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Abstract: Non-intrusive load monitoring (NILM), the problem of disaggregating whole home 
power measurements into single-appliance measurements, has received increasing attention 
from the academic community because of its energy saving potentials, however the majority 
of NILM approaches are either variants of event-based or event-less disaggregation. 
Event-based approaches are able to capture much information about the transient behavior of 
appliances but suffer from error-propagation problems whereas event-less approaches are less
prone to error-propagation problems but can only incorporate transient information to a small 
degree. On top of that inference techniques for event-less approaches are either 
computationally expensive, do not allow to trade off computational time for approximation 
accuracy or are prone to local minima. This work will contribute three-fold: first an 
automated way to infer ground truth from single appliance readings is introduced, second an 
augmentation for event-less approaches is introduced that allows to capture side-channel as 
well as transient information of change-points, third an inference technique is presented that 
allows to control the trade-off between computational expense and accuracy. Ultimately, this 
work will try to put the NILM problem into a probabilistic framework that allows for closing 
feedback loops between the different stages of event-based NILM approaches, effectively 
bridging event-less and event-based approaches. The performance of the inference technique 
is evaluated on a synthetic data set and compared to state-of-the-art approaches. Then the 
hypothesis that incorporating transient information increases the disaggregation performance 
is tested on a real-life data set.
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Chapter 1

Introduction

At the moment fossil fuels are being burned to create more than 83% of the
total energy world-wide and the total energy demand has increased by 46%
within the last 20 years. As fossil fuel reserves are becoming more and more
limited, not only other energy sources need to be tapped into but also means
to slow down the increase in energy demand need to be found.[1]

The detrimental impact that producing more energy has on our envi-
ronment and climate call for effective means to save energy. Studies have
shown that if residential consumers are provided with a real time feedback
of how much energy their home consumes, 10-15% of energy can be saved.
Higher quality feedback namely on the device level could lead to even bigger
saving potentials [6]. Since buildings account for roughly 73% of the electri-
cal energy demand in the U.S., the saving potentials of Non-Intrusive Load
Monitoring are huge.

Non-intrusive load monitoring tries to algorithmically break up the elec-
tricity bill of consumers and provide energy consumption information on a
per device level. Not only does this create awareness in consumers (which in
itself leads to energy savings) but might also lead to other scenarios in which
energy is saved. If e.g. a smart energy system or a consumer is aware that
a certain device consumes a certain amount of energy, its runtime could be
scheduled to a point in time when exactly this amount of excess energy is
available in the grid.
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Chapter 2

Approaches for Non-Intrusive
Load Monitoring

The idea of Non-Intrusive Load Monitoring was first conceived in [10]. Roughly
speaking, it deals with the challenge of inferring the power traces of individual
appliances from the overall consumption of a building such that the sum of
the individual appliances is approximately equal to the overall consumption.
The input to a NILM system is a power trace of a home at the whole-home
or at sub-distribution level. Power is inherently an additive quantity that
means that if the power is measured at an aggregate level, the superposition
of the power draws of the individual appliances is measured. See Figure 1
for a very brief example.

Most of the current NILM approaches can either be classified as event-
based or event-less approaches. One major difference between the two is
that event-less approaches emphasize explaining the aggregate power trace
whereas event-based approaches emphasize explaining events extracted from
the power trace. In this chapter the dichotomy between event-less and event-
based approaches and the shortcomings of current event-based as well as
event-less approaches will be discussed. For a more thorough review of NILM
research, see [17] or [18]

2.1 Event-less NILM

Event-less approaches can further be subdivided into two major categories:
sparse coding approaches [12] and factorial HMM approaches [13, 11]. Both
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Figure 2.1: Exemplary disaggregation of three devices.

approaches neither rely on event detectors that identify possible state changes
in devices nor on classifiers that try to infer appliances given features mea-
sured in the power line at time points of possible appliance state changes.
The following sections will briefly discuss sparse-coding and FHMM models.

2.1.1 Sparse-coding approaches

This section is based on [12] and will briefly summarizes the main idea be-
hind the approach. It is assumed that the power consumption of individual
appliances in a particular house are known. These readings could e.g. be
obtained by plug-level sensors. Assume appliance classes such as refrigerator,
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television or stove. One should keep in mind that appliance types encompass
appliance instances. Most NILM approaches try to infer the power trace of
appliance instances (e.g. the microwave ”Breville BMO734XL”) whereas this
approach tries to infer the power consumption of appliance classes (e.g. mi-
crowave). Every appliance class is associated with an index i ∈ {1, 2, ..., k}.
For every appliance class, assume a matrix Xi ∈ RT×m. T denotes the length
of the power readings, e.g. if a week of data is sampled every minute, then
T = 60 ∗ 24 ∗ 7 = 10080. m denotes the number of houses for which data is
available. Thus, the matrix X̂ =

∑k
i Xi contains the aggregate signal of all

houses and the jth row denotes the aggregate signal of house j denoted by
X̂(j). The goal is to infer X

(j)
i from X̂(j). During training access to each Xi

is assumed, thus the approach is a supervised approach.
During training a model for each Xi is trained individually. It is assumed
that each Xi can be broken up into a matrix containing the information when
each appliance is turned on (An×mi ) and a matrix containing basis functions
(BT×n

i ). n specifies the number of basis functions. Xi is then approximated
by Xi ≈ BiAi. Additionally, it is assumed that the activation matrix Ai is
sparse which can be enforced by adding a regularization term over Ai. Since
power is an inherently positive and additive quantity, it can furthermore be
assumed that Ai and Bi are positive. During training the joint optimization
problem can be stated as:

A∗i , B
∗
i = argmin

Ai≥0,Bi≥0

1

2
||Xi −BiAi||2F + λ

∑
p,q

(Ai)p,q subject to

||b(j)i ||2 ≤ 1

||M ||F =
√

(
∑

p,qMp,q) denotes the Frobenius norm, whereas ||V ||2 =√∑
p V

2
p denotes the `2 norm. The joint optimization problem is however

not convex but optimizing over either Bi is convex if Ai is held fixed and vice
versa. Thus, the algorithm to obtain Ai and Bi alternates between optimiz-
ing Ai and Bi.

During inference, given the aggregated signal X̄ ∈ R+, the optimal acti-
vations are sought that minimize:
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A′i = argmin
Ai≥0

1

2
||X̄ −

∑
i

B∗iAi||2F + λ
∑
p,q

(Ai)p,q

For the estimate of the power consumption of appliance i in building j
then holds: (X ′i)

(j) = (B∗iA
′
i)
(j). This convex optimization problem can be

solved by concatenating all activation and basis function matrices into two
matrices A and B∗.

One should note that the matrix containing basis functions Bi is ob-
tained under the constraint that ||b(j)i ||2 ≤ 1. This basically means that the
matrix containing the activations Ai essentially contain the information on
how much an appliance actually consumes. The matrix Bi contains so to say
temporal usage patterns of appliances, i.e. a stove is mostly turned on for
breakfast, lunch and dinner. During inference these patterns are exploited.
The actual information about how much appliances consume is neglected
during inference. This means that the model might confuse appliance with
very different power levels but similar temporal activation patterns.

2.1.2 Factorial Hidden Markov Models

Recent advances in NILM have employed Additive Factorial Hidden Markov
Models to disaggregate energy[13]. In this section Hidden Markov Models
and their distributed generalization Factorial Hidden Markov Models [9] will
be introduced.

Hidden Markov Models

Hidden Markov models have emerged to be one of the most successful tools
for modeling discrete and continuous time series. An HMM is a mixture
model that encodes historical information in a single multinomial variable
which we call the hidden state. The hidden state can take K many discrete
values. Let st denote the hidden state at time t. At every point in time
an observation yt is emitted depending on the state of the hidden variable.
Two independence assumptions are made that make training and inference
tractable:

1. The observation yt is independent of all other observations given the
state of the hidden variable st
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2. The hidden variable st is independent from s1, ..., st−2 given the state
of the hidden state st−1 (first order Markov assumption)

Because of these independence assumptions the joint probability of an ob-
servation sequence Y = y1, ..., yT and the hidden state sequence S = s1, ..., sT
can be rewritten:

P (Y, S) = P (Y |S)P (S)

= P (y1, ..., yT |s1, ..., sT )P (s1, ..., sT )

= P (s1)P (y1|s1)
T∏
t=2

P (st|st−1)P (yt|st)

The state transition probabilities P (st|st−1) can be encoded in a K ×K
state transition matrix. Depending on the nature of the observation, differ-
ent models of P (yt|st) can be employed. If for example there are D-many
discrete observations, P (yt|st) can be encoded by a K ×D emission matrix.
For continuous emissions (observations), P (yt|st) could in principle be mod-
eled by any distribution or even neural networks. [9]
Due to its multinomial nature, efficient algorithms for supervised inference,
namely the Viterbi [15], and for unsupervised parameter estimation, namely
Baum-Welch [3], are available.

However, Hidden Markov Models become intractable if a single hidden
state has to incorporate multiple phenomena. Consider the following sce-
nario: there are two dice. In every point in time, both dice are flipped to
one side. Because they are not rerolled but simply flipped to one side, it
is for example impossible for one dice that 6 is facing up after 1 faced up.
What we observe is not the individual dice but a function of the sides that
are facing up. If we were to model this simple example with a traditional
Hidden Markov Model, there are 62 = 36 possible hidden states with a state
transition probability matrix with 362 = 1296 entries. If the number of dice
involved increases, the state space of the hidden variable increases exponen-
tially. The size of the state transition probability matrix grows even faster.
Factorial Hidden Markov Models are a generalization that try to tackle this
problem.
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Factorial Hidden Markov Models

Factorial Hidden Markov Models (FHMM) are a generalization of Hidden
Markov Models in the sense that numerous hidden states evolve in parallel.
In this work we only consider the case where each hidden state is decoupled
from the other hidden states, i.e. they all evolve independently. For the dice
example above this would mean that there is one hidden state for each dice.
Thus, st = s1t , ..., s

N
t for N many dice or HMM chains. Due to the distribution

of the hidden state, the parameter space of FHMMs is much smaller compared
to modeling the same phenomenon with a traditional HMM: for the FHMM
there are N many state transition probability matrices of size 36, whereas for
traditional HMM a state transition probability matrix of the size 62N would
have to be estimated.1

Figure 2.2: Taken from [9]. A depiction of the conditional independence of
a traditional HMM (left) and a factorial HMM (right) in a graphical model.

If marginal independence of the individual hidden states is assumed, then
the joint probability can be rewritten as:

1To get a feel for how fast the state transition probability matrix grows: even for just 4
dice a traditional HMM would require more than 1.6 million parameters, whereas FHMM
would only require to model 144 parameters.
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P (Y, S) = P (Y |S)P (S)

= P (y1, ..., yT |s1, ..., sT )P (s1, ..., sT )

= P (s1)P (y1|s1)
T∏
t=2

P (st|st−1)P (yt|st)

= P (s1)P (y1|s1)
T∏
t=2

N∏
n

P (snt |snt−1)P (yt|st)

The observation yt is dependent on the joint state st. In the dice-example
from above, P (yt =

∑N
n s

n
t |st) = 1. If the observation is however discrete

then the joint state could influence the K ×D emission probability matrix,
whereas if the observation is Gaussian distributed, every state could be as-
sociated with parameter µsat and the emission probability could be defined
as:

P (yt|st) = N(yt|
N∑
n

µsat , I)

with I being the identity matrix2 and N(y|µ, I) being the multivariate
Gaussian distribution.

So far, we have seen that Factorial Hidden Markov Models can reduce the
otherwise exponential parameter space by decoupling states. However, the
hidden states at a single point in time become conditionally dependent given
an observation yt: Consider again the dice example and assume there are
two dice. Let’s assume we have observed the emission yt = 3. If the hidden
states were conditionally independent then it would hold that P (x1t |yt =
3, x2t ) = P (x1t |yt = 3) but this is obviously not the case, since it must hold
that x1t + x2t = 3. The inference problem for FHMM tries to infer the most
probable hidden state sequence given an observation sequence. The fact that

2For the sake of simplicity. The covariance matrix could of course also be dependent
on st or be some other constant.
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the hidden states encompassed in a single joint state become conditionally
dependent given an observation makes exact inference intractable. Exact
inference would require looping over exponentially many settings of joint
states.

Gibbs sampling for inference

Since computing the exact posterior distribution is computationally intractable,
approximate inference techniques are required for inference. The posterior
distribution can be approximated by Monte Carlo sampling procedures. In
this work we will consider one of the simplest sampling techniques: Gibbs
sampling[8]. For this the hidden states sequence S is initialized randomly
and in each step of the sampling procedure, each state is updated stochas-
tically conditioned on the observations and all other hidden states. Due to
the independence assumptions it is sufficient to sample snt from:

P (snt |s1t , ..., sn−1t , sn+1
t , ..., sNt , s

n
t−1, s

n
t+1, yt)

∝P (snt |snt−1)P (snt+1|snt )P (yt|st)

Sampling every hidden state once results in computation in O(TNK)
operations and the sequence of the overall state sequence S defines a Markov
chain over the state space model. If all probabilities are bounded away from 0,
then it can be shown that this Markov chain approximates the true posterior
distribution P (S|Y ).

Factorized variational inference

The idea behind completely factorized variational inference is that the pos-
terior distribution P (S|Y ) can be approximated by a tractable distribution
Q(S). Q(S) provides a lower bound on the log likelihood. Mathematically
speaking:
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P (yt) =
∑
st

P (st, yt)

logP (yt) = log
∑
st

P (st, yt)

= log
∑
st

Q(st)
P (st, yt)

Q(st)

≥
∑
st

Q(st)log
P (st, yt)

Q(st)
(Jensen inequality)

The idea is to minimize the difference between the tractable distribution
Q and the true distribution P . As a model of Q one can use a model whose
independence structure is tractable by for example removing the conditional
dependence between the hidden states given the observation. Inference is
then made on the simpler and tractable Q-distribution. As a difference mea-
sure for the similarity between the Q and P distribution the Kullback-Leibner
divergence is often chosen because:

KL(Q||P ) =
∑
st

Q(st)log
Q(st)

P (st|yt)

=
∑
st

Q(st)log
Q(st)

P (st, yt)
+ log(P (yt))

This equation is exactly the difference between the right-hand and left-
hand side of the equation above. Since P (yt) is independent from Q, mini-

mizing the KL-divergence means minimizing
∑

st
Q(st)log

Q(st)
P (st,yt)

.

As already stated above, in order for this technique to make inference
tractable, a suitable model for Q(st) has to be chosen that eliminates some
of the dependence structure in the P -distribution. The parameters (so called
variational parameters) of Q are chosen in such a way that the difference to
the true P distribution is minimized. This means that the variational param-
eters somehow have to encode the dependence structure of the true posterior
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distribution. Thus, the parameters of the P distribution are in a sense parti-
tioned based on the dependence structure chosen for the Q-distribution and
minimizing the KL-divergence between the Q and P distribution will intro-
duce circular dependencies between the parameters. Therefore approximat-
ing P by Q becomes an iterative algorithm much like Expectation Maximiza-
tion. However, if both the P - and Q-distribution stem from the exponential
family, it was shown that the resulting algorithm will converge to a global
maximum.

Additive Factorial Hidden Markov Models

Recent advances in NILM have employed Additive Factorial Hidden Markov
Models to disaggregate energy[13]. These models are factorial in the sense
that the state factors into independent chains and the model emits the output
of an additive function of all hidden states. See Figure 2.3 for a graphical
representation of the model. The dynamics of each appliance are modeled
by a single chain.

Figure 2.3: Taken from [13]. The additive FHMM model.

Exact inference is computationally intractable in such a model since the
space of possible states is exponential. Every chain in the FHMM model
evolves marginally independent, thus if there are A many chains (appliances)
and each appliance can be in k states then exact inference would require to
loop over kA states. The exponential nature of this problem is tackled by
making the one-at-a-time assumption which states that maximal one appli-
ance can change states at any point in time. If the sampling frequency is
high enough, this assumption is rarely violated.
The emissions are modeled by a Gaussian distribution whose mean is depen-
dent on the states of the individual chains: let µaj denote the mean emission of
appliance a in state j, xat be the state of appliance a at time t, xt = x1t , ..., x

A
t
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and yt the aggregate emission, then

P (yt|xt) = N(
A∑
a

µaxat ,Σ)

The hidden states x evolve like traditional HMMs.
Assume an appliance changed state at time t, the quantity of power change
∆yt = yt − yt−1 might hold much information about the appliance that
actually changed state, thus it is sensible to also model the difference

P (∆yt|xt, xt−1) = N(
A∑
a

µaxat − µ
a
xat−1

,Σ)

The difference model is good at capturing the changes of the yt that might
help identify the identity of appliance state changes as it explicitly models
the increase in power but in isolation errors might accumulate over time.
Gaussian distributions are naturally prone to outliers and outliers in the
application domain of energy disaggregation are quite common as e.g. an
unmodeled appliance is turned on. Also some appliances like for example
light switches produce surges in power when turned on that ultimately lead
to spikes in the aggregate signal. These spikes might cause a purely Gaus-
sian model to receive a probability of 0. In order to alleviate this problem,
a ”robust mixture component” z is introduced. This component can take
arbitrary values but its probability is constrained. Two consecutive values
of the robust mixture component are constrained in that:

P (z) =
1

Z(λ, T )
exp[−λ

T∑
t

|zt − zt−1|]

This mixture component relaxes the Gaussian distribution that models
the aggregate emission:

P (yt|xt, zt) = N(
A∑
a

µaxat + Σ−1zt,Σ)
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Note that the output yt might be multi-dimensional, thus zt is multiplied
by Σ−1 such that it commensurates with yt. Analogically, the difference
model is also augmented with a robust mixture component:

P (∆z) =
1

Z(λ, T )
exp[−λ

T∑
t

|zt|]

P (∆yt|xt, xt−1,∆zt) = N(
A∑
a

µaxat − µ
a
xat−1

+ Σ−1∆zt,Σ)

The λ-parameter controls how much of the signal can be absorbed by
the robust mixture components. If λ is too small it might fail to absorb the
outliers, if however λ is too big, all energy will be absorbed by zt.

In [13] the authors note that the posterior distribution of the difference
and the additive model must agree but that the values the robust mixture
models are not enforced to agree. Thus for the posterior distribution holds:

P (X|Y ) =
T∏
t

P (xt|xt−1)P (yt|xt, zt)P (z)P (∆yt|xt, xt−1,∆zt)P (∆z)

Inference by Integer Programming

The idea behind inferring the most probable state sequence with Integer Pro-
gramming is to reformulate the problem as an integer programming problem.
In this section we will briefly cover how to reformulate inference of a tradi-
tional HMM as such a problem and refer to the rather long derivation in [13]
for how this can done for a FHMM.
As we have seen earlier, the posterior distribution of a HMM can be rewritten
as:

P (X|Y ) = P (x1)P (y1|x1)
T∏
t=2

P (xt|xt−1)P (yt|xt)

thus:

18



log(P (X|Y )) = log(P (x1)) + log(P (y1|x1)) +
T∑
t=2

log(P (xt|xt−1)) + log(P (yt|xt))

Now, variables are introduced that can take integer values. We will drop
the first two terms for mathematical convenience but the strategy is analo-
gous. Let K be the number of states:

T,K,K∑
t=2,j,i

Q(xt, xt−1)i,jlog(P (xt|xt−1)) +
K∑
i

Q(xt)ilog(P (yt|xt))

In order to define a proper sequence through the state space, these con-
straint have to be met:

∑
i

Q(st)i = 1∑
i

Q(st, st−1)i,j = 1∑
i

Q(st, st−1)j,i = 1

Q ∈ {0, 1}

The idea is to now relax the integer constraint and solve the then convex
problem. One should however note that this is not possible without the
one-at-a-time constraint for FHMMs.

2.1.3 Short comings of event-less approaches

Some appliances exhibit very characteristic behaviors during state changes,
so called transients. For example, recent studies have shown that high fre-
quency information during state changes, so called harmonics can improve
classification performance in event-based approaches [5]. Also more coarse
quantities like the long-term shape of the transient on a low resolution can
be very characteristic for some appliances and aid disaggregation. Figure 2.4
shows two exemplary long-term low-resolution transients of a garage door
(left) and a fridge (right). The garage door exhibits a very characteristic
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power trace during its activation: the power will rise to ≈ 500W twice be-
fore going back to ≈ 100W , the refrigerator on the other hand exhibits a
short ≈ 500W spike before consuming ≈ 120W . Because of the Markov as-
sumption of most purely event-less approaches, proper use of these long-term
dependencies cannot be made.
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Figure 2.4: Characteristic long-term low-resolution shapes of two appliances.
Garage door (left) and refrigerator (right)

On top of that, the NILM problem is inherently an ill-posed problem
as it is a one-to-many mapping: a single power trace is used to infer the
power trace of multiple appliances. Approaches that can incorporate side-
channel information like e.g. light intensity, sound or electro-magnetic ra-
diation might alleviate this problem but making use of this information in
classical event-less approaches is not straight forward.

From a computational point of view, most event-less approaches try to
explain power at every point in time and neglect the fact that if no signifi-
cant change in power was detected, a state change of an appliance is unlikely.
Event-less approaches based on factorial HMMs rely either on integer pro-
gramming techniques or sampling methods for inference. If the posterior is
not constrained in some way, sampling methods are prone to run into local
minima: assume an appliance that consumes 1000W was turned on and the
state of a 2-state appliance is sampled that consumes 500W . Without con-
straining the posterior (e.g. that only a single appliance can change its state
at every point in time), sampling techniques might partially explain away the
power and when the state of the appliance that is actually responsible for
the increase in power is sampled, the residual unexplained power might not
be sufficient. Mean-field as well as (Block) Gibbs sampling techniques have
shown to be susceptible to local minima and even though quadratic integer
programming techniques reformulate inference as a convex approximate in-
ference problem, these approaches lack the ability to trade computational
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time for improved approximation accuracy.

2.2 Event-based NILM

The majority of event-based NILM approaches consist of four stages: event
detection, feature extraction, classification and energy estimation. In the
event detection stage points in time with a statistically significant change of
the aggregate power consumption are identified. These changes hopefully or
most probably signify a change of the power draw of one of the appliances
that are being measured. An event is thus merely a time stamp: a point in
time where something happened.
The feature extraction and classification stage try to infer which appliance
evoked the events that were detected in the event detection phase. A feature
extractor typically scans the proximity of an event and extracts quantities
that might shed light on to which appliance’s power load changed: e.g. dif-
ferent devices consume different amounts of power. If a light-bulb is turned
on the change in power load will change to a smaller degree to when say a wa-
ter boiler is turned on, thus the difference between the pre-event compared
to the post-event power load might give information about the appliance
that caused the event. Some appliances exhibit special characteristics when
their state is changed, e.g. old light switches might exhibit a sudden power
spike (called power surge) when a light bulb is turned on. Recent research has
shown that high frequency oscillations (so called harmonics) seem to improve
classification performance [5]. However, incorporating harmonic features into
classification requires high sampling frequencies of the underlying data.
Some features might even stem from an external source: if an unknown ap-
pliance is turned on at 8am it is much more likely to be a coffee machine than
a television set. External features such as temperature, season or time of the
day might play an important role in energy disaggregation. It is the feature
extractors job to identify those quantities that help explain the identity of
the appliance that caused the event.
In the classification stage the features of the events are being fed into a clas-
sifier that ultimately tries to associate an event with an appliance. Many
appliance are so-called multi-state appliances. A simple example of a multi-
state appliance is a fan whose fan speed can be set into more than two
settings. The power load in the different settings might differ and since the
ultimate goal is to infer how much power a device is consuming, the informa-
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tion of state changes is vital for many energy estimation algorithms. That
is why many classifiers not only identify the appliance that caused an event
but also the post-event state of this appliance.
In the last stage, a power trace of each individual device is tried to be re-
constructed. If for example all state changes of a fan and the power loads
of the fan in all its states are known, reconstructing a power trace becomes
trivial. In real-world scenarios this is however not always the case and certain
constraints have to be met: the sum of the power traces of the individual
appliance should to some degree approximate the aggregated signal.

2.2.1 Short-comings of purely feed-forward methods

Most NILM approaches are purely feed-forward, i.e. first events are extracted
and the decision about events is then final even if the classifier is then forced
to make a very low probability decision on some events. There is no possibil-
ity of the classifier to signal back to the event detector that the event detector
might have made a mistake. Furthermore, the energy estimation phase can-
not feed information back into the event-detection and classification stage:
if for example the sum of the power traces of the individual devices greatly
exceeds the aggregate power then something has probably gone wrong.

Event-based approaches often extract features of points of interest (events)
and then neglect the aggregate signal. In comparison, event-based approaches
try to explain features of the aggregate power trace whereas event-less ap-
proaches often try to explain the aggregate power itself. Both approaches
dismiss information.

Another downside of current event-based approaches is that they are feed-
forward. In order to understand why closing the feedback loop between the
different stages of disaggregation might greatly improve on the performance
of event-based NILM systems, two observations must be made:

1. In a purely feed-forward system, an error in earlier stages will confuse
later stages.

2. Neither event-detection nor classification can yield ”perfect” results.

Point (1.) can be explained by a very simple example: assume an over-
sensitive event detector that detects an appliance state change even though
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there was none. As long as the feature extraction and classification stage
are forced to associate an appliance with said event, the energy estimation
stage of the system will have to deal with a nonsensical state transition. In
this scenario the classification stage is working fine, just the absence of a
feedback-loop to the event detection from either the energy estimation or
the classification forces the classification stage to make mistakes.
Point (2.) does not need much explanation: event detectors as well as clas-
sifiers are machine learning algorithms whose output is and probably always
will be noisy.

This work will try to bridge event-based with event-less approaches. From
the perspective of event-based approaches, the stages of disaggregation are
tied together into a single probabilistic framework that allows for sub-optimal
performance of the individual components. From the perspective of event-less
approaches, a framework will be presented that allows for efficient approxi-
mate inference in Factorial Hidden Markov Models allowing for the incorpo-
ration of high-level and external features.
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Chapter 3

Data collection for NILM

In this work the performance of the proposed probabilistic framework will
be evaluated on a real world data set. Collecting data to evaluate NILM
systems is not a trivial problem and in the following chapter different design
choices for the data collection will be described.

3.1 Design choices

In order to assess the performance of NILM algorithms, the systems outputs
need to be compared to ground truth and ground truth data needs to be col-
lected. This is not a trivial problem because a number of sensors need to be
installed and some feasibility trade-offs need to be made: plug-wise sensors
are small and cheap and can be installed to sub-meter individual appliances
but often only offer low temporal resolution, i.e. sampling rates in the range
between 0.5 to 2Hz. Sensors that collect data at higher frequencies (2kHz+)
are often more expensive and big and can effectively only be used to measure
data at either a whole-home or sub-distribution level.
There is, so to say, always a trade-off between temporal and spatial resolu-
tion. If many appliances are to be sub-metered (high spatial resolution), one
has to revert to low-cost low-resolution meters (low temporal resolution).
Higher sampling rates allow the extraction of richer and higher resolution
features that might aide the classification stage but also demand more stor-
age and might cause data throughput problems when collecting the data.
Other questions that influence the design of a data collection setup might be
what the data needs to offer in order to be of use for evaluation. When eval-
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uating NILM algorithms the question arises what to actually evaluate. If e.g.
the event detection stage should be assessed then ground truth information
about state changes needs to be provided. If however the energy estimation
phase is to be assessed, ground truth about either the energy consumption or
knowledge about the power traces of individual appliances need to be avail-
able.
On top of that, different NILM algorithms might make different assumption
about the underlying data: some algorithms may require that all devices that
are being measured within the aggregated signal are known. This requires
all devices to be sub-metered on a per device level.

3.1.1 Challenges in sub-metering

Most public datasets like for example the REDD dataset [14] or ECO [4]
measure the current and voltage at the sub-distribution level with a high-
frequency meter (16kHz in the case of REDD) and sub-meter most appliances
or groups of appliances with plug-level meters (0.5Hz in the case of REDD).
This technique seems to provide the best of two-worlds since high resolution
features can be extracted by the high-resolution meters while still providing
power traces of the individual appliances. However, numerous problems arise
when employing this technique. First, there are time synchronization prob-
lems: the clocks of all meters must be synchronized. The higher the sampling
frequency, the harder this problem becomes. Second, most NILM algorithms
make the assumption that the sum of the sub-metered appliances is equal to
the measurements of the sub-distribution meter but this is seldom the case.
The sum of the sub-metered appliances in the REDD as well as ECO dataset
differ from the aggregate signal. Surprisingly, the difference between the sum
and the aggregate changes sign, i.e. it is not the case that some appliances
were simply not sub-metered but there might be calibration errors. Third,
even to capture a single event for some appliances that are used seldom like
for example an air compressor, the data collection system has to be up and
running for sometimes weeks. It is very likely that during that time some of
the meters fail which ultimately leads to data loss.
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Chapter 4

Algorithmic Ground Truth
Creation

In order to evaluate and train the different stages of a NILM system, differ-
ent types of ground truth data are required. Evaluation of event detection
requires ground truth about events whereas evaluating classification requires
labeled events. Event detection is predominately assessed by computing Pre-
cision & Recall [7] whereas the performance of the classification stage is rated
by the percentage of correctly classified events. The energy estimation phase
can be assessed by different levels of granularity and so far no single perfor-
mance criterion has become the standard. Some apply the idea of precision
and recall to the power traces of the individual appliances. In this context,
recall measures what portion of the energy that was assigned to an appliance
is correctly classified and precision indicates the portion of the total energy
assigned to an appliance, that truly belonged to that appliance. Let yt be
the actual power and ŷt its prediction, then:

[x]+ =

{
x if x > 0

0 else

prec(ya, ŷa) = 1−
∑T

t [yat − ŷat ]+∑T
t y

a
t

recall(ya, ŷa) = 1−
∑T

t [ŷat − yat ]+∑T
t ŷ

a
t
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Precision and recall can be combined into the F1-score:

F1 = 2
prec · recall
prec+ recall

Precision and recall allow to identify if an appliance was assigned too
much energy to or too little but it does not allow to assess the overall per-
formance well. One could potentially take the mean of all F1-scores for all
appliances, this would however not take into account that the energy con-
sumed by some appliances is much smaller than the energy consumed by
other appliances.
The disaggregation error allows to aggregate the performance on different
devices more gracefully:

de =

√√√√√√
∑
a,t

‖yat − ŷat ‖
2
2∑

a,t ‖yat ‖
2
2

A very related measurement that we will use in the context of quantization
of power time series is the mean deviation and the quantization error :

q error =

∑
t

|yat − ŷat |∑
t y

a
t

MD =
1

T

T∑
t

|yat − ŷat |

The datasets considered in this work contain power traces of the indi-
vidual appliances and whole-home power readings. This means that ground
truth to assess the energy estimation stage is provided. However additional
information needs to be extracted before the event detection and classifica-
tion stages can be trained and evaluated. One way to extract this additional
information would be to manually annotate the single appliance recordings
with events. This is however not feasible if either the number of appliances
or the number of events is big. A principled and automated way to extract
ground truth from single appliance power traces is sought.
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4.1 Events

The datasets contain power traces of the individual appliances. However it
is lacking events and state transition information in order to be of use for
the probabilistic framework proposed in chapter 5. Simplifying assumptions
are made that can in a sense be understood as quantization. The single
appliance measurement are approximated by a piece-wise constant function.
It is important to understand that this introduces an error. This error is
referred to as the quantization error. The following assumptions are made:

1. Every appliance is a multi-state device with ki states with ki > 1. The
number of states differs from device to device.

2. The mean power consumption in every state is constant (first order sta-
tionarity). Assuming first-order stationarity introduces a quantization
error. The quantization error should not exceed ε.

3. An event signifies the state change of an appliance.

These assumptions allow us to automatically create ground truth on
events and states for a reading of a single appliance in an unsupervised
fashion: in a first step an event detector is applied to the aggregated sig-
nal. Let this set of global events be denoted by Eg = {eg0, ..., e

g
N}. Thus, all

appliances share the same events, however the state transition information
(label of the event) that will be inferred in a subsequent step differs for each
appliance. Also, to reduce the computational cost, a less sensitive local event
detector is applied to the power trace of each appliance: let the set of local
events for each appliance a be denoted by Ea = {ea0, ..., eaNa

}. Every event
that is not present in the set of events detected by the global event detector
(applied to the aggregate signal) is removed from the local events. Also,
for the sake of algorithmic convenience assume that the time stamp of the
first and last power measurement is added to each Ea. Let the resulting set
of locally detected events on the power trace of appliance a be denoted by
Ea ← (Ea ∩ Eg) ∪ {0, T}. This step has little influence on the state transi-
tion information ultimately inferred but it reduces the computational costs
substantially. Keep in mind that the set of local events differ from appliance
to appliance.
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4.2 Event labels and power levels

A recursive and greedy algorithm is employed in order to infer the number
and the power levels of states as well as the state transition information of
the events. Initially, it is assumed that every event marks a state transition
into a new unknown state. Thus, it is assumed that every appliance has as
many states as there are consecutive pairs of events. In every iteration of the
algorithm, two states are merged into a single state sharing the same power
level. Unless the power level of two states is exactly equal, every merging
increases the quantization error. The simplest description of the appliance
is sought that is why as many states as possible are merged whilst not ex-
ceeding a threshold in quantization error. The algorithm described here is a
type of hierarchical agglomerative clustering [16].

For this, a tuple g is created for every consecutive pair of events. Let
pat be the power measurement of appliance a at time point t. The tuple
contains the duration and the mean power consumption of the intra-event
state. Every tuple constitutes a state and the mean power consumption is
an estimation of the power consumption during that state.

gan = (ρan, τ
a
n) (1)

τan = (ean+1 − ean) (state duration)

ρan = (ean+1 − ean)−1
ean+1∑
t=ean

pat (estimated power level)

These tuples are then sorted by the mean power consumption. Let Ga
0

denote the initial ordered set of tuples. In every iteration, two tuples are
merged into one, effectively reducing the number of states by one. Those
tuples are merged whose merging creates the smallest increase in quantization
error. It is obvious to see that only merging two consecutive tuples can create
a minimal increase in quantization error. The estimated new power level and
the increase in quantization error are defined as:
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pnew(gai , g
a
j ) =

τai ρ
a
i + τaj ρ

a
j

τai + τaj

merge err(gai , g
a
j ) = |(ρai − pnew(gai , g

a
j ))|τai + |(ρaj − pnew(gai , g

a
j ))|τaj

In order to obtain Ga
k+1 from Ga

k, i, j = argmin
i,j

merge err(gai , g
a
j ) with

gai , g
a
j ∈ Ga

k is sought but as already stated above, since Ga
k is a sorted set

(by power level) only merging consecutive tuples can produce a minimal er-
ror, thus i = argmin

i
merge err(gai , g

a
i+1) identifies the tuples whose merging

leads to a minimal increase in quantization error. Tuples are merged and
so ultimately states are joined but the quantization error may not exceed a
certain threshold.
The merge operator for two tuples is defined as

merge(gai , g
a
j ) = ganew = (ρanew, τ

a
new) with

ρanew = pnew(gai , g
a
j )

τanew = τai + τaj

Thus ultimately,

Ga
k+1 = (Ga

k\{gai , gai+1}) ∪ {ganew} with

i = argmin
i

merge err(gai , g
a
i+1)

ganew = merge(gai , g
a
i+1) and

gai , g
a
i+1 ∈ Ga

k

After merging gai with gai+1, they are both removed from the sorted set
and ganew is put into their position. No resorting is required since it holds
that ρai ≤ ρanew ≤ ρai+1.

A time series can be reconstructed using the quantized power levels from
the set of tuples Ga

k. Let r(Ga
k) be the reconstruction with power levels in

30



Ga
k, then

r(Ga
k)et:et+1 = ρai with

i = argmin
i
|ρai − [(eat+1 − eat )−1

eat+1∑
l=eat

pal ]|

The quantization error is defined as

q err(Ga
k, p

a) =

∑
t |r(Ga

k)t − pat |∑
t p

a
t

For real world appliances, empirical experiments have shown that as a
stopping criterion ε = q err(r(Ga

0), p
a) + 0.035 seems to yield good results.

In a last step every global event is associated with a state transition for
each appliance. Note that state transitions are appliance specific. The pre-
and post-event state are determined by calculating:

pre-event state: san−1 = argmin
i
|ρi − [(egn − e

g
n−1)

−1
egn∑

t=egn−1

pat ]|

post-event state: san = argmin
i
|ρi − [(egn+1 − egn)−1

egn+1∑
t=egn

pat ]|

Algorithm 1 shows how the algorithmic ground truth creation works in
pseudo-code.
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Data: single appliance measurement pat , local event detector local ed,
global events Eg

Result: state power levels
Ea = (Eg ∩ local ed(pat )) ∪ {0, T} ;
Ga

0 = {ga0 , ..., gaN−1} following (1);
sort Ga

0 by ρan;
k = 0;
while q err(Ga

k) < ε do
i = argmin merge err(gai , g

a
i+1);

ganew = merge(gai , g
a
i+1);

Ga
k+1 = Ga

k\{gi, gi+1};
add ganew to Ga

k+1 at former position of gi;
k = k + 1;

end
return Ga

k−1 ;
Algorithm 1: Algorithmic ground truth creation.

4.3 Results

The local and global event detectors employed compute the second difference
of the respective signals. The standard deviation σ of the second difference is
computed and if the second difference exceeds the threshold of 2σ and 0.2σ
for the local and global detector respectively, the time stamp is marked as
an event.
In order to evaluate the performance of the ground truth creation system,
sixteen appliances were quantized and the quantization errors, mean devia-
tion (MD) between the quantized time series and actual measurements, as
well as the detected number of states and the pre error are reported. The
pre error shows the error that would have resulted when not merging any
states but still approximating every intra-event power level by the mean.
Table 4.1 shows the results.

The objective of the ground truth creation system is to keep the quantiza-
tion error as low as possible while at the same time also pushing the number
of inferred states low. The algorithm presented here seems to perform very
well considering that on average the quantization introduced an error of 3.5%
while approximating all appliances with 2-4 power levels.
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Appliance MD q err #states pre error
Desk Lamp LR 0.03 0.01 2 0.011
DVR AV Blueray 0.23 0.01 2 0.004
Empty LR Socket 0.08 0.08 2 0.078
Hair Dryer 0.09 0.04 2 0.028
Iron 0.09 0.05 3 0.045
Kitchen Aid Chopper 0.09 0.06 3 0.044
LCD Monitor 0.17 0.03 2 0.0227
Monitor 2 0.18 0.04 4 0.0293
Printer 0.23 0.03 2 0.0156
Sub Woofer LR 0.18 0.02 2 0.011
Air Compressor 0.08 0.07 2 0.058
A-V LR 0.24 0.01 2 0.006
Garage Door 0.13 0.02 4 0.0167
Refrigerator 1.29 0.03 3 0.0263
Tall Desk Lamp LR 0.04 0.01 2 0.0076
TV Basement 1.0 0.03 2 0.0217

Table 4.1: The results of the quantization algorithm that extract power levels
and event from single appliance measurements.
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However, the algorithm struggles with appliances for which the assumption
does not hold that the power trace is a piece-wise constant step function. The
power consumption of some appliances gradually decrease over time which
poses a problem to the algorithm. Figure 4.1 shows a plot of the actual
power consumed by a fridge (top) and a garage door (bottom). The power
consumption of the fridge during a freezing cycle decreases gradually and the
algorithm makes small errors since it assumes constant power during a state.
In other cases like e.g. the garage door, the power consumption is constant
over a single activation cycle but not constant over different cycles. This
might be due to some external factor like e.g. weather conditions. In this
case the quantization will also struggle since it will assume constant power
consumption over time.
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Figure 4.1: Quantization results for an activation cycle of a fridge (top) and
a garage door (bottom). Vertical red lines denote state changes, the green
graph denotes the quantization results and the blue graph denote the actual
power consumption.
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Chapter 5

Disaggregation by state
inference

As already stated above, the model introduced here tries to bridge the gap
between event-less and event-based approaches. It is a type of Factorial
Hidden Markov Model but the energy level is not explained at every point
in time but only at events. It is assumed that the aggregate power remains
constant between events and that at every event maximal one appliance can
change its state. Furthermore it is assumed that appliances emit high-level
features f(en) at every event en and that they jointly emit a sequence of
power readings that we observe as the aggregate signal {pen , ..., pen+1}. The
length of the sequence is variable and depends on when the next event is
detected. Thus every HMM has two emissions: high-level features f(en) and
a contribution to the aggregate power trace {pen , ..., pen+1}. See Figure 5.1
for a graphical representation of the model.

5.1 Mathematical definitions

In our dual-emission FHMM, two separate sequences of different lengths and
dimensionality, namely p ∈ RT×q and f ∈ RN×r, are observed. Here, T and
N are the lengths of the aggregate power sequence p and the changepoint
feature vector f , respectively, whereas q and r are the dimensionality of each
element in the respective sequences. The changepoint feature matrix can be
filled by appending the outputs of a feature extractor applied to all detected
events. These two sequences are conditionally independent given the hidden
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Figure 5.1: A graphical representation of the model. The number of points
in time between change points is variable.

states of all of the HMMs in the factorial model. This is better illustrated
in Figure 5.1. The motivation behind the two emissions is that in addi-
tion to the main observations of power p, there can be other (conditionally)
independent observations occurring at changepoints such as environmental
sensor measurements (e.g., sound, light intensity, etc.) or additional power
measurements at a different resolution than p.

Unlike general FHMMs, the individual HMMs in our model are only al-
lowed to transition one at a time, and only at changepoints of the p sequence.
Thus, the model only makes sense once the observation sequence has been
segmented by a changepoint detector. Let E = {0, e1, ..., eN , T} ⊂ {0, ..., T}
denote the ordered set of changepoints (0 and T are added simply for algo-
rithmic convenience). The hidden states of each HMM independently emit
features f at every changepoint depending on the previous and current state,
and they jointly emit a sequence of power observations p up until the next
changepoint depending solely on the current state. It is important to note
that because the segmentation occurs beforehand, our model is no longer
generative but rather discriminative (i.e., we do not model the length of the
individual power segments emitted at each state). Traditional HMMs only
allow geometric state durations. This model however is agnostic about state
durations. In [11] a generalization of HMMs is introduced that specifically
models the state durations and constrains the durations in such a way that
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they stem from a particular distribution. In this work however, the state
durations are not constrained in any way for two reasons: 1) The ultimate
goal of a NILM system is to save energy by providing feedback to the user.
Energy can only be saved if there is a saving potential and a saving potential
can either be that an appliance is turned on longer than it should be or that
it consumes more power than it should. Since the mean power consumption
of an appliance is assumed to be constant, the model cannot identify when an
appliance uses more power than it should. The only saving potential that can
be exploited is when an appliance is turned on longer than it should. If how-
ever, the state durations are modeled explicitly then identifying those saving
potentials might also prove harder. 2) Modeling the state durations explicitly
increases the computational cost of inference significantly since looping over
different durations is then required.

Let s ∈ NN×A be a state matrix with N = |E| being the number of
changepoints and A the number of HMM chains. san denotes the state of
HMM a after event en. Then the conditional probability P (s|f, p) has the
following proportionality:

P (s|f, p) ∝ P (s0)
N−1∏
n=1

(
A∏
a=0

(P (san|san−1))︸ ︷︷ ︸
state transition

P (f(en)|san, san−1))︸ ︷︷ ︸
event emission

P (pen , ..., pen+1−1|sn)︸ ︷︷ ︸
joint emission

(5.1)

P (s0) is probability distribution over initial joint states. P (san|san−1) de-
notes the probability of HMM a transitioning from state san−1 into state san.
P (f(en)|san, san−1) models the probability of the features f(en) observed at
the change point detected a time point en given a state transition from san−1
to state san. P (f(en)|san, san−1) allows the model to examine quantities of the
state change and make a guess about its nature 1. Inferring a state transition
rather than just the current state is motivated by the application domain: if
e.g. a hair dryer transitions into the high position from the medium position,
commonly used features such as the increase in power consumption will be
very different from turning the hair dryer from off to high. P (f(en)|san, san−1)

1Note that during a state transition, the model assumes all HMMs emit the same
feature. In the setting of energy disaggregation this is of course non-sensical: One appliance
state change is responsible for features and other appliances do not emit these features by
remaining in the same operational state. But modeling feature emission like this allows for
plugging in probabilistic classifiers from the event-based energy disaggregation community.
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can be interpreted as the Bayesian inversion of the output of a probabilis-
tic classifier trying to infer the state transition given the observed features.
Thus, e.g. the likelihood term of a Näıve Bayes classifier could in principle be
used as a model. P (pen , ..., pen+1|sn) holds the joint state sn jointly account-
able for the observed joint features from the current possible change point
up until the next. Let ρai be the estimated power consumption of appliance
a in state i. Sensible models will penalize the deviation of

∑A
a ρ

a
san

from the
observed power features pen , ..., pen+1 . There are multiple possible ways to
model this distribution.

5.1.1 Event-based and event-less aspects

The event emission part of the model can be considered an event-based
approach. The model iterates over the events provided by the event detector.
For the model of P (f(en)|san, san−1) any probabilistic classifier can be plugged
in. It takes the features of the feature extractor f as input and outputs the
probability that these features are emitted when appliance a changes states
from san−1 to san. The joint emission part of the model can be used to force
the model to trace the observed signal. If it is e.g. modeled by

P (pen , ..., pen+1 |sn) =

en+1∏
t=en

N(
A∑
a=0

ρasan + Σ1/2zt,Σ)

the additive FHMM used in [13] would be mimicked.
So ultimately, this general model ties event-based and event-less approaches
together and offers a framework to plug in event detectors, feature extrac-
tors, classifiers from event-based approaches and allows for combining them
with energy estimators from event-less approaches.
This lets us formulate a disaggregation problem as a 6-tupleD = (E, π, S, F, C, J)
with

• Event detector: E : ed(p) → {e0, ..., eN} a function that takes the
aggregate signal as input and outputs time points of significant changes
in power. These time points should ideally allow to model the power
traces of individual appliances with minimal error.

• Initial state prior: π : P (s0) probability distribution over an assignment
of an initial state to every appliance
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• State transition probabilities: S : P (san = i|san−1 = j) for every appli-
ance a.

• Feature extractor: F : f(en) → Rm a function that takes an event as
input and outputs any quantity that might shed light on the identity of
the state transition. These features can include high-level features such
as harmonics or external features, such as time, outside temperature,
...

• Probabilistic classifier: C : P (f(en)|san, san−1) a classifier that outputs
the probability of the features being emitted by a state transition.

• Energy estimator: J : P (pen , ..., pen+1|sn) a model that explains the ob-
served power trace up until the next event given the current transition

5.2 Efficient approximate inference

Exact inference in Factorial Hidden Markov Models requires to iterate over
exponentially many states. The basic Viterbi algorithm is a backwards-
looking algorithm that for every point in time iterates over all possible states
and infers the most likely path ending in this state. It is backwards-looking
in the sense that when computing the paths ending at time t, it iterates over
all most likely paths ending at time t − 1 and computes the probability of
transitioning from the previous to the next state. Mathematically speaking:
Let φ(i, t−1) denote the probability of the most likely path ending in state i
at time point t−1, then for φ(j, t) it holds that φ(j, t) = max

i
φ(i, t−1)P (j|i).

Thus for every point in time computations in O(k2) are required. This is only
tractable for a small number of possible states.
Exact inference in Factorial Hidden Markov Models would require to consider
all combinations of possible states for all hidden chains which are for A many
appliances with k many states kA, thus for every point in time computations
in at least O(kA+1) would need to be carried out which becomes intractable
quickly. This problem is tackled by first, making a simplifying assumption
and by second, cutting off the search space.
The simplifying assumption that is made is a variant of the one-at-a-time
assumption that is also made in [13]. The original assumption states that at
any point in time, only a single appliance can change its state. In this case,
it is assumed that at any event, only a single appliance can change its state.
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Since events are time stamps and possibly all time points can be events, the
assumption made here is not necessarily stronger.
The Viterbi algorithm can be reformulated as a forward-looking algorithm
that updates the probabilities of all successor states given a previous state.
Let

suc(i) = {1, ..., k}
P (j|i) = P (sn = j|sn−1 = i)P (pen , ..., pen+1|sn = j)P (f(en)|sn = j, sn−1 = i)

with

P (f(en)|sn = j, sn−1 = i) =
A∏
a

P (f(en)|san = ja, san−1 = ia)

Input: φ(i, t− 1)
Output: φ(i, t)
// initializing state probabilities

for j ∈ {1, ..., k} do
φ(j, t) = −∞;

end
// Computing successor probabilities

for i ∈ {1, ..., k} do
for j ∈ suc(i) do

φ(j, t) = max(φ(j, t), φ(i, t− 1)P (j|i));
end

end
Algorithm 2: Forward-looking Viterbi

Algorithm 2 is equivalent to the standard Viterbi algorithm if the set of
all successor states is the set of all states itself but it allows for reducing
the computational cost dramatically if the number of successor states can be
pruned.
The one-at-a-time constraint allows exactly for this: Assume that appliance
a has ka-many states and also assume that sn ∈ NA is a vector containing
an assignment of a state for every appliance. The number of successor states
of sn without the constraint is

∏A
a ka but with the constraint the number

can be reduced to (1 − a) +
∑A

a ka. The successors of sn can be computed
by Algorithm 3
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Figure 5.2: Search space reduction by cut-off. All nodes are ordered by their
probability, thus φ(s′1, 1) > φ(s′′1, 1) > φ(s′′′1 , 1) and φ(s′2, 2) > φ(s′′2, 2) >
φ(s′′′2 , 2)

Input: sn
Output: set of successors S
S = {sn};
// Computing successors

for a ∈ {1, ..., A} do
for j ∈ {1, ..., ka} do

// Avoiding multiple sn’s in output

if san 6= j then
sn+1 = sn;
san+1 = j;
S = S ∪ {sn+1};

end

end

end
Algorithm 3: Computing all successor of a given state

The one-at-a-time constraint allows to reduce the number of successors
state of a given state. If however, at every event all successors of all states
are computed, the number of possible states will still grow exponentially.
That’s why the search space needs further restrictions: at every event only
the b most probable paths so far are considered further. Figure 6.1 shows
how states are cut off. In this example b = 3 and the paths are sorted by
their respective probability, thus φ(s′1, 1) > φ(s′′1, 1) > φ(s′′′1 , 1)

42



Both restrictions allow for efficient approximate inference in FHMM which
is described in Algorithm 4. From a search perspective, the algorithm is a
type of beam search, i.e. a breadth-first search with a limited agenda.

Input: s0
Output: most probable sequence s1, ..., sN
agenda = {s0};
initialize φ(s, t) = −∞ for all s and t;
φ(s0, 0) = 1;
for n ∈ {1, ..., N} do

for i ∈ agenda do
// one-at-a-time assumption incorporated into suc(i)
for j ∈ suc(i) do

φ(j, n) = max(φ(j, n), φ(i, n− 1)P (j|i));
end

end
// cut-off restriction

agenda = b-best states in φ(∗, n)
end
e

Algorithm 4: Efficient inference in FHMM
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Chapter 6

Results

This thesis on one hand introduces a novel inference technique for factorial
Hidden Markov Models and on the other hand an augmentation in order to
incorporate transient information. Both novelties will be evaluated individu-
ally. In a first experiment, a synthetic dataset is created and the performance
of the inference technique will be compared to AFAMAP (based on Integer
Programming) and Structured Mean Field (based on variational methods).
The second experiment ought to show that incorporating transient informa-
tion increases the disaggregation performance of the system. The second
experiment is conducted on the data set introduced in [2].

6.1 Experiment 1

The goal of the first experiment is to show that the inference technique intro-
duced in this work can enable the trade-off between computational time and
disaggregation accuracy and that ultimately, the modified Viterbi algorithm
outperforms Structured Mean Field and AFAMAP. AFAMAP is an infer-
ence introduced in [13] based on Integer Programming. For this, a synthetic
dataset is created. The synthetic data set that is used is the same as in [13].
The dataset contains 20 sets that each comprise 10 cyclic HMMs, each with
4 states and 4 dimensional output. The initial state of each HMM is drawn
from a uniform distribution. The mean output of each HMM in every state
is drawn from a uniform distribution in the range [0, 2]. The observation is
the sum of all HMMs plus zero-mean Gaussian noise with a covariance of
0.01I.
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6.1.1 Experimental setup

For the first experiment, no transient information is incorporated. Thus
the model of P (sn, sn−1|f(en))) = 1 for all f(en), sn and sn−1. The model
P (pen , ..., pen+1|sn) simply penalizes any deviation of the observed from the
inferred aggregate power:

P (pen , ..., pen+1|sn) =

en+1∏
en

L(pen −
A∑
a

ρasn|0, 0.5)

with L(x|µ, b) = 1
2b

exp
(
− |x−µ|

b

)
being a Laplace distribution. Since AFAMAP

incorporates some transient information in the difference model, the fairest
comparison is to AFAMAP no diff where the difference model is deactivated.
The model parameters for the model introduced in this work (which we will
refer to as DBSI) were obtained using the algorithmic ground truth creation
introduced earlier on a held out training set. The model parameters for SMF
and AFAMAP no diff are the true distribution in the data which should
give these approaches an advantage.
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Figure 6.1: Even in a scenario where SMF and AFAMAP no diff are provided
with a higher amount of ground truth, the inference technique introduced
here outperforms its competitors

The parameter that controls how many HMM paths are cut off is varied
in the experiment. The results are depicted in Figure 6.1. Even though the
competitors have an advantage due to having access to the true underly-
ing distributions during inference, DBSI still outperforms them given that
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enough HMM paths are kept. The inference technique introduced here allows
to control the computational expense and can, given unlimited computational
power, approximate exact inference. The computational time increases how-
ever linearly with the number of retained HMM paths.
The truncated Viterbi algorithm introduced here also has advantages from
a modeling point-of-view: DBSI is in a sense a meta-model. Different mod-
els for the feature emission and joint emission can be plugged in in order
to adjust the model to different scenarios. If for example the model has
to cope with unmodeled devices, the joint emission can be extended with
a component that soaks up residual power that cannot be explained by the
devices that are modeled. Variational methods as well as Integer Program-
ming techniques for inference require reformulating the inference problem, i.e.
for variational methods the analytical solution to minimizing the Kullback-
Leibner divergence needs to be calculated whereas the inference technique
based on the truncated Viterbi algorithm allows for changing the underlying
model components without changing the inference technique.

6.2 Experiment 2

The goal of the second experiment is to show that incorporating transient
information can improve the disaggregation performance. For this, single
appliance measurements of nine appliances over the span of 5 days were
summed up and then subsequently disaggregated. The data collection system
is described in [2]. Figure 6.2 shows the power levels and the energy that
these appliances consumed. One should note that the aggregate signal was
not measured but instead the artificial sum was disaggregated. This is due to
the problems discussed in section 3. One should also note that DBSI cannot
exploit its full potential in this scenario: the appliances were measured at a
sampling rate of roughly 1.5Hz, i.e. the feature extractor cannot make use of
harmonics (high frequency information). Furthermore no external features
like e.g. outside temperature, time of the day or side-channel information
like e.g. light intensity were made use of.
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Appliance Power Levels Energy
Compressor 1100W 104.9Wh
A-V 41.5W 2321.7Wh
Desk lamp 11.6W 220.3Wh
DVR/Blueray 33.5W, 75.3W 3861.2Wh
Garage door 86.6W, 177.5W, 559.7W 659.4Wh
Iron 923.6W, 1450.3W 142.0Wh
Fridge 127.8W, 420W 3546.8Wh
Tall desk lamp 23.7W 450.6Wh
TV 198W 3697.4Wh
total 15004.6

Figure 6.2: The appliance used in the disaggregation experiments with the
algorithmically inferred power levels and overall energy consumption.

6.3 Instantiating the model

As already stated above, the model introduced in this work can be understood
as a meta-model that allows for plugging in event detectors, state priors,
state transition probabilities, feature extractors, probabilistic classifiers and
energy estimators. This section shows an exemplary instantiation of this
meta-model for the disaggregation of real world data.

6.3.1 Event detector

The same event detector that was used for ground truth creation is employed
as an event detector. The event detector computes the second difference
of the signal and if the second difference exceeds a threshold, an event is
detected. Algorithm 5 describes the event detector in pseudo-code.
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Input: power trace p, threshold ε
Output: set of events E = {e1, ..., eN}
E = {};
dt = (pt+1 − pt)− (pt − pt−1);
σ = std(dt);
for t ∈ {1, ..., T − 1} do

if dt < εσ then
E = E ∪ {t}

end

end
Algorithm 5: A very simple event detector.

6.3.2 Initial state prior

Algorithm 4 for efficient inference in FHMMs requires as input an assignment
of a starting state for every appliance: s0. In traditional HMMs mostly
a uniform prior over the starting states is assumed. This is for FHMMs
however computationally expensive since then the computation of φ(∗, 1)
would require iteration over exponentially many states. The computational
time could however be sacrificed because it would only need to be done once.
The problem of inferring s0 could also be tackled by simply waiting until
most appliances are turned off and then assuming P (s0 = [0]A) = 1. In
this work it is assumed that s0 is known, i.e. the state s0 is taken from
ground truth. However experiments have shown that initializing the model
simply with P (s0 = [0]A) = 1 without actually waiting until the aggregate
signal reaches a minimum has very little effect on the performance. Another
strategy that seems feasible but was not tested is to infer a distribution over
joint starting states. One would scan the training set for all observed state
combinations. The set of all observed state combinations is e.g. on the data
set used for evaluation 67 opposed to 2304 possible joint states.

6.3.3 State transition probabilities

The algorithmic ground truth creation described in section 4 was used in
conjunction with the event detector described above to infer event labels
for the training set. These event labels can then be used to estimate the
set of state transition probabilities for every appliance. Let c be a counting
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function, then

P (sat = j|sat−1 = i) =
c(sat−1 = i, sat = j)

c(sat = i)

6.3.4 Feature extraction

The feature extractor used in this work computes the first difference of the
signal in a window of 10 samples around the event and the resulting vector
is then projected onto a lower dimensional space using Principal Component
Analysis retaining 93% of the variance. The projection matrix is learned
on the held-out training set. In this case, the feature extractor was mainly
limited by the nature of the available data. The data provided did not include
high frequency current and voltage readings which would be required for the
computation of active and reactive power or harmonics. Merely apparent
power was provided in the dataset. Also since the data was recorded over
only consecutive five days, features like the season or outside temperature
become pointless.

6.3.5 Probabilistic classifier

As already stated above any probabilistic classifier can be plugged into P (f(en)|sn−1, sn).
Since f(en) is a multivariate and continuous variable P (f(en)|sn−1, sn) can-
not be estimated by simply counting occurrences. A model that generalizes
over f(en) is a necessity. As an example, a Gaussian Näıve Bayes will be used
to model P (f(en)|sn−1, sn) but in theory any type of probabilistic classifier
can be employed.
It is assumed that every feature value f(en)i (remember that f(∗) maps into
Rm, so f(en)i denotes the ith element of f(en)) stems from a conditionally
independent Gaussian distribution:

P (f(en)|san−1, san) =
∏
i

P (f(en)i|san−1, san) with

P (f(en)i|san−1, san) = N(f(en)i|µsan−1,s
a
n
, σsan−1,s

a
n
)

A maximum likelihood estimation of µsan−1,s
a
n

and σsan−1,s
a
n

is straight-forward:
µsan−1,s

a
n

and σsan−1,s
a
n

can be obtained by computing the variance and mean of
those instances of f(en) which mark a transition from san−1 into san.
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6.3.6 Energy estimation

After the ground truth creation of section 4 was applied to the training data,
an estimate of the power levels for every appliance in every state is provided.
Let the estimate of the power consumption of appliance a in state i be ρai .
The ground truth creation also provides ground truth on events and their
labels. Since the ground truth creation assumes piece-wise constant energy
consumption of appliances, the sum of estimates deviates from the observed
aggregate signal. Let the time series of residuals rt = p̂t − pt

58000 60000 62000 64000 66000 68000 70000
0

100
200
300
400
500 sum of estimates

observed aggregate

58000 60000 62000 64000 66000 68000 70000
100

50

0

50

100
residual

Figure 6.3: The residuals or quantization error introduced by the algorithmic
ground truth creation

One would assume that ideally rt ≈ 0 but as Figure 6.3 shows, such a
residual time series contains much structure and simply minimizing rt would
lead the model to make mistakes in that it would for example squeeze in a low
power consuming appliance into the transient of a high power appliance. This
is why an AR (autoregressive) model of the type rt = α0+α1rt−1+...+αnrt−n
is trained to predict the residual out of its autostructure. Then, the deviation
from the prediction is penalized. This can be understood as alleviating the
i.i.d. assumption on the residual since the dependence of the current error
on previous errors is incorporated. Let χ(rt) = α0 + α1rt−1 + ... + αnrt−n,
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then

P (sn|pen , ..., pen+1) =

en+1∏
t=en

L(rt|χ(rt), σ) with

L(x | µ, b) =
1

2b
exp

(
−|x− µ|

b

)
and

rt = pt −
A∑
a

ρasan

6.4 Outcome

Table 6.4 compares the performance of DBSI with and without the second
emission. The dataset was separated into 5 chunks of 100.000 data points
(≈ 18.5 hours) each. Everything but one chunk was used as a training set
and the power consumption of the appliances was disaggregated on that
chunk. Then the predicted power consumptions were appended in such a
way that the original whole aggregated power is reconstructed. One might
think that evaluating the chunks individually makes more sense because then
the variation of the performance could be reported. However, this leads to
the problem that the energy of a number of appliances in more than one
chunk is zero and since most performance criteria divide by the energy, this
would lead to a division by zero.

The overall performance increases by 10% by incorporating the second
emission. However, the performance for some appliance actually decreases
by adding the feature emission. This can be explained by the nature of the
data: when the second emission is incorporated, DBSI confuses the Com-
pressor and the Iron. Both appliances have very similar power levels and
the problem is that the activity in the Iron time series is very clustered. In
the first 400.000 data points the Iron was not used at all, then in the next
100.000 data points the Iron was turned on and off 16 times and in the re-
mainder of the time the Iron was turned on twice. Thus, when the algorithm
evaluates the performance on the 5th chunk of data, the training set for the
classifier consists of two events each for on→ off and off → on transitions.
During training the parameters of the Näıve Bayes likelihood term need to
be estimated. For each feature dimension there are two parameters (µ and
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Actual DBSI no 2nd emit
Appliance Observed E Estimated E F1 DE Estimated E F1 DE
Compressor 104.9Wh 109.6Wh 0.73 0.73 104.77Wh 0.96 0.96
A-V 2321.7Wh 2240.2Wh 0.98 0.97 2301.4Wh 0.90 0.90
Desk lamp 220.3Wh 280.5Wh 0.87 0.88 219.4Wh 0.80 0.80
DVR/Blueray 3861.2W 3840.7Wh 0.96 0.96 3589Wh 0.94 0.95
Garage door 659.4Wh 591.5Wh 0.84 0.83 1899.8 0.50 0.04
Iron 142.0Wh 131.1 0.65 0.64 142Wh 0.97 0.97
Fridge 3546.8Wh 3535.8 0.96 0.96 3654Wh 0.87 0.86
Tall desk lamp 450.6Wh 575.8 0.87 0.88 511Wh 0.75 0.73
TV 3697.4Wh 3695.0 0.98 0.98 2583Wh 0.80 0.83
total 15004.6 15000.6 0.95 15006.7 0.85

Figure 6.4: The appliance level performance of the disaggregation system
with and without a feature emission.

σ). But two parameters cannot be estimated properly from just two data
points.
For appliances where there is a consistent and big number of events, the
performance is boosted substantially. For all appliances that consumed more
than 1kWh, the performance increased on average by roughly 5% measured
by the disaggregation error. Figure 6.5 shows that the overall energy inferred
for each appliance also improves by incorporating the second emission.
For this particular data set however, the algorithm could not unfold its full
potential. External features or high frequency features could not be made
use of. But on the other hand, this data set is very well behaved. There is
no baseload (the power consumed by appliances that are always turned on
like e.g. a smoke detector) and many data collection problems were circum-
vented by summing up the individual appliances rather than disaggregating
a subdistribution measurement.

All experiments were performed by retaining the 50 most probable HMM
paths. The question arises how many paths should be kept in a real world
disaggregation scenario. Figure 6.6 shows the normalized log mean proba-
bilities. These were obtained by sorting all paths at every event by their
probability. In a next step, these probabilities were normalized for every
event in such a way that the probability of the most probable path is 1 (or
the log-probability is 0). Then the mean over all events was taken. It can be
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Figure 6.5: The energy inferred for each appliance. One can see that incor-
porating the feature emission into the model improves the performance.

Figure 6.6: The normalized log-probability of the ranked most probable
paths.
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seen that the probabilities drop off exponentially (= the log probabilities fall
of linearly) and that after the 25th retained paths, the steepness of the decay
even increases. Analyzing the path of the most probable sequence revealed
that at no event a path was chosen that was not amongst the 20 most prob-
able options. This does of course not mean that if the parameter controlling
the number of paths retained was increased, a more probable path could not
be found that choses at some event an option that is ranked lower than 50.
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Figure 6.7: Log probability of a sequence plotted against the disaggregation
error. The green line shows the regression.

A problem that sometimes arises especially in Natural Language Pro-
cessing is that probabilities sometimes do not commensurate with the actual
goal of the model. In the case of NILM, the probability of a state sequence is
maximized but we are not interested in a high probability sequence but such
a sequence that results in a maximal disaggregation performance. In order
to see if a higher probability sequence also results in a sequence with higher
disaggregation performance, the correlation between the two quantities was
computed. The correlation between the two quantities is with 0.84 quite
high. Figure 6.7 shows a plot of the log-probability of a sequence against
disaggregation performance. It is easy to see that the two quantities seem to
commensurate well.
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Chapter 7

Conclusion

This work has made three contributions. First, a method that takes sin-
gle appliance measurements as input and extracts power levels and events
was introduced. Second, this work shows how event-based and event-less
approaches can be fused to overcome limitations that both approaches have
in isolation. Third, a generic inference technique is introduced that allows
for efficient inference in that model.
The performance of the individual components was tested on a synthetic and
a real world data set and both experiments yielded positive results. How-
ever, there is still much room for improvement. One should note that the
experiment on the real world dataset circumvented some NILM problems by
disaggregating the artificial sum rather than an actual measurement on the
whole home or subdistribution level.
In order to commercialize NILM systems, the amount of ground truth re-
quired must be minimized. It is financially not viable to install a subme-
tering system in a building to collect ground truth for a certain amount of
time and then later remove that system again. This not only defeats the
purpose of NILM systems but also assumes that no appliance is added to the
building later. The system introduced here can however be made viable by
three approaches:

1. The system could be employed in scenarios where appliances stay the
same across multiple buildings. This is for example true for franchise
chains.

2. Multi-task learning approaches could be employed that transfer knowl-
edge of one building to another. This would still require huge amounts

55



of ground truth but after an initial very costly phase of collecting this
ground truth, deploying the system becomes hopefully cheaper and
cheaper.

3. The ground truth requirements could also be relaxed algorithmically.
This system couples power levels with features. Event-based systems
base their decision on event features whereas event-less systems base
their decision on power levels mostly. The system introduced here
enforces an agreement between features and power levels. This might
add more rigidity to usually fragile unsupervised methods. An EM-like
algorithm is conceivable since the E-step has become tractable thanks
to the novel inference technique.

On top of that, there is also room for improvement on the side of the
inference technique. One problem that arises is that state sequences with
minimal differences might occupy the most probable paths. There are some-
times surges in the power line that only last for less than one second. The
energy these spikes consume is negligible. A problem with simply retaining
the most probable paths is that the most probable paths might actually be
all the same and their only difference is their explanation of this single spike.
A system that identifies maximally similar state sequences and removes or
merges those paths might boost the performance of the system substantially.

However, the system introduced here could not unfold its full potential:
there is currently no data set that contains side-channel information such as
readings from a light or sound intensity meter. These additional information
can easily be incorporated into the system. The feature extractor could
simply take these additional quantities into account.
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