
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Karmen Dykstra

Predicting Protein Producibility:

Binary classification of recombinant proteins
produced in filamentous fungi

Master’s Thesis
Espoo, January 7, 2016

Supervisor: Prof. Juho Rousu
Advisor: Mikko Arvas, Ph.D.

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Karmen Dykstra

Title:
Predicting Protein Producibility: Binary classification of recombinant proteins
produced in filamentous fungi

Date: January 7, 2016 Pages: 78

Major: Machine Learning and Data Mining Code: T-61

Supervisor: Prof. Juho Rousu

Advisor: Mikko Arvas, Ph.D.

Recombinant protein synthesis aims to produce specific protein products of in-
terest in living cells. However, protein production is subject to failure, and thus
the successful development of a computational tool to predict protein sequence
success prior to laboratory experimentation would save time and resources. We
demonstrate the ability of an SVM trained on protein amino acid composition to
predict successful protein production in a dataset of sequences tested in the host
species Trichoderma reesei. We found that predictive models generalize well be-
tween two species of filamentous fungi, and furthermore that 50 training sequences
are sufficient to train a model that yields an AUC of over .7. We introduced novel
predictive features using protein domains detected with the InterProScan tool,
which were modestly successful in the predictive task but whose addition did not
improve over the use of amino acid composition alone. Experiments applying
semi-supervised SVM formulations to the predictive task did not yield significant
improvement, most likely because the spatial distribution of data points under
the chosen numeric representations did not conform to the assumptions of the
semi-supervised models. We explored the species of origin and enzyme function
of sequences from the UniProt SwissProt database predicted to be successful by
the trained SVM models, and showed that models trained with an RBF kernel
were the most conservative in terms of the number of predicted successes.

Keywords: binary classification, SVM, protein, filamentous fungi, semi-
supervised

Language: English

2

Acknowledgements

Thank you to my supervisors, Mikko Arvas and Juho Rousu, for your guidance
and patience while completing this thesis.

Thank you to my sister and her family, Ursa, Juki, and Maria, for all the good
food and always cheering me up.

And thank you to Michael. You’re the best.

Espoo, January 7, 2016

Karmen Dykstra

3

Contents

1 Introduction 6
1.1 Problem statement . 7
1.2 Thesis structure . 7

2 Biological Background 8
2.1 Protein composition . 8
2.2 Protein synthesis . 9
2.3 Protein secretion . 12
2.4 Recombinant protein production . 13
2.5 Challenges in recombinant protein production 15
2.6 Numeric representation of proteins 17

3 Computational Background 22
3.1 Modeling approaches . 22

3.1.1 Metabolic models . 22
3.1.2 Protein-related prediction 23

3.2 Support Vector Machines (SVMs) 25
3.3 Kernels . 27
3.4 Transductive Support Vector Machines (TSVMs) 28
3.5 Laplacian Support Vector Machines (LapSVMs) 30
3.6 Performance measures . 32

4 Materials and methods 35
4.1 Data . 35
4.2 Feature selection . 36
4.3 Feature combination and kernel choice 38
4.4 Training dataset size . 39
4.5 Unlabeled sequence selection for

semi-supervised experiments . 39
4.6 TSVM and LapSVM experiments 43
4.7 Enrichment tests . 44

4

5 Results and Discussion 46
5.1 Performance of existing tools . 46
5.2 Feature combination and kernel choice 47
5.3 Number of training sequences . 51
5.4 TSVM and LapSVM experiments 51
5.5 Enrichment tests . 58

6 Conclusion 64

7 Appendix: InterProScan Features 72

5

Chapter 1

Introduction

Proteins are ubiquitous biological molecules that perform many diverse functions
- typically around 60% of the organic matter in a cell consists of proteins [11].
Recombinant protein synthesis, the technical word for the artifical production of
specific proteins using genetic engineering, has significant applications in a wide
range of industries. For example, a major breakthrough in the treatment of dia-
betes was made when protein synthesis techniques were used to artificially produce
the human insulin protein in Escherichia coli in 1978 [20]. Of the many appli-
cations of recombinant protein synthesis, example products relevant to modern
research include antibodies to treat various diseases [7] and enzymes for use in
biofuel production [40].

Recombinant protein synthesis involves cloning a gene from a donor species
and inserting it into the host species, where, if successful, protein synthesis will
take place and result in the fully functional form of the protein. When researchers
seek to produce a protein, they must first select the genetic sequence to use. A
number of issues can occur during the synthesis of recombinant proteins and hence
it is often unknown, prior to lab experiments, whether or not a given sequence will
result in a fully functional protein in the host organism. Since protein production
is time-consuming and costly, it is desirable to develop a computational tool that
would screen the candidate genes prior to lab experimentation. Such a tool would
take candidate sequences as input and indicate which of the genes would be suc-
cessful or unsuccessful in the specified host. The successful development of this
tool would save researchers time and resources by increasing the success rate of
protein production experiments.

Researchers have expended significant effort to develop such tools for predicting
successful protein production in the bacterial host Escherichia coli. However,
little work has been done to predict protein production in other host organisms,
including filamentous fungi hosts such as Aspergillus niger and Trichoderma reesei.
Filamentous fungi, commonly known as moulds, are of interest as production hosts

6

CHAPTER 1. INTRODUCTION 7

for a number of reasons including their inexpensive growth [57] and capacity to
produce and secrete proteins in large quantities, as indicated by the production
of some endogeneous proteins in amounts as high as 100 g/L [47]. Also, unlike E.
coli, they have the necessesary components for glycosylation [15], a biochemical
process required for e.g. producing human antibodies.

Recently van den Berg et al. introduced a publicly available dataset of over
300 A. niger sequences, and used these to train the first computational tool to
successfully predict protein production in a filamentous fungi host [55]. We inves-
tigate this tool in relation to a smaller dataset of almost 50 proteins produced in
T. reesei, as made available for this thesis by the VTT Technical Research Centre
of Finland.

1.1 Problem statement

Our primary goal is to develop an effective computational tool that uses amino
acid sequences as input to predict the successful production of proteins in Tricho-
derma reesei. Related to this goal, we address the following questions: How do
existing computational tools perform on the T. reesei dataset? Can we improve
the predictor by enriching the protein representation, or by making use of unla-
beled sequences? How many labeled protein sequences are necessary to train an
effective model? What kind of proteins does the model predict as “successful”?

1.2 Thesis structure

Chapter 2 gives an overview of the biology relevant to the thesis topic, including the
basics of protein composition and synthesis, recombinant protein production, and
associated challenges. Chapter 3 continues with a summary of possible modeling
approaches to address issues in recombinant protein production, a brief introduc-
tion to the machine learning methods used in our experiments, and the definition
of evaluation metrics. Chapter 4 introduces the datasets used in the experiments,
our numeric representations of the sequences, and a detailed description of the
experiments. Chapter 5 gives results and discussion separated by experiment, and
finally Chapter 6 contains concluding remarks.

Chapter 2

Biological Background

Proteins are biological molecules present in all living cells. In fact, about two thirds
of the organic matter in a typical cell consists of proteins [11]. Proteins are directly
responsible for most metabolic processes, and also serve transport, structural, and
regulatory functions. Because proteins are useful in a wide range of applications,
researchers in biotechnology have developed methods for cost-effective, targeted
protein production through the use of recombinant DNA technology. This en-
gineered synthesis of protein products in microbial cell systems is in contrast to
previous protein isolation methods, in which kilograms of plant and animal tissue
were necessary to isolate small quantities of protein product [46]. In filamentous
fungi, recombinant protein methods has been applied to produce a range of fungal
proteins useful for food, feed, textiles, and leather treatment [60], and T. reesei
has been shown to be a promising host for pharmaceutical production [34].

This section gives a brief overview of the core processes and challenges involved
in recombinant protein production. Many details are omitted for brevity, but are
covered thoroughly in most modern molecular biology textbooks (e.g. [21]). The
information in Sections 2.1 and 2.2 was drawn from [11] and [35], and Sections 2.3
and 2.4 were written by referencing [21]. We start by reviewing the basics of
protein composition and synthesis.

2.1 Protein composition

All proteins contain one or more polypeptide chains, which are sequences of amino
acid units joined by peptide bonds. The number of amino acids in a protein can
range from about 20 [53] to over 1,000 [21]. An amino acid is a biological molecule
that contains a core carbon atom linked to amine (-NH2) and carboxylic acid (-
COOH) functional groups, a hydrogen atom, and an additional side-chain, called
an “R-group,” which varies between amino acids in size, structure, and electric

8

CHAPTER 2. BIOLOGICAL BACKGROUND 9

Figure 2.1: Amino acid names, abbreviations and physical properties. Copied from
[11].

charge. An exception is proline, which has -NH attached to its core carbon instead
of -NH2. Amino acids can be categorized based on their side chain as basic, acidic,
hydrophobic, or polar and uncharged. There are 20 amino acids ubiquitously found
in protein sequences prior to post-synthesis modification. The single letter code,
three letter code, full name, and R-group classification for each of the 20 amino
acids are given in Figure 2.1.

Two or more amino acids link together to form a protein via peptide bonds,
covalent bonds formed by the removal of water from the carboxyl group (-COOH)
of one amino acid and the amino group (-NH2) of the other. Thus the first amino
acid in a synthesized polypeptide chain retains its free amino group and is called
the N-terminus of the chain. The last amino acid, left with a free carboxyl group,
is called the C-terminus.

2.2 Protein synthesis

The sequence of nucleotides in long, double-stranded deoxyribonucleic acid (DNA),
coiled into a structure called a chromosome, determines the sequence of amino acids

CHAPTER 2. BIOLOGICAL BACKGROUND 10

in synthesized proteins. In a process called transcription, ribonucleic acid (RNA)
polymerase sequentially joins ribonucleotides together according to the sequence
information from a particular portion of DNA, to produce a single strand of mes-
senger RNA (mRNA). A DNA sequence that codes for a strand of mRNA is called
a gene, and in most cases genes code for proteins. Short nucleotide sequences in
the DNA, called promoter and terminator regions, indicate where the transcrip-
tion process begins and where it ends. To initiate transcription, RNA polymerase
binds to a promoter region of DNA that occurs upstream from the sequence copied
to mRNA. The transcriptional terminator, a sequence downstream from the area
for mRNA synthesis, defines where RNA polymerase stops transcription.

In prokaryotic organisms, cells do not contain the cellular nucleus or separate
cell compartments, which are features of the cells of eukaryotic organisms. Bacteria
such as E. coli are prokaryotic, and plants, mammals, and fungi are eukaryotic.
In prokaryotes, each strand of mRNA encodes for the entire target protein. In
eukaryotes, sequences of coding DNA, called exons, are interrupted by sequences
of non-coding DNA, called introns, which contain sequence information excluded
from the final protein sequence. Thus, once the entire gene is transcribed by
RNA polymerase, in eukaryotic cells the introns are removed and the exons joined
together for the final mRNA strand used to make the protein chain.

A sequence of three nucleotides in the mRNA, called a codon, codes for one
amino acid in the protein sequence. RNA contains four different nucleotides, so
there are 43 = 64 possible codons. Since there are 64 codons and 20 amino acids,
multiple codons represent the same amino acid. Due to the 3:1 ratio of nucleotides
to amino acids, different start locations in reading a gene will yield different amino
acid sequences. Consider the sequence GAAAUGUAU. If we read starting at
the first nucleotide, we get the sequence GAA | AUG | UAU, which gives the
amino acid sequence Glu | Met | Tyr. If we read from the second nucleotide, we get
G | AAA | UGU | AU which yields – | Lys | Cys | –. Finally starting at the third,
we get GA | AAU | GUA | U which yields – | Asn | Val | – . Each different way
of reading the gene is called a reading frame. Because nucleotides code for amino
acids in triplets, there are three possible reading frames. An open reading frame
(ORF) is a sequence of 50 or more codons that occurs without a “stop codon,”
which triggers the end of translation. In the recombinant protein literature a gene
that encodes for a protein of interest is often referred to as an ORF.

In the translation process, transfer RNAs (tRNAs), ribosomes, and a large
number of protein factors join together amino acids to form the protein sequence
according to the information in the mRNA. The process is initiated by the binding
of a small and large ribosomal subunit to the 5’ end of the mRNA, named for the
5’ phosphate group on that end. Amino acids to form the protein are brought by
tRNAs, where each tRNA is structured so that it carries a single type of amino

CHAPTER 2. BIOLOGICAL BACKGROUND 11

Figure 2.2: The transcription and translation processes of protein synthesis in
eukaryotic organisms. Copied from [5].

CHAPTER 2. BIOLOGICAL BACKGROUND 12

acid. The ribosome catalyzes the formation of peptide bonds between the amino
acids transported by tRNA. The growth of the amino acid chain continues until a
stop codon is encountered in the mRNA. A single mRNA chain can be translated
by a number of ribosomes simultaneously.

Proteins undergo a number of modifications upon completion of translation.
The methionine on the N terminus is cleaved off in most proteins, and in eukary-
otes the protein may be cleaved to make several discrete proteins with different
functions. Phosphate groups, lipids, carbohydrates, or other groups may be added
for certain protein functionalities.

Once synthesized, the polypeptide chains in a protein must be folded into their
correct structure for the protein to achieve full functionality. Four structural levels
are recognized in proteins: primary structure, the linear sequence of amino acids;
secondary structure, the folding or coiling of the original structure by hydrogen
bonds; tertiary structure, additional folding of the secondary-structure polypeptide
chain to form its final 3D shape; and quaternary structure, the possible joining of
several polypeptide chains to give the final structure of the protein. Some proteins
only have one polypeptide chain and thus do not have a quaternary structure.

2.3 Protein secretion

Filamentous fungi are appealing as industrial host species because of their natural
ability to secrete large quantities of proteins into the extracellular media, which
makes the protein product easier to extract than if it remained within the cell
walls. Since our datasets of interest are from sequences produced in filamentous
fungi, this thesis focuses on secreted proteins.

Both bacteria and eukaryotic cells have specialized machinery for protein se-
cretion. Proteins destined for secretion are tagged with a signal sequence at the
N-terminus, which consists of about 20 amino acids. The signal sequence is cut
off after export and hence is not present in the mature protein. Although there is
little homology between signal sequences in different secreted proteins, the signal
sequence has a general pattern of two to eight positively charged amino acids, then
a long stretch of hydrophobic amino acids, followed by an amino acid with a short
side chain just before the cleavage site.

Proteins targeted for secretion undergo a specific sequence of steps, many of
which are general to eukaryotic cells. The following overview is taken from [47].
First the signal sequence at the N-terminus of secreted proteins is recognized by the
signal recognition particle (SRP) and translation is paused. The ribosome-mRNA-
peptide complex is transported to the membrane of the endoplasmic reticulum
(ER), where the chain is simultaneously translated and translocated into the ER
lumen, the space enclosed by the ER membrane. Upon translation, protein folding

CHAPTER 2. BIOLOGICAL BACKGROUND 13

takes place, usually with the help of various chaperones and foldases. In some
cases, in a process called glycosylation, a carbohydrate side chain is attached to
the protein by the oligosaccharyltransferase complex in the ER membrane. If the
proteins are misfolded or aggregated, they are removed from the ER and degraded
by the ER-associated protein degradation (ERAD) system. If folded correctly, the
proteins undergo transport in membrane vesicles with specific protein coats, first
to the Golgi apparatus and then to the cell membrane.

2.4 Recombinant protein production

The goal of recombinant protein production is to produce a protein in a host
species by synthetically incorporating genetic information from a species of origin.
If the host and originator are the same species, the protein is called homologous,
and if they are different, the protein is called heterologous. Recombinant pro-
tein production requires the gene that codes for the target protein product and
an autonomous piece of DNA, called a vector, that introduces the gene into the
host species. Once the gene coding for the target protein is successfully inserted
into the vector, creating a “clone,” the clone is inserted into the host cells. Cells
that lack the clones producing the target protein are separated from successfully
transformed cells, from which the final protein product is harvested after an ap-
propriate incubation period. Intracellular proteins can be gathered by breaking
open or “lysing” the cell walls, or secreted proteins can be gathered directly from
the growth media.

The most common form of vector is a self-replicating ring of DNA called a
plasmid, originally found in bacteria. The typical plasmid contains an origin of
replication that controls plasmid proliferation, a promoter under the control of a
regulatory sequence either contained in the plasmid or in the host species, and
a gene for antibiotic resistance that facilitates the selection of successfully trans-
formed cells. Many vectors have been developed, plasmid and otherwise, and in
modern biotechnology the experimentalist chooses from a range of commercially
available options [46].

The promoter to use in the vector should be strong, so that it induces a high
level of transcription of the target gene, but should not be uncontrolled so that
production of the protein product exhausts the host cell. The increased metabolic
burden of producing the target protein can already favor the proliferation of cells
that do not produce the synthetic protein, resulting in transformed cells being over-
taken by those that are non-producing. Several well-suited promoters have been
discovered and are routinely used in recombinant protein production. Common
choices include the T7 promoter in E. coli [46], the cellobiohydrolase I promoter
in T. reesei and the glucoamylase A promoter in A. niger [60].

CHAPTER 2. BIOLOGICAL BACKGROUND 14

Figure 2.3: Illustration of the basic steps of applying recombinant DNA technology
to incorporate a gene from a eukaryotic organism into a prokaryotic host. Copied
from [25].

CHAPTER 2. BIOLOGICAL BACKGROUND 15

The gene coding for the target protein historically had to be isolated from the
donor organism by the use of restriction enzymes. Now, however, efficient methods
exist for direct synthesis of a DNA sequence, which can then be “amplified” by
Polymerase Chain Reaction (PCR) to create many copies of the gene for insertion
into vectors. Restriction endonucleases are then used to cut the vector and gene at
specific nucleotide sequences, and DNA ligase to join the gene and vector together.

In E. coli, clones are inducted into the host organism by electroporation, in
which a short pulse of electricity is administered to cells suspended in media.
The brief shock creates transient pores through which the vectors are taken into
the cells. Since the desired uptake of the target DNA does not occur in every
case, vectors are cleverly engineered so that successfully transformed cells can be
selected by testing for antibiotic resistance or observing cell color.

Trichoderma reesei and Aspergillus niger, the host species of interest in this
thesis, are both filamentous fungi. Unlike E. coli and yeasts, which are unicellular,
filamentous fungi are multicellular organisms that grow in long, branching strands
called hyphae. The process of protein synthesis is different in prokaryotes and eu-
karyotes, and there are reasons for favoring a eukaryotic host for some proteins. For
example, proteins produced by higher eukaryotic organisms, like humans, might
require O- or N-linked glycosylation to function correctly, the machinery for which
does not exist in E. coli [42].

In typical filamentous fungi protein production experiments, clone creation
and selection is first carried out in E. coli. Clones are then filtered from suc-
cessfully transformed colonies and inducted into the host species. Plasmids that
self-replicate in the final filamentous fungi host are not used [60], but rather the
vectors integrate into the host chromosome. DNA uptake in filamentous fungi
is accomplished through electroporation, transfer of the DNA by Agrobacterium,
removal of the walls of the host cells, or biolistic methods where the DNA is shot
into the cell on tungsten or gold particles.

2.5 Challenges in recombinant protein produc-

tion

The synthesis of recombinant proteins can fail for a variety of reasons at multiple
steps in protein synthesis, and in the case of no observable protein product in the
media, it is challenging to identify where the production process failed.

It is possible that the target gene is not transcribed, or transcribed in very
small quantities. This can be caused by improper environmental conditions. For
example, mRNA for one of the major cellulases produced by Trichoderma reesei,
CBHI, is expressed in quantities thousands of times greater in media containing

CHAPTER 2. BIOLOGICAL BACKGROUND 16

cellulose than media containing glucose, which represses cellulase expression [30].
Similarly, differences in pH can cause low or high yields, and experimental choices
are complicated by the fact that appropriate environmental conditions for high
production vary depending on the protein of interest [60].

Even if transcription proceeds, problems can occur at the translation and fold-
ing stages. If the codons in the target gene are significantly different than the host
genome, there may be a deficiency of the necessary tRNAs for translation of the
protein product [46]. One approach to this issue is to adapt the target gene codon
composition to match the codon use of the host organism, but there are additional
complications. For example, some codon sequences cause translational pausing,
which is beneficial for correct protein folding.

After translation the protein may not be folded correctly, which causes subse-
quent intracellular degradation, or clumping with other proteins to form unusable
aggregates called “inclusion bodies” (IBs) [56], which is especially common and
problematic in E. coli. While it is possible to denature aggregates and then re-
fold the proteins, the refolding process requires protein-specific conditions and is
undesirably costly [41]. One solution for this issue is to fuse the target gene with
the sequence for a different protein that facilitates solubility, creating a “fusion
protein” [46]. Fusion proteins are also created to prevent the breakdown of pro-
teins by proteases and facilitate purification of the target protein [21], as well as
aid successful secretion of the protein product [42].

In eukaryotic organisms, protein translation and folding of secreted proteins
in the ER requires a number of chaperones, cochaperones, and cofactors [21]. If
the gene is transcribed at high levels, there may be a shortage of the necessary
components for proper folding. When unsuccessfully folded proteins accumulate
in the ER of filamentous fungi they trigger the unfolded protein response (UPR),
which upregulates the transcription of foldases and transport proteins [42]. There
have been attempts to increase ER throughput by increasing expression of the
UPR regulator gene, hac, the results of which vary from having a positive to
negligible impact [42]. Similarly, the expression of protein disulfide isomerase, an
instrumental enzyme for forming disulfide bonds for protein folding and stability,
has been artificially boosted by its inclusion in recombinant vectors. In some
cases this resulted in impressive gains in yeast expression systems [21]. While
modifications of this kind can improve yields, there is no way to guarantee the
correct translation and folding of recombinant proteins.

In addition, protein products are vulnerable to degradation by intracellular and
extracellular proteases natively produced by the host organism. This issue has been
mainly addressed through strain engineering, wherein the genes for problematic
proteases are deleted from the genome of the host organism. For example, the BL21
strain of E. coli lacks the gene for the Lon protease that degrades many foreign

CHAPTER 2. BIOLOGICAL BACKGROUND 17

proteins, and the gene for OmpT, a protease that acts on extracellular proteins
[46]. In addition to deleting protease genes, strain engineering of T. reesei has
involved deletion of some the major cellulases that compose the bulk of secreted
proteins, the removal of which has favored the production and secretion of other
proteins [47].

The production of the target protein may hinder the growth and survival of
the host cells. In some cases this is caused by the added metabolic burden from
producing the recombinant protein, and in other cases the target protein is toxic to
the host cell [46]. In addition, since filamentous fungi are multi-cellular organisms,
cells that do not successfully integrate the foreign DNA can separate from the
integrated cells in heterokaryosis, resulting in a non-producing segment. Due to
the production of recombinant proteins imposing additional metabolic burden on
producing cells, selection can favor non-producing or low-producing cells [60].

Thus there are numerous complex and multifaceted problems that can occur
in recombinant protein production, which hinder the production of active, soluble
proteins. Computational methods have been developed to address some of these
issues.

2.6 Numeric representation of proteins

Researchers have applied computational methods to predict the presence of pro-
tease cleavage sites in protein sequences [51], the intra- or extra-cellular destina-
tions of proteins [32], and protein solubility upon expression in E. coli [24]. These
applications share a common problem structure with the primary aim of this the-
sis, the prediction of successful protein production in filamentous fungi. In each
case, protein sequences are used as input to train machine learning models, or
create scoring schemes, for the prediction of the property of interest in unseen
protein sequences. Protein sequences come in the form of strings of characters –
for example, the string “MAY” indicates the sequence of methionine, alanine, and
tryptophan. However, statistical and machine learning methods require a numeric
representation of the protein sequences, which raises the question of how trans-
form the character sequence to numbers in a way that best represents the relevant
biological information.

The most direct numeric representation is the replacement of each amino acid
with a numeric equivalent. This can be accomplished in a binary encoding of each
amino acid by placing a 1 in a vector of 20 zeros. Under this representation the
amino acid alanine could be encoded by the vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0], and for a sequence of length N the resulting feature representation is
of size 20 × N . This representation has been used, for example, for the purpose
of predicting protease cleavage sites [45, 58]. However, many machine learning

CHAPTER 2. BIOLOGICAL BACKGROUND 18

methods require a fixed-length input vector, and proteins vary dramatically in
sequence length. Thus the use of the binary coding scheme and similar direct-
replacement representations are well-suited to situations that use a fixed-length
subsequence, such as the sliding window methods frequently used in cleavage site
prediction. However, they are impractical for prediction problems where the entire
sequence is relevant, such as our goal of predicting successful recombinant protein
production.

Often a number of physicochemical properties of the protein are used. For
example, isoelectric point (pI) is a highly relevant feature frequently included for
predicting the solubility of proteins upon expression in E. coli [22, 39, 43]. The
isoelectric point is the characteristic pH at which a molecule has no net elec-
tric charge, and for a protein sequence can be calculated using the Henderson-
Hasselbalch equation [35]. There are also direct measurements of hydrophobicity,
such as the Goldman, Engelman, Steitz (GES) scale, based on the relative energies
involved in interactions of polar and charged amino acid side chains with water
[17]. The commonly used grand average of hydropathy (GRAVY) measurement
is the sum of hydropathy values of each constituent amino acid, divided by the
length of the protein [33]. Additional features include the protein sequence length,
molecular weight, and average charge of the constituent amino acids.

Protein sequences are also commonly represented by composition measures.
For example, the amino acid composition counts the number of each type of amino
acid, and divides each count by the total number of amino acids in the sequence 1.
Protein composition can similarly be calculated for the 400 possible dipeptides,
sequences of two amino acids, or the 8,000 possible tripeptides, sequences of three
amino acids. It should be noted that calculating the composition of dipeptides and
tripeptides is more computationally expensive than single amino acid composition,
and does not necessarily improve performance [50]. Sometimes the composition is
calculated of each group of amino acids, as specified by their type of side chain
(Table 2.1). For example, one might calculate the proportion of aromatic or po-
lar amino acids. If specific amino acid subsequences are known to be associated
with the predictive problem, their occurrence may also be measured, as with the
“reduced alphabet sets” in Idicula-Thomas et al. [29].

Numeric features may be calculated directly from the DNA sequence of the
protein. One simple measure, the codon composition, is calculated exactly like the
amino acid composition, except that the counted units are codons. The Codon
Adaptation Index (CAI), a representation that is unique to the DNA sequence,
compares codon occurrence in the genes of interest to codon use in a reference

1In fact, analyzing proteins by their amino acid composition has a long and rich history.
Already in 1964, Fisher sought correlations between amino acid composition and size based on
observations of the tendency of hydrophobic amino acids to fold into the interior of the 3D protein
structure [18].

CHAPTER 2. BIOLOGICAL BACKGROUND 19

set of genes [48]. For example, Boettner et al. calculated the CAI using a set of
highly expressed yeast genes as the reference set to predict the soluble expression
of malaria proteins in a yeast host [9].

Figure 2.4: Comparison of relationships observed between high content of individ-
ual amino acids and protein solubility in E. coli, as described by Goh et al. [22],
Idicula-Thomas et al. [29], Mehlin et al. [39], Niwa et al. [43] and Hirose et al.
[27]. A green box indicates a positive relationship between amino acid content and
solubility, a red box indicates a negative relationship, and a white box indicates no
observed relationship. Three letter codes for amino acids are given in Figure 2.1.

As of yet, there is no consensus on the best numeric representation to use
for protein prediction tasks. Researchers may select a combination of numeric
representations, and the chosen measures tend to vary between studies. Even
when the same representations are used across studies, conclusions about their
predictive contributions do not always agree. For example, Figure 2.4 shows how
the observed relationships between individual amino acids and protein solubility
in E. coli vary across five studies. While higher aspartate and glutamate content
are consistently associated with solubility, the roles of lysine and arginine are
contentious. Differences in experimental conditions and the type of proteins in
question could be responsible for discrepancies between studies [29]. A lack of
consensus on numeric protein representation invites the independent exploration
of representations for each prediction task.

For guidance as to what numeric representations to use in this thesis, we look
to previous work in which van den Berg et al. [54] investigated the efficacy of dif-
ferent protein representations for the filamentous fungi protein prediction problem.
638 recombinant proteins tested for expression and secretion in A. niger were used
to compare the performance of different classifiers and protein sequence represen-
tations to predict protein producibility. From their experiments with the protein
features of amino acid composition, amino acid groups, and local and global hy-
drophobicity measures, they concluded that composition of asparagine, the set
{arginine, lysine}, tyrosine, and the presence of hydrophobic peaks were the best-
discriminating features of successfully versus unsuccessfully produced proteins.

A subsequent paper addressed the same task, but focused on a thorough com-
parison of a greater number of sequence-based protein representations [55], the

CHAPTER 2. BIOLOGICAL BACKGROUND 20

Figure 2.5: Illustration of the different protein sequence representations from which
sequence composition was calculated in previous work on protein production in
filamentous fungi. (E) and (B) respectively indicate an exposed or buried amino
acid, and (E), (C) and (H) represent amino acids in strand, random coil, or helix
formations, respectively. This figure is copied from [55].

extraction of which is illustrated in Figure 2.5. They considered multiple sequence
representations of each protein: the original DNA sequence, the predicted signal
peptide, the amino acid sequence, the predicted solvent accessibility of each amino
acid, and the predicted secondary structure. They calculated the normalized com-
position of each sequence, defined as the count of each of the individual elements,
divided by the length of the sequence. The counted “elements” were codons in
the DNA sequence, and amino acids in the signal peptide and protein sequences.
For the solvent accessibility sequence the proportions of amino acids predicted as
buried or exposed were calculated, as well as the amino acid compositions of the
buried and exposed units. Similarly, the proportion of elements predicted to be
in a helix, random coil or strand formation from the secondary structure sequence
were calculated, as well as the amino acid composition of the units predicted to
be in helix, strand, or random coils.

CHAPTER 2. BIOLOGICAL BACKGROUND 21

For each protein Van den Berg et al. also calculated codon usage, signal peptide
length, protein sequence length, the codon adaptation index, and isoelectric point.
They included features based on groupings of amino acids, which were defined by
amino acid side chain, or optimized specifically for the task using a feed-forward
cluster selection procedure. Van den Berg et al. also performed feature selection
on the aforementioned features using a combination of t-tests and forward selection
to yield a combined set of features, which was tested in addition to the individual
feature types. Finally, spectrum kernels [36] were used to calculate the pairwise
similarities between sequences based on the occurrence of k-length amino acid
subsequences, with k = 2, 3, 4, 5.

The table displaying the predictive results for each protein representation is
reproduced in Figure 2.6. Out of feature representations derived from the mature
amino acid sequence, normalized amino acid composition and feature selection
performed the highest for both the homologous and heterologous classifiers. The
thorough performance comparison of sequence representations made by van den
Berg et al. makes a useful starting point for the experiments described in this
thesis.

Figure 2.6: AUC (defined in Section 3.6) performance of various numeric repre-
sentations, copied from [55]. hom and het indicate the performance for a classifier
trained and tested on homologous or heterologous sequences, respectively. The ta-
ble has been cropped to exclude the results of the spectrum kernel representation,
which never exceed .82 for the homologous predictor or .63 for the heterologous.

Chapter 3

Computational Background

The primary objective of this thesis is to apply computational methods to predict
the success of recombinant protein production in filamentous fungi. This sec-
tion reviews computational modeling approaches to address recombinant protein
production and motivates our use of support vector machines (SVMs). We then
describe the basics of SVMs, kernel functions, semi-supervised extensions of the
SVM, and the performance metrics used in our analyses. We rely heavily on [49]
for Section 3.2 and 3.3.

3.1 Modeling approaches

Computational modeling for recombinant protein production can roughly be di-
vided into two main branches – metabolic modeling of the host cell, and predictive
modeling of protein properties.

3.1.1 Metabolic models

As described in Section 2.5, the environmental conditions and the strain of the
host organism have profound impacts on the production of the protein of interest.
Metabolic modeling uses a formal mathematical framework to represent metabolic
processes within the host cell. The model can then be exploited to suggest modi-
fications that optimize for the production of the desired end-products [23]. In the
more commonly used stoichiometric modeling of metabolic networks, the modeler
first defines the cellular stoichiometric equations that affect the process of interest,
where stoichiometric equations describe constraints on the chemical reactions. One
common method of analysis, flux-balance analysis (FBA) uses linear programming
to find the optimal flux configuration for the model, where a “flux” is the mass of
a particular element in the metabolic network [44]. Different configurations of the

22

CHAPTER 3. COMPUTATIONAL BACKGROUND 23

model can be explored to gain a deeper understanding of metabolic tradeoffs, and
to compare current strain production to the maximum predicted amount of the
desired products, which represents a theoretical maximum yield. As an example,
Driouch et al. used stoichiometric modeling to compare network fluxes between
a strain of Aspergillus niger engineered to make a recombinant protein, and an
unmodified wild-type strain [16].

Kinetic models, another form of metabolic models, differ from stoichiometric
models in their inclusion of not only the reactions themselves, but also the ki-
netics of the reactions. This allows for the inclusion of regulatory mechanisms in
the model, and processes can be modeled with greater accuracy. However, data
collection for kinetic models and optimization are also more expensive [2].

One advantage of metabolic modeling is the detailed analysis of the intracel-
lular processes required for protein production, which contrast with the machine
learning methods used for predicting protein properties. While metabolic models
are able to suggest points in the metabolic network where engineering efforts would
be most beneficial, if a prediction is negative in the case of the case of current pro-
tein prediction models, the model cannot suggest where in the process the failure
occurs.

In this thesis, we choose to apply machine learning methods that do not involve
modeling cellular metabolism. This is primarily because (1) the available data
is better-suited to binary classification as it does not include measures of intra-
and extra-cellular metabolites beyond the protein product of interest and (2) our
approach has the advantage of requiring no prior knowledge about the protein of
interest beyond its amino acid sequence.

3.1.2 Protein-related prediction

Applications of computational modeling that focus on protein properties, as touched
upon in Section 2.6, include prediction of protein solubility [24], prediction of pro-
tease cleavage sites [51], and prediction of protein destination [32]. While the
predictive goals differ, these applications share the same general problem setup.
Figure 3.1 presents a high-level overview of the modeling process. The protein
strings of the training dataset are taken as input, various “features” are calculated
from the amino acid sequence, and these features, along with the class labels of
the training data, are used to train a predictive model. The trained model can
then be used to predict the class label of a new protein whose label is unknown.

The application most similar to the subject of this thesis is the prediction of
solubility upon expression in E. coli. In both cases the goal is binary classification,
which is the prediction of the input to belong to one of two classes – soluble or
insoluble, or in our case, produced or non-produced. Both applications are also
broadly interested in the correct transcription, translation, and folding of the re-

CHAPTER 3. COMPUTATIONAL BACKGROUND 24

Figure 3.1: Visual overview of training a model to predict protein properties.
Numeric representations are extracted from the input protein sequences, which
are then used as input to statistical and machine learning methods. The fitted
model can be used to predict properties of new sequences.

combinant gene. For this reason, and the fact that predicting protein production
in filamentous fungi is a new problem with few related works, we discuss compu-
tational approaches to the solubility in E. coli modeling problem.

Once extraction of the numeric representation of the proteins has been com-
pleted, as described in Section 2.6, statistical tests can be applied to filter out
features of the proteins that are informative to the prediction problem. This step
is motivated by the possibility that some of the calculated protein features are
irrelevant or redundant. To test for the significance of individual features, the cal-
culated values for one group, e.g the soluble proteins, are compared to the values
calculated for the other group, e.g. insoluble proteins. The t-test, Mann-Whitney
U test, and Kruskal-Wallace test have all been applied to select features for pre-
dicting solubility in E. coli [9, 26–28]. For example, Hirose and Naguchi used a
t-test to select 50 features with distributions significantly different between the in-
soluble and soluble protein datasets [27]. In the literature the choice of statistical
test is rarely justified, which is problematic because the efficacy of the test may
depend on the validity of assumptions made on the underlying data distribution
[61]. A statistical test may be used as the primary data analysis method, as done
by Boettner et al. to identify features related to the characteristic of interest [9],
but this does not provide a way to classify new protein sequences, which is our
primary aim.

CHAPTER 3. COMPUTATIONAL BACKGROUND 25

There are a number of classification methods commonly used in machine learn-
ing that serve well for protein prediction problems, with implementations readily
available in statistical software packages. These include logistic regression, deci-
sion trees, linear discriminant analysis (LDA), artificial neural networks (ANNs),
k-nearest neighbors (kNN) classifiers, random forest (RF) classifiers, and support
vector machines (SVMs). A review of these methods is beyond the space con-
straints of this thesis, but detailed descriptions of these methods can be found in
Bishop’s Pattern Recognition and Machine Learning [8].

SVMs have been shown to perform highly for both the solubility in E. coli
and protein production in filamentous fungi prediction tasks. SVMs performed
favorably for protein solubility prediction when compared with ANNs and kNN
classifiers [29, 38], and RFs [27]. In the only work to date that compared machine
learning methods for predicting protein production in filamentous fungi, SVMs
performed the best when compared to LDA, kNN, and Naive Bayes [54]. SVMs
have several strong points, including few parameters that provide a simple means
to adjust the flexibility of the model, a global optimum, efficient optimization
methods, and the advantage of offering both linear and non-linear classifiers under
the same framework through choice of the kernel function.

Previous work by van den Berg et al. established the efficacy of applying a
linear kernel SVM to predict protein producibility in Aspergillus niger [55]. The
same paper also introduced a publicly available web-server implementation of their
predictive tool, HIPSEC 1, and a publicly available dataset of 345 homologous
A. niger proteins tested for successful production. In this thesis we show that
this model generalizes well to proteins produced in Trichoderma reesei, and seek
to improve the model through inclusion of additional protein features and semi-
supervised methods.

3.2 Support Vector Machines (SVMs)

A support vector machine (SVM) is a classification method that maps the input
data into a high-dimensional feature space and then learns a linear decision surface
in this space. SVMs became a widely used pattern recognition model after 1995,
when Cortes and Vapnik extended a similar, previously defined model so that it
could handle non-linearly-separable data [14].

A hyperplane is a vector of one less dimension than its ambient vector space
[59]. A one-dimensional line is a hyperplane in two-dimensional space, a two-
dimensional plane is a hyperplane in three-dimensional space, and so on for larger
dimensions. An SVM selects a hyperplane through the feature space so that the

1http://helix.ewi.tudelft.nl/hipsec/home.py

CHAPTER 3. COMPUTATIONAL BACKGROUND 26

examples lying on one side of the hyperplane are assigned a different class label
than those on the opposite side. The hyperplane is selected so that it minimizes
the classification error of the training examples and maximizes the space between
examples of either class, called the margin. The latter criterion is included to
improve generalization of the model to unseen examples.

The formal definition of the SVM from [14] is as follows. We are given a set of
L training pairs L = {(x1, y1), . . . , (xL, yL)},x ∈ Rn, y ∈ {−1, 1}. An SVM learns
a decision function

f(x) = w · φ(x) + b (3.1)

where φ(·) is the chosen feature map. To return a binary prediction, the value
returned by Equation 3.1 is thresholded at 0. The weights w and intercept b are
learned by minimizing

1

2
||w||2 + C

L∑
i=1

ξi (3.2)

subject to

yif(xi) ≥ 1− ξi, i = 1, . . . , L

ξi ≥ 0, i = 1, . . . , L

In the above equations, ξi is the hinge loss function H on sample i, defined as

H(yif(xi)) = max(0, 1− yif(xi))

The parameter C in Equation 3.2 represents a trade-off between the margin,
controlled by ||w||, and the size of the error terms ξi. In practice C is selected by
cross-validation. Figure 3.2 illustrates the learned decision function for different
values of C and different kernel functions (discussed in the next section) on a toy
dataset. Small values of C result in a wide margin and a less accurate classification
of the training examples. Larger values of C yield a small margin and a stricter
classification of training examples.

Optimization is carried out over the quadratic programming problem formed
from the dual form of the function, resulting from the Lagrangian [14]. Introducing
the Lagrange multipliers (a.k.a. dual variables) {αi, . . . , αL}, the learned decision
function can equivalently be written

f(x) =
L∑
i=1

yiαi〈φ(xi), φ(x)〉+ b.

CHAPTER 3. COMPUTATIONAL BACKGROUND 27

In fact, the inner product of the feature vectors 〈φ(xi), φ(x)〉 are the only input
needed to learn the decision function. This is the kernel function, discussed in the
following section.

3.3 Kernels

We use the following definition of a kernel function from [49]:

A kernel is a function κ that for all x, z ∈ X satisfies

κ(x, z) = 〈φ(x), φ(z)〉

where φ is a mapping from X to a feature space F

φ : x→ φ(x) ∈ F

and 〈·, ·〉 is the inner product operator. In order for this to work, the feature space
F must have a corresponding inner product, defined as a real-valued symmetric
bilinear (linear in each argument) map 〈·, ·〉, that satisfies 〈·, ·〉 ≥ 0.

For the vector space Rn the standard inner product is given by

〈x, z〉 =
n∑
i=1

xizi.

Certain machine learning models, including SVMs, only require as input the
inner product between feature vectors and not the feature vectors themselves.
This means that, as opposed to first calculating the feature map φ(x), and then
its inner product with other training points, we can directly calculate the inner
products using the original input x. The kernel is then a special tool to bypass
computationally expensive calculations in a high dimensional feature space, while
still implicitly representing each input vector in many dimensions.

In this thesis we consider three commonly-used kernel functions for use in the
SVM classification model: the linear kernel, Gaussian or “radial basis function”
(RBF) kernel, and polynomial kernel.

The linear kernel is defined by the inner product of the original real-valued
vectors:

κ(x, z) =
n∑
i=1

xizi = 〈x, z〉

This means that the feature map implicitly used for calculating the linear kernel
is the same as the original vector, or equivalently, φ(x) = x.

CHAPTER 3. COMPUTATIONAL BACKGROUND 28

For σ > 0, the RBF kernel is defined as

κ(x, z) = exp

(
−||x− z||2

2σ2

)
In most Gaussian kernel implementations, the kernel is instead parameterized by
γ, where

γ =
2

σ2

Large values of γ correspond with “peaky” Gaussian kernels, while small values of
γ produce wider Gaussian kernels that, if decreased far enough, result in a constant
function. The standard method to select the γ parameter is by cross-validation,
and this is also the method used in this thesis.

A polynomial kernel with degree k is defined as

κ(x, z) = 〈x, z〉k

Figure 3.2 visualizes the form of the decision functions learned using these three
different kernel functions.

3.4 Transductive Support Vector Machines (TSVMs)

Transductive support vector machines (TSVMs) extend the SVM framework to
make use of unlabeled examples to improve generalization accuracy [12]. Beyond
maximizing the margin for labeled data points (as in fully supervised SVMs),
TSVMs also seek to maximize the margin for unlabeled data. At a conceptual
level, the model is formulated to place the hyperplane in “gaps” between the
classes, which are elucidated by the labeled and unlabeled data.

Keeping the same notation from Section 3.2, with the addition of U unlabeled
examples U = {xL+1, . . . ,xL+U}, the objective function can be formulated as
minimizing

1

2
||w||2 + C

L∑
i=1

ξi + C∗
L+U∑
i=L+1

ξ∗i

subject to

yif(xi) ≥ 1− ξi, i = 1, . . . , L

|f(xi)| ≥ 1− ξi, i = L+ 1, . . . , L+ U

ξi ≥ 0, i = 1, . . . , L

ξ∗j ≥ 0, i = L, . . . , L+ U

CHAPTER 3. COMPUTATIONAL BACKGROUND 29

Figure 3.2: Two-dimensional illustration of the decision function learned by an
SVM trained on two-dimensional toy data. Columns from left to right use linear,
polynomial (k = 2), and RBF (γ = 2) kernels. Rows from top to bottom use a
C value of .01, 1, and 100. The hard line shows the classification boundary, and
dashed lines indicate the margin boundaries (f(x) = ±.5). Support vectors are
distinguished from other training points by an extra circle drawn around them.
Figure adapted from the scikit-learn toolbox documentation3.

Original code by Gaël Varoquaux http://scikit-learn.org/stable/auto examples/svm/
plot svm kernels.html.

CHAPTER 3. COMPUTATIONAL BACKGROUND 30

Figure 3.3: Illustration of the classification function learned by the different SVM
formulations on a toy dataset. The red and blue data points are the only labeled
examples included, and the rest are used as unlabeled data. The green and white
background indicates the area belonging to each class. Copied directly from [6].

One problem with the above formulation is that in a high dimensional space
with a small number of labeled examples, it is possible to classify all of the un-
labeled data as belonging to a single class with a large margin, even though this
leads to poor performance in most cases. To prevent this, a balancing constraint
is added that enforces the average classification value of the unlabeled data to be
equal to the average class label of the labeled data. The constraint can be written
as follows:

1

U

L+U∑
i=L+1

f(xi) =
1

L

L∑
i=1

yi

We use the implementation referenced in [12] and freely available online 4.
They solve the optimization problem by decomposing the loss function into the
sum of two distinct loss functions, which enables the use of the “Concave-Convex
Procedure” for optimization [62].

3.5 Laplacian Support Vector Machines (LapSVMs)

The Laplacian support vector machine (LapSVM) is an alternate SVM formulation
that also uses unlabeled data, but in a different manner than the TSVM described
in the previous section. While the TSVM discourages the appearance of unlabeled

4http://mloss.org/software/view/19/

CHAPTER 3. COMPUTATIONAL BACKGROUND 31

data inside the classification margin, the LapSVM encourages unlabeled examples
that are geometrically close together to have the same class label.

In the formulation from [6], the parameters γA and γI are used instead of the
C parameter described in Section 3.2. In a standard SVM formulation, C = 1

2Lγ

where L is the number of labeled examples and γ is a weight on the norm term
in the optimization problem. Note that as opposed to placing C parameters on
the slack variable penalty terms, the LapSVM places γ-type parameters on norm
terms, that are inversely related to C.

The LapSVM objective is to minimize

1

l

L∑
i=1

ξi + γA||w||2 +
γI

(u+ l)2
fLGf

subject to

yif(xi) ≥ 1− ξi, i = 1, . . . , L

ξi ≥ 0, i = 1, . . . , L

In the above formulation LG is the graph Laplacian, calculated by LG = D−W ,
where W is the adjacency matrix formed from the data and D is a diagonal
matrix formed by Dii =

∑l+u
j=1Wij. The adjacency matrix is a binary matrix

of size L + U × L + U where Wij = 1 if xi is connected to point xj, and equals 0
otherwise. f = [f(x1, . . . , f(xl+u)]

T is the vector of predicted values over all of the
data points. Note that fLGf can be expanded

fLGf =
L+U∑
i,j=1

(f(xi)− f(xj))
2Wij

In this formulation it is clearer that if the labels assigned to xi and xj by the
classification function f are different, and they are “close” as defined by the data
adjacency matrix W , then the value of the objective function will increase. This
encourages “close” data points to be assigned the same class label.

A visual illustration of the SVM, TSVM, and LapSVM formulations on a toy
dataset is shown in Figure 3.3.

We make use of the implementation from [52], which is publicly available
online5. The data adjacency matrix was found using k-Nearest Neighbors with
k = 10.

5http://www.dii.unisi.it/ melacci/lapsvmp/

CHAPTER 3. COMPUTATIONAL BACKGROUND 32

3.6 Performance measures

Define Y = {yi}li=1 s.t. yi ∈ {−1, 1} as the true class assignment of each example
and Ŷ = {ŷi}li=1 s.t. ŷi ∈ {−1, 1} as the predicted class assignment. We make use
of the following abbreviations:

1. TP: True positives, the number of instances where the true class assignment
is positive and the predicted class assignment is positive as well

count{ i | ŷi = yi , yi = 1}

2. FN: False negatives, the number of instances where the true class assignment
is positive and the predicted class assignment is negative

count{ i | ŷi 6= yi , yi = 1}

3. TN: True negatives, the number of instances where the true class assignment
is negative and the predicted class assignment is negative as well

count{ i | ŷi = yi , yi = −1}

4. FP: False positives, the number of instances where the true class assignment
is negative and the predicted class assignment is positive

count{ i | ŷi 6= yi , yi = −1}

5. False Positive Rate (FPR): the fraction of negative examples that are incor-
rectly predicted to be positive examples

FP

TN + FP

6. True Positive Rate (TPR): the fraction of positive examples that are correctly
predicted to be positive examples

TP

FN + TP

7. True Negative Rate (TNR): the fraction of negative examples that are cor-
rectly predicted to be negative examples

TN

FP + TN

CHAPTER 3. COMPUTATIONAL BACKGROUND 33

We can then define the performance measures listed below. All measures range in
value from 0 to 1.0:

1. Accuracy: the fraction of labeled examples that are correctly classified by
the model

TP + TN

TP + FP + TN + FN

2. Precision: the fraction of positive class predictions that are correct

TP

TP + FP

3. Recall: the fraction of positive examples that are correctly classified by the
model

TP

TP + FN

4. Balanced accuracy: a measurement of accuracy that gives equal emphasis to
each class regardless of the number of examples from each class

.5 ∗ (TPR + TNR)

Another measure we use is the area under the receiver operating char-
acteristic curve (AUC). Consider again our true labels y = {yi}li=1 s.t. yi ∈
{−1, 1}, but now define our predicted values as real valued numbers, so that
ŷ = {ŷi}li=1 s.t. ŷi ∈ R. With many classifiers, including SVMs, we define a
thresholding classification function, c(ŷ) that converts the real-valued prediction
to a discrete class label. Considering a threshold t we can define the classification
function as:

c(ŷ) =

{
1, if ŷ > t

−1, if ŷ ≤ t

A good threshold returns predictions ŷ that, when evaluated against the ground
truth, give a high True Positive Rate (TPR) and low False Positive Rate (FPR).
If we set the threshold t equal to the maximum predicted value, max(ŷ), then
all examples are given a label of −1, and both TPR and FPR are equal to 0.
In the other extreme, if we set t to the minimum predicted value, min(ŷ), then
all examples are given a label of +1 and both the TPR and FPR are at their
maximum value of 1.0. The receiver operating characteristic curve (ROC) plots
the false positive rate on the x-axis and the true positive rate on the y-axis as
a function of a decreasing classification threshold. If a threshold exists that can

CHAPTER 3. COMPUTATIONAL BACKGROUND 34

perfectly separate the two classes, then the classifier performs optimally and AUC
is equal to 1.0. AUC thus has the advantage of being independent of the selection
of the specific threshold t chosen to binarize the predicted labels. We can raise
and lower precision and accuracy by choosing a different value of t. AUC can also
be analyzed visually by directly plotting the ROC curve.

Chapter 4

Materials and methods

4.1 Data

Four labeled datasets were used in this thesis, with basic statistics given in Ta-
ble 4.1. The Aspergillus niger dataset consists of 345 homologous sequences. It
was first introduced in [54], and then shared publicly in [55]. According to [54],
each sequence was inserted into a vector with the strong glucoamylase promoter
(PGlaA), and the modified cells were grown in shake flasks, filtered, and put on
SDS-PAGE gel, where the detection of a visible band in the gel was defined as
successful production.

Both the heterologous and homologous datasets tested in the host species Tri-
choderma reesei are internal to VTT Technical Research Centre of Finland Ltd.
The heterologous dataset of ORFs tested in the host T. reesei consists of 19 se-
quences from a variety of species. These were tested at different times over the
course of many years, with different experimental protocols. The homologous
dataset consists of 31 sequences, which were selected for their high likelihood
of being secreted according to previous proteomics experiments [4], and include
known highly produced cellulases such as CBHI and CBHII. All 31 sequences were
deemed to be successfully produced according to their detection in protein gels.

For the T. reesei heterologous sequences, an additional Northern Blot analysis
was conducted, which tests the amount of mRNA produced for each sequence.
Sequences without an adequate amount of detected mRNA were excluded from
analysis, as this suggests that these sequences failed at the transcription stage.

All datasets were filtered using CD-HIT [19, 37] with all parameters at default
values except a 60% sequence identity threshold, which was calculated as the num-
ber of amino acids in alignment divided by the length of the shorter sequence. The
T. reesei combined dataset was created by first merging the unfiltered heterolo-
gous and homologous datasets, and then filtering using CD-HIT. This filtering step

35

CHAPTER 4. MATERIALS AND METHODS 36

was included to avoid an over-representation of one protein family in the datasets,
which could bias the model to perform well on only a particular type of protein.

Dataset Host species Seq species of origin Size Positive Negative

A. niger A. niger A. niger 345 178 167
T. reesei homologous T. reesei T. reesei 31 31 0
T. reesei heterologous T. reesei various 19 10 9
T. reesei combined T. reesei various 49 40 9

Table 4.1: Basic statistics of datasets used in experiments.

For semi-supervised methods we extracted unlabeled protein sequences from
the protein databases of the October 2013 version of UniProt [13]. We specifi-
cally drew unlabeled protein sequences from UniProt TrEMBL [13], the computer-
annotated section of the UniProt Knowledgebase. TrEMBL contains translations
of all coding regions in the DDBJ/EMBL/GenBank nucleotide databases, and pro-
tein sequences extracted from the literature or submitted to UniProtKB, which
are not yet integrated into Swiss-Prot. We used TrEMBL instead of Swiss-Prot
because more protein sequences are available in TrEMBL, and we did not need
the functional annotations provided in Swiss-Prot for semi-supervised experiments.
Swiss-Prot from the same UniProt version was used to test for enrichment of EC
numbers and organism taxonomies in the positive predictions of the model.

4.2 Feature selection

We applied two different numeric representations of the protein sequences: amino
acid composition and InterProScan features.

We calculated the normalized amino acid composition of each protein sequence
for each of the “standard” amino acids (see Figure 2.1). Define ni as the number
of times that amino acid i occurs in the input protein sequence. Then each feature
vector can be defined as x ∈ R20 = {x1, . . . , x20} where

xi =
ni∑20
j=1 nj

(4.1)

These were the highest performing sequence features tested on the A. niger dataset
in [55].

InterProScan is “a tool that combines different protein signature recognition
methods into one resource”1 [31]. InterProScan takes a protein amino acid se-
quence as input and returns protein signatures detected by the following methods:

1http://www.ebi.ac.uk/Tools/pfa/iprscan5/

CHAPTER 4. MATERIALS AND METHODS 37

1. BlastProDom: Scans the families in the ProDom database. ProDom is a
comprehensive set of protein domain families automatically generated from
the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL sequence databases
using psi-blast.

2. FPrintScan: Scans against the fingerprints in the PRINTS database. These
fingerprints are groups of motifs that together are more potent than single
motifs by making use of the biological context inherent in a multiple motif
method.

3. HMMPIR: Scans the hidden markov models (HMMs) that are present in
the PIR Protein Sequence Database (PSD) of functionally annotated protein
sequences, PIR-PSD.

4. HMMPfam: Scans the hidden markov models (HMMs) that are present in
the PFAM Protein families database.

5. HMMSmart: Scans the hidden markov models (HMMs) that are present
in the SMART domain/domain families database.

6. HMMTigr: Scans the hidden markov models (HMMs) that are present in
the TIGRFAMs protein families database.

7. ProfileScan: Scans against PROSITE profiles. These profiles are based on
weight matrices and are more sensitive for the detection of divergent protein
families.

8. HAMAP: Scans against HAMAP profiles. These profiles are based on
weight matrices and are more sensitive for the detection of divergent bacte-
rial, archaeal and plastid-encoded protein families.

9. PatternScan: PatternScan is a new version of the PROSITE pattern search
software which uses new code developed by the PROSITE team.

10. SuperFamily: SUPERFAMILY is a library of profile hidden Markov models
that represent all proteins of known structure.

11. HMMPanther: A library of hidden Markov models representing families
of genes.

12. Gene3D: A database of protein domain structure annotations for protein
sequences.

13. Phobius: Predicts transmembrane topology and signal peptides

CHAPTER 4. MATERIALS AND METHODS 38

14. Coils: Calculates the probability that the input sequence will adopt a coiled-
coil conformation

We used all InterProScan signatures that were detected in at least two la-
beled proteins in the union of the A. niger and T. reesei combined datasets. This
amounted to 391 signatures, the names of which are given in Appendix 7. A
binary feature vector x ∈ {0, 1} = {x1, . . . , x391} was constructed for each pro-
tein sequence by placing a 1 if the signature was detected in the protein, and a 0
otherwise.

4.3 Feature combination and kernel choice

We evaluated the predictive performance of an SVM trained with amino acid
(AA) composition only, InterProScan only, or a combination of these features, and
a linear, polynomial, or RBF kernel.

We trained and tested two models - one trained on the A. niger dataset and
the other trained on the T. reesei combined dataset. For experiments using the
A. niger dataset, we used 10-fold cross-validation to train and evaluate the model,
and for the T. reesei combined dataset we used 5-fold cross-validation. 5-fold
cross-validation was used instead of 10 for the T. reesei dataset so that there were
a greater number of examples for evaluation in each fold. The cross-validation
splits were the same across all choices of features and kernels to allow for direct
comparison.

The SVM C parameter and kernel parameters were set using a 3-fold inner
cross-validation loop over the training data for each fold. The parameters that
resulted in the highest average balanced accuracy across the inner cross-validation
loops were selected. In these experiments the C parameter and γ parameter for the
RBF kernel were set using a grid search over 10i for i = {−3,−2,−1, 0, 1, 2, 3},
and the k parameter for the polynomial kernel was set with a grid search over
{2, 3, 4, 5, 6}.

In addition to testing InterProScan and AA composition features individu-
ally, we tested whether a combination of these features would boost performance.
We tested concatenation of the features prior to calculating the kernel, and the
element-wise product of the two kernels. Prior to taking the product, each kernel
κ was normalized so that

κ̂(x, z) =

〈
φ(x)

||φ(x)||
,
φ(z)

||φ(z)||

〉
=

κ(x, z)√
κ(x,x)κ(z, z)

(4.2)

In normalizing the kernels we aimed to give both sets of features approximately
equal emphasis despite differences in magnitude.

CHAPTER 4. MATERIALS AND METHODS 39

4.4 Training dataset size

Given that laboratory time and resources are needed to gather the data necessary
to train a predictive model, it is of interest how many labeled sequences are neces-
sary to achieve a desired performance. To investigate this, we calculated predictive
performance as a function of a decreasing number of labeled training examples.

This experiment was carried out on the A. niger dataset. We first assigned the
data to 10 random cross-validation folds. For each fold, we held the test examples
constant for all iterations, but decreased the number of training examples by 10
in every iteration. Define L0 ∈ L as the training examples originally assigned
to a particular fold. At every iteration i we took a random subsample of the
training examples used in the previous iteration, Li ∈ Li−1, such that the number
of training examples was 10 less than the previous iteration, or more formally
|Li| = |Li−1| − 10. So if for the first iteration, |L0| = n, then |L1| = n − 10,
|L2| = n− 20, and so on until there were no fewer than 10 training examples. In
order to separate the effect of fewer training examples from the number of examples
present from each class, the subsample at every iteration was taken so that the ratio
of positive to negative training examples was the same as the previous iteration.

This experiment was repeated for 3 different randomized cross-validation splits
of the data. We ran the experiment for both RBF and linear kernels because of
the high performance of these kernels on the A. niger data (Table 5.2). C and
γ parameters were selected separately for each fold using a second 5-fold cross-
validation loop within the training data, such that the parameters maximized the
average accuracy across the 5 inner folds. Parameter selection was performed once
in the first iteration using all labeled training data, and these parameters were
used for all the following iterations.

4.5 Unlabeled sequence selection for

semi-supervised experiments

Semi-supervised methods use a combination of labeled and unlabeled data. Since
modern sequencing technologies have made a wealth of protein sequences publicly
available, the question immediately arises of how to select the protein sequences
that form the unlabeled dataset.

As a first step, we tested the use of the entire Aspergillus niger genome, con-
sisting of 14, 097 sequences, in conjunction with the labeled A. niger data. We
trained a linear kernel TSVM using 10-fold cross-validation in a labeled-only con-
dition wherein we used only the labeled A. niger sequences for training and testing,
and a semi-supervised condition in which we used the labeled sequences combined

CHAPTER 4. MATERIALS AND METHODS 40

(a) labeled data only (b) with A. niger genome

Figure 4.1: TSVM 10-fold cross-validation ROC curves for the A. niger dataset
trained on amino acid composition features. Gray lines show the ROC curve for
individual folds, and the blue line is the average ROC curve across folds. Figure
(a) shows the results using only the labeled data, and (b) shows results with all
labeled data combined with the unlabeled A. niger genome sequences.

with all 14, 097 unlabeled sequences from the A. niger genome. The C∗ parameter
was kept at its default value of C∗ = LC

U
where L and U are the number of labeled

and unlabeled examples, respectively. Figure 4.1 (a) shows the ROC curves when
using the labeled A. niger data only and (b) shows the ROC curves when training
with the labeled A. niger data plus all genome sequences. These figures show how
the inclusion of the sequences from the A. niger genome hurts model performance,
decreasing from an average AUC of .83 to .71.

Given the lack of improvement afforded by the use of the A. niger genome, we
sought alternative unlabeled sequences. We conducted initial selection experiments
using the A. niger dataset and the UniProt SwissProt database from October of
2013, consisting of over 500,000 unlabeled protein sequences. We used the Basic
Local Alignment Search Tool (BLAST) [3] [10] to search for unlabeled sequences,
with the idea that sequences relevant to our prediction problem could be identified
by homology to the labeled sequences. BLAST finds pairwise local alignments
between sequences and also returns an “e-value” that describes the significance of
the alignment compared to a random model.

We first performed a BLAST of the A. niger dataset against the UniProt
SwissProt sequences, and selected all sequences that were within a BLAST e-value
of 10 to the labeled dataset. This returned 19,845 sequences. A histogram of
these sequences by BLAST e-value to the closest labeled sequence is shown in
Figure 4.2. There are a greater number of proteins with weaker homology to the

CHAPTER 4. MATERIALS AND METHODS 41

Figure 4.2: Histogram of number of sequences vs. smallest BLAST e-value to the
labeled A. niger sequences.

labeled sequences, as shown by the increase in number of sequences as the e-value
increases.

We conducted experiments to determine the effect of sequence distance in
BLAST e-value space on performance using the TSVM model. We separated
the 19,845 unlabeled SwissProt sequences selected in the previous step into the
following 5 bins according to their e-value: 0–1E-60, 1E-60–1E-20, 1E-20–1E-1,
1E-1–1E0, and 1E0–1E1. We then performed 5 rounds of 10-fold cross-validation
with a linear kernel TSVM. In each round we used the same labeled A. niger
examples for training, but different unlabeled sequences. In the first round we
randomly sampled 1000 unlabeled sequences from the first e-value bin, and used
these as the unlabeled sequences. In the second round, we used 500 randomly
selected from the first bin and 500 from the second bin. In the third, we randomly
sampled 333 sequences each from the first 3 bins, and so on for the fourth and fifth
round. Thus in each round the number of unlabeled sequences was kept constant,
but the maximum BLAST e-value was increased. All 1000 unlabeled sequences
were used for training each cross-validation fold. The resulting ROC curves are
shown in Figure 4.3. Based on Figure 4.3, the highest performance of the TSVM
model resulted when using sequences from the first two bins. We decided to limit
unlabeled sequences to those with BLAST e-value of ≤ 1E-20.

In order to have access to a larger number of unlabeled sequences for future ex-
periments, we switched from using the UniProt SwissProt database to the UniProt

CHAPTER 4. MATERIALS AND METHODS 42

(a) e-value < 1E-60 (b) e-value < 1E-20

(c) e-value < 1E-1 (d) e-value < 1E0

(e) e-value ≤ 1E1

Figure 4.3: ROC curves for 10-fold cross-validation of linear TSVM trained on
A. niger dataset using amino acid composition features. Gray lines show ROC
curves for each fold, and the blue line shows the average ROC across folds. 1000
unlabeled sequences were used during training for all figures a-e, but for each figure
the threshold on the BLAST e-value was increased. The BLAST e-value was given
by a BLAST of unlabeled sequences against labeled A. niger sequences.

CHAPTER 4. MATERIALS AND METHODS 43

TrEMBL database, which contains over 54 million sequences. The e-value is sen-
sitive to the number of sequences in the database, so to maintain consistency with
the BLAST e-value binning experiments on the SwissProt database, we specified
that the size of the database for e-value calculations for the TrEMBL sequences be
set equal to 542,901, which is the number of sequences in the SwissProt database.
The BLAST of the labeled A. niger and T. reesei sequences against the TrEMBL
database returned 307,301 unlabeled candidate TrEMBL sequences for the A. niger
dataset and 72,679 sequences for the T. reesei dataset.

4.6 TSVM and LapSVM experiments

We compared the performance of two semi-supervised SVM formulations, the
Transductive SVM (Section 3.4) and Laplacian SVM (Section 3.5), and two differ-
ent sampling procedures to select the unlabeled sequences to use during training.
Both procedures sampled from the TrEMBL sequences with BLAST e-value of ≤
1E-20 when aligned with the labeled sequences, the selection of which is described
in the previous section. We tested both a linear kernel and radial basis function
(RBF) kernel.

In the “random” sampling method, we selected the unlabeled sequences to use
for training by random selection from the pool of TrEMBL sequences with small
BLAST e-value. That is, to construct the “random 500” dataset, for every cross-
validation fold we randomly selected 500 sequences from the unlabeled TrEMBL
sequences, and these sequences plus the labeled data were used during training
for that fold. The same procedure was conducted for the “random 2000” dataset,
except in this case 2000 sequences were selected per fold.

The “close” method sampled TrEMBL sequences that were close to labeled
sequences in amino acid content. Rather than selecting sequences close to any
labeled sequence, we sought to distribute the unlabeled sequences somewhat evenly
by selecting the k nearest neighbors of each labeled training sequence, as defined by
Euclidean distance between amino acid content vectors. Defining s as the input
sample size and N as the number of labeled training sequences, the number of
nearest-neighbors to select for each labeled sequence was set equal to k = ceil(s

N
).

The number of sequences to sample s was set to either 500, for “close 500,” or 2000,
for “close 2000.” Since the number of sequences to sample per labeled protein was
rounded up using the ceil function, in some cases the total number of selected
sequences exceeded 500 or 2000.

Training and testing was completed using the same cross-validation splits as
used in Section 4.3. For the A. niger data, we used all labeled examples for training
in one condition, and a randomly sampled subset of 10 labeled training examples
in another condition. The second situation was to test for improvements when few

CHAPTER 4. MATERIALS AND METHODS 44

labeled training examples are available. As in Section 4.4, the 10 labeled examples
were sampled so that the proportion of negative and positive examples was the
same as in the full labeled dataset.

The C parameter for the SVM (see Section 3.2) and γ parameter for the RBF
kernel (see Section 3.3) were set once using all labeled examples. The best param-
eters for each cross-validation fold were selected as the parameters that maximized
the average balanced accuracy within an inner 3-fold cross-validation loop. These
parameter values, set once for each dataset, were applied for all transductive ex-
periments, which used the same cross-validation splits as the labeled-data-only
experiments. In addition, the parameter values set in this manner using all la-
beled examples of the A. niger dataset were applied to the model trained on only
10 labeled examples. Since the Laplacian SVM uses an alternate formulation of
the SVM objective function, the parameter γA was set to the equivalent C value,
or 1/(2 · C) (Section 3.5).

The regularization terms for the TSVM, C∗ (see Section 3.4), and LapSVM,
γI (see Section 3.5), were selected independently for every transductive exper-
iment. For each fold the C∗ or γI was selected that maximized average ac-
curacy across an inner 3-fold cross-validation loop. A grid search over 10i for
i ∈ {−3,−2,−1, 0, 1, 2, 3} was performed to select C∗ and a grid search over {500,
50, 5, .5, .05, .005, .0005} was used to select γI . The differences in the latter grid
are due to the inverse relationship between C and γI (see Section 3.5).

4.7 Enrichment tests

The model evaluations in Section 4.3 give estimates for how well we can predict
the success of available labeled data, primarily composed of sequences from the
native T. reesei and A. niger genomes. In this section we sought to understand
what sequences are predicted to be “producible” at a wider scale, by analyzing
model predictions on the entire Uniprot SwissProt database of protein sequences.
We tested for enrichment of “successful” predictions in taxonomic classification
of the organism from which the sequence originates, and in enzyme function as
specified by Enzyme Commission (EC) numbers.

We tested six variants of a fully-supervised SVM trained using amino acid
composition – models trained using a linear, polynomial, and RBF kernel and
either the A. niger or T. reesei dataset. We applied these six models to predict
the producibility of the 542,901 sequences in the October 2013 UniProt SwissProt
database. For each model, parameters were selected to maximize the balanced ac-
curacy averaged across 5 cross-validation folds. The real-valued predictions on the
SwissProt sequences were thresholded at 0, so that positive values were considered
predictions of “success,” and negative of “failure.”

CHAPTER 4. MATERIALS AND METHODS 45

SwissProt includes taxonomic classification of the organism from which each
protein sequence originates. An example entry from the database for a plant pro-
tein sequence is Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheo-
phyta,Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae, Pentapetalae;
rosids; fabids; Fabales; Fabaceae; Papilionoideae,Fabeae. To separate sequences
by the classification of their origin species, we defined taxonomic categories by
the fifth level of their taxonomic classification, where each level is separated by
semi-colons. In the example sequence taxonomy, the sequence would belong to the
“Tracheophyta” category.

47% of the sequences in SwissProt also have an Enzyme Commission (EC)
number. The EC number system, assigned by the Nomenclature Committee of
the International Union of Biochemistry and Molecular Biology (NC-IUBMB)2

describes the reactions catalyzed by the protein. In tests for enrichment by EC
class, we separated sequences by the third number in their EC number. As an
example, cellulases have an EC number of 3.2.1.4, so in our enrichment tests they
would be counted in the “3.2.1” category.

To test for a significantly high number of predicted “successes” per category,
we used the hypergeometric statistical test, implemented as phyper in the R pro-
gramming language. Given a sample population, this tests whether a sub-sample
of items, taken without replacement, contains a larger-than-expected proportion of
items of a particular type. In our case, the “sample population” is the SwissProt
database, the sub-sample taken consists of all sequences with a positive predic-
tion, and the “type” tested for significant presence in the sub-sample is either the
taxonomy of the organism of origin or the sequence EC number.

We only considered EC number or taxonomic categories that contained at least
20 sequences in SwissProt, to avoid deeming a category as “enriched” with positive
predictions if there were very few examples from which to draw this conclusion.

2http://www.chem.qmul.ac.uk/iubmb/enzyme/

Chapter 5

Results and Discussion

5.1 Performance of existing tools

There are many existing tools to predict protein solubility upon expression that
are primarily trained on proteins tested in an E. coli host (see Section 3.1.2).
As of yet there is little discussion in the literature about how well prediction
tools can generalize between host organisms. We investigated whether tools aimed
at solubility prediction in E. coli can also be applied to predict the secretion of
recombinant proteins in filamentous fungi. Specifically, we applied two reputedly
high-performing E. coli solubility prediction tools, ccSOL omics and PROSO II, on
the aformentioned VTT T. reesei datasets of 19 homologous and 31 heterologous
proteins, and the A. niger dataset of 345 proteins [55].

The resulting accuracies are shown in Table 5.1. The prediction accuracies
using HIPSEC [55], the previously developed tool for predicting protein secretion
in filamentous fungi, are shown for comparison.

Table 5.1: Accuracies for tool predictions on filamentous fungi secretion datasets

A. niger [55] T. reesei hom T. reesei het

ccSOL omics [1] .50 .45 .63
PROSO II [50] .52 .68 .53
HIPSEC [55] .80 .81 .84

While ccSOL omics and PROSO II have reputedly high performance on large
datasets of proteins produced primarily in E. coli, they do not perform well in
predicting the production and secretion of homologous and heterologous proteins
in filamentous fungi. This establishes the need for prediction tools that are tailored
to the desired host organism. Interestingly, the HIPSEC predictor performs very

46

CHAPTER 5. RESULTS AND DISCUSSION 47

well on the T. reesei data, which motivates our use of the data and methods used
to train the HIPSEC model.

5.2 Feature combination and kernel choice

The performance metrics of AUC and balanced accuracy are shown for the model
trained on the A. niger dataset in Table 5.2, and the metrics for the model trained
on the T. reesei combined dataset are shown in Table 5.3. To calculate the balanced
accuracy the classification function, given in Equation 1.1 in Section 3.2, was
thresholded at 0. The labels “aacomp,” “interproscan,” “concat,” and “prod”
respectively refer to amino acid (AA) composition features only, InterProScan
features only, concatenation of the features prior to kernel calculation, and their
normalized kernel product. The type of kernel is shown in parentheses, and the
highest AUC achieved for each dataset is bolded.

The A. niger column in Table 5.2 shows the average performance of the model
on the left-out test data, averaged across the 10 cross-validation folds. The stan-
dard deviation from the average across folds is given in parentheses. The T. reesei
column in Table 5.2 shows the performance when the model, trained on the A.
niger data, predicts the labels of the T. reesei dataset. Table 5.3 shows the average
performance across folds under the T. reesei column, and the generalization to the
A. niger data under the A. niger column.

The best performance on the A. niger data was .84 AUC when training with
the A. niger data (Table 5.2) and .75 when training with the T. reesei combined
data (Table 5.3). With both training datasets, the combination of a linear kernel
with amino acid (AA) composition features gave the best results on the A. niger
data. However, the performance using AA composition and a kernel choice other
than linear were nearly equal to the performance of the linear kernel. In fact, the
choice of kernel had little effect on performance for the A. niger dataset.

For the T. reesei data, the highest performance when training with the A. niger
data was .89 AUC (Table 5.2), and an average of .80 AUC when training with the
T. reesei data. In both cases, the highest achievement on the T. reesei dataset
was with a polynomial kernel. It is unclear why the polynomial kernel performed
slightly better on the T. reesei data than using a linear or RBF kernel. It could be
related to the significant class imbalance in the T. reesei dataset. With over 4/5
of the dataset belonging to the positive class, the boost on the T. reesei dataset
would make sense if the polynomial kernel shape admits more positive predictions.

The models trained using InterProScan features (as described in Section 4.2)
did not perform as well as those trained with only AA composition. However,
the InterProScan features on their own were informative for prediction on both
datasets - a linear kernel model with only the InterProScan features trained on the

CHAPTER 5. RESULTS AND DISCUSSION 48

Table 5.2: Performance of feature/kernel pairs for model trained with A. niger
data. A. niger and T. reesei column headers indicate the dataset used for evalu-
ation. The A. niger column shows the cross-validation average with its standard
deviation in parentheses.

A. niger T. reesei

AUC Bal Acc AUC Bal Acc
aacomp (linear) .84 (.08) .76 (.09) 0.86 0.84
interproscan (linear) .74 (.12) .67 (.12) 0.83 0.68
concat (linear) .75 (.10) .68 (.08) 0.78 0.60
prod (linear) .78 (.11) .70 (.08) 0.81 0.76

aacomp (rbf) .84 (.07) .77 (.08) 0.83 0.73
interproscan (rbf) .75 (.12) .67 (.12) 0.74 0.69
concat (rbf) .75 (.11) .67 (.11) 0.80 0.61
prod (rbf) .76 (.10) .68 (.11) 0.76 0.62

aacomp (polynomial) .82 (.09) .77 (.09) 0.89 0.88
interproscan (polynomial) .75 (.11) .68 (.12) 0.78 0.60
concat (polynomial) .74 (.11) .68 (.11) 0.79 0.60
prod (polynomial) .77 (.11) .70 (.10) 0.82 0.69

CHAPTER 5. RESULTS AND DISCUSSION 49

Table 5.3: Performance of feature/kernel pairs for model trained with T. reesei
combined data. A. niger and T. reesei column headers indicate the dataset used
for evaluation. The T. reesei column shows the cross-validation average with its
standard deviation in parentheses.

A. niger T. reesei

AUC Bal Acc AUC Bal Acc
aacomp (linear) 0.75 0.69 .64 (.22) .61 (.19)
interproscan (linear) 0.67 0.51 .58 (.24) .59 (.21)
concat (linear) 0.73 0.51 .64 (.35) .70 (.18)
prod (linear) 0.72 0.51 .60 (.23) .56 (.19)

aacomp (rbf) 0.74 0.67 .71 (.26) .59 (.20)
interproscan (rbf) 0.51 0.51 .52 (.22) .47 (.03)
concat (rbf) 0.51 0.51 .60 (.24) .54 (.11)
prod (rbf) 0.51 0.51 .59 (.29) .47 (.03)

aacomp (polynomial) 0.74 0.70 .80 (.17) .61 (.19)
interproscan (polynomial) 0.69 0.51 .53 (.31) .64 (.21)
concat (polynomial) 0.72 0.50 .55 (.28) .59 (.21)
prod (polynomial) 0.72 0.52 .60 (.17) .64 (.18)

CHAPTER 5. RESULTS AND DISCUSSION 50

A. niger data yielded an average AUC of .74 on the A. niger data, and an AUC of
.83 on the T. reesei data (Table 5.2). Given that both the InterProScan and AA
composition features performed well on the prediction problem on their own, it is
surprising that their combination did not surpass the performance of amino acid
composition alone. Taking the linear kernel SVM trained and tested on the A.
niger data as an example, AA composition alone achieved .84, InterProScan alone
achieved .74, their concatenation achieved .75 and their product, .78. This effect
of InterProScan features on their own performing the worst, their combination
with AA composition performing slightly better, and finally AA composition alone
performing the best, occurred across nearly all combinations of dataset and kernel
type.

One possibility is that InterProScan features do not provide information that
is not available in the amino acid composition alone – i.e. that no new information
is added. To investigate this possibility, we compared the predictions on the A.
niger dataset made by the linear kernel SVM trained using only InterProScan
features, and the linear kernel model trained using only AA composition. There
were 39 sequences in total that were correctly classified by the InterProScan model,
but incorrectly classified by the AA composition model. 10 of these had positive
labels in the original dataset and 29 had negative. This hints that there could
be information in the InterProScan features not present in AA composition. In
addition, while there is a positive correlation between the predictions made by
the AA composition model and those made by the InterProScan model (r = .51,
p < .0001), this is lower than one might expect from two feature sets containing
the same information.

Another explanation for the performance drop when AA composition is com-
bined with InterProScan features is that InterProScan features do not generalize
well across different types of proteins. As an extreme example, consider the pos-
sibility that all the positive sequences in the training data contain a hypothetical
protein domain A, and all the negative training sequences lack domain A. If all the
positive test sequences also lack domain A, the model would be fitted to use the
lack of domain A as an indication of a negative label, while in reality the test se-
quences could belong to a completely different protein family wherein the presence
or absence of domain A is irrelevant to its producibility. Thus these features could
compromise the model when training across different types of proteins, as might
have happened in the case of the A. niger and T. reesei datasets. On the other
hand, there is information in the InterProScan features relevant to the problem,
and it might be that this information could be harnessed in some other form, e.g.
by late fusion of models as opposed to fusion at the feature level prior to model
training.

The higher overall performance of the model trained on the A. niger data is

CHAPTER 5. RESULTS AND DISCUSSION 51

probably due to the larger size of the dataset. Interestingly, the linear kernel
model trained on the T. reesei with amino acid composition gives an AUC of .75
on the A. niger data (Table 5.3). This is similar the average AUC achieved by
the A. niger data when a model is trained using only 50 examples (Figure 5.1), as
described in the next section.

5.3 Number of training sequences

The results for experiments with fewer labeled training examples are visualized in
Figure 5.1. From top to bottom the rows show average AUC, accuracy, precision,
and recall as a function of the number of training examples. Each column shows
the results using a different random cross-validation split of the data.

The average performance degraded slowly as the number of training examples
decreased for both linear and RBF kernels. No major changes in performance
occurred until around 100-60 training examples, when, for Run 1 and Run 2,
there was a visible rise in recall and dip in precision for the RBF kernel. The
reasons for why the RBF kernel model would start returning many false positives
are unclear. Interestingly, the AUC did not suffer in the same way, indicating
that while the thresholded classification of the test proteins gave false positives,
the spatial relationship between the test points as returned by the classification
function remained correct. In either case, it appears that the linear kernel is
slightly more stable when using fewer training examples.

In all cross-validation splits the average performance was certainly lower for
10 training examples than it was for 310. However, with around .6-.7 accuracy
and .7-.8 AUC, the models trained with 10 examples were still surprisingly useful
for discriminating successfully produced proteins. This could in part be due to
the small dimensionality of the feature vector, which limits the flexibility of the
model and could help allow for the use of 10 training examples without overfitting
or degeneracy. It could also be related to the near 50-50 ratio of positive to
negative examples maintained at each iteration – using 5 negative and 5 positive
examples would be expected to return a better model than 1 negative and 9 positive
examples. Finally, the use of the same model parameters might also contribute to
stability, as model parameters that generalize well can be difficult to identify with
very few training examples.

5.4 TSVM and LapSVM experiments

Tables 5.4, 5.5, 5.6, and 5.7 show the average AUC across cross-validation folds and
its standard deviation for combinations of sampling method, number of unlabeled

CHAPTER 5. RESULTS AND DISCUSSION 52

Figure 5.1: Performance measure as a function of the number of labeled training
examples. Solid lines show the average across 10 cross-validation folds and the
shaded area is the standard error. The blue and orange colors show results using
a linear and RBF kernel, respectively. Each column is a different “run” a.k.a.
randomized split of the labeled data into cross-validation folds. “AUC” stands for
“Area under the curve.” See Section 3.6 for a formal definition of performance
metrics.

examples, and the labeled dataset used for training. Table 5.4 and Table 5.6 show
results using the TSVM model with a linear and RBF kernel, respectively, and
Table 5.5 and Table 5.7 show results for the LapSVM model with a linear and
RBF kernel, respectively.

Table 5.8 shows the selected C∗ parameters for the RBF kernel TSVM for
all training conditions using 500 unlabeled sequences, and Table 5.9 shows the
selected γI parameters for the RBF kernel LapSVM.

Interestingly, in most cases the use of semi-supervised models and inclusion of

CHAPTER 5. RESULTS AND DISCUSSION 53

Table 5.4: Avg. (std.) AUC performance of TSVM with linear kernel

A. niger T. reesei combined

All ex 10 ex All ex
SVM .84 (.08) .64 (.16) .64 (.22)
random 500 .80 (.08) .67 (.09) .68 (.20)
random 2000 .80 (.08) .69 (.09) .69 (.19)
close 500 .81 (.08) .69 (.09) .81 (.17)
close 2000 .83 (.08) .68 (.10) .81 (.17)

Table 5.5: Avg. (std.) AUC performance of LapSVM with linear kernel

A. niger T. reesei combined

All ex 10 ex All ex
SVM (labeled only) .84 (.08) .64 (.16) .64 (.22)
random 500 .83 (.07) .67 (.18) .76 (.21)
random 2000 .84 (.07) .66 (.17) .66 (.15)
close 500 .83 (.07) .65 (.17) .78 (.15)
close 2000 .83 (.07) .67 (.18) .72 (.12)

Table 5.6: Avg. (std.) AUC performance of TSVM with RBF kernel

A. niger T. reesei combined

All ex 10 ex All ex
SVM .84 (.07) .72 (.16) .71 (.26)
random 500 .84 (.05) .73 (.15) .66 (.20)
random 2000 .83 (.05) .73 (.13) .51 (.34)
close 500 .82 (.07) .73 (.16) .70 (.16)
close 2000 .83 (.05) .72 (.15) .71 (.14)

Table 5.7: Avg. (std.) AUC performance of LapSVM with RBF kernel

A. niger T. reesei combined

All ex 10 ex All ex
SVM (labeled only) .84 (.07) .72 (.16) .71 (.26)
random 500 .83 (.06) .72 (.13) .75 (.18)
random 2000 .83 (.07) .68 (.16) .76 (.16)
close 500 .83 (.06) .71 (.14) .78 (.15)
close 2000 .83 (.07) .71 (.13) .78 (.18)

CHAPTER 5. RESULTS AND DISCUSSION 54

Table 5.8: C∗ selected per-fold for TSVM
XXXXXXXXXXXXDataset

Fold #
1 2 3 4 5 6 7 8 9 10

A. niger random 500 1000 .001 100 .001 100 1000 .1 10 1 1000
A. niger close 500 1000 .001 1 100 10 1 .01 100 100 1000
T. reesei random 500 .001 1 .001 1 .001
T. reesei close 500 .001 .001 .001 .001 10

Table 5.9: γI selected per-fold for LapSVM
XXXXXXXXXXXXDataset

Fold #
1 2 3 4 5 6 7 8 9 10

A. niger random 500 .005 .005 .5 5 .5 .005 .005 .5 .5 .5
A. niger close 500 .0005 .005 .5 .5 .5 .5 .5 .5 .5 .5
T. reesei random 500 .05 .5 500 500 500
T. reesei close 500 .05 .5 500 500 500

unlabeled sequences had a weak effect on the average AUC performance, especially
for models trained with the A. niger data. The largest differences observed for the
A. niger model occurred for the linear kernel TSVM (Table 5.4), where there was
a decrease from .84 average AUC using all labeled examples to .81 using the 500
closest unlabeled sequences, and an increase from .64 average AUC using 10 labeled
examples to .68 and .69 using the closest 500 or 2000 unlabeled sequences. In the
TSVM case (Tables 5.4 and 5.6), the semi-supervised A. niger models performed
1-4 percentage points better than using only the 10 labeled examples, and in all
cases the variance of the performance across cross-validation folds was lower. The
decrease in variance is likely due to the use of a larger amount of data used during
training.

The lack of a strong effect could be partially contributed to the selection of
unlabeled sequences. It could be that the BLAST filtering described in Section 4.5
limited the unlabeled sequences to those that would have minimal effect on the
learned decision function. This preprocessing step could also help explain the
similarity between results using random unlabeled sequence selection or “close”
selection, since both methods sampled from the pool of sequences pre-selected for
low BLAST e-value with labeled sequences.

Another explanation would be that the models are selecting semi-supervised
model parameters (C∗ and γI) so that the unlabeled data is more or less ignored.
If this were true, we would expect to observe the values closest to 0 selected, but
as shown in Tables 5.8 and 5.9, this is not the case. We also note that the selected

CHAPTER 5. RESULTS AND DISCUSSION 55

values for C∗ and γI fluctuate dramatically between folds. This is partly linked to
the fluctuations in the C parameter, which varies from .1 to 1000. This instability
reflects heterogeneity within the dataset, in the sense that different divisions of the
data favor different model parameterizations and vary in achievable classification
performance. Similarly, there may be an effect of using semi-supervised methods
for some folds and not others, which is masked by taking the performance average.

The decrease in performance in the case of all labeled examples and a linear
kernel TSVM (Table 5.4) could be attributed to the linear kernel TSVM’s high
sensitivity to the distribution of the unlabeled sequences. To prevent the assign-
ment of all unlabeled sequences to one class, the TSVM imposes a constraint on
the class composition of the unlabeled sequences (Section 3.4). Through this con-
straint, the distance of the unlabeled examples to the separating hyperplane and
the number of sequences on either side of the hyperplane both have a strong ef-
fect on the decision function. This effect is visually illustrated in Figure 5.2 using
toy data generated from Gaussian distributions. It is less clear how this TSVM
constraint effects models trained using an RBF kernel.

Whether using the TSVM or LapSVM formulation, linear or RBF kernel, or
random or close unlabeled sequence selection, we were unable to use 10 labeled
sequences combined with semi-supervised methods to recover the performance of
the model trained using all labeled sequences (Tables 5.4, 5.5, 5.6, and 5.7). An
improvement in performance using semi-supervised methods is not guaranteed, as
both the TSVM and LapSVM are developed from assumptions about how the
data is distributed. The TSVM assumes that there is a “gap” between classes in
the feature space, and that the unlabeled sequences help determine the location of
this gap. The LapSVM assumes that examples from the labeled classes are close
together in their intrinsic geometries, and that the unlabeled data is useful in
providing information about the class geometries. However, if the distribution of
the unlabeled examples does not contain information relevant to the classification
problem, then semi-supervised methods will not improve the model predictions.

A reasonable explanation for the lack of strong results is thus that the data
does not conform to the assumptions of the semi-supervised model – in other
words, the class labels of the proteins change in high density areas in amino acid
composition space. Figure 5.3 compares the graph Laplacian for the A. niger
dataset to the graph Laplacian for classifying the digits 2 and 3 from a handwritten
digits dataset1, for which the LapSVM performs well [6]. This square matrix
represents the graph information input into the LapSVM. Diagonal elements of the
graph Laplacian are the number of neighbors of each point, and the off-diagonal
element xij is 0 if i and j are not neighbors, and −1 if they are neighbors. In the
“Digits” dataset the first 206 points are 2, and the second 178 points are 3, and in

1Downloadable from http://people.cs.uchicago.edu/ vikass/manifoldregularization.html

CHAPTER 5. RESULTS AND DISCUSSION 56

(a) labeled only (b) unlabeled on negative side

(c) unlabeled on positive side (d) different distances of unlabeled to hyper-
plane

Figure 5.2: Illustration of the effects of the distribution of unlabeled data on a
linear kernel TSVM using toy data. Positive (red) and negative (blue) points
were generated from Gaussian distributions with different means, and unlabeled
data points are shown in light blue. The solid black line shows the position of
the learned separating hyperplane, and the dotted lines show the location of the
margin. Figures (b), (c), and (d) show different situations in which the uneven
distribution of labeled examples hurts the model’s ability to correctly classify the
labeled examples.

CHAPTER 5. RESULTS AND DISCUSSION 57

(a) Digits; k=10 (b) A. niger data; k=10

(c) Digits; k=30 (d) A. niger data; k=30

Figure 5.3: Visualization of the graph Laplacian matrices constructed using k-
nearest neighbors for k = 10 and k = 30. (a) and (c) show the matrices for images
of the digits 2 and 3, for which the LapSVM performs well, and (b) and (d) show
the matrices for the A. niger dataset in amino acid composition space, for which
the LapSVM does not improve performance over a fully supervised SVM. Blue at
position i, j indicates that points i and j are neighbors in the adjacency matrix.

CHAPTER 5. RESULTS AND DISCUSSION 58

the A. niger dataset the first 178 points are positive predictions, and the remaining
are negative predictions. The digits dataset has much stronger connectivity within
class than between class, which is in contrast to the A. niger dataset that has
poorer separation between the two classes. Thus the protein labels in the A. niger
dataset appear to change in high-density areas, which does not conform to the
assumptions of the LapSVM.

The most encouraging results occurred for models trained using the combined
T. reesei dataset. In the case of the linear kernel TSVM, the average AUC in-
creased from .64 (.22 standard deviation [std]) using labeled data only to .81 (.17
std) when using the “close 500” unlabeled sequences (Table 5.4). For the RBF ker-
nel LapSVM, the average AUC increased from .71 (.76 std) to .78 (.15 std), again
with the “close 500” unlabeled sequences (Table 5.7). Because of the small size of
the T. reesei dataset, it is difficult to draw conclusions from the cross-validation
performance alone. This finding would be solidified by an analysis of the trained
models’ generalization performance to the A. niger dataset. As opposed to the A.
niger models, the “close” unlabeled sequence selection generally performs better
than the “random” unlabeled sequences selection.

5.5 Enrichment tests

A visual illustration of the most significantly enriched categories for three different
models are given in Figures 5.4, 5.5, and 5.6. In all three figures, the rows and
columns are composed of all categories that the model found enriched with positive
predictions with a p-value of about 02. The coloring in each cell reflects the
number of positive predictions that were made for sequences with the EC number
and organism taxonomy given by the row and column intersection. The 10-base
logarithm was taken of the number of positive predictions to scale the colors for
better visibility.

Figure 5.4 visualizes the enrichment test results for the model trained on the
A. niger data with a polynomial kernel, Figure 5.5 visualizes the same but trained
with a RBF kernel, and Figure 5.6 shows the results for the model trained on the
T. reesei data with a polynomial kernel.

Both T. reesei and A. niger belong to the pezizomycotina sybphylum, so it
is sensical that in Figures 5.4, 5.5, and 5.6, this organism taxonomy is highly
significant, with many sequences predicted as successfully produced. Especially
the pezizomycotina and 3.2.1 cell contains a large number of positive predictions,
which contains e.g. the major T. reesei cellulases, known to be secreted in large
quantities. The enrichment of pezizomycotina in conjunction with peptidases and

2A p-value of 0 was returned by the statistical programming language R, most likely with a
very small non-zero rounding error

Figure 5.4: EC number/ organism taxonomy enrichment for the polynomial kernel
model trained with A. niger data. Cell coloring reflects the log10 of the number
of predicted successes with the donor organism taxonomy of the cell column and
EC number of the cell row. Displayed EC numbers and organism taxonomies were
enriched in the predictions of success with a p-value of 0.

Figure 5.5: EC number/ organism taxonomy enrichment for the RBF kernel model
trained with A. niger data. Cell coloring reflects the log10 of the number of pre-
dicted successes with the donor organism taxonomy of the cell column and EC
number of the cell row. Displayed EC numbers and organism taxonomies were
enriched in the predictions of success with a p-value of 0.

60

Figure 5.6: EC number/ organism taxonomy enrichment for the polynomial kernel
model trained with T. reesei data. Cell coloring reflects the log10 of the number
of predicted successes with the donor organism taxonomy of the cell column and
EC number of the cell row. Displayed EC numbers and organism taxonomies were
each enriched in the predictions of success with a p-value of 0.

CHAPTER 5. RESULTS AND DISCUSSION 62

Table 5.10: Number of positive predictions by dataset and kernel type

A. niger T. reesei

linear RBF poly linear RBF poly

A. niger linear 26,956 4,776 20,065 14,941 10,530 12,897
A. niger RBF 6,076 5,584 4,491 3,629 3,956
A. niger poly 33,732 19,494 13,525 16,357
T. reesei linear 95,380 56,365 72,409
T. reesei RBF 59,969 58,762
T. reesei poly 79,476

hydrolases provides a small “sanity check” that the model returns some correct
predictions.

It is impossible at this point to draw conclusions about the positive predic-
tions – ultimately only laboratory results will provide an answer of whether the
predictions are correct or not. Certainly the significant categories and highly pop-
ulated cells reflect groups of sequences that have similar amino acid compositions
to positively labeled sequences in the training datasets. However, it is unknown to
what extent this is related to their producibility upon introduction into filamentous
fungi hosts.

In many cases, it is feasible that the predicted groups contain producible se-
quences. For example, the polynomial A. niger model has significant enrichment
of chelicerata sequences, and two sequences from organisms under the chelicer-
ata taxonomy are positive labeled examples in the heterologous T. reesei dataset.
Figure 5.6 shows that the polynomial kernel T. reesei model has positive predic-
tion enrichment in several bacterial taxonomies. Both gram-negative bacteria (in-
cluding proteobacteria) and gram-positive bacteria (including actinobacteria) have
well-known secretory abilities [21], and it is possible that predictions are related
to the protein sequences in bacterial secretion pathways.

The diagonal of Table 5.10 displays the number of positive predictions made by
each of the different models, while the off-diagonal elements display the number of
positive predictions that overlap between different models, separated by dataset-
kernel combinations. Interestingly, Table 5.10 draws attention to the selectivity
of different models, which was not considered in the previous analysis of kernel
performance on the labeled data (Table 5.2). The RBF kernel was clearly the
most selective. In the case of the A. niger dataset, the linear model predicted over
4 times as many successes as the RBF model, and the polynomial kernel model,
over 5 times as many. The T. reesei RBF model predicted about 10 times as many
successes as the A. niger RBF model. This could be caused by the difference

CHAPTER 5. RESULTS AND DISCUSSION 63

in the selected γ parameter between the two datasets; γ was set to 100 for the
A. niger dataset and 10 for the T. reesei dataset. The narrow kernel function
probably contributed to the high selectivity of the A. niger RBF model. The
higher selectivity of the RBF kernel vs. other kernels is due to the enclosed shape
of its decision function in the input space, as illustrated in Figure 3.3.

There is greater overlap between models trained on the same dataset with
different kernels, than between models trained with the same kernel and different
datasets. Even though the linear kernel model trained on the T. reesei dataset
makes 95,380 positive predictions, and the linear kernel model trained on the A.
niger dataset makes 26,956 positive predictions, only 14,941 of these overlap. It
is possible that the sequences with positive predictions by both datasets are more
reliable than those with positive predictions from only one model, but currently
there is no evidence to this effect. An additional observation from Table 5.10 is
that the smaller set of predictions made using the RBF kernel are largely, though
not entirely, a subset of the positive predictions made using other kernels.

Lastly, it is important to remember that the selected taxonomy and EC number
groups have been selected based on their containing more positive predictions than
would be expected given the proportion of the database composed of these groups.
There are positive predictions in other groups that occur at non-significant levels.

Chapter 6

Conclusion

We successfully applied an SVM trained with amino acid composition features to
predict the successful production of proteins in A. niger and T. reesei. While this
approach was previously applied to A. niger [55], we demonstrated its high success
rate for proteins produced in a different filamentous fungi host species, T. reesei.

We explored the use of family domain information to improve the model through
the inclusion of InterProScan features. While somewhat informative for the pre-
dictive task, these features do not generalize well across different kinds of proteins
and should be excluded in future modeling efforts. Our exploration of different
kernels gave the novel result that the RBF kernel predicts far fewer protein se-
quences to be successfully produced than linear and polynomial kernels. Since
the correctness of the majority of predictions made by the model are as of yet
unexplored, the decision of whether to trust the polynomial or RBF model is left
to the experimentalist.

Experiments using a subset of labeled data for training indicate that one can
train a decent predictor, achieving around 70% accuracy on the A. niger dataset,
by using only 50 labeled training examples. In addition, this training data does
not need to be balanced, as indicated by the success of the model trained with the
unbalanced T. reesei data and applied to the A. niger data.

The semi-supervised TSVM and LapSVM methods gave borderline results.
While in some cases they gave an inkling of improvement, their use can also harm
performance, and thus their application is risky and unnecessarily complicated
for training the predictive model. However, if future improvements in the feature
representation of the proteins lead to clearer separation according to producibility,
then it is likely that TSVM and LapSVM methods could be applied with success.

Based on observations from this thesis, improvements in the protein prediction
task are unlikely to result from changes in the model, and efforts to improve in
the future should focus on the protein representation. Protein 3D structure is one
such unexplored avenue with the potential to improve predictions.

64

Bibliography

[1] Agostini, F., Cirillo, D., Livi, C. M., Delli Ponti, R., and
Tartaglia, G. G. ccSOL omics: a webserver for large-scale prediction
of endogenous and heterologous solubility in E. coli. Bioinformatics 30, 20
(2014), 2975–2977.

[2] Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., and
Jirstrand, M. Kinetic models in industrial biotechnology – Improving cell
factory performance. Metabolic Engineering 24 (2014), 38–60.

[3] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman,
D. J. Basic local alignment search tool. Journal of molecular biology 215, 3
(1990), 403–410.

[4] Arvas, M., Pakula, T., Smit, B., Rautio, J., Koivistoinen, H.,
Jouhten, P., Lindfors, E., Wiebe, M., Penttilä, M., and Salo-
heimo, M. Correlation of gene expression and protein production rate-a
system wide study. BMC genomics 12, 1 (2011), 616.

[5] Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B.,
and Patel, N. H. General mechanism of eukaryotic protein synthesis, 2007.
[Online; accessed December 1, 2015].

[6] Belkin, M., Niyogi, P., and Sindhwani, V. Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples. The
Journal of Machine Learning Research 7 (2006), 2399–2434.

[7] Birch, J. R., and Racher, A. J. Antibody production. Advanced Drug
Delivery Reviews 58, 5-6 (2006), 671 – 685. Engineered antibody therapeutics.

[8] Bishop, C. M. Pattern recognition and machine learning. springer, 2006.

[9] Boettner, M., Steffens, C., von Mering, C., Bork, P., Stahl,
U., and Lang, C. Sequence-based factors influencing the expression of

65

BIBLIOGRAPHY 66

heterologous genes in the yeast Pichia pastoris-A comparative view on 79
human genes. Journal of Biotechnology 130, 1 (2007), 1–10.

[10] Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos,
J., Bealer, K., and Madden, T. L. Blast+: architecture and applica-
tions. BMC bioinformatics 10, 1 (2009), 421.

[11] Clark, D. P. Molecular Biology: Understanding the Genetic Revolution.
Academic Press, Burlington, MA, USA, 2005.

[12] Collobert, R., Sinz, F., Weston, J., and Bottou, L. Large Scale
Transductive SVMs. Journal of Machine Learning Research 7, 7 (2006), 1687–
1712.

[13] Consortium, T. U. Uniprot: a hub for protein information. Nucleic Acids
Research 43, D1 (2015), D204–D212.

[14] Cortes, C., and Vapnik, V. Support-vector networks. Machine learning
20, 3 (1995), 273–297.

[15] Demain, A. L., and Vaishnav, P. Production of recombinant proteins by
microbes and higher organisms. Biotechnology advances 27, 3 (2009), 297–306.

[16] Driouch, H., Melzer, G., and Wittmann, C. Integration of in vivo and
in silico metabolic fluxes for improvement of recombinant protein production.
Metabolic Engineering 14, 1 (2012), 47–58.

[17] Engelman, D., Steitz, T., and Goldman, A. Identifying nonpolar
transbilayer helices in amino acid sequences of membrane proteins. Annual
review of biophysics and biophysical chemistry 15, 1 (1986), 321–353.

[18] Fisher, H. F. A limiting law relating the size and shape of protein molecules
to their composition. Proceedings of the National Academy of Sciences of the
United States of America 51, 6 (1964), 1285.

[19] Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. CD-HIT: Accelerated for
clustering the next-generation sequencing data. Bioinformatics 28, 23 (2012),
3150–3152.

[20] Genentech, I. First successful laboratory production of
human insulin announced. Press Release, September 1978.
http://www.gene.com/media/press-releases/4160/1978-09-06/

first-successful-laboratory-production-o.

http://www.gene.com/media/press-releases/4160/1978-09-06/first-successful-laboratory-production-o
http://www.gene.com/media/press-releases/4160/1978-09-06/first-successful-laboratory-production-o

BIBLIOGRAPHY 67

[21] Glick, B. R., Pasternak, J. J., and Patten, C. L. Molecular Biotech-
nology: Principles and Applications of Recombinant DNA. ASM Press, Wash-
ington, DC, USA, 2010.

[22] Goh, C. S., Lan, N., Douglas, S. M., Wu, B., Echols, N., Smith,
A., Milburn, D., Montelione, G. T., Zhao, H., and Gerstein, M.
Mining the Structural Genomics Pipeline: Identification of Protein Properties
that Affect High-throughput Experimental Analysis. Journal of Molecular
Biology 336, 1 (2004), 115–130.

[23] Gombert, A. K., and Nielsen, J. Mathematical modelling of metabolism.
Current Opinion in Biotechnology 11, 2 (2000), 180–186.

[24] Habibi, N., Hashim, S. Z. M., Norouzi, A., and Samian, M. R. A
review of machine learning methods to predict the solubility of overexpressed
recombinant proteins in escherichia coli. BMC bioinformatics 15, 1 (2014),
134.

[25] Harden, V. A., and Lyons, M. Diagnosing and treating genetic diseases -
a revolution in progress: Human genetics and medical research, 2010. [Online;
accessed December 3, 2015].

[26] Hirose, S., Kawamura, Y., Yokota, K., Kuroita, T., Natsume,
T., Komiya, K., Tsutsumi, T., Suwa, Y., Isogai, T., Goshima, N.,
and Noguchi, T. Statistical analysis of features associated with protein
expression/solubility in an in vivo Escherichia coli expression system and a
wheat germ cell-free expression system. Journal of Biochemistry 150, 1 (2011),
73–81.

[27] Hirose, S., and Noguchi, T. Espresso: A system for estimating protein
expression and solubility in protein expression systems. Proteomics 13, 9
(2013), 1444–1456.

[28] Idicula-Thomas, S., and Balaji, P. V. Understanding the relationship
between the primary structure of proteins and its propensity to be soluble on
overexpression in Escherichia coli. Protein Science, 5 (2005), 582–592.

[29] Idicula-Thomas, S., Kulkarni, A. J., Kulkarni, B. D., Jayaraman,
V. K., and Balaji, P. V. A support vector machine-based method for
predicting the propensity of a protein to be soluble or to form inclusion body
on overexpression in Escherichia coli. Bioinformatics 22, 3 (2006), 278–284.

BIBLIOGRAPHY 68

[30] Ilmén, M., Onnela, M.-L., Klemsdal, S., Keränen, S., and Pent-
tilä, M. Functional analysis of the cellobiohydrolase i promoter of the fil-
amentous fungus trichoderma reesei. Molecular and General Genetics MGG
253, 3 (1996), 303–314.

[31] Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla,
C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al.
Interproscan 5: genome-scale protein function classification. Bioinformatics
30, 9 (2014), 1236–1240.

[32] Klee, E. W., and Sosa, C. P. Computational classification of classically
secreted proteins. Drug Discovery Today 12, 5-6 (2007), 234–240.

[33] Kyte, J., and Doolittle, R. F. A simple method for displaying the
hydropathic character of a protein. Journal of molecular biology 157, 1 (1982),
105–132.

[34] Landowski, C. P., Huuskonen, A., Wahl, R., Westerholm-
Parvinen, A., Kanerva, A., Hänninen, A.-L., Salovuori, N., Pent-
tilä, M., Natunen, J., Ostermeier, C., et al. Enabling low cost
biopharmaceuticals: A systematic approach to delete proteases from a well-
known protein production host trichoderma reesei. PloS one 10, 8 (2015),
e0134723.

[35] Lehninger, A., Nelson, D., and Cox, M. Principles of biochemistry,
(1993). Worth, New York .

[36] Leslie, C. S., Eskin, E., and Noble, W. S. The spectrum kernel: A
string kernel for svm protein classification. In Pacific symposium on biocom-
puting (2002), vol. 7, World Scientific, pp. 566–575.

[37] Li, W., and Godzik, A. Cd-hit: A fast program for clustering and com-
paring large sets of protein or nucleotide sequences. Bioinformatics 22, 13
(2006), 1658–1659.

[38] Magnan, C. N., Randall, A., and Baldi, P. SOLpro: Accurate
sequence-based prediction of protein solubility. Bioinformatics 25, 17 (2009),
2200–2207.

[39] Mehlin, C., Boni, E., Buckner, F. S., Engel, L., Feist, T., Gelb,
M. H., Haji, L., Kim, D., Liu, C., Mueller, N., Myler, P. J., Reddy,
J. T., Sampson, J. N., Subramanian, E., Van Voorhis, W. C.,
Worthey, E., Zucker, F., and Hol, W. G. J. Heterologous expression

BIBLIOGRAPHY 69

of proteins from Plasmodium falciparum: Results from 1000 genes. Molecular
and Biochemical Parasitology 148, 2 (2006), 144–160.

[40] Merino, S., and Cherry, J. Progress and challenges in enzyme develop-
ment for biomass utilization. In Biofuels, L. Olsson, Ed., vol. 108 of Advances
in Biochemical Engineering/Biotechnology. Springer Berlin Heidelberg, 2007,
pp. 95–120.

[41] Middelberg, a. P. J. Preparative protein refolding. Trends in Biotechnol-
ogy 20, 10 (2002), 437–443.

[42] Nevalainen, K. M. H., Te’o, V. S. J., and Bergquist, P. L. Heterol-
ogous protein expression in filamentous fungi. Trends in biotechnology 23, 9
(2005), 468–474.

[43] Niwa, T., Ying, B.-W., Saito, K., Jin, W., Takada, S., Ueda, T.,
and Taguchi, H. Bimodal protein solubility distribution revealed by an
aggregation analysis of the entire ensemble of Escherichia coli proteins. Pro-
ceedings of the National Academy of Sciences of the United States of America
106, 11 (2009), 4201–4206.

[44] Orth, J. D., Thiele, I., and Palsson, B. Ø. What is flux balance
analysis? Nature biotechnology 28, 3 (2010), 245–248.

[45] Piippo, M., Lietzén, N., Nevalainen, O. S., Salmi, J., and Nyman,
T. A. Pripper: prediction of caspase cleavage sites from whole proteomes.
BMC bioinformatics 11, 1 (2010), 320.

[46] Rosano, G. L., and Ceccarelli, E. a. Recombinant protein expression
in Escherichia coli: Advances and challenges. Frontiers in Microbiology 5,
APR (2014), 1–17.

[47] Saloheimo, M., and Pakula, T. M. The cargo and the transport sys-
tem: Secreted proteins and protein secretion in Trichoderma reesei (Hypocrea
jecorina). Microbiology 158, 1 (2012), 46–57.

[48] Sharp, P. M., and Li, W. H. The codon adaptation index-a measure
of directional synonymous codon usage bias, and its potential applications.
Nucleic Acids Research 15, 3 (1987), 1281–1295.

[49] Shawe-Taylor, J., and Cristianini, N. Kernel methods for pattern anal-
ysis. Cambridge university press, 2004.

BIBLIOGRAPHY 70

[50] Smialowski, P., Doose, G., Torkler, P., Kaufmann, S., and Fr-
ishman, D. PROSO II–a new method for protein solubility prediction. The
FEBS journal 279, 12 (2012), 2192–200.

[51] Song, J., Tan, H., Boyd, S. E., Shen, H., Mahmood, K., Webb,
G. I., Akutsu, T., Whisstock, J. C., and Pike, R. N. Bioinformatic
Approaches for Predicting Substrates of Proteases. Journal of Bioinformatics
and Computational Biology 09, 01 (2011), 149–178.

[52] Stefano, M., and Mikhail, B. Laplacian Support Vector Machines
Trained in the Primal.pdf. Journal of Machine Learning Research 12 (2011),
1149–1184.

[53] Sun, A., Peterson, R., Te’o, J., and Nevalainen, H. Expression
of the mammalian peptide hormone obestatin in trichoderma reesei. New
biotechnology 33, 1 (2016), 99–106.

[54] Van Den Berg, B. a., Nijkamp, J. F., Reinders, M. J. T., Wu,
L., Pel, H. J., Roubos, J. a., and De Ridder, D. Sequence-based
prediction of protein secretion success in Aspergillus niger. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 6282 LNBI (2010), 3–14.

[55] van den Berg, B. a., Reinders, M. J. T., Hulsman, M., Wu, L., Pel,
H. J., Roubos, J. a., and de Ridder, D. Exploring Sequence Charac-
teristics Related to High-Level Production of Secreted Proteins in Aspergillus
niger. PLoS ONE 7, 10 (2012), 1–11.

[56] Ventura, S., and Villaverde, A. Protein quality in bacterial inclusion
bodies. Trends in Biotechnology 24, 4 (2006), 179–185.

[57] Ward, O. P. Production of recombinant proteins by filamentous fungi.
Biotechnology Advances 30, 5 (2012), 1119–1139.

[58] Wee, L. J., Tan, T. W., and Ranganathan, S. Svm-based prediction
of caspase substrate cleavage sites. BMC bioinformatics 7, Suppl 5 (2006),
S14.

[59] Weisstein, E. W. Hyperplane. http://mathworld.wolfram.com/Hyperplane.html.
From MathWorld–A Wolfram Web Resource.

[60] Wiebe, M. G. Stable production of recombinant proteins in filamentous
fungi - problems and improvements. Mycologist 17, 3 (2003), 140–144.

BIBLIOGRAPHY 71

[61] Wilcox, R. R. Applying Contemporary Statistical Techniques. Elsevier Inc.,
2003.

[62] Yuille, A. L., and Rangarajan, A. The concave-convex procedure.
Neural computation 15, 4 (2003), 915–936.

Chapter 7

Appendix: InterProScan Features

For each InterProScan feature included in experiments we list the software tool used for extrac-
tion, the feature name, and the description from the InterProScan output when available.

Tool name Feature name Description
Coils Coil
Gene3D G3DSA:1.10.287.410
Gene3D G3DSA:1.10.530.10
Gene3D G3DSA:2.120.10.60
Gene3D G3DSA:2.130.10.140
Gene3D G3DSA:2.160.10.10
Gene3D G3DSA:2.40.30.10
Gene3D G3DSA:2.80.10.50
Gene3D G3DSA:3.30.410.10
Gene3D G3DSA:3.30.560.10
Gene3D G3DSA:3.30.9.10
Gene3D G3DSA:3.40.1090.10
Gene3D G3DSA:3.40.630.10
Gene3D G3DSA:3.50.30.30
Gene3D G3DSA:3.50.50.60
Gene3D IPR001128
Gene3D IPR001623
Gene3D IPR001764
Gene3D IPR002772
Gene3D IPR008972
Gene3D IPR008979
Gene3D IPR010259
Gene3D IPR011042
Gene3D IPR011650
Gene3D IPR011990
Gene3D IPR012334
Gene3D IPR012338
Gene3D IPR012340
Gene3D IPR012341
Gene3D IPR013189
Gene3D IPR013319
Gene3D IPR013780
Gene3D IPR013781
Gene3D IPR013783
Gene3D IPR013785
Gene3D IPR013812
Gene3D IPR013830
Gene3D IPR014710
Gene3D IPR014718
Gene3D IPR014766
Gene3D IPR015914
Gene3D IPR015943
Gene3D IPR016040
Gene3D IPR016167
Gene3D IPR016169
Gene3D IPR016288
Gene3D IPR017849
Gene3D IPR021109

72

CHAPTER 7. APPENDIX: INTERPROSCAN FEATURES 73

Gene3D IPR023413
Gene3D IPR023696
Gene3D IPR024078
Gene3D IPR027414
Gene3D IPR027424
Gene3D IPR027443
Gene3D IPR027477
Gene3D IPR029018
Gene3D IPR029033
Gene3D IPR029039
Gene3D IPR029044
Gene3D IPR029070
PANTHER IPR001139
PANTHER IPR001360
PANTHER IPR003737
PANTHER IPR005880
PANTHER IPR007266
PANTHER IPR023209
PANTHER IPR026892
PANTHER IPR029514
PANTHER IPR030056
PANTHER PTHR10066
PANTHER PTHR10209
PANTHER PTHR10353:SF36
PANTHER PTHR10566
PANTHER PTHR10566:SF8
PANTHER PTHR10587
PANTHER PTHR10587:SF66
PANTHER PTHR10728
PANTHER PTHR10728:SF29
PANTHER PTHR10961
PANTHER PTHR10963
PANTHER PTHR10963:SF27
PANTHER PTHR11010
PANTHER PTHR11014
PANTHER PTHR11069:SF9
PANTHER PTHR11177
PANTHER PTHR11177:SF21
PANTHER PTHR11407
PANTHER PTHR11452
PANTHER PTHR11452:SF12
PANTHER PTHR11474
PANTHER PTHR11474:SF14
PANTHER PTHR11552
PANTHER PTHR11552:SF62
PANTHER PTHR11552:SF67
PANTHER PTHR11552:SF70
PANTHER PTHR11552:SF75
PANTHER PTHR11559
PANTHER PTHR11559:SF124
PANTHER PTHR11559:SF151
PANTHER PTHR11559:SF8
PANTHER PTHR11709
PANTHER PTHR11709:SF59
PANTHER PTHR11731
PANTHER PTHR11748
PANTHER PTHR11748:SF33
PANTHER PTHR11748:SF46
PANTHER PTHR11748:SF47
PANTHER PTHR11748:SF48
PANTHER PTHR11748:SF57
PANTHER PTHR11802:SF40
PANTHER PTHR11802:SF5
PANTHER PTHR12147
PANTHER PTHR12147:SF16
PANTHER PTHR12993:SF11
PANTHER PTHR13593
PANTHER PTHR13683:SF255
PANTHER PTHR13683:SF75

CHAPTER 7. APPENDIX: INTERPROSCAN FEATURES 74

PANTHER PTHR13878
PANTHER PTHR14218
PANTHER PTHR14218:SF13
PANTHER PTHR14218:SF17
PANTHER PTHR16631
PANTHER PTHR16631:SF4
PANTHER PTHR20963
PANTHER PTHR21493
PANTHER PTHR22600
PANTHER PTHR22762
PANTHER PTHR22912
PANTHER PTHR22912:SF137
PANTHER PTHR22912:SF48
PANTHER PTHR22925:SF7
PANTHER PTHR22953
PANTHER PTHR23267
PANTHER PTHR23267:SF135
PANTHER PTHR24286
PANTHER PTHR24287
PANTHER PTHR24305
PANTHER PTHR30175
PANTHER PTHR30175:SF0
PANTHER PTHR30620:SF12
PANTHER PTHR30620:SF8
PANTHER PTHR31018
PANTHER PTHR31297
PANTHER PTHR31297:SF12
PANTHER PTHR31490
PANTHER PTHR31490:SF7
PANTHER PTHR31683
PANTHER PTHR31736
PANTHER PTHR31736:SF2
PANTHER PTHR31736:SF4
PANTHER PTHR31884
PANTHER PTHR31884:SF2
PANTHER PTHR31939
PANTHER PTHR31956
PANTHER PTHR31987
PANTHER PTHR31987:SF1
PANTHER PTHR32438
PANTHER PTHR32438:SF8
PIRSF IPR002056
PIRSF IPR005152
PIRSF IPR008384
PIRSF IPR011395
PIRSF IPR012132
PIRSF IPR016274
PIRSF IPR016840
PIRSF IPR017168
PRINTS IPR000103 Pyridine nucleotide disulphide reductase class-II signature
PRINTS IPR000165 Glycosyl hydrolase family 15 signature
PRINTS IPR000447 FAD-dependent glycerol-3-phosphate dehydrogenase family

signature
PRINTS IPR000786 Green fluorescent protein signature
PRINTS IPR000805 Glycosyl hydrolase family 26 signature
PRINTS IPR000974 Lysozyme signature
PRINTS IPR001000 Glycosyl hydrolase family 10 signature
PRINTS IPR001094 Flavodoxin signature
PRINTS IPR001137 Glycosyl hydrolase family 11 signature
PRINTS IPR001382 Glycosyl hydrolase family 47 signature
PRINTS IPR001709 Flavoprotein pyridine nucleotide cytochrome reductase signa-

ture
PRINTS IPR001722 Glycosyl hydrolase family 7 signature
PRINTS IPR001944 Glycosyl hydrolase family 35 signature
PRINTS IPR002241 Glycosyl hydrolase family 27 signature
PRINTS IPR002347 Glucose/ribitol dehydrogenase family signature
PRINTS IPR002401 E-class P450 group I signature
PRINTS IPR002402 Group II E-class P450 signature
PRINTS IPR002403 E-class P450 group IV signature

CHAPTER 7. APPENDIX: INTERPROSCAN FEATURES 75

PRINTS IPR002974 CYP52 P450 protein signature
PRINTS IPR011150 Cutinase signature
PRINTS IPR015500 Subtilisin serine protease family (S8) signature
PRINTS IPR025705 Glycosyl hydrolase family 20 signature
PRINTS PR00368 FAD-dependent pyridine nucleotide reductase signature
PRINTS PR00420 Aromatic-ring hydroxylase (flavoprotein monooxygenase) sig-

nature
Pfam IPR000073 Alpha/beta hydrolase family
Pfam IPR000101 Gamma-glutamyltranspeptidase
Pfam IPR000120 Amidase
Pfam IPR000250 Peptidase A4 family
Pfam IPR000322 Glycosyl hydrolases family 31
Pfam IPR000675 Cutinase
Pfam IPR000719 Protein kinase domain
Pfam IPR000757 Glycosyl hydrolases family 16
Pfam IPR001117 Multicopper oxidase
Pfam IPR001199 Cytochrome b5-like Heme/Steroid binding domain
Pfam IPR001223 Glycosyl hydrolases family 18
Pfam IPR001338 Fungal hydrophobin
Pfam IPR001461 Eukaryotic aspartyl protease
Pfam IPR001547 Cellulase (glycosyl hydrolase family 5)
Pfam IPR001563 Serine carboxypeptidase
Pfam IPR001568 Ribonuclease T2 family
Pfam IPR001842 Fungalysin metallopeptidase (M36)
Pfam IPR002018 Carboxylesterase family
Pfam IPR002123 Acyltransferase
Pfam IPR002198 short chain dehydrogenase
Pfam IPR002227 Common central domain of tyrosinase
Pfam IPR002472 Palmitoyl protein thioesterase
Pfam IPR002594 Glycosyl hydrolase family 12
Pfam IPR002820 MoaC family
Pfam IPR002921 Lipase (class 3)
Pfam IPR002933 Peptidase family M20/M25/M40
Pfam IPR003137 PA domain
Pfam IPR003961 Fibronectin type III domain
Pfam IPR004843 Calcineurin-like phosphoesterase
Pfam IPR005103 Glycosyl hydrolase family 61
Pfam IPR005123 2OG-Fe(II) oxygenase superfamily
Pfam IPR005154 Glycosyl hydrolase family 67 N-terminus
Pfam IPR005193 Glycosyl hydrolase family 62
Pfam IPR005197 Glycosyl hydrolase family 71
Pfam IPR006034 Asparaginase
Pfam IPR006076 FAD dependent oxidoreductase
Pfam IPR006094 FAD binding domain
Pfam IPR006102 Glycosyl hydrolases family 2
Pfam IPR006357 Haloacid dehalogenase-like hydrolase
Pfam IPR006710 Glycosyl hydrolases family 43
Pfam IPR007117 Pollen allergen
Pfam IPR007312 Phosphoesterase family
Pfam IPR007484 Peptidase family M28
Pfam IPR007867 GMC oxidoreductase
Pfam IPR007934 Alpha-L-arabinofuranosidase B (ABFB) domain
Pfam IPR008758 Serine carboxypeptidase S28
Pfam IPR008902 Bacterial alpha-L-rhamnosidase
Pfam IPR009939 Fungal chitosanase of glycosyl hydrolase group 75
Pfam IPR010435 Fn3-like domain
Pfam IPR010720 Alpha-L-arabinofuranosidase C-terminus
Pfam IPR011099 Glycosyl hydrolase family 67 C-terminus
Pfam IPR011100 Glycosyl hydrolase family 67 middle domain
Pfam IPR011118 Tannase and feruloyl esterase
Pfam IPR011584 Green fluorescent protein
Pfam IPR011659 WD40-like Beta Propeller Repeat
Pfam IPR011706 Multicopper oxidase
Pfam IPR011707 Multicopper oxidase
Pfam IPR012946 X8 domain
Pfam IPR012951 Berberine and berberine like
Pfam IPR013106 Immunoglobulin V-set domain
Pfam IPR013148 Glycosyl hydrolases family 32 N-terminal domain
Pfam IPR014870 Domain of unknown function (DUF1793)

CHAPTER 7. APPENDIX: INTERPROSCAN FEATURES 76

Pfam IPR015289 Alpha-L-arabinofuranosidase B, catalytic
Pfam IPR015366 Pro-kumamolisin, activation domain
Pfam IPR015883 Glycosyl hydrolase family 20, catalytic domain
Pfam IPR018466 Ser-Thr-rich glycosyl-phosphatidyl-inositol-anchored mem-

brane family
Pfam IPR018803 Putative stress-responsive nuclear envelope protein
Pfam IPR018954 Beta-galactosidase, domain 2
Pfam IPR019623 Chaperone for protein-folding within the ER, fungal
Pfam IPR020683 Ankyrin repeats (3 copies)
Pfam IPR021054 Hydrophobic surface binding protein A
Pfam IPR021986 Spherulation-specific family 4
Pfam IPR023753 Pyridine nucleotide-disulphide oxidoreductase
Pfam IPR025300 Beta-galactosidase jelly roll domain
Pfam IPR025733 Iron/zinc purple acid phosphatase-like protein C
Pfam IPR025972 Beta-galactosidase, domain 3
Pfam IPR026891 Fibronectin type III-like domain
Pfam IPR026992 non-haem dioxygenase in morphine synthesis N-terminal
Pfam IPR029411 Polysaccharide lyase family 4, domain III
Pfam IPR029413 Polysaccharide lyase family 4, domain II
Pfam IPR031330 Glycosyl hydrolases family 35
Pfam PF12708 Pectate lyase superfamily protein
Pfam PF13472 GDSL-like Lipase/Acylhydrolase family
Pfam PF16335 Domain of unknown function (DUF4965)
Pfam PF16499 Alpha galactosidase A
Pfam PF16656 Purple acid Phosphatase, N-terminal domain
Pfam PF16862 Glycosyl hydrolase family 79 C-terminal beta domain
Pfam PF17111 Fungal N-terminal domain of STAND proteins
Phobius CYTOPLASMIC DOMAIN Region of a membrane-bound protein predicted to be outside

the membrane, in the cytoplasm.
Phobius NON CYTOPLASMIC DOMAIN Region of a membrane-bound protein predicted to be outside

the membrane, in the extracellular region.
Phobius SIGNAL PEPTIDE Signal peptide region
Phobius SIGNAL PEPTIDE C REGION C-terminal region of a signal peptide.
Phobius SIGNAL PEPTIDE H REGION Hydrophobic region of a signal peptide.
Phobius SIGNAL PEPTIDE N REGION N-terminal region of a signal peptide.
Phobius TRANSMEMBRANE Region of a membrane-bound protein predicted to be embed-

ded in the membrane.
ProSitePatterns IPR000111 Alpha-galactosidase signature.
ProSitePatterns IPR000172 GMC oxidoreductases signature 2.
ProSitePatterns IPR000254 CBM1 (carbohydrate binding type-1) domain signature.
ProSitePatterns IPR000334 Glycosyl hydrolases family 45 active site.
ProSitePatterns IPR000560 Histidine acid phosphatases active site signature.
ProSitePatterns IPR000743 Polygalacturonase active site.
ProSitePatterns IPR001261 ArgE / dapE / ACY1 / CPG2 / yscS family signature 1.
ProSitePatterns IPR001524 Glycosyl hydrolases family 6 signature 1.
ProSitePatterns IPR001579 Chitinases family 18 active site.
ProSitePatterns IPR001969 Eukaryotic and viral aspartyl proteases active site.
ProSitePatterns IPR002355 Multicopper oxidases signature 1.
ProSitePatterns IPR017972 Cytochrome P450 cysteine heme-iron ligand signature.
ProSitePatterns IPR018040 Pectinesterase signature 2.
ProSitePatterns IPR018087 Glycosyl hydrolases family 5 signature.
ProSitePatterns IPR018120 Glycosyl hydrolases family 1 active site.
ProSitePatterns IPR018188 Ribonuclease T2 family histidine active site 2.
ProSitePatterns IPR018202 Serine carboxypeptidases, histidine active site.
ProSitePatterns IPR018208 Glycosyl hydrolases family 11 active site signature 1.
ProSitePatterns IPR018357 Hexapeptide-repeat containing-transferases signature.
ProSitePatterns IPR018371 Chitin recognition or binding domain signature.
ProSitePatterns IPR019799 Alpha-lactalbumin / lysozyme C signature.
ProSitePatterns IPR019819 Carboxylesterases type-B signature 2.
ProSitePatterns IPR019826 Carboxylesterases type-B serine active site.
ProSitePatterns IPR020855 Arginase family signature.
ProSitePatterns IPR020904 Short-chain dehydrogenases/reductases family signature.
ProSitePatterns IPR022398 Serine proteases, subtilase family, histidine active site.
ProSitePatterns IPR023827 Serine proteases, subtilase family, aspartic acid active site.
ProSitePatterns IPR023828 Serine proteases, subtilase family, serine active site.
ProSitePatterns IPR031158 Glycosyl hydrolases family 10 active site.
ProSiteProfiles IPR002509 NodB homology domain profile.
ProSiteProfiles IPR006035 Arginase family profile.
ProSiteProfiles IPR007112 Expansin, family-45 endoglucanase-like domain profile.

CHAPTER 7. APPENDIX: INTERPROSCAN FEATURES 77

ProSiteProfiles IPR008254 Flavodoxin-like domain profile.
ProSiteProfiles IPR010513 KEN domain profile.
ProSiteProfiles IPR019791 Animal heme peroxidase superfamily profile.
ProSiteProfiles IPR030400 Sedolisin domain profile.
ProSiteProfiles PS51257 Prokaryotic membrane lipoprotein lipid attachment site pro-

file.
SMART IPR000772 Ricin-type beta-trefoil
SMART IPR000834
SMART IPR001362 Glycosyl hydrolases family 32
SMART IPR001916 Alpha-lactalbumin / lysozyme C
SMART IPR002022
SMART IPR002044 Starch binding domain
SMART IPR002110 ankyrin repeats
SMART IPR002642 Cytoplasmic phospholipase A2, catalytic subunit
SMART IPR003172 Domain involved in innate immunity and lipid metabolism.
SMART IPR003598 Immunoglobulin C-2 Type
SMART IPR003599 Immunoglobulin
SMART IPR006045 Cupin
SMART IPR006626 Parallel beta-helix repeats
SMART IPR011583
SMART IPR018391 beta-propeller repeat
SUPERFAMILY IPR000028
SUPERFAMILY IPR000209
SUPERFAMILY IPR001002
SUPERFAMILY IPR003010
SUPERFAMILY IPR007110
SUPERFAMILY IPR008922
SUPERFAMILY IPR008928
SUPERFAMILY IPR008963
SUPERFAMILY IPR009009
SUPERFAMILY IPR009011
SUPERFAMILY IPR009017
SUPERFAMILY IPR009020
SUPERFAMILY IPR010255
SUPERFAMILY IPR010636
SUPERFAMILY IPR011009
SUPERFAMILY IPR011013
SUPERFAMILY IPR011045
SUPERFAMILY IPR011050
SUPERFAMILY IPR011330
SUPERFAMILY IPR012349
SUPERFAMILY IPR013320
SUPERFAMILY IPR013784
SUPERFAMILY IPR016035
SUPERFAMILY IPR016087
SUPERFAMILY IPR016164
SUPERFAMILY IPR016166
SUPERFAMILY IPR016191
SUPERFAMILY IPR017850
SUPERFAMILY IPR017853
SUPERFAMILY IPR017946
SUPERFAMILY IPR018392
SUPERFAMILY IPR023214
SUPERFAMILY IPR023296
SUPERFAMILY IPR023346
SUPERFAMILY IPR023392
SUPERFAMILY IPR023631
SUPERFAMILY IPR029052
SUPERFAMILY IPR029058
SUPERFAMILY IPR029069
SUPERFAMILY SSF110019
SUPERFAMILY SSF110296
SUPERFAMILY SSF51011
SUPERFAMILY SSF51197
SUPERFAMILY SSF51735
SUPERFAMILY SSF51905
SUPERFAMILY SSF51971
SUPERFAMILY SSF52025
SUPERFAMILY SSF52058

CHAPTER 7. APPENDIX: INTERPROSCAN FEATURES 78

SUPERFAMILY SSF52768
SUPERFAMILY SSF53187
SUPERFAMILY SSF54373
SUPERFAMILY SSF55486
SUPERFAMILY SSF63829
SUPERFAMILY SSF82171

	Cover page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Thesis structure

	2 Biological Background
	2.1 Protein composition
	2.2 Protein synthesis
	2.3 Protein secretion
	2.4 Recombinant protein production
	2.5 Challenges in recombinant protein production
	2.6 Numeric representation of proteins

	3 Computational Background
	3.1 Modeling approaches
	3.1.1 Metabolic models
	3.1.2 Protein-related prediction

	3.2 Support Vector Machines (SVMs)
	3.3 Kernels
	3.4 Transductive Support Vector Machines (TSVMs)
	3.5 Laplacian Support Vector Machines (LapSVMs)
	3.6 Performance measures

	4 Materials and methods
	4.1 Data
	4.2 Feature selection
	4.3 Feature combination and kernel choice
	4.4 Training dataset size
	4.5 Unlabeled sequence selection for semi-supervised experiments
	4.6 TSVM and LapSVM experiments
	4.7 Enrichment tests

	5 Results and Discussion
	5.1 Performance of existing tools
	5.2 Feature combination and kernel choice
	5.3 Number of training sequences
	5.4 TSVM and LapSVM experiments
	5.5 Enrichment tests

	6 Conclusion
	7 Appendix: InterProScan Features

