60

Collective product/project ownership

Description

Collective code ownership is one of the Extreme Programming practices. In

other words, everyone in the team can change any part of the source code. In

the context of the case project, this meant taking responsibility for the whole

project as well as responsibility for one’s own tasks. Team members were

closely involved in planning, organizing, and managing the Sprints.

“… each and every member working in [] team has the possibility

to give his opinion/ his time estimation for each single activity.

The planning is much more realistic.”

 Developer, Mexico

The project lead asked developers openly for their opinions on the product and

process. Everyone was treated as equal. Developers were encouraged to make

design decisions themselves. When design conflicts occurred, they were not

blamed, but supported in finding the solution together (see Failure is an

option in chapter 4.2.1 and Trust in chapter 4.2.2). Presenting one’s own work

in the Sprint Review gave an opportunity to take pride in the achievement.

Both Scrum Masters and team members emphasized this aspect. This in turn

increased motivation and commitment. At first, this felt strange, but it eased

very quickly. One Scrum Master quoted a developer in his team:

“She [team member] says it [the product] is my baby, I want to

see it go all the way”

 Scrum Master, Mexico

Involving developers this much in the process also changed the project

managers’ work. Both Scrum Masters (working as technical leads and project

managers in earlier projects) were to some degree proponents of a coaching

style of leadership. Nevertheless, the other Scrum Master said in the post-

project interview that at the later stage of the project, with the time pressure,

he felt powerless:

“I was not able to push the team…”

 Scrum Master, China

In the whole team Retrospective, all leads and developers interviewed said that

they would like to continue using Agile practices. This of course is one of the

key measures of process change. If you cannot get people to believe and

commit to chosen ways of working, it does not stand a chance.

Recommendation

You need to involve the whole team from the beginning. Only then will they

have a chance to become a true, jelled, team (Katzenbach and Smith, 2003).

Results – Case study

61

You have to explain why you want the team to take more responsibility over a

broader area. Empower them by explaining the decisions they are expected to

make, and why they are the best people to make them. You need to be

empowered to be able to take responsibility. Offer your full support to help

them learn these new skills. Do not expect this to happen overnight. The

existing culture may not be very supportive about taking responsibility. People

will make mistakes while learning new skills. Blaming them for these mistakes

needs to be consciously avoided. Team members should feel completely safe to

make decisions. Do not forget about the people who used to have the

responsibility for decision-making. Explain that it is now their new

responsibility to help other people to make the decisions.

Improvement through Retrospectives

Description

In the beginning, there was no detailed solution for how to apply Agile

methods in the given context. During the initial introduction of the idea, we

only shared our experience so far. We provided general knowledge about Agile

development, and Scrum specifically. We moved into incremental planning,

empowered the local teams, and enforced the Retrospective meetings to

incrementally improve the process as well. Initially, Retrospectives had to be

enforced to happen. Later, the teams understood their importance, and a

pattern emerged that each team presented their results from their

Retrospective in the Sprint Review meeting. They were again encouraged to

also raise issues outside the team’s sphere of influence. Several ideas were

brought up, typically relating to lack of information or means of

communication, the prototyping process or the distribution of physical

prototypes. The project lead in Europe managed to improve these matters, or

to remove obstacles hindering progress in most cases. On being asked why the

team members got more engaged with the project, the project lead answered:

“I believe because we actively asked them. We kind of took them

along. You can decide, you can tell what is working and what is

not… We were on the same level with the developers, discussing

what they thought about things. And we reacted to their

feedback.”

 Project Lead

A cross-team Retrospective on the whole project was also conducted. The

teams were able to identify several areas for improvement during this wider

reflection. For example, they decided to look for local prototype suppliers to

cut delivery times. Furthermore, they created a shared naming convention for

technical files. The teams also decided to start using a higher abstraction level

on Backlog items. Moreover, it was agreed that training on Agile development

for stakeholders was needed. Overall, the improvements created during this

Results – Case study

62

meeting focused more on issues outside the individual team such as

cooperation between the teams or working with the stakeholders. Normal

Sprint Retrospectives focused more on each team’s local work.

Figure 14. Teams together in Project Retrospective.

Having an external facilitator available to answer questions and provide

feedback during the project was seen as very valuable. Even for a simple

framework, a two-day training course alone will not change the process of the

whole project. The author attended many of meetings as an observer and was

able to provide help on improvements. As a simple example, when the project

was a few Sprints in, after observing the teams’ meetings, the author suggested

involving team members more in planning and reviewing. This is typical in

Agile development, but without enforcing it, it may be forgotten.

Recommendation

The Scrum framework works as a catalyst for adapting practices. Continuous

inspection and adaptation cycles guide the team to develop its practices

iteratively as well. To help the team buy-in to the continuous improvement,

you should work promptly to help them to address the identified problems.

They should be encouraged to also point out problems outside their influence.

In a multi-team and/or distributed project environment, you should invest

time in Retrospectives on the project level, not only on the local team level.

When improvement ideas are created, it is important to actually implement

them. Takeuchi and Nonaka (1986) identify that the development department

often works as a source of organizational change.

A full-time external coach would be very useful to remind people of the basic

practices, but also enforce continuous improvement. An experienced process

facilitator will enforce the Retrospective meetings and accelerate the learning

process, even if they do not have the answers themselves. Having an external

Results – Case study

63

coach to observe the process and team behavior can greatly help in identifying

problems and possibilities for improvement.

4.2.4 Remaining and new challenges

 Table 11. Summary of remaining and new challenges.

Finding

Description

Recommendation

Large-scale
organizational change is
needed

Project teams did not work in
isolation, but had close interaction
with the rest of the organization.
Conflicts were identified in many
areas, such as mind-set of Agile and
other teams, resource allocation and
the prototyping process.

Be prepared to change the existing
processes.

Schedule time to explain Agile values
and principles to people outside the
core team.

Find a sponsor from the higher ranks
to help in solving conflicts.

What is sufficient
documentation?

There were no requirements for
documentation in the definition of
“done”. Very limited written
documentation resulted from the
project, and this caused some
difficulties later.

Include the level of sufficient
documentation in the definition of
“done,” i.e. also plan to deliver
documentation incrementally.

Reserve some time at the end of the
project for polishing the
documentation for the future.

Need for a change in
engineering practices

The overhead of practices became
considerable, because of multiple
design cycles.

Investment in significant improvement
within a single project engagement
was difficult to justify.

Modern tools and technologies offer
opportunities for growing automation.
This can change design and testing to
happen more simultaneously.

Large-scale organizational change is needed

Description

We experienced some conflicts at the boundaries of the project organization,

for example management supporting multiple simultaneous projects, changing

team members, the prototyping process, and collaboration with other

functions.

We were not able to enforce a pure one-project environment and thus a

constant team formation. Several developers mentioned this as negative

during the first interviews through to the team Retrospectives. The developers

themselves felt that they should be fully allocated to a single project. However,

the resource management practices at the sites were relying on a traditional

100% utilization goal, and developers were from time to time allocated to

different projects or to multiple projects simultaneously. Breaking this habit

would require the education of management. Managers were willing to let this

experiment continue and even supported it, but it did not affect existing

processes and practices much. On the other hand, we were not active in

enforcing and coaching them either.

Results – Case study

64

“There was a general disbelief in my own working environment

that we cannot just go and break the existing, trained, process

model.”

 Project Lead

At the later stages of the case project, it also became evident that having other

teams on the project working with a different mind-set is problematic.

Technology development happened in a gray box aiming at big-bang delivery,

and all the communication happened through the team leader. The

Technology Development Site did not follow Agile project management. They

were not synchronized at all with the incremental rhythm of the other two

teams. Instead, they reported randomly, most often stating that they were

almost ready. This difference in methods made it difficult to plan the

incremental development.

“...at that time we were thinking that they are taking

responsibility for the firmware and because they were not part of

Scrum we had some difficulties understanding where they are

going. At that time finally in [Case Project] one designer here in

China [implemented] the firmware to make sure that the

prototype works, because we cannot wait for the [European]

designer to provide mature enough firmware to be integrated

with the hardware.”

 Scrum Master, China

The official prototyping process at the sites was in contradiction to what was

needed in this project. The process was developed to avoid ordering prototypes

that would not work. In this project, the teams wanted to order prototypes to

see whether the idea would work. Furthermore, rounds of these experiments

were to happen frequently. This new focus on early prototypes instead of paper

deliverables even created some tension at the sites:

“Peers certainly didn’t like that so much. Prototypes were very

early in the project, and they thought we were crazy and

spending money on prototypes…”

 Scrum Master, Mexico

Because the case project was not following the formal process, it was difficult

for stakeholders to budget time for this project. The practice in official projects

was for business to be heavily involved in up-front activities. Being involved

throughout the project was new. Luckily, there were interested stakeholders to

give feedback to the project. Further, the project had a vision of target cost,

volume, and feature priority. This helped the project to stay focused, but more

intensive feedback for navigating toward the goal was experienced as missing

by the project lead.

Results – Case study

65

Recommendation

At the beginning of an Agile pilot, it is likely that you have conflicts with the

rest of the organization. This includes people in management positions.

Traditional processes are developed to avoid mistakes, and to make it right the

first time. In these processes, the reason for prototyping is validating instead

of learning. Prototyping is a key practice in incremental hardware

development, and prototypes are expected to be imperfect to maximize the

learning. The process for prototyping needs to be extremely light and

straightforward if it is to be done very frequently, as in this project, every four

weeks. In Agile software development, the goal is a single button release,

meaning that delivery of product can be done whenever without manual work.

In hardware this would mean automating the process of ordering parts and

formatting from a schematic, layout, or mechanics design tool to electrical

delivery to the prototype suppliers. In addition, a partner-like relationship

should be accomplished with your sub-contractor. This means that they

understand the method you are using, and are willing to commit and

collaborate to meet the required predictability. As said, this may totally

contradict existing processes and practices, and these underlying assumptions

create a huge change effort in themselves.

It is important to budget time for explaining to developers and other people

outside the pilot project why the team is working differently. It is hard for an

Agile team to commit to something that has dependencies outside the team,

especially if there is no trust between the two. Therefore, the change will not

last long if you do not engage others in the change process as well. There is a

risk that they may feel it unfair that other teams are learning new things, while

they have an obligation to follow the existing process.

You should try to find a Local Sponsor (first-line management support) and a

Corporate Angel (high-rank executive support), as described by Manning and

Rising (2005). If you can find both, your change management process is much

easier. It pays to have a sponsor from a high enough rank that you could easily

consult in case a change is needed. The project work is already hard and there

is not usually adequate energy for driving these changes at the same time.

What is sufficient documentation?

Description

The official process in the case company was a document-oriented

implementation of the Stage-Gate process. There was also a CMMI initiative,

which focused on paper deliverables as well. In this project, the teams got

Results – Case study

66

away from an up-front documentation obligation. The definition of “done”4 did

not include documentation. In the case project, teams were encouraged to pull

information when they needed it. This information often remained in an

informal format. There were exceptions, such as the documentation for the

“push and push” concept (see chapter 4.2.2 for more on Pull information).

Both Scrum Masters expressed in the post-project interview that they have

needed more documentation after the project was finished.

“We don’t care if it is Agile or [Waterfall], it’s just a process, but

they need to provide necessary documents for the project. Then

they have to write the spec and this documentation time needs to

be taken into account within the Sprint and the workload of the

planning. This is a normal project, all integration project. Finally

we need to deliver product and some documentation is

necessary. Not just for the design team, but it is important also

for other teams like industrialization and purchase,

manufacturing and marketing. All the functions will need this

kind of deliverable.”

 Scrum Master, China

“And that [limited amount of documentation] probably helped us

to move forward very fast. But now you can say right away that

you are missing a lot of information because you didn’t record

anything. Depending on your priorities, that might be a good

thing or a bad thing.”

 Scrum Master, Mexico

Recommendation

Iterative work can easily be anchored to the Stage-Gate model, which would be

a less dramatic change (Karlström and Runeson, 2006). However, the whole

Agile philosophy is very different from the up-front documentation philosophy

often associated with bureaucratic implementations of the Stage-Gate model.

Nevertheless, a certain level of design documentation should be included in

the definition of done. This does not necessarily mean written, well-polished,

documentation, but for example, design notes included in actual drawings.

Agile software teams shift a large part of the traditional paper documentation

work into running automated test cases and well-refactored clean source code.

Some of these techniques might lend themselves to hardware development,

but also some design documentation is needed (in software projects as well).

Jim Highsmith (1999) explains how deliverables need to be monitored with

the workstate instead of completeness over the project’s timeline. In his

4 The definition of “Done” is a mutually agreed list of criteria to be fulfilled

before a work item can be considered complete, or “done” (Schwaber, 2004).

Results – Case study

67

example, a deliverable goes through states: outline (conceptual), detail

(model), reviewed (revised) and approved (available) state. Reserve the time to

polish the documentation in the end to enable future work and also include

this in your risk management plan in case of project cancelation.

Need for a change in engineering practices

Description

During this project, we identified a lack of appropriate technical practices in

several areas. Many of them became visible due to the frequent prototyping.

Frequent prototyping was experienced to cause extra effort. Materials for the

prototype supplier needed to be gathered, and prototypes needed to be

debugged after delivery. This is called the cycle cost of prototyping (see Figure

13).

“We were manufacturing both the hardware and mechanical

parts. Sometimes it is a constraint to the project team. For me to

make prototypes it is not like a one day job. For team it is a one-

day job because they just need to make the files. […]

Because what we can realize in four weeks is very limited and in

the next four weeks we need to do it again and another mockup.

To do a hardware or mechanical mockup is not so easy like

firmware or software. Every time you make a hardware

mockup, it takes time.”

 Scrum Master, China

“In my opinion, and this may be typical of physical products,

hardware prototyping always demands effort. This effort is

sometimes difficult to justify if it looks like the results will not be

achieved. This prototyping problem was more evident the further

we progressed. Toward the end the volumes of prototype series

were growing and waiting times got longer due to the increased

number of prototypes.”

 Project Lead

A single iteration was not able to deliver a full learning cycle. In the case

project, iterations were often sequentially linked together as design, prototype

and testing. This resembles the Waterfall, or sequential, development process.

Printed circuit board (PCB) and plastic designs were integrated virtually

during the design, but conflicts were often uncovered when the actual physical

prototypes were integrated.

Results – Case study

68

“When we started to expect more mature products, we got

problems. I believe it is due the fact that tools did not support

this. We did not have 3D models for the components and we were

not able to match the design to mechanics. PCBs were designed

in 2D, without the 3D models, and design phase mistakes leaked

into prototypes. Fixing them was for some reason very difficult.”

 Project Lead

Testing was involved as soon as prototypes were available, but it remained a

manual effort. We recognized the need to increase automation, but we did not

solve it. The main reason was that an out-of-the box solution was missing.

Learning how to do it and then actually practicing it could be seen as

investment, but the initial investment is difficult to justify in a single project

scenario like this. Building experience on automation is a long-term

investment decision.

“We have problems on the testing because we have a big delay on

the burndown chart due the availability of the prototype or the

prototype integration for the testing. We can see there will be one

Sprint in June and even not significant progress during one

month due to this kind of delay. That was not so good for the

Sprint.[...]

For example, firmware design takes two weeks, then we have to

wait for the firmware to be ready for the whitebox testing, and

this testing will take four weeks.”

 Scrum Master, China

Recommendation

While it of course is a good thing to find mistakes early in development, it is

frustrating to continuously deal with issues that could have been easily noticed

with proper tools. Teams looking for longer-term incremental hardware

development should invest in tools capable of checking conflicts on the fly,

with an extremely short feedback cycle. Agile software development teams

apply a practice of continuous integration. After each change in the source

code, the whole system gets built again, and an automated test suite is run to

check that everything still works as it used to. Some CAD tools provide little

such help. You can, for example, integrate 3D PCB layout design with your 3D

mechanics design, but there is a lot to hope for. 3D printers, rapid PCB

prototyping tools and for example, use of FPGAs could take integration

frequency to a new level.

Testing systems like TI TestStand or Saab’s TestManager, flying probe and

boundary-scan techniques can be used to automate testing in the development

phase of the life cycle, but they need investment. The investment is difficult or

impossible to justify in a single-case off-shoring situation. Nevertheless,

testing is one of the key matters that needs to be solved in incremental

Results – Case study

69

hardware development. Jim Highsmith mentioned in a panel discussion at the

Agile 2007 conference in Washington D.C. that he has coached a hardware

team into Extreme Programming techniques, and this was particularly

targeted at testing strategies (Highsmith, 2007).

70

5 Research design – systematic literature
review

This chapter presents the research design for the systematic literature review.

First, it gives an overview of the research approach and then a more detailed

description of database search strategy, primary study selection and method to

create a secondary study.

5.1 Research method

The research questions were introduced in chapter 1.2. The objective of the

literature review is to summarize the existing research on knowledge transfer

from Agile software development to the hardware development domain. “A

systematic literature review is a means of identifying, evaluating and

interpreting all available research relevant to a particular research question, or

topic area, or phenomenon of interest. Individual studies contributing to a

systematic review are called primary studies; a systematic review is a form a

secondary study” (Kitchenham, 2007).

There are many reasons for undertaking a systematic literature review. The

most common reasons according to Kitchenham are:

• To summarize the existing evidence concerning a treatment or

technology
• To identify any gaps in current research in order to suggest areas for

further investigation
• To provide a framework/background in order to appropriately position

new research activities

When we consider knowledge transfer from the Agile software development

domain to the hardware development domain, it is fair to say that all of the

above reasons are valid. The objective of the review is to collect and synthesize

the current knowledge on applying learning from Agile software development

into non-software, more generic, new product development. As presented in

chapters 1.1 and 2.2, iterative and experimental models have been suggested

for hardware development, but nevertheless, it has been the Agile software

development models that are far more widely adopted. Despite the fact that

knowledge about similar approaches to hardware development exists, this

study focused solely on transforming knowledge about Agile methods from the

software domain to the hardware domain.

Research design – systematic literature review

71

Brereton and colleagues (2007) define a 3-phase, 10-stage, literature review

process, illustrated in Figure 15. The process describes how to carry out a

systematic literature review through planning, conducting and documenting

the review.

Figure 15. A 3-phase, 10-stage, review process (Brereton et al, 2007).

5.2 Database search strategy

The review was started by identifying keywords based on the research

questions. After evaluating the results from quick runs on just a few databases,

the keywords were adjusted and the search was run again. Adjustments were

made by adding and removing synonyms and adding and removing terms.

This takes some time as you want to get as good balance as possible between

the total number of samples and including all relevant studies. The selected

terms in two categories are presented in Table 12. Category 1 includes terms

referring to Agile development. Terms in category 2 introduce the aspect of

non-software development. Category 3 was also considered, but based on the

test runs its use would have resulted in too narrow results. All pairs from

category 1 and 2 were used to run the search. When possible, the search

criteria were combined into single search using the Boolean “and” and “or”

operators.

Research design – systematic literature review

72

Table 12. Search terms by categories.

Category 1

Category 2

Category 3 (Not used)

OR

AND

OR

AND

OR

scrum hardware development
agile hw design
dSDM electronics build
“extreme
programming”

 mechanics engineering

Xp embedded project
 “product development” program
 “project management” process
 non-software method
 non software practice
 non sw
incremental non-sw
iterative
flexible
Iid
temporal pacing
time-slotted non it
timeboxed non-it
time-boxed

Database selection was based on ease of search, exporting capabilities and the

results of few basic searches, for example “agile AND hardware.” The following

databases were excluded from this review based on initial results:

• ACM Digital library (www.portal.acm.org/dl.cfm)

• ISI Web of Science
(http://apps.isiknowledge.com/WOS_GeneralSearch_input.do?product=WOS
&search_mode=GeneralSearch&SID=N1Hl8IjCEL@dOh6f7EO&preferences
Saved=&highlighted_tab=WOS)

• Google Scholar (scholar.google.com.au/)
• AIS eLibrary (http://aisel.aisnet.org/)

Table 13 summarizes the results from selected electronic databases. The used

search criteria, specific issues and initial number of search hits are listed for

each database.

7
3

Table 13. Results from search run5.

Database

Search Criteria

Specific

Hits

IEEE Xplore
http://www.ieeexplore.ieee.org

(scrum OR agile OR dsdm OR "extreme programming" OR xp OR
incremental OR iterative) AND(hardware OR hw OR mechanics OR
electronics OR embedded OR "project management" OR "product
development" OR "non-software" OR "non-sw" or "non software" or "non
sw")

Selected;
- ‘metadata only’ (i.e. title, abstract and keywords)

719

Elsevier ScienceDirect
http://www.sciencedirect.com

TITLE-ABSTR-KEY(scrum OR agile OR dsdm OR {extreme programming}
OR xp) AND TITLE-ABSTR-KEY(hardware OR hw OR mechanics OR
electronics OR embedded OR {project management} OR {product
development} OR {non-software} OR {non-sw} OR {non software} OR {non
sw})

Selected;
- Journals only,
- Subjects Computer Science and Engineering,
- 1990 - present

83

Compendex EI
http://www.engineeringvillage2.org/

((scrum OR agile OR dsdm OR {extreme programming} OR xp) AND
(hardware OR hw OR mechanics OR electronics OR embedded OR {project
management} OR {product development} OR {non-software} OR {non-sw}
OR {non software} OR {non sw})) wn KY

Selected;
- Compendex database only.
- Only records in English.
- 1990 - present

Documents were difficult to retrieve.

1301

Scopus
http://www.scopus.com

TITLE-ABS-KEY(agile or scrum OR "extreme programming" OR dsdm OR
xp) AND TITLE-ABS-KEY(hardware OR mechanics OR electronics OR
embedded OR "product development" OR "project management" OR "non-
software" OR "non-sw" OR "non software" OR "non sw") AND PUBYEAR
AFT 1989

Service was down and search was run 2 weeks later than
others.

1571

5 Search was run on 7.3.2010 except for Scopus.

7
4

 SpringerLink
http://www.springerlink.com/

abstract:((scrum OR agile OR dsdm) AND (hardware OR hw OR mechanics
OR electronics OR embedded))

abstract:(({extreme programming} OR xp) AND (hardware OR hw OR
mechanics OR electronics OR embedded))

abstract:((scrum OR agile OR dsdm) AND ({non-software} OR {non-sw} or
{non software} or {non sw}))

abstract:(({extreme programming} OR xp) AND ({non-software} OR {non-sw}
or {non software} or {non sw}))

Only accepts 10 search terms.

Needed to run in 4 batches (hits: 58, 23, 0, 0)

81

Wiley InterScience
http://www3.interscience.wiley.com

All pairs of category 1 and category 2 search terms with AND operator.

Exceptions are ‘xp’ and ‘hw’. They were identified as ‘too generic’ by the
database search engine.

Selected;
- 1990-2010

Search criteria resulted in high number of duplicates.

437

Research design – systematic literature review

75

5.3 Primary study selection

After the initial database search had been done, the results needed to be

analyzed for relevancy. Figure 16 illustrates the stages and techniques for this

analysis. The initial search found 4192 hits. Duplicates were removed using

EndNote6 software, but also going through the reference list manually. This

resulted in 2358 hits, although during stage 2 some missed duplications were

further identified and removed from the sample. The large number of

duplicates can be explained by having to use separate searches in the

Springerlink and Wiley InterScience databases. During stage 2, all titles of

studies were evaluated and those clearly outside the scope of research

questions were removed from the sample. Only 503 studies passed this stage.

A few common issues contributed to the large number of irrelevant studies at

this stage. The term “Agile” itself forms a problematic search term. As an

example, many hits described the development of a device and one of its

attributes was described to be agile, e.g. agile navigation or agile motion. The

“XP” abbreviation for Extreme Programming is another problematic term,

because it returns many references to Windows XP. The term “scrum” resulted

in sports medical publications in some databases without narrowing the

journals included, because it is a rugby term. If the title did not give many

hints about the content, the reference was included in the next stage. During

stage 3, it was time to go through all the abstracts and keywords in more

detail. The evaluation focused on the study’s relevance to the research

question. If in doubt, the study was included in the next stage. Books and

everything not written in English, were excluded. There were 156 studies left

when moving to stage 4, the final relevancy screening.

A full copy was retrieved for all 156 studies left from stage 3. Stage 4 involved

going through the full paper and selecting primary studies using the screening

question as criteria. The earlier stages had already revealed that the number of

quality studies would be low. For this reason, the final screening was based on

a single question to make sure the study had implications for the research

question:

Does the study present data, empirical or theoretical, on the

applicability of Agile Methods, or practices and techniques

associated with them, to other engineering disciplines than

software?

6 http://www.endnote.com/

Research design – systematic literature review

76

Studies based on the same data were excluded according to the guidelines by

Kitchenham (2007). Ten primary studies were selected at the end of stage 4.

References from selected primary studies were analyzed, but relevant

additional studies were not found. The 10 primary studies are listed in Table

14 in chapter 6.1.

Figure 16. Process of selecting primary studies.

5.4 Creating a secondary study

Synthesis was conducted as a line of argument, as described by Noblit and

Hare (1988). This approach is used when researchers are concerned about

what they can infer about a topic as a whole from a set of selective studies that

look at part of the issue. The analysis can be considered to have two phases.

First, the individual studies are analyzed to find out the similarities and

differences. Then, a grounded theory is developed to interpret the “whole”.

Issues of importance are identified and the approach to each issue taken by

each study is documented and tabulated (Kitchenham, 2007).

The explanation of the synthesizing can easily lead to an understanding that it

is the last phase of a sequential process, but it is far from that. Analyzing

studies together on how they relate, and how to understand the whole, is a

very iterative process. It is impossible to separate the phases of the process.

The synthesizing started at the very outset of the review.

First, the relevant data from primary studies needs to be extracted. Ideally,

data from studies is extracted using a standardized form. This was a challenge,

Research design – systematic literature review

77

as the studies varied widely in their style and scope. When the studies were

first read, only basic data was extracted, such as the type of study, the Agile

method, engineering discipline, positive and negative findings, what supported

the use of Agile methods, and other generic observations. These categories

were just a starting point. There were several rounds of reworking the

categories. Each time, the new version was tested by going through the studies

again. The result of this iterative process is presented in APPENDIX A in table

format. The rows in the table represent the data categories. Individual studies

are listed in the columns. Short direct quotations with a page number were

used to record the relevant data from primary studies. The quotation is

recorded in the corresponding cell in the table. If the study does not address

the data category, the cell is left empty. This makes finding the original context

easy when doing the analysis. The second last row presents any quotes that felt

important, but did not fit any of the main categories. The last row contains

additional interesting observations which are not direct quotes. In the end, the

following main themes emerged from the data categories:

• Co-design
• Testing
• Iterative hardware development

Each theme was first interpreted individually to synthesize the data from

different studies. The first theme covered the main cause for the need for

hardware teams to start looking at Agile development. When embedded

software developers start using Agile methods, it affects the hardware

development as well. The next two themes were related more to

implementation from a practical perspective. Testing activities are moved

forward in Agile software development, compared to traditional validation at

the end. The same applies to non-software development. Finally, iterative

hardware development was identified to be not just possible, but beneficial.

Secondary interpretation was created by asking how the themes are linked

together and what they infer about the whole. This revealed an enforcing cycle

between co-design, testing, and iterative hardware development.

It was evident that the primary studies supported each other. This was

expected, as experience reports of negative findings or failures are very

uncommon. While this is a limitation, it also means that we can build a line of

argument based on primary studies. The next chapter presents the results of

this analysis in more detail.

78

6 Results – Systematic literature review

This chapter presents the results from the systematic literature review. First,

an overview lists the selected primary studies and presents their key

parameters. The second sub-chapter provides the synthesis and key findings

from the review.

6.1 Overview

Through the review process presented in the previous chapter, ten primary

studies were selected. Table 14 lists the studies. The ID in the table is used

later in this chapter when referencing the primary studies.

Table 14. Primary studies.

ID

Reference

1 (Allen, Abdel-Aty-Zohdy and Ewing, 2009) Allen, Jacob N., Abdel-Aty-Zohdy, Hoda S. Dr., Ewing,
Robert L. Dr., Agile Hardware Development with Rapid Hardware Definition Language, IEEE,
2009.

2 (Boehm, 2006) Boehm, Barry, Some Future Trends and Implications for Systems and Software
Engineering Processes, Systems Engineering, Vol.9, No.1, Wiley Periodicals, Inc, 2006.

3 (Chae et.al., 2006) Chae, Heeseo, Lee, Dong-hyun, Park, Jiyong and Peter, Hoh, The Partitioning
Methodology in Hardware/Software Co-design Using Extreme Programming: Evaluation through
the Lego Robot Project, Proceedings of The Sixth IEEE International Conference on Computer and
Information Technology (CIT’06), IEEE, 2006.

4 (Cordeiro et.al.,2007) Cordeiro, Lucas, Barreto, Raimundo, Barcelos, Rafael, Oliveira, Meuse,
Lucena, Vincente and Maciel, Paulo, Agile Development for Embedded Systems: A Platform-
Based Design Approach, Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS’+7), IEEE, 2007.

5 (Doran, 2003) Doran, Hans Dermot, XP: Good for Anything Other than Software Development, XP
2003, Springer-Verlag Berlin Heidelberg, 2003.

6 (Kettunen and Laanti, 2008) Kettunen, Petri and Laanti, Maarit, Combining Agile Software Projects
and Large-scale Organizational Agility, Software Process Improvement and Practice, No.13, 183-
193, 2008.

7 (Paelke and Nebe, 2008) Paelke, Volker and Nebe, Karsten, Integrating Agile Methods for Mixed
Reality Design Space Exploration, DIS’08, 2008.

8 (Van Schooenderwoert and Morsicato, 2004) Van Schooenderwoert, Nancy and Morsicato, Ron,
Taming the Embedded Tiger – Agile Test Techniques for Embedded Software, Agile Development
Conference, 2004.

9 (Smith, 2008) Smith, Preston G., Change: Embrace It, Don’t Deny It, Research-Technology
Management, Vol.51, No.4, 34-40, 2008.

10 (Suhaib, Mathaikutty and Shukla, 2004) Suhaib, Syed, Mathaikutty, Deepak and Shukla, Sandeep,
Extreme Formal Modeling (XFM) for Hardware Models, Proceedings of fifth International Workshop
on Microprocessor Test and Verification (MTV’04), IEEE, 2004.

Results – Systematic literature review

79

Table 15 shows the distribution of the publishing year of primary studies. We

can see that the amount of literature stayed low throughout the decade, and no

trends were found based on this review.

Table 15. Distribution of studies by year of publication.

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Papers 0 0 1 2 0 2 1 3 1 0
Percentage 0% 0% 10% 20% 0% 20% 10% 30% 10% 0%

Table 16 summarizes the key parameters of the selected studies. If the study

focused on more than one sub-area, such as Scrum and XP or hardware and

co-design, it counts for both. First, the type of study is considered. All the

primary studies are either lessons learned type experience reports or technical

papers. This leaves no evidence from systematic academic research. Second,

the studies are categorized by the specific Agile method they reference. Half of

the studies (50%) reference Extreme Programming, which defines

programming practices. This was surprising, since Scrum is the most

commonly adopted Agile method in the industry. Furthermore, Scrum focuses

on project management practices, making it easier to adopt outside software

development. Scrum was mentioned only in 20% of the studies. Third, studies

were evaluated based on the engineering discipline (if any) they focus on. Most

studies (70%, 7 out of 10) discuss co-design between different engineering

disciplines. This can be explained by the fact that this review focused on using

knowledge from Agile software development in other disciplines. The search

terms were selected from the software discipline and that most likely affected

the result. Despite this, 40% of the studies discuss hardware development.

Table 16. Summary of key parameters of the primary studies.

Number of
papers

Percentage

References

Type of study
Experience report/ Lessons
learned

5 50% [3, 5, 7, 8, 10]

Technical paper 5 50% [1, 2, 4, 6, 9]
Agile Method
XP 5 50% [3 - 5, 8, 10]
Generic 4 40% [1, 2, 6, 9]
Scrum 2 20% [4, 7]
Engineering Discipline
Co-design 7 70% [2-8]
Hardware 4 40% [1, 7, 8, 10]
Generic NPD 1 10% [9]
Embedded SW 1 10% [8]

Results – Systematic literature review

80

6.2 Key findings

The review was focusing on finding out how the knowledge from Agile

software methods has been transferred to the non-software domain and the

implications of this transfer. During the review, three themes emerged: co-

design, testing, and iterative hardware development. In addition, the

secondary interpretation revealed an enforcing cycle between them. The

synthesis of the data is summarized in Table 17.

Table 17. Synthesis of data from primary studies.

Theme

Primary interpretation

Secondary interpretation

Co-Design Extended collaborative co-design with
cross-discipline up-front prototyping has
helped teams to achieve several benefits,
such as efficiency, innovativeness and
system-level optimization.

In systems development, the
challenges that Agile development
tackles are shared between
engineering disciplines. When an
increasing number of embedded
software teams adopt an Agile
process, it creates a need for
hardware development to change its
way of working.

Testing Early and frequent prototyping used in
iterative hardware development puts testing
forward into the process. This helps in
detecting mistakes earlier, but it also
introduces more testing work. Testing
practices need to be improved and
developed toward more automation.

Extended co-design results in
increased innovation, not just in the
final product, but also in
development practices. For
example, by utilizing the latest
technology together with software
and hardware developers, novel
automated testing practices can be
created.

Iterative Hardware
Development

Iterative development is identified to suit
hardware development, addressing
challenges such as learning and change.
However, hardware development lacks the
flexibility of software development, and a
need for developing new types of maturing
prototypes and more partner-like
relationships with suppliers is recognized.

Innovation in project and test
automation reduces the overall cycle
cost. This makes iterative hardware
development more attractive, which
in turn brings software and hardware
development closer together.

Therefore, co-design, testing and
iterative hardware development
using up-front prototyping creates an
enforcing cycle.

6.2.1 Co-design

Almost all of the studies ([2-8]) present the need for extended or continuous

collaboration between different engineering disciplines, and identify it to bring

several benefits, such as efficiency, innovativeness, and system-level

optimization.

An interesting perspective on Agile adoption is presented in the domain of

mixed reality by Paelke and Nebe (2008). They present a case on the

development of an augmented paper map (an electronic device providing

additional information to a paper map). The resulting design was significantly

different from existing solutions. They suggest that cross-discipline exploring

Results – Systematic literature review

81

and analysis contributed to this result. Mixed reality development involves a

large amount of bleeding edge technology and novel user experience concepts.

This sets up an interesting challenge, as all the involved disciplines are

creating something new, and up-front partitioning and management with

traditional methods is difficult or even impossible. For this reason, they

suggest that hardware, software, and user experience design must be equally

considered and that Agile methods using short iterations and rapid feedback

on prototypes is the better match for such an exploratory process. Prototyping

can proceed from lightweight prototypes, such as design sketches, paper

prototypes, and mock-ups, to partial implementation, and eventually full

prototypes. Coordination between the disciplines is easier when everyone uses

the same iterative Scrum-based framework. Furthermore, Doran (2003)

claims that when using XP in a co-design project, they achieved an unusually

high number of interactive features and elements in their design in a short

time.

Similar, but more generic ideas are presented by Kettunen and Laanti (2008).

They emphasize that embedded software development is not done in isolation.

It has many dependencies, both internal and external to organizations. Agile

affects the whole organization, not just the software development. If an

embedded software team starts using Agile methods, this has implications for

other disciplines as well. Hardware development is an obvious example.

Kettunen and Laanti propose development process adaptations to help an

organization become more flexible, such as flexible product architecture based

on standardized hardware/software interfaces, close cooperation between

software and hardware, and continuous iterative integration. A system-wide

approach to Agility is needed in NPD organizations.

Other authors continue to emphasize the need for a collaborative co-design

phase. Chae and his team (2006) explain how an extended co-design period

helps in reducing the cost of mistakes by making it possible to detect them

earlier. Furthermore, software and hardware disciplines working together on

automated and semi-automated testing has been identified to lead to a

different relationship between software and hardware teams (Van

Schooenderwoert and Morsicato, 2004).

One often-heard argument against the use of Agile methods in embedded

system development is the presence of special characteristics, such as energy

consumption, execution time, and memory constraints. Cordeiro and his

colleagues (2007) turn this upside down and propose a methodology based on

XP and Scrum just because of these characteristics. They list changes to

methodology they made to make Agile development applicable. The changes

were: “(i) adopt processes and tools to optimize the product’s design rather

than take paths that lead to designs that have no chance of satisfying the

constraints, (ii) support software and hardware development through a

comprehensive flow from specification to implementation, (iii) instantiate the

Results – Systematic literature review

82

system platform based on the application constraints rather than over-design a

platform instance for a given product, and (iv) use system platform to conduct

various design space exploration analyses for performance.” To accommodate

these changes, they further defined Scrum’s Product Owner as divided into

three roles: 1) Platform owner 2) Product leader and 3) Feature leader. These

roles are introduced as the complexity of the project grows. Unfortunately, the

proposed method is only evaluated on a theoretical level.

Quantitative data is rare in the primary studies. The paper on co-design

practice at early phases of embedded system development by Chae et al.

(2006) is a welcome exception. They describe an attempt to transfer the ideas

of Extreme Programming to co-design. The method is called PAMUX

(Partitioning Methodology Using Extreme Programming). It proposes

incremental hw/sw partitioning and continuous testing of the partitioning

through integration. Furthermore, software development is started before the

hardware is available. This is made possible by using unit testing and stubbing

the hardware interface. The process was applied to a university class case

study co-developing an application of a Lego robot. They compare four teams,

two using a traditional co-design process and two using an iterative process

with continuous integration of hardware and software. The results were clearly

positive for the use of the iterative model measured in efficiency (in terms of

lines of code), but more importantly measured in calendar time. The calendar

time was cut in half using iterative development. As this was in a university

setting the real customer satisfaction aspect remained unexplored.

Boehm (2006) forecasts trends in systems development and the likely

influences of these trends on development processes. He identifies eight

trends: the increasing integration of software engineering and systems

engineering, an increased emphasis on users and end value, increasing SIS

(software intensive system) criticality and need for dependability, increasingly

rapid change, increasing SIS globalization and need for interoperability,

increasingly complex system of systems, increasing needs for COTS, reuse, and

legacy SIS integration and computational plenty. He emphasizes the

importance of integration and concurrency of systems and software

engineering processes, including hardware development and people processes.

Boehm proposes a balance between more emergent Agile and plan-driven

parts of the project. These are supplemented with concurrent validation and

verification processes.

6.2.2 Testing

Testing is addressed by several studies ([1, 3, 5, 8, 10]). The importance and

cost benefits of moving testing forward are identified and agreed on. Test

automation opportunities differ according to the system being developed. For

example, possibilities are more versatile for ASIC/FPGA development than for

Results – Systematic literature review

83

a design also requiring electronics and mechanics development. Nevertheless,

the need for automation is clear and some advice on techniques is presented.

The paper by Van Schooenderwoert and Morsicato (2004) is about embedded

software testing techniques, but discusses the implications for hardware

development. The sw/hw integration testing was helped with a hardware unit

test practice. Hardware unit tests eliminated the need to run the whole system

when testing the software/hardware boundary. The basic correctness of the

software was tested continuously. This provides at least a partial answer to the

challenge Doran (2003) reports: “…in the area of system design, it did not

appear to occur to anybody that one could determine how a system is to be

tested before it is actually built.” This practice also made it easier to isolate the

cause of defects. Chae et al. (2006) remind about the need for manual testing

to cover system-level testing, which is not covered by XP practices.

Suhaib, Mathaikutty and Shukla (2004) document a processor development

process based on Extreme Programming practices. Practices such as user

stories and test-driven development are explained in more detail. An example

of a user story in this domain is “each instruction executes in a certain order.”

A description in linear time property can be defined for stories written in this

style. Test-driven development can be adapted by defining the time properties

for each story in advance. The method is tested in three cases: the DLX

pipeline, monitoring of the ISA bus and the arbitration phase of the Pentium

Pro bus. Based on the results of the experiments, several benefits are

identified, such as avoiding implementing extra features and identifying

mistakes immediately. Allen, Abdel-Aty-Zohdy and Ewing (2009) present an

experiment in processor development. They developed a framework for

designing FPGA hardware using .NET languages such as C#, F# or Ruby. The

framework is called Rapid HDL and is designed to move FPGA development

toward Agile software development. By using a framework like Rapid HDL,

test-driven development techniques can be brought into hardware

development.

6.2.3 Iterative hardware development

Many of the papers focus on co-design and not on hardware-specific issues in

detail. Most of the studies still address iterative hardware development ([1, 2,

5-10]). The data gives evidence of the applicability of iterative development to

hardware development.

Hardware is always developed in increments, in the experience of Van

Schooenderwoert and Morsicato (2004). The design often matures from

evaluation boards into integrated production quality design. They turn the

question of whether Agile methods are applicable to hardware development

upside down: “In embedded development, the hardware is always changing

Results – Systematic literature review

84

…Any embedded software development strategy must deal with changing

hardware.”

Doran (2003) reports results from a few initiatives on applying Extreme

Programming practices to hardware development. He identified improvement

in interaction with the customer. Nevertheless, Doran claims failure due to the

prototyping cost and long lead time for the prototype sub-contractor. This

means that when hardware development is following fast-paced development,

it also affects sub-contractors. A more partner-like relationship is needed to

achieve trust in delivery times. Another barrier was the incapability to solve

the testing challenge.

The study by Suhaib, Mathaikutty and Shukla (2004) explains how the state

space grew incrementally in one processor development project. This can be

interpreted as evidence of a possibility of incrementally developing such a

design. As mentioned earlier, Paelke and Nebe (2008) add data from

incremental development requiring effort from multiple engineering

disciplines. They adopt the idea of an incrementally growing product with

maturing prototypes which frequently integrate the effort from different

disciplines. Boehm (2006) acknowledges that software development often

advances several increments between major hardware increments. However,

organizations that have synchronized these increments have gained an

advantage.

The technical paper by Preston Smith (2008) references Agile software

development and suggests that the principles can be applied to development

outside software as well. Smith lists nine tools and practices that provide more

flexibility for product development:

• Continually monitor customers
• Fence-in change
• Try things out
• Explore the design space
• Build strong teams
• Make decisions at the last responsible moment
• Plan piecemeal and constantly consider risk

• Maintain flexibility in upper layers of process
• Out-innovate the competition

The previously mentioned system-wide flexibility (Kettunen and Laanti, 2008)

supports this thinking. Throughout the paper, Smith reminds that flexibility in

product development comes with a cost. Benefit-cost analysis needs to be done

to identify the areas where flexibility techniques such as modular architecture

with interfaces provide the greatest benefit. The variables in this analysis have

changed dramatically in recent years due to advances in technology. New

development technology, such as 3D printers, continues to reduce the

difference between hardware and software development. The diminishing

Results – Systematic literature review

85

differences between software and hardware development can also be

concluded from the description of a framework to develop processors in any

.Net language by Allen and his team (2007).

6.2.4 Secondary interpretation: Enforcing cycle

Agile software development is popular because it provides help with modern-

day development challenges, such as a faster time-to-market and rapid rate of

change. In systems development, these challenges are shared by multiple

engineering disciplines. Embedded software teams are moving into using Agile

software development, and this changes how embedded system-level

development is done. Agile embedded software developers want to test their

design concepts in real hardware as soon as possible. Product Owners and

Agile managers want to see something functional at a frequent cadence. This

means that system-level integration is requested frequently. All this leads to a

common approach toward fast-paced experimenting.

When software and hardware developers work more collaboratively during the

whole project, they will find ways to move the testing forward in their process.

Furthermore, technology advancement changes the game from both ends.

Technology that goes into products gets more naturally flexible (FPGA), and

technology that is used to develop reduces the cost of experimentation and

change (3D printers, CAD technology and rapid prototyping). Technology is

making faster hardware cycles possible. By using the whole team approach,

you accelerate the speed of adapting these new technologies. New

opportunities for improving testing and automation will be revealed. Up-front

testing becomes more efficient. The belief that testing partial and non-

functioning prototypes is expensive, or unnecessary rework, is no longer valid.

Iterative hardware development introduces a cycle cost of prototyping, but this

cost can be lowered by the above-mentioned innovations in practices.

However, other improvements are possible as well. For example, having a

different, partner-like, relationship with prototype suppliers can dramatically

shorten the lead time for acquiring physical prototypes. These and other

changes will reduce the resistance, and iterations for hardware development

can be shortened. The difference between Agile embedded software and

hardware development processes diminish. This can be called Agile co-design.

By doing this, all disciplines can achieve an even faster experimentation

rhythm. This will increase the amount of innovations in the system. All this

together forms an enforcing cycle in Agile co-design (Figure 17).

Results – Systematic literature review

86

Figure 17. Enforcing cycle in Agile co-design.

87

7 Discussion

This research consisted of a case study and a systematic literature review on

knowledge transfer from Agile software development to the hardware

development domain. The case study provided knowledge from an industrial

setting. Afterwards, the systematic literature review was conducted to obtain a

wider angle on existing knowledge. The results from the case study and the

systematic literature review were presented in chapters 4 and 6 respectively.

This chapter takes a look at both studies together. The first two sub-chapters

give a brief summary of the studies and a comparison of their findings. The

next sub-chapter provides further discussion on organizational implications.

The following sub-chapter answers the research questions. The final sub-

chapter considers the limitations of the study.

7.1 Summary of the case and literature studies

The case project was the distributed development of a networked mains

control system. The project organization began following Scrum, which is an

Agile project management framework. Scrum gives guidance for project

management, and also includes elements for iterative process improvement.

Process improvement was done throughout the case project. The case study’s

findings were grouped into four areas: accelerated learning, improved

communication, improved commitment, and remaining challenges.

Accelerated learning was a result of short experiments in the case study (see

emerging product, Figure 9 in chapter 4.1.2). This was vitally important, as a

large amount of knowledge needed to be transferred to the development

teams. Actually, the need for the transfer of knowledge itself had to be learned

at the outset of the project. Fast-paced iterative development, focusing on

working design, revealed gaps in knowledge and forced the project

organization to find a solution. It was evident that the lack of knowledge would

hinder the speed of development. The project team tackled this by arranging a

domain expert to be reachable by the team. They further agreed that if the

domain knowledge was not available, the team was encouraged to make design

decisions according to their own best understanding. Mistakes would be

corrected based on feedback on future iterations.

Several factors contributed to improved communication. The distributed

characteristic of the case project is outside the scope of this research, but it

affected the challenge in communications. The geographical distribution

emphasized that the teams were divided by engineering discipline. The case

study demonstrated that it is difficult to have a successful distributed project

without intensive communication. Team distribution can be geographical or by

engineering discipline, or as in the case project, both. Independent teams can

Discussion

88

work with specifications, but they will face difficulties when the results are

integrated only at the end. While not easy either, it is easier to solve the daily

communication challenges. In this project, the fundamental discovery was the

need for a communication bridge, a local representative of the other team’s

engineering discipline (see team communication mechanisms, Figure 10 in

chapter 4.1.3). This helped the teams to understand the requirements and

constraints of the other discipline. Sosa et al. (2002) list practices to overcome

difficulties caused by distances between teams, such as a high degree of team

member interdependence, strong organizational bonds, and the use of

electronic communication media. This study supports this and implies that

they are listed in prioritized order. This project did have help from tools, but

with improper training and limited experience, they would have been left

unused without the strong bond and continuous reflection on working habits

between the teams.

Empowerment and shared responsibility for the project as a whole resulted in

higher commitment and motivation. Everyone in the project was involved in

project activities, such as Sprint Planning and Review meetings. Teams were

also empowered to improve their own process through the Retrospective

meetings. This increase in the level of engagement made people identify

themselves with the whole project. They were proud to be part of it.

Remaining and new challenges were also identified: large-scale

organizational change, the amount of documentation and engineering skills.

Agile development teams do not work in isolation. The development function

has strong dependencies on other functions and external organizations.

Others need to adapt their way of working to accommodate rapid incremental

development. Existing processes may be very different, and even grounded

within a completely different value system. An example in the case study was

the existing prototyping process designed for avoiding mistakes. It completely

contradicted the approach under experiment.

Prototyping also made the lack of appropriate technical practices visible.

When several rounds of prototypes need to be tested, manual testing becomes

quite laborious. In the case project the idea of automated testing, or test-first

development, was explored, but the teams did not get to experiment with this

in practice. Effective testing is one of the key problems to be solved. With

modern FPGAs, circuit board prototyping, in-circuit testing, boundary-scan

technologies and 3D printers, we can reduce the cycle cost and make simple

partial prototyping more attractive: the cycle time can be reduced to hours. Of

course this definition of prototype is quite different from the more traditional

product development literature. In order to fully exploit this, the testing

practices need to evolve as well.

A systematic literature review was conducted to find out what is currently

known about knowledge transfer from Agile software development to new

Discussion

89

product development in general. A protocol was developed to conduct the

review. The first stage of the protocol was a database search. The search

resulted in 2358 studies matching the set of keywords. Next, the studies were

analyzed for relevance following the review protocol. During this stage, it

became obvious that there are only a limited number of studies on the subject.

Ten primary studies were selected for analysis. Despite the low number of

primary studies, the synthesis was able to reveal three themes: co-design,

testing, and iterative hardware development. Furthermore, secondary

interpretation during the data synthesis identified an enforcing cycle between

the three themes.

The primary studies mainly focused on co-design. This is natural. Systems are

becoming more software-intensive and software development is moving into

more flexible, or Agile, processes. This affects hardware development as well.

Furthermore, hardware and systems development face the same challenges as

software development. The review showed that the current trends in

development, such as an increasing amount of change, complexity of products

and shorter product and technology life cycles suggest benefits from Agile

development. The suggested approach is incremental co-design involving all

engineering disciplines and frequent integration at system level. Based on the

review, collaboration between the different engineering disciplines resulted in

a number of benefits, such as efficiency, innovativeness leading to significantly

different designs compared to existing solutions, and improved system-level

optimization.

Testing was frequently mentioned in the primary studies. It was agreed that

moving testing forward in the project has benefits, such as avoiding

implementing extra features and the cost benefit from identifying mistakes

sooner. However, it was found to be challenging to implement early testing

activities in hardware development.

Iterative hardware development was found not just to be possible, but to be

beneficial to development efficiency. On the other hand, even while the

difference is diminishing, the cycle time in hardware development remains

longer than in software. This means that during a meaningful cycle of

hardware development, the software development goes through multiple

iterations. Synchronizing software and hardware development frequently was

still identified as advantageous. It helped in focusing on the most important

requirements and avoiding over-engineering the technical solution.

During the analysis, a secondary interpretation found an enforcing cycle

between co-design, testing, and iterative hardware development. Early testing

of partial solutions has been seen as an extra cost. Luckily, more intensive,

extended and collaborative co-design creates new ideas on how to move

testing forward, and how to automate an increasing portion of testing.

Automating testing in turn enables even faster iterations in hardware

Discussion

90

development. Another roadblock for iterative hardware development has been

the long lead times from prototype suppliers. Working with partner-like

prototype suppliers, the cycle time can be shortened, and the cadence of

development accelerated. In addition, new technology brings other disciplines

closer to software development. This in turn spins the wheel forward and

creates an enforcing cycle of continuous improvement and innovation.

7.2 Comparison of the case and literature studies

Several similarities were found when the two studies were analyzed together.

This strengthens the grounding of the findings. During the analysis, four

themes emerged: learning and innovation, whole team approach, emergent

process, and remaining challenges. The analysis is summarized in Table 18.

Table 18. Cross-analysis of the two studies.

Theme

Case Study

Systematic Literature
Review

Summary/Recommendation

Learning and
innovation

Learning about the
design was
accelerated through
up-front prototyping.

Early and extended co-
design was
experienced to bring
many benefits such as
more innovative
solutions.

Use of fast-paced learning
cycles leads to faster and
more innovative designs.

Whole team
approach

Collective ownership of
product and project
resulted in improved
commitment.

Shared goals led to
improved
communication.

Multidisciplinary nature
of development teams
resulted in better-
optimized solutions.

Co-design led to
different relationship
between developers
from multiple
disciplines.

In complex environments
(such as multidisciplinary
development) a single view is
not enough to understand the
whole system.

Emergent process The process was
improved through
Retrospective
meetings involving the
whole team.

Synthesis found a
reinforcing
improvement loop
between co-design,
testing and iterative
hardware
development.

Scrum provides a framework
for process improvement
through inspect and
adaptation loops.

Other Agile methods provide
guidance on practices that
could be adopted, but they
require transformation from
the software domain.

Remaining
challenges

The need for
engineering practices
to support multiple
prototyping cycles was
identified.

Conflicts with the rest
of the organization lead
to large-scale
organizational change.

Testing was identified
as a key problem to be
solved.

Development team
does not work in
isolation, but is
dependent on the rest
of the organization,
and for example,
prototype suppliers.

Changing the development
method to Agile affects the
whole organization, at many
different levels. It creates a
need for company-wide
learning.

Learning and innovation from extended co-design applying frequent

prototyping is a shared finding in both studies. Early experimenting with

cross-discipline up-front prototyping was the major contributor to fast

Discussion

91

learning in the case study. Prototyping revealed gaps in knowledge and

accelerated knowledge transfer. The literature study listed several benefits

from co-design, such as the degree of innovation. More intensive collaboration

with cross-discipline teams clearly accelerates learning. It helps in sharing

existing knowledge between disciplines, but also in creating new knowledge.

New ways of learning reveal new challenges. The studies identify difficulties in

reacting to feedback and cycle cost concerns. These challenges are linked.

When the team fully harnesses the learning potential available from the

feedback, the cycle cost is justified. In contrast, when the team does not react

to feedback, it completely jeopardizes the return on investment from the cycle

cost. Concrete example of this include leaving dealing with issues that are

found lurking until the product is transferred to mass production. Leaving

these issues without attention until the supposed end of the project reduces

the predictability of the project dramatically. On the other hand, disciplined

fast-paced experimenting has the potential to accelerate learning and

innovation dramatically.

Whole team approach, involving the team as a whole in all decision-making

was observed to bring several benefits. When people from different

engineering disciplines work together toward a shared short-term goal, it

improves communication significantly. A major contributor to the

improvement is the daily access to other disciplines, enabling the pull

information practice mentioned in the case study results. The other discipline

can get exactly the information it needs, at exactly the time when it needs it

and in the format best suited for the use. Trust between project members was

found to be essential for improved communication, but it was challenging to

achieve in the case study. Building trust takes time, and in the case study this

was only achieved a significant time into the project. Trust is not explicitly

mentioned in any of the primary studies in the literature review. However, it is

mentioned that short-term goals and shared responsibility create different

relationships between disciplines. Furthermore, it is pointed out that blaming

and responsibility pushing are avoided with a more collaborative philosophy.

This in turn can be interpreted as trust. In addition, the case study identified

that the increased whole team involvement resulted in improved commitment.

This is not explicitly mentioned in any of the primary studies in the systematic

literature study.

The case project began experimenting with Agile development based on the

Scrum project management framework. The emergent process was

continuously improved and refined based on the ideas created in the

Retrospective meetings. Improvements happened in several areas, such as

communication mechanisms supporting co-design and processes for

prototyping. A key finding in the systematic literature review was that these

improvements do not happen independently. Co-design, testing, and iterative

hardware development together create an enforcing improvement cycle. The

case study supported this finding. The case study started with collaborative co-

Discussion

92

design. Early testing was improved in cooperation by creating better, more

efficient practices for up-front prototyping and integration. All this together

shortened the iterations the team felt comfortable with.

While both studies indicated that knowledge from Agile software development

methods can be transferred at different levels into other engineering

disciplines, they also identified a number of remaining challenges. The

challenges begin at team level. The rapid cycles require changes in engineering

practices. The need for adapted engineering practices was evident based on

both studies. Moving testing forward is seen to be effective, but to enable

efficient regression testing, the level of automation needs to grow. In the case

study, this need was identified, but a solution remained unfound. Some

examples of new ways to automate testing are presented in the primary studies

of the literature review. One contributor is increased collaboration between

software and other disciplines. Programmers can identify opportunities and

experiment with automating the tools. The literature review also found much

promise in advancing technologies bringing other development closer to

software development. For example, in FPGA and ASIC development, software

testing techniques become more readily available. Challenges were equally

evident outside the team. When one function changes the way of working, it

conflicts with many of the organization’s existing processes. An example

identified in both studies is the relationship with prototype suppliers.

Established partner-like relationships between the suppliers made it possible

to have 24h delivery of physical prototypes in the case study. The official

bureaucratic process for prototyping would have taken weeks for each

prototype round. Both studies also identified challenges beyond the immediate

stakeholders. The next sub-chapter looks at the implications of Agile

development for the whole organization.

7.3 Further discussion on organizational
implications

The development process cannot be changed without affecting the rest of the

organization. We will first take a look at the development organization. A

common development organization structure is divided into lines based on

engineering discipline. An Agile system development team relies on the

opposite structure. The team has members from different engineering

disciplines. A conceptual framework presenting how the organization moves

from line organization toward Agile System Development teams is illustrated

in Figure 18. The framework presents four stages: Waterfall, hybrid, single-

discipline Agile and multi-discipline Agile. The stages are used in the industry

according to the author’s observation, and their order describes how well they

support the idea of a self-organizing team. It is assumed that the more cross-

disciplined the team is, the more self-organizing it can be. The framework

characterizes the different stages by how they differ in three aspects: team

Discussion

93

structure, method of co-working, and motivation for prototyping. The three

aspects were chosen because they were the most visible changes based on both

studies in this thesis. The framework defines a Waterfall process as an example

of the “traditional” project management of system product development. In

this model, the communication is mainly done using written documentation at

pre-defined stages. Development in multiple engineering disciplines follows a

plan and results from different lines of development are integrated at the end,

or at a few intermediate points. The hybrid process model combining Waterfall

and Agile processes can be seen as the initial step toward Agility. At this stage,

one or more disciplines follow a Waterfall process, or the Waterfall process is

seen as the grand process above the Agile development. This stage still has the

rigidity of the bureaucratic control-oriented culture. Organizations that have

moved into the third stage, single-discipline Agile, have organized

development into Agile teams. However, these are still mainly formed

according to engineering discipline. The communication is directed via the

role of a system architect or similar, but the synchronization of different

disciplines is done much more frequently. The last stage in the framework

involves organizing the whole development around cross-discipline system

development teams. The synchronization of different engineering disciplines is

done in real-time, as the team commits to solving problems together. This is

possible because they have skills and knowledge from all disciplines. The

framework calls this category multi-discipline Agile. The case study is

positioned between single-discipline Agile and multi-discipline Agile. The

teams adopted the practice of the communication bridge in order to have

members from different disciplines. This clearly showed the need for intensive

collaboration between the disciplines. Team members also confirmed that they

would like to be full-time members of a system development team.

Figure 18. A conceptual framework for development Agility.

However, changing the structure of development organization does not solve

everything. Development Agility cannot be the goal itself and development

Agility alone is not enough, either. As illustrated in Figure 18, the organization

Discussion

94

should move forward from development Agility. Kettunen and Laanti (2008)

propose a model for thinking about organizational Agility from the perspective

of the company’s goals. The model is further explained in Laanti (2012). It

describes how an Agile organization works. Goals define what the organization

really wants to achieve. Means are the practices the company has chosen to

implement in order to achieve those goals. Enablers are the factors, conditions

and abilities that make achieving the goals possible through the selected

means. The enablers, means and goals model is illustrated in Figure 19. To see

how the results from this research fit the model, we choose the goal to be

ambitious: “sustainable competitiveness in a turbulent environment.” This

goal is derived from the challenges presented in chapter 2.3:

• Products need to get to market faster
• Increasing amount of change (or learning) during the development
• Products to be developed are getting more complex

Examples of means identified in the studies are incremental and iterative co-

design and a flexible, modular system-level platform. In the context of this

thesis, it is important to notice that the means and practices, are shared by

multiple engineering disciplines. They describe Agile co-design at the system

level. The studies found a number of enablers as well, such as technology

improvements in many areas. Development Agility is only a means to an end.

By combining the goals, means, enablers model and findings of this thesis, we

can clearly notice that organization-wide strategic alignment is needed, as can

be seen in Figure 19.

Figure 19. Iterative and incremental co-design modeled in organizational
improvement context (Kettunen and Laanti, 2008; Laanti, 2012).

Discussion

95

7.4 Answering the research questions

The overarching research problem was:

Can the knowledge from Agile software development be transferred

to supplement flexible product development processes and accelerate

their adoption in other engineering disciplines and system

development?

The research problem was further divided into three research questions. They

are answered in the next sub-sections.

7.4.1 Research question 1

Can knowledge from Agile software development be transferred

to non-software new product development?

The first research question takes a look at the research problem on a very

generic level. In the case organization, knowledge from Agile software

development and the Scrum framework was adopted successfully in a non-

software development project. Based on this research, the knowledge is

directly transferable on a higher level. The Agile Manifesto and Scrum

framework can be adapted with very few modifications. The work can be done

mainly at the level of definitions. For example, the concepts of customer role

and potentially shippable product need to be adapted for domains outside

software development. More specific engineering practices, labeled as Agile

engineering practices and mostly coming from Extreme Programming, need

more thorough transformation. Nevertheless, the need to learn from practices

such as continuous integration, test-driven development, collective ownership

and pair programming (working) was evident during this research.

The systematic literature review showed that the documented knowledge on

the topic is limited. However, studies were found showing that knowledge

transfer has been successfully implemented in other organizations as well,

supporting the result from the case study. As a conclusion, we can say that

knowledge from Agile software development can be transferred to other

development domains. It is valuable to remember that the knowledge transfer

from Agile software development can happen at many levels.

Discussion

96

7.4.2 Research question 2

What are the implications of introducing concepts familiar from

Agile software development in the development of physical

products?

The second research question looks at the possible positive and negative

implications that the introduction of Agile development brings. Both studies

found Agile development to bring several benefits, such as accelerated

learning, improved commitment, efficiency, and more innovative solutions.

Mainly, this contributed to extended, iterative co-design. In the case project,

the short time-boxed experiments with physical prototypes revealed gaps in

knowledge. This discovery guided the teams to acquire the needed knowledge

immediately. The involvement of the whole team in product and process

design led to increased commitment and efficiency. The growing degree of

innovativeness can be argued to be the result of having people from multiple

engineering disciplines closely collaborating on a daily basis. This reduces

misconceptions but also helps in multi-learning, learning to think from the

perspective of other disciplines and learning new ways of learning together.

On the other hand, Agile development causes a need for deeper change in

engineering. Iterative development makes the need for continuous testing

clearly visible. When thorough learning is needed frequently, the level of test

automation needs to grow. Testing in iterative hardware development was

seen as a key challenge, but concrete examples of solutions were lacking. For

software development, this is fairly well understood, and tools and

technologies are available, but for other engineering disciplines, the solution is

not so straightforward. Collaboration between engineering disciplines, on the

other hand, was seen as creating solutions for more efficient testing and this

changed the attitude toward fast iterations in a more positive direction.

7.4.3 Research question 3

Does Agile development impose larger organizational

implications?

The final research question shifts the focus to the surroundings of the

development function. Development does not happen in isolation. The change

in the way of working affects the immediate stakeholders and eventually the

whole organization. Close proximity effects were identified in the case study.

For example, the case project experienced difficulties because the product

management was not officially included in the process change. Furthermore,

both studies identified the need for a change in co-working with external

Discussion

97

parties such as other development sites and prototype suppliers. This topic

also came up in the literature on flexible product development. The early

involvement of senior management in the development process, a change in

managerial style and a company-wide focus on learning were mentioned as

examples of these changes.

Agile development can only be seen as a means to achieve a company’s

fundamental goal. The fundamental goal is to be successful, both in the short

and long term. Agile development alone cannot be the whole answer. For a

better outcome, company-wide alignment is needed.

7.5 Limitations

The study has several limitations that need consideration. The case study was

a single isolated case. In this light, it is fair to say that there are limitations in

generalizability. It is worth mentioning that every environment, project, and

project organization is different. In addition, the case study and primary

studies of literature review presented results from the introductory phase of

the Agile process. Therefore, any long-term implications remain to be studied.

The case project was started without a pre-study of existing knowledge or a

thorough research plan. This was justified because an opportunity for

observation in the industrial setting was available. Further, the results turned

out to be trustworthy and to support existing data. It must be granted that with

more time for pre-research, there might have been chances to identify

important matters, such as investment in testing practices.

Because of the distance and worst possible time difference, it was impossible

to observe how the teams worked on a daily basis (e.g. self-organizing team or

Daily Scrum). Providing continuous coaching for teams was also impossible.

Thesis writing and post-project interviews happened over a year after the

project. All of the people involved in the case project had continued to practice

Agile development and project management practices. For this reason, it was

sometimes difficult to remember what was done during the case project, and

what was only done later. However, the key findings presented were consistent

and distributed throughout data from different sources (documents,

presentations, developer and technical lead interviews) and thus data

supporting these findings can be said to be saturated. This leads to the

conclusion that presented findings are grounded. They also support the earlier

research.

There is a considerable risk of bias when the researcher works in the company

in which the study takes place. This bias was reduced by the fact that the

author was not an active member of the project. In addition, several versions

of the thesis were reviewed by the participants.

Discussion

98

The existing literature on applying Agile methods to hardware development is

scarce. This forced the selection of primary studies from quite a broad area.

This together with the questionable academic quality of the studies resulted in

rather scattered data. The existing literature mainly consists of lessons learned

papers based on expert opinion. Furthermore, the search for studies was

undertaken using keywords more familiar to the software industry. Therefore,

it is likely that it missed studies that describe fast-paced incremental and

iterative hardware development, but do not reference Agile software

development. On the other hand, this research focuses on knowledge transfer

from Agile software development and therefore the selection of keywords is

justified. It is also worth noticing that none of the studies reported failure. It is

fair to expect that failures do exist when companies have started investing in

up-front prototyping.

99

8 Conclusions

This chapter takes a final look at the entire research project. It presents a brief

summary of the thesis and proposes future research topics as identified during

the research.

8.1 Summary and conclusions

The objective of this research was to find out if knowledge transfer from Agile

software development to the hardware development domain is possible, and

the implications of such an effort. A two-part study was conducted: a case

study in an industrial setting and a systematic literature review. The results

from both parts supported each other, and also aligned with the existing

literature.

The data from the two studies forms a solid answer to the overarching research

problem. Knowledge from Agile software development can, and should, be

taken into account for other disciplines as well. Although knowledge on

emergent processes for product development in general has been available for

decades, it is Agile software development that has been rapidly adopted in the

industry with encouraging results. There is promise in the knowledge transfer;

especially due to the increased software intensity in products that companies

develop. Starting iterative hardware development after only brief Agile

development training was straightforward in the case organization. Therefore,

we can conclude that knowledge from Agile software development can

accelerate the adoption of flexible process models. The process itself brought

several benefits, such as accelerated learning and innovation, a more

collaborative whole team approach, and continuous improvement of the

emergent process. However, Agile development requires some changes in

traditional hardware development. The most obvious change is the process for

using prototyping during the development. In Agile development, the use of

prototypes is much more intense, and requires a streamlined process and a

partner-like relationship with prototype suppliers. Another example is testing

activity. Testing becomes an integrated activity throughout the development,

and new testing practices are needed.

The primary contribution of this study is adding knowledge from the field, by

practitioners, on knowledge transfer from Agile software development to the

hardware development domain. Research has been conducted on combining

Waterfall-like processes for hardware development with Agile software

development (Karlström and Runeson, 2006). In contrast, this thesis

presented how hardware development can benefit from following Agile

development methods. These findings should encourage others to experiment

with Agile methods in different environments, not limited to software

Conclusions

100

development. Agile embedded software development is getting attention

already, and the natural continuum is to study Agile co-design in system

development. The systematic literature review was only able to find only a few

studies on the subject. This further emphasizes the importance of the

contribution. All in all, this study gives a partial answer to Smith’s (2007)

request for evidence from the field regarding the use of Agile development

methods outside the software development realm.

The practical contribution of this work can be found beneficial for all the roles

in an organization. It encourages organizations to leverage co-learning by

continuously transferring knowledge across the engineering discipline

boundaries. It provides guidance on how to get started in implementing

iterative system-level development using knowledge from Agile software

development. On a higher level, a framework for development organization

Agility was proposed according to the level of co-design Agility and

collaboration. Secondly, it was argued that development Agility is not the end

objective, but rather a means to achieve organizational goals. Therefore, this

thesis also contributes to the understanding of development Agility being a

source of organization-wide change.

8.2 Future research

Both the systematic literature review and the case study clearly show that we

still need more explorative studies in this area. In order to grow the knowledge

on the use of Agile methods in systems development, several more focused

areas of interest for future research were identified.

When the whole development department moves into a fast iterative rhythm,

it is inevitable that it affects the whole organization. This leads to interest in

Agile enterprise process integration. Based on the experience from the case

study, first steps could include the early involvement of people responsible for

industrialization. Often the industrialization phase is the responsibility of an

independent organization, and the transfer of responsibility from product

development to industrialization is seen as a single event, and can be quite

bureaucratic. The model for involving larger project organizations needs

exploring.

A particular area of interest is the economics of up-front prototyping

strategies. Up-front prototyping in system development is at the heart of Agile

development. Can you always justify up-front prototyping? Can we put a price

tag on time? How do we calculate the saved time, when we do not have data

from the traditional approach? The process of balancing the cycle cost of a

given product and the optimal prototyping frequency needs guidelines. For

example, can you quantify the amount of missing knowledge versus the cost of

acquiring it? In advanced development, it would be interesting to find ways to

Conclusions

101

justify prototyping parallel solutions and making a late commitment to one

optimal one. A cost analysis of the number and maturity of prototypes would

be interesting to study. How does innovation fit into the picture? And finally,

what about situations where we do not know what we do not know?

Moving testing forward in system development is a major challenge on its

own. Both studies found this to be one of the most important areas for

improvement. Today Agile testing practices (such as test automation and test-

driven development) are thoroughly documented for software development,

including embedded software (Grenning, 2014). While it is fairly

straightforward to adapt Agile project management practices to hardware

development, very little is written about specific practices suitable, for

example, for test-driven hardware development. Here again, a framework for

finding the balance between investment in test automation and saved time and

quality improvement is an interesting topic. It is easier to justify test

automation in software development, as it is very probable that software

changes after first being released to production. Today, despite the

continuously shortening life cycles, hardware is still less likely to change

frequently while in production.

It is a fairly common misconception that there is no role for written

documentation in Agile development. This is not true, and the minimal

amount of written documentation was found to be problematic in the case

study. The study took place in an organization that officially followed a

sequential Stage-Gate process and had a CMMI initiative. In the case project,

these obligations were overlooked. Research should consider the appropriate

amount and method of documenting for future development. Research exists

on the integration of Agile development and legitimacy processes and quality

and improvement models, for example, Stage-Gate (Karlström and Runeson,

2006), ISO 9001 (Cockburn, 2005, Namioka and Bran, 2004 and Stålhane and

Hanssen, 2008) and CMMI (Sutherland, Jakobsen and Johnsson, 2007). This

work should be continued from the practical perspective, concentrating on a

documentation approach that helps the organization and at the same time

satisfies the certified quality assurance process.

At the time of writing this thesis, the topic of Agile methods for hardware

development domain is getting more attention. At a recent embedded systems

conference, there were three talks presenting benefits of Agile development in

hardware and systems development (Punkka, 2012; Schoenderwoort, 2012;

Liberty, 2012). Agile, iterative, ASIC development has also gotten attention in

the past couple of years (Johnson, 2012; Leisgang, 2012). Studies have also

been conducted on the applicability of Scrum even in non-technical fields such

as venture group, church, and management teams (Sutherland, Sutherland

and Hegarty 2009; Sutherland and Altman, 2009; Barton, 2009; Figueiredo,

2009). The results have been encouraging, and the work should be continued.

Conclusions

102

Knowledge transfers should not be considered as one-time, one-direction

events. Rather, the exchange of knowledge between disciplines and domains

should be continuous.

103

9 References

(Barton, 2009) Barton, Brent, All-Out Organizational Scrum as in Innovation

Value Chain, Proceedings of the 42nd Hawaii International Conference on

Systems Sciences (HICSS), 2009.

(Larman and Basili, 2003) Larman, Craig and Basili, Victor R., Iterative and

Incremental Development: A Brief History, IEEE Computer, June, 2-11, 2003.

(Beck, 2000) Beck, Kent, Extreme Programming Explained, Addison-Wesley,

2000.

(Beck and Andres 2004) Beck, Kent and Andres, Cynthia, Extreme

Programming Explained: Embrace Change, 2nd Edition, Addison-Wesley

Professional, 2004.

(Boehm, 2006) Boehm, Barry, Some Future Trends and Implications for

Systems and Software Engineering Processes, Systems Engineering, Vol.9, No.

1, 1-19, Wiley Periodicals, Inc, 2006.

(Brereton et.al., 2007) Brereton, Pearl, Kitchenham, Barbara, Budgen, David,

Tuner, Mark and Khalil, Mohammed, Lessons from Applying the Systematic

Literature Review Process within Software Engineering Domain, The Journal

of Systems and Software, No.80, 571-583, 2007.

(Clay and Smith, 2000) G. Thomas Clay and Preston G. Smith, Rapid

Prototyping Accelerates the Design Process, Machine Design Magazine

(available at http://www.machinedesign.com/), March 9, 166-171, 2000.

(Cockburn and Highsmith, 2001) Cockburn, Alistair and Highsmith, Jim,

Agile Software Development: The Business of Innovation, IEEE Computer,

September, 120-127, 2001.

(Cockburn, 2001) Cockburn, Alistair, Agile Software Development, Addison

Wesley, 2001.

(Cockburn, 2005) Cockburn, Alistair, Crystal Clear – A Human-Powered

Methodology for Small Teams, Addison Wesley, 2005.

(Coghlan and Brannick, 2001) Coghlan, David and Brannick, Teresa, Doing

Action Research in Your Own Organization, Sage Publications, Inc., 2001.

(Cohn, 2006) Cohn, Mike, Agile Estimating and Planning, Prentice Hall, 2006.

(Cohn, 2010) Cohn, Mike, Succeeding with Agile, Addison Wesley, 2010.

(Cooper, 1986) Cooper, Robert G., Winning at New Products, 1st Edition,

Addison Wesley, 1986.

(Cooper, 2001) Cooper, Robert G., Winning at New Products, 3rd Edition,

Perseus Publishing, Cambridge, Mass., 2001.

(Cooper, 2009) Cooper, Robert G., How Companies are Reinventing Their

Idea-to-Launch Methodologies, Research-Technology Management,

Vol.52, No.2, March-April, 47-57, 2009.

References

104

(Cooper and Edgett, 2009) Cooper, Robert G. and Edgett, Scott J., Lean, Rapid

and Profitable New Product Development, Booksurge Publishing, 2009.

(Cunningham, 1997) Cunningham, J. Barton, Case Study Principles for

Different Types of Cases, Quality & Quantity No.31, 401-423, Kluwer Academic

Publishers, Netherlands, 1997.

(Doz and Kosonen, 2008) Doz, Yves and Kosonen, Mikko, Fast Strategy: How

Strategic Agility Will Help You Stay Ahead of the Game, Pearson Education

Limited, 2008.

(Figueiredo, 2009) Figueiredo, Alexandre Magno, An Executive Scrum Team,

Agile Conference 2009.

(Fowler, 2006) Fowler, Martin, Using an Agile Software Process with Offshore

Development, (online, available at

http://martinfowler.com/articles/agileOffshore.html), 2006.

(Grenning, 2011) Grenning, James W., Test-Driven Development for

Embedded C, The Pragmatic Bookshelf, 2011.

(Hamel and Prahalad, 1994) Hamel, Gary and Prahalad, C.K., Competing for

the Future, Harvard Business School Press, Boston, Massachusetts, 1994.

(Highsmith, 1999) Highsmith, James, A., Adaptive Software Development,

Dorset House Publishing., Inc., 1999.

(Highsmith, 2001) Highsmith, Jim, Manifesto for Agile Software

Development, (online, available at http://agilemanifesto.org/), 2001.

(Highsmith, 2002) Highsmith, Jim, Product Development and Agile Methods,

The Cutter Edge (online, available at:

http://www.cutter.com/research/2002/edge020528.html), 2002

(Highsmith, 2007) Highsmith, Jim, Panel discussion at Agile Conference

2007, Washington D.C., Agile Conference 2007.

(Highsmith, 2009) Highsmith, Jim, Agile Project Management: Creating

Innovative Products, 2nd Edition, Addison-Wesley Professional, 2009.

(Hutchings et al., 1993) Hutchings, Tony, Hyde, G. Michael, Marca, David, and

Cohen, Lou, Process Improvement that Lasts: Integrated Training and

Consulting Methods, Communications of ACM, Vol.36, No.10, 105-113,

October 1993

(Johnson, 2012) Johnson, Neil, TDD and a New Paradigm for Hardware

Verification, Agile Conference, 2012. Presentation available at:

http://www.agilealliance.org/files/session_pdfs/TDD%20and%20a%20new%

20paradigm%20for%20hardware%20verification.pdf

(Karlström and Runeson, 2006) Karlström, Daniel and Runeson, Per,

Integrating Agile Software Development into Stage-Gate Managed Product

Development, Empirical Software Engineering, Vol.11, No.2, 203-225, June,

2006.

References

105

(Katzenbach and Smith, 2003) Katzenbach, Jon and Smith, Douglas, The

Wisdom of Teams: Creating the High-Performance Organization, Harper

Business, 2003.

(Kettunen and Laanti, 2008) Kettunen, Petri and Laanti, Maarit, Combining

Agile Software Projects and Large-scale Organizational Agility, Software

Process Improvement and Practice, No.13 183-193, 2008.

(Kitchenham, 2007) Kitchenham, Barbara, Guidelines for performing

Systematic Literature Reviews in Software Engineering, 2007.

(Laanti, 2012) Laanti, Maarit, Agile Methods in Large-Scale Software

Development Organizations – Applicability and Model for Adoption, Doctoral

Thesis, Department of Information Processing Science, University of Oulu,

2012.

(Leisgang, 2012) Leisgang, Tobias, How to Play Basketball with a Soccer

Team? Making IC development more agile, Agile Conference, 2012.

Presentation available at:

http://www.agilealliance.org/files/session_pdfs/Agile2012_SoccerWithABask

etballTeam.pdf

(Liberty, 2012) Liberty, Matt, Agile Hardware, Embedded Systems Conference,

Boston, 2012.

(MacCormack, Verganti and Iansiti, 2001) MacCormack, Alan, Verganti,

Roberto and Iansiti, Marco, Developing Products on “Internet Time”: The

Anatomy of a Flexible Development Process, Management Science, Vol.47,

No.1, 133-150, January, 2001.

(Miles and Huberman, 1994) Miles, Matthew and Huberman, Michael,

Qualitative Data Analysis, 2nd Edition, SAGE Publications, 1994.

(Manning and Rising, 2005) Manns, Mary Lynn and Rising, Linda, Fearless

Change: Patterns for Introducing New Ideas, Pearson Education, Inc., 2005.

(Mishra and Mishra, 2009) Mishra, Deepti and Mishra, Alok, Effective

Communication, Collaboration, and Coordination in eXtreme Programming:

Human-Centric Perspective in a Small Organization, Human Factors and

Ergonomics in Manufacturing, Vol.19, Issue 5, 438-456, 2009.

(Namioka and Bran, 2004) Namioka, Aki and Bran, Cary, eXtreme ISO ?!?,

Companion to the 19th annual ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA), 2004.

(Nerur, Mahapatra and Mangalaraj, 2005) Nerur, Sridhar, Mahapatra,

RadhaKanta and Mangalaraj, George, Challenges of Migrating to Agile

Methodologies, Communications of the ACM, May/Vol.48, No.5, 72-78, 2005.

(Noblit and Hare, 1988) Noblit, G.W. and Hare, R.D. Meta-Ethnography:

Synthesizing Qualitative Studies. Sage Publications, 1988.

(Ogunnaike and Ray,1994) Ogunnaike, A. Babatunde and Ray, W. Harmon,

Process Dynamics, Modeling and Control, Oxford University Press, Inc., 1994.

References

106

(Ovesen, 2012) Ovesen, Nis, The Challenges of Becoming Agile –

Implementing and Conducting Scrum in Integrated Product Development,

PhD Thesis, Aalborg University, 2012.

(Paasivaara, 2005) Paasivaara, Maria, Communication Practices in Inter-

Organisational Product Development, Doctoral Dissertation, Helsinki

University of Technology, Department of Computer Science and Engineering,

2005.

(Patton, 2002) Patton, Michael Quinn, Qualitative Research & Evaluation

Methods, 3rd Edition, Sage Publications, California, 2002.

(PMI, 2010) 2010 PMI’s Pulse of profession, (online, available at:

http://www.pmi.org/~/media/PDF/Home/Pulse%20of%20the%20Profession

%20White%20Paper%20-%20FINAL.ashx), 2010.

(Punkka, 2012) Punkka, Timo, Agile Hardware and Co-design, Embedded

Systems Conference, Boston, 2012.

(Potts. 1993) Potts, Colin, Software-Engineering Research Revisited, IEEE

Software, September 1993, 19-28.

(QSMA, 2008) Agile Impact Report, QSM Associates, 2008. (Online, available

for order at http://www.qsma.com/agile-impact-report.html)

(Ratner and Harvey, 2011) Ratner, Ian and Harvey, Jack, Vertical Slicing:

Smaller is Better, AGILE’11 Proceedings of the Agile Conference, IEEE

Computer Society, Washington DC, 2011.

(Reinertsen, 1997) Reinertsen, Donald G., Managing the Design Factory, A

Product Developers Tool Kit, Simon & Schuster Ltd, 1997.

(Reinertsen, 2009) Reinertsen, Donald G., The Principles of Product

Development Flow – Second Generation Lean Product Development, Celeritas

Publishing, Redondo Beach, California, 2009.

(Royce, 1970) Royce, Winston, Managing the Development of Large Software

Systems, Proceedings of IEEE WESCON No.26, August 1970.

(Schwaber and Beedle, 2002) Schwaber, Ken, and Beedle, Mike, Agile

Software Development with Scrum, Prentice Hall 2002.

(Schwaber, 2004) Schwaber, Kent, Agile Project Management with Scrum,

Microsoft Press, 2004.

(Schooenderwoert, 2012) Van Schooenderwoert, Nancy, Agile Hardware

Development: Why Lean and Agile Principles Work Here, Embedded Systems

Conference, Boston, 2012.

(Smith, 1990) Smith, Preston, G., Fast-Cycle Product Development,

Engineering Management Journal, Vol.2, No.2, June, 328-338, 1990.

(Smith and Reinertsen, 1997) Smith, Preston, G., and Reinertsen, Donald G.,

Developing Products in Half the Time; New Rules, New Tools, 2nd Edition,

John Wiley & Sons Inc, 1997.

References

107

(Smith, 2007) Smith, Preston, G., Flexible Product Development, Jossey-Bass,

2007.

(Sosa et. al., 2002) Sosa, Manuel, Eppinger Steven, Pich, Michael,

McKendrick, David, and Stout, Suzanne, Factors That Influence Technical

Communication in Distributed Product Development: An Empirical Study in

the Telecommunications Industry, IEEE Transactions on Engineering

Management, Vol.49, No.1, February, 45-58, 2002.

(Stringer, 1999) Stringer, Ernest T., Action Research, 2nd Edition, Sage

Publications, Inc., 1999.

(Stålhane and Hanssen, 2008) Stålhane, Tor and Hanssen, Geir Kjetil, The

Application of ISO 9001 to Agile Software Development, Proceedings of the

9th International Conference on Product-Focused Software Process

Improvement (PROFES), 2008.

(Sutherland, Jakobsen and Johnsson, 2007) Sutherland, Jeff, Jakobsen,

Carsten Ruseng and Johnsson, Kent, Scrum and CMMI Level 5: The Magic

Potion for Code Warriors, Agile Conference, 2007.

(Sutherland, Sutherland and Hegarty 2009) Sutherland, Arline, Sutherland,

Jeff, Hegarty, Christine, Scrum in Church: Saving the World One Team at a

Time, Agile 2009 Conference, 2009.

(Sutherland et.al., 2007) Sutherland, Jeff, Viktorov, Anton, Blount, Jack,

Puntikov, Nikolai, Distributed Scrum: Agile Project Management with

Outsourced Development Teams, Proceedings of the 40th Annual Hawaii

International Conference on System Sciences (HICSS), 2007.

(Sutherland and Altman, 2009) Sutherland, Jeff and Altman, Igor, Take No

Prisoners: How a Venture Capital Group Does Scrum, Agile 2009 Conference,

2009.

(Sutherland, Viktorov and Blount, 2006) Sutherland, Jeff, Viktorov, Anton

and Blount, Jack, Adaptive Engineering of Large Software Projects with

Distributed/outsourced Teams, Proceedings of the Sixth International

Conference on Complex Systems, New England Complex Systems Institute,

2006.

(Tabaka, 2008) Tabaka, Jean, Collaboration Explained, Facilitation Skills for

Software Project Leaders, Addison-Wesley, 2008.

(Takeuchi ja Nonaka, 1986) Takeuchi, H. and Nonaka I., The New Product

Development Game, Harvard Business Review, Vol. 64, No. 1, 137-146, 1986.

(Thomke and Reinertson, 1998), Thomke, Stefan and Reinertson, Donald,

Agile Product Development: Managing Development Flexibility in Uncertain

Environments, California Management Review, Vol.41, No.1, Fall, 8-30, 1998.

(Versionone, 2013) VersionOne, 7th Annual State of Agile Development Survey,

2013. (Online, available at:

http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-

Survey.pdf

References

108

(West and Grant, 2010) West, Dave and Grant, Tom, Agile Development:

Mainstream Adoption Has Changed Agility, Forrester Research Inc., January,

2010.

(Yin, 1994) Yin, Robert K., Case Study Research; Design and Methods, 2nd

Edition, Sage Publications Inc., California, 1994.

10
9

APPENDIX A – Data extraction from primary studies

Summary of themes in selected studies (A)
ID 147 125 107 101
Author(s) Doran, Hans Dermot Van Schooenderwoert, Nancy and

Morsicato, Ron
Suhaib, Syed, Mathaikutty, Deepak and
Shukla, Sandeep

Boehm, Barry

Title XP: Good for Anything Other than
Software Development

Taming the Embedded Tiger – Agile Test
Techniques for Embedded Software

Extreme Formal Modeling (XFM) for
Hardware Models

Some Future Trends and Implications for
Systems and Software Engineering
Processes

Type of study Experience report Experience report Experience report Technical paper
Year of pub 2003 2004 2004 2006
Agile method XP XP XP Generic
Engineering
discipline

Co-design Hardware
Co-Design
Embedded SW

Hardware Co-design

Co-design

“…an unusually high number of
interacting features and elements
could be completed in a short period
of time.” (pg.3)

“Our [SW team’s] relationship with the
hardware group was qualitatively different
from what we’ve observed in non-Agile
projects. [isolating defects and co-working]”
(pg.6)

 “…organizations that have used LCO and
LCA milestones and their Feasibility
Rationale pass/fail criteria to synchronize
hardware and software architecture
definition have found this highly
advantageous.” (pg.14)

“Systems engineers without software
experience would minimize computer speed
and storage costs and capacities, which
causes software costs to escalate rapidly.”
[increasing integration of software end
systems engineering] (pg.3)

“Negotiation of priorities for requirements
involves not only participation from users
and acquirers on each requirement’s
relative mission or business value, but also
participation from systems and software
engineers on each requirement’s relative
cost and time to develop and difficulty of
implementation.” (pg.4)

110

 “…slack must be incorporated into the
process to keep the ensemble of feature
teams synchronized and stabilized.” (pg.15)

Testing “…in the area of system design, it did
not appear to occur to anybody that
one could determine how a system is
to be tested before it is actually built.”
(pg.2)

“We would have been overwhelmed without
[dual targeting] the ability to quickly isolate
hardware problems.” (pg.2)

“…hardware unit tests call production
routines in the module that directly access
hardware... These hardware unit tests are
very valuable for groups outside the
software team – electrical engineers, test
personnel, and production technicians.”
(pg.4-5)

“Whenever a property fails to validate, it
usually is straightforward to find the bug as
it must be related to the latest additions”
(pg.3)

“To refactor problems, to update tests after
a bug is found, and to work in pairs are also
principles that are as beneficial to the
capturing of formal methods as they are for
common programming projects.” (pg.2)

“…this rule [test-first] maps to specifying the
linear time property before writing the
abstract model (property-driven approach).”
(pg.2)

Iterative HW

“…despite the successful completion
of initial iterations, the generation of a
production-ready design, which
consisted of the correction of two
minor issues, suffered from severe
problems. …design hadn’t been
checked out of the repository
properly…” (pg.2)

“…suppliers didn’t perform as
promised, which led to delays of up to
over a month in getting the
prototypes ready.” (pg.2)

“In embedded development, the hardware
is always changing. It evolves in steps that
the software must support. This dovetails
nicely with iterative software development.”
(pg.2)

“At the start of each iteration the goals are
identified and written down in the form of
‘user stories’ – individual cards that point
out specific implementation details and
requirements.”(pg.2)
Example: “’Each instruction executes in a
certain order’” (pg.3)

“In the conventional approach, however, the
abstract model tends to contain much more
functionality than specified, but less
properties than needed as there is no
mechanism that provides for the exposure
of all properties contained in the
specification.” (pg.6)

“This often means that several software
increments may be fielded between major
hardware increments.” (pg.14)

“It [the spiral model| is a risk-driven set of
concurrent prototyping, analysis, and
stakeholder renegotiation activities leading
to a best-possible redefinition of the plans
and specification to be used by the
stabilized development team for the next
increment.” (pg. 14)

“…continue to reduce but not eliminate the
differences between hardware and software
processes”. (pg.14)

111

 “Getting a board from finished design
to actual prototype in ten days, a long
period in XP terms, costs a significant
amount of money and demands that
all suppliers in the chain optimise
their efforts.” (pg.2)

 “This wholesome approach often has the
problem that (i) the inconsistency in the
properties or mistakes in capturing the
intended property are found late, (ii) the
synthesis of automata may explode in size
when everything is considered together. .. It
might be better and more feasible to
construct the model by hand
incrementally…” (pg.1)

Ungrouped
quotes

“It appears that developers of a
certain, median, experience level are
required to apply XP successfully.”
(pg.3)

Observations No data, not even qualitative quotes. Briefly describes incremental development
of hardware, stating that hardware is
always changing.

States that earlier behavior can be
checked, but does not explain how this is
done. Cases to test the method, such as
the ISA bus and DLX pipeline.

Future trends guide to concurrent
development and more Agile approach.

112

Summary of themes in selected studies (B)

ID 97 84 59 54
Author(s) Chae, Heeseo, Lee, Dong-hyun,

Park, Jiyong and Peter, Hoh
Cordeiro, Lucas, Barreto, Raimundo,
Barcelos, Rafael, Oliveira, Meuse, Lucena,
Vincente and Maciel, Paulo

Kettunen, Petri and Laanti, Maarit

Paelke, Volker and Nebe, Karsten

Title The Partitioning Methodology in
Hardware/Software Co-design Using
Extreme Programming: Evaluation
through the Lego Robot Project

Agile Development for Embedded Systems:
A Platform-Based Design Approach

Combining Agile Software Projects and
Large-scale Organizational Agility

Integrating Agile Methods for Mixed Reality
Design Space Exploration

Type of study Experience report Technical paper Technical paper Experience report
Year of pub. 2006 2007 2007 2008
Agile XP Scrum, XP Generic Scrum

Discipline Co-design Co-design Co-design

(may be more later if scope onion is
enlarged)

Hardware, co-design

Co-design

"Through adding a guide line of
extreme programming to the
advantage of co-design, the synergy
effect of general process is
expected." (pg.1)

“However, in fact, there are frequent
cases in many R&D laboratories that
choosing the processor, designing
the hardware and transferring it to
software group without
communication or interaction” (pg.1)

“The important part of the life cycle is
iterating and implementing phase
which is previous phase of firm
HW/SW decision” (pg.2) (the HW/SW
partitioning phase is to include
iterations)

“Based on this context [embedded
characteristics], we propose a development
methodology based on the Agile principles
such as adaptive planning, flexibility,
iterative and incremental approach…”
(pg.1)

“Slight changes were needed to:
(i) adapt processes and tools to optimize
the product’s design rather than take paths
that lead to designs that have no chance of
satisfying the constraints, (ii) support
software and hardware development
through a comprehensive flow from
specification to implementation, (iii)
instantiate the system platform based on
the application constraints rather than over-
design a platform instance for a given
product, and

“…it is not enough to focus on the team and
project-level dimensions alone, as would a
typical application of Agile software
methodologies.” (pg.3.)

“Since both types of experts and end-users
are involved in the following activities their
insight and expertise is available when
required and no extensive documentation is
required.” (pg.4)

“…the multidisciplinary nature of the
development teams allows to consider a
wide area of expertise and knowledge
without large overheads. …[different]
aspects can be considered in the design
process without the need for extensive
documentation” (pg.6)

113

 (iv) use system platform to conduct various
design space exploration analyses for
performance.” (pg.8)

Testing

“…the more hardware/software error
detection in testing process is
delayed, the more time to correct…”
(pg.3)

“Development cost and error rate is
reduced by communicating about
these changing issues between
hardware and software development
groups. “ (pg.5)

“HW verification is needed to
complement the weak point XP
cannot cover…” (pg.6)

“…development costs of a project can
be reduced…” (pg.3)

Iterative HW

 “A more Agile way of doing this product
development is:”

A) “Common systems engineering to create
a modular, flexible product architecture”
B) “The need for different hw plug-in unit
variants is proactively anticipated (Flexible
product architecture)”
C) “The software architecture is designed
for easy incorporation of new hardware unit
types, based on standardized
hardware/software interfaces”
D) “the related software and hardware
projects are managed in close cooperation”
E) “integration proceeds smoothly in an
iterative fashion”
(pg. 6)

“The vague/ambiguous definition of a
solution at the beginning suggests an
iterative and evolutionary development
approach.” (pg.3)

“We propose to conduct initial design
iterations on the interface and its behaviour
and components using even more
lightweight artefacts in the initial iterations,
e.g. design sketches, paper prototypes and
mock-ups.” (pg.5)

114

 “Once the design becomes sufficiently
stable to identify required hardware and
concrete interaction techniques the design
representation can be switched to (partial)
implementations, resulting in the
conventional scrum process.” (pg.5)

“…this exploratory phase should be
extended and used to establish user
requirements and to generate alternative
MR designs…” (pg.4)

“A preliminary analysis with regards to
technical feasibility, development, potential
and possible restrictions and constraints
should be conducted and evaluated in
experimental prototypes.” (pg.4)

“…extended design space is much less
defined and understood than the
conventional desktop GUI paradigm,
requiring more exploratory design
approaches.” (pg.2)

“…MR functionality often requires the use
of non-standard hardware… different to the
development of conventional desktop GUIs
or websites where reasonable generic
assumptions with regards to the available
displays and interaction devices can be
made.” (pg.1)

“At the beginning of a project, there usually
is only a rough idea of the (technical)
solution to be developed. This requires that
the design space is explored for possible
solutions from the user as well as the
technology perspective.” (pg.3)

115

Ungrouped
quotes

 Product Owner Role is divided into three:
(pg.5)
1) Platform owner
2) Product leader
3) Feature leader

 “…the process was well received by the
participants as it matches well with
established practices in the different
domains like iterative design and rapid
prototyping while providing a framework to
organize a largely exploratory process.”
(pg.8)

“Using only small extensions and
modifications of the Scrum process we
were able to integrate these activities into
the iterative Scrum structure. The main
benefit of this approach is that the same
structure is used throughout the whole
development.” (pg.7)

Observation Data from four teams developing a
student project are presented as
showing higher productivity and
quality in Agile teams. Paper does
not describe how faults were
identified/counted.

 It is not enough just to apply Agile software
development to embedded software.
Embedded software has many
dependencies and the whole organization
needs to support Agility.

Vague and ambiguous requirements call for
exploring. It is difficult to manage the
exploratory projects using traditional
methods. Agile processes relying on
feedback, are more suitable. It makes the
system development follow the same
framework.

A collaborative cross-discipline problem
and solution space exploration resulted in
significantly different design than existing
approaches.

116

Summary of themes in selected studies (C)
ID 48 42
Author(s) Smith, Preston G Allen, Jacob N., Abdel-Aty-Zohdy, Hoda S.

Dr., Ewing, Robert L. Dr.

Title Change: Embrace It, Don’t Deny It Agile Hardware Development with Rapid
Hardware Definition Language

Type of study Technical paper Technical paper
Year of pub. 2008 2009
Agile Generic Generic
Discipline Generic NPD Hardware
Co-design

Testing

 “…allowing for hardware test suites to be
developed.” (pg.1)

Iterative HW
 -technology

“This [Agile development originating
from software] does not mean that
other fields cannot be Agile, but it
does mean that other developers and
managers wishing to become more
Agile will have to rethink the basics of
agility and find other tools and
approaches for restoring flexibility to
non-software development.” (pg.2)

“…technology – both the technology
that goes into the product and the
technology (like computer-aided
design tools) used to develop it – is
changing at an accelerating pace.”
(pg.1)

“…cost-benefit equation has shifted
enormously in recent years as
computer-aided technologies have
greatly reduced the cost of
experimentation in many fields…”
(pg.4)

“…hardware can be constructed using any
language supported by Microsoft .Net,
including C#, Vb.Net, Ruby, F#, Cobol, and
others.” (pg.1)

117

 “Apply them [flexibility tools and
approaches] selectively to only the
parts of projects where you anticipate
change or to only projects facing the
prospect of great change.” (pg.2)

“…one should apply modular
architectures selectively where they
will contribute the most to flexibility
without incurring undue penalties.”
(pg.4)

Ungrouped quotes 9 tools and practices:
*Continually monitor customers
*Fence in change
*Try things out
*Explore the design space
*Build strong teams
*Make decisions at the last
responsible moment
*Plan piecemeal and constantly
consider risk
*Maintain flexibility in upper layers of
process
*Out-innovate the competition

Observations Paper discusses that learnings from
Agile software development can be
adapted to generic NPD. NPD in
general is facing the challenges of
growing change.

Describes a practice that could bring
hardware development closer to software
development, and thus enable more usage
of Agile software development practices.

118

APPENDIX B - Interview Instrument A

(Have you experienced problems in projects in the past?)

Can you name the biggest problems?

- Can you describe the reasons?

- Have you tried to fix them?

- How/by whom did you try to fix them?

- Have you been successful in fixing them?

(Did you notice any change in working on the SPS project compared to past

projects)?

What kind of change did you notice?

- What was the biggest difference to normal?

- Did your feelings about Agile evolve during the project?

- What do you feel about the feedback loops?

- How much empowerment is executed in your opinion?

- In your opinion, is there any non-value work?

- What do you think about the formal education?

- What do you think about coaching?

- What do you think are the main practices in Agile methods?

- What do you think are the main values in Agile methods?

In contrast to the earlier-mentioned problems, what do you think about Agile

methods?

- (probe for all applicable problems earlier mentioned)

- Feedback loops

- Empowerment

- Non-value work

If given a choice, would you prefer to work on an Agile project again?

-Can you explain why you said yes/no?

- Is there anything that should be removed/fixed?

119

APPENDIX C - Interview Instrument B

Interview Instrument for Project Lead

How was this project started from your perspective?

What was the definition of your role?

How was the project defined to you?

How was the project organization set up?

By whom?

Why that way in your own opinion?

Can you tell me about the reasons and justification for choosing to use Agile

methods?

Were there any specific reasons?

Did you have any doubts?

Did you have alternatives for using Agile?

What was your previous experience of Agile?

What happened in the beginning?

How were the teams bootstrapped?

What were the early results?

Did you notice any issues at the beginning?

What were they?

Did the organizations evolve?

Were there any new practices?

Can you explain the cause of them?

How did Sprints in general work?

Planning?

Reviews?

Retrospectives?

Changes in patterns?

How the teams worked together?

How you worked with the customer role?

How did you work with Europe (non-Agile)?

Can you describe what you experienced in the middle section of the project?

Were there any specific incidents that you remember?

How did you see the project going?

Had you made any changes from the beginning of the project?

Were there any major impediments?

How did Sprints in general work?

Planning?

Reviews?

Retrospectives?

Changes in patterns?

120

How the teams worked together?

How you worked with the customer role?

How did you work with Europe (non-Agile)?

Can you describe what you experienced in the latter part of the project?

Were there any specific incidents that you remember?

How did you see the project going?

Had you made any changes from the beginning of the project?

Were there any major impediments?

How did Sprints in general work?

Planning?

Reviews?

Retrospectives?

Changes in patterns?

How the teams worked together?

How you worked with the customer role?

How did you work with Europe (non-Agile)?

Planning for the last 3 Sprints was done in Grenoble, with very large features

and giving a single estimation combining 2 teams. Can you remember how

that worked out?

(Reminder) There was a change in mission and scope?

(Reminder) You were planning in the middle with estimates for each team,

what do you think about this?

How you think you succeeded in general?

Were you disappointed in anything?

Were you happily surprised by anything?

Were there any new kinds of problems during the whole course of the project

that you haven’t mentioned?

Did you expect them?

What were they?

Were you able to solve them?

How?

What was the cause of these problems?

Was it because of the introduction of Scrum/Agile?

Specifics: pin-pointing (if not accessed earlier):

Customer role?

Did it evolve?

How did you need to adapt the method?

Do you think this changed the way of working in entities?

How?

How did you see the role of the electronic communication tool?

How did the requirements evolve?

121

How did you try to solve the knowledge transfer?

How did things go with the Dimmer Specialist in Finland (Raimo)?

Can you explain the review technique when you were developing physical

devices instead of software?

How did you present it in reviews?

Can you explain terms like

first-level prototype

functioning prototype

Europe as non-Agile, how did that work out?

Any final recommendations for people who are willing to try a similar

approach?

122

Interview Instrument for Scrum Masters

How were you first introduced to the process to be used in the SPS project?

How long had your organization existed before the beginning of the SPS

project?

How different was the approach in SPS?

What happened in the beginning?

How were the teams bootstrapped?

What were the early results?

Did you notice any issues at the beginning?

What were they?

Did the organization evolve?

Were there any new practices?

Can you explain the cause of them?

How did Sprints in general work? (Any changes toward whole team activity?)

Planning?

Reviews?

Retrospectives?

Changes in patterns?

How the teams worked together?

How you worked with the customer role?

How did you work with Europe (non-Agile)?

Can you describe what you experienced in the middle section of the project?

Were there any specific incidents that you remember?

How did you see the project going?

Had you made any changes from the beginning of the project?

Were there any major impediments?

How did Sprints in general work?

Planning?

Reviews?

Retrospectives?

Changes in patterns?

How the teams worked together?

How you worked with the customer role?

How did you work with Europe (non-Agile)?

Was there a change in key personnel in the Chinese team?

Can you describe what you experienced in the latter part of the project?

Were there any specific incidents that you remember?

How did you see the project going?

Had you made any changes from the beginning of the project?

Were there any major impediments?

How did Sprints in general work?

123

Planning?

Reviews?

Retrospectives?

Changes in patterns?

How the teams worked together?

How you worked with the customer role?

How did you work with Europe (non-Agile)?

China took the responsibility for prototyping. How did this work?

Planning for the last 3 Sprints was done in Grenoble, with very large features

and giving a single estimation combining 2 teams. Can you remember how

that worked out?

(Reminder) There was a change in mission and scope?

(Reminder) You were planning in the middle with estimates for each team,

what do you think about this?

How do you think you succeeded in general?

Were you disappointed in anything?

Were you happily surprised by anything?

 Do you think the approach was right?

Can you think of any drivers for this failure/success?

Which ones?

What did you see as the main differences to other approaches?

What was the typical way of communicating with your other “customers”?

What do you see as the main difficulties that were encountered during the

project?

Did you manage to solve them?

Yes, How?

No, Why?

Did you have difficulties with legitimacy processes?

Did you have issues with your CMMI audits?

Have you been using similar approaches since SPS?

Have you made any kind of changes since SPS?

What kind?

Specifics: pin-pointing (if not accessed earlier):

Communication

What do you think about the amount of communication using written

documents?

How did the electrical tools work for you?

[Case Company] tools?

Why did something work, or not work?

Anything else specific to communication?

124

Can you explain terms like

first-level prototype

functioning prototype

“IT-flow” (was seen as a problem in Retrospective in Grenoble)

Dispersed teams?

When?

How?

Who?

How did it work?

Pair design?

Other rules

=S=

CMMI

OCP

Engineers working in Europe?

What do you see as the main factor for trust building?

Not all team members met face-to-face?

Would you like to work this way in the future?

Any final recommendations for people who are willing to try a similar

approach?

