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Abstract

It is demonstrated that the molecular filtering effect of TiO2 has a significant influence on

dye  solar  cell  (DSC)  performance.  As  electrolyte  is  injected  to  a  DSC,  some  of  the

electrolyte components adsorb to the surface TiO2 (here 4-tert-butylpyridine and 1-methyl-

benzimidazole) and accumulate near the electrolyte filling hole resulting in varying

electrolyte composition and performance across the cell. The spatial performance

distribution was investigated with a new method, the segment cell method. Not only is the

segmented cell method simple and cheap when compared to the only other method for

examining spatial variation (photocurrent mapping), it also has the major advantage of

allowing the spatial variation in all other operating parameters to be assessed. Here the

molecular filtering effect was to influence the cell performance in case of all the five

studied electrolytes causing up to 35 % losses in efficiency. Raman spectra indicated that

the loss in photocurrent in the electrolyte filling was in correlation with the loss of

thiocyanate ligands suggesting that dye regeneration may also be a significant factor in

addition to electron injection in some of the cells. There were also shifts in the absorption

spectra the photoelectrodes which further supported changes in the thiocyanate ligands.

Besides absorption changes, there were additional shifts in the IPCE spectra which may

relate to deprotonation of the dye. The efficiency losses were reduced to ~10 % with

contemporary electrolyte compositions.

Keywords: Dye-sensitized; Up-scaling; Spatial distribution; Electrolyte filling;

Thiocyanate ligand.
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1. Introduction

Dye solar cells (DSC) are an attractive alternative to conventional pn-junction solar cells

due to their cheap materials and easy manufacturing methods which can even be transferred

to roll-to-roll  mass production.  Over 10 % efficiencies have been demonstrated in small

scale 1 and the transferring of the DSC technology to large scale has begun. The efficiencies

are lower in large scale 1,2 as in part due to resistive losses from current collection as the

cell size increases. In some studies, the differences in the performance of small cells (2.5

cm2 active area) and modules (900 cm2 active area) have actually been relatively small.2-4

However this appears not be generally the case, for example our earlier results showed that

significant efficiency losses (~20 %) occur due to the electrolyte filling when the cell size

is increased from 0.4 cm2 to only 1.2 cm2,5 the smaller area is typical of the size tested for

record efficiency cells. The changes were independent of resistive losses.

That initial study indicated that 4-tert-butylpyridine (4-tBP), a common additive in DSC

electrolytes, adsorbs to the TiO2 unevenly so that the area near the electrolyte filling hole

had the highest concentration which decreases in the regions further away from the hole.5

Moreover, it was noted that these differences did not decrease over time but rather

increased.5 The spatial variation of cell performance that results from electrolyte filling

represents a major challenge for the commercialization of DSCs. Even relatively minor

reductions in the efficiency of manufactured modules can have a very significant impact

on the economic viability of the technology. To avoid these performance losses, either the

electrolyte composition or its application method need to be developed.
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In this contribution we focus on modification of the electrolyte composition to avoid, or at

least reduce, the spatial losses caused by the conventional electrolyte filling method

without  compromising  the  cell  efficiency.  The  main  task  is  to  investigate  which  of  the

commonly used electrolyte components have tendency to cause spatial performance

variation. We use the segmented cell method that was introduced briefly in our previous

study shown in the context of the initial results.5 The dimensions of the segmented cells

used in this study are roughly similar to a single stripe of a DSC mini module such as the

ones used in our previous study.6 In addition to detecting the spatial variation in the

photovoltaic performance with segmentation, Raman and incident-photon-to-current-

efficiency (IPCE) measurements are executed to further investigate the underlying causes

of the performance variation.

2. Experimental methods

2.1. Cell preparation

The different electrolyte compositions are given in Table 1. The chemicals used for the

preparation of the electrolytes were: iodine (I2, Sigma-Aldrich, ≥ 99.8 %), 4-tert-

butylpyridine (4-tBP, Aldrich, 96 %), 1-Methyl-benzimidazole (NMBI, Aldrich, 99%),

Lithium iodide (LiI, Aldrich, 99.9 %), 1-propyl-3-methylimidazolium iodide (PMII,

Solaronix), Guanidinium thiocyanate (GuSCN, Sigma, ≥ 99 %), 3-methoxypropionitrile

(MPN,  AlfaAesar,  99  %).  A  commercial  electrolyte  high  stability  electrolyte  (HSE)  by

DyeSol was also tested.
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Table 1. Electrolyte composition given as molar concentrations

Electrolyte name I2 TBP NMBI LiI PMII GuSCN Solvent

TBP-LiI 0.05 0.5 0.5 MPN

NMBI-LiI 0.05 0.5 0.5 MPN

NMBI-PMII 0.05 0.5 0.5 MPN

NMBI-PMII-GuSCN 0.05 0.5 0.5 0.1 MPN

The photoelectrodes consisted of a screen printed thermally treated TiO2 film  (DyeSol

18NR-T, two layers with total thickness ~7 µm) deposited on fluorine-doped tin oxide

(FTO) coated glass substrates that were sintered at 450 °C for 30 min. After that the films

were  sensitized  in  a  dye  bath  using  a  dye  solution  consisting  of  0.32  mM cis-

bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) bis-

tetrabutylammonium (DyeSol) in ethanol (99.5 wt-%). The counter electrodes were

thermally platinized FTO glass substrates. Detailed specifications of the electrode

preparation are given elsewhere.5 The electrodes were sealed with a 25 μm thick Surlyn

ionomer resin film spacer (DuPont) and the electrolyte was injected to the cell through

filling channels drilled in the counter electrode substrate. The filling holes were sealed with

a Surlyn foil and a thin cover glass.
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2.2. Segmented cells

Figure  1.  a)  Schematics  and  b)  a  photo  of  a  four  segment  cell.  The  segments  are

electrically isolated (marked by dashed lines in the schematics) but share the same

electrolyte layer.

In the analysis we used 4-segment cells in which the conductive FTO layer of the substrates

was divided into electrically isolated segments with laser scribing (Figure 1). The 4-

segment cells are compared with simultaneously prepared small single cells having the

same geometry and size of the dyed TiO2 layer as in an individual segment. The segments

are numbered from 1 to 4, the one nearest to the electrolyte filling hole is marked as

segment 1 as indicted in Figure 1a. The segmented cells were prepared with sufficient

randomization to avoid systematic errors in the examination of the main effect, here the

electrolyte filling direction. In this work special care was taken in this regard: for instance

the electrolyte was filled from different ends of the different cells so that neither the

application of the TiO2 film nor the position in the oven during the heat treatments can

a) b)
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have any effect even though their effect is expected to be negligible. Furthermore, it was

tested that the measurement order of the segmented cell does not affect the results.

The basic idea of the method is to section the electrodes of the cell to electrically isolated

areas that share the same electrolyte layer, and from each of them all the photovoltaic

parameters can be measured independently. This is a major advantage compared to

previous techniques; for instance with photocurrent imaging only spatial variations in the

short circuit current can be observed.7,8 There are, however, some limitations that need to

be taken into account: If the electrical cuttings on the photoelectrode and counter electrode

are not aligned accurately enough, ions in the electrolyte can move between the different

segments  when  current  is  drawn  from  the  cell  and  it  can  cause  drifts  in  the  data.  We

calculated using a 2D dye solar cell model 10 that the maximum tolerance for the

misalignment is in the range of 10 µm. In practice this means that it is not practically

possible to get the electrodes aligned that well and there will be drifts. The drifts are,

however, relatively slow; it takes almost ten minutes for the ions to diffuse over the distance

of 0.5 mm between the adjacent segments 9 and here the distance between the segments

was even larger (2 mm). This means that short measurements (in the range of a couple of

minutes) such as IV and IPCE are not significantly affected whereas hours long

electrochemical impedance spectroscopy (EIS) measurements very likely are. The drift of

ions, as it affects also tri-iodide, will cause a clear change in the electrolyte color meaning

that besides modeling, their effect can be also visually monitored. With proper selection

and monitoring of the measurements, the segmented cell method is very efficient in the
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study of spatial variation in particular when the changes between the segments are very

large as in this study.

2.3. Measurements

The photovoltaic performance was measured using a solar simulator providing 1000 W/m2

AM1.5G equivalent light intensity.

IPCE measurements and transmission spectra were taken using Model QEX7 Solar Cell

Spectral Response Measurement System from (PV Measurements, Inc.) in DC mode

without bias illumination. IPCE Spectra were measured in the range of 300-800nm with

intervals of 20 nm from both counter-electrode (CE) and photo-electrode (PE) side at the

short  circuit  conditions.  A silicon photodiode was used for calibrating the system in the

300-1000 nm wavelength range.

The Raman spectra of the DSCs were measured using a HORIBA Jobin Yvon LabRam

300 micro-Raman spectrometer equipped with a 514 nm argon laser. The power of the

argon laser was 1.24 mW which was reduced to 1% using a filter in the measurements. The

spot size was approximately 5000 µm2 leading to laser light intensity of about 2500 W/m2.

Here we used the same laser source with same incident power, using the same detecting

system, the same 5 s time for a single measurement,  and following all  the measurement

procedures in a similar fashion for all the samples in order to maximize the comparability

of the data. The FTO glass in the actual segmented cells was too thick to get enough

scattered  Raman  signals.  Therefore  in  the  samples  that  were  used  in  the  Raman
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measurements, the counter electrodes were replaced with 1 mm thick microscope glasses

and the measurements were carried out through that side.

3. Results and discussion

3.1. Photovoltaic performance

Five different electrolyte compositions which are representative of those normally used in

the field were examined. The electrolyte 4-tBP-LiI is a conventional type of electrolyte that

has been the basis for different variations since 1990s and has been used in larger DSCs as

well.3,10 Both 4-tBP and LiI have been questioned due to stability issues, the former mainly

because of purity of the currently commercially available materials and the latter due to

inherent effects. Regardless of this they are still commonly used in the field, in particular

to reach high efficiencies. Table 2 shows that with 4-tBP-LiI electrolyte there were large

performance variations between the different segments: Going from segment 1 to 4, the

short-circuit current density (JSC)  increases  gradually  as  much as  240  % while  both  the

open-circuit voltage (VOC) and the fill factor (FF) decreases gradually by 20 %. All in all,

the efficiency (η) of individual segments varied from 1.7 % to 4.1 %. The calculated

electrical parallel connection of the four segments represent an estimation of the overall

performance of the corresponding stripe-like cell in a small DSC module. In this case the

parallel connection had an efficiency (η)  of  3.0  %  i.e.  only  ~65  %  of  that  of  a  small

individual reference cell. In practice this means that if 4-tBP-LiI electrolyte was used in a

DSC module filled with the electrolyte this way, the efficiency losses caused by uneven

spatial performance variation would likely be the largest loss mechanism related to the up-

scaling.
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Replacing 4-tBP with NMBI, a commonly used alternative additive that also boosts VOC,

did not change the results much (Table 2). The only practical difference was the somewhat

larger variation in FF with NMBI-LiI electrolyte than with 4-tBP. A few hours after the

cell assembly, there were also visual differences between the segments in the NMBI-LiI

cells: there was gradual loss of electrolyte color when going from segment 1 to 4 and

increase of dark clusters, which were presumed to be co-crystals of NMBI and iodine. A

corresponding color change could be seen also in the small NMBI-LiI reference cells as

well, however, in smaller scale. The crystallization reaction between NMBI and iodine has

been reported in the literature in detail.11 Here, the hypothesis for this reaction is that there

is initially the same amount of dissolved iodine in all the segments as it is compatible with

visual observations. The other electrolyte components such as NMBI distribute unevenly

which apparently changes the solubility of tri-iodide resulting in crystallization of iodine

in the segments farther from the filling hole. Thus there is bleaching of the electrolyte

around the dark spots of crystalline I2. In the cells with other electrolytes, there were no

such visual changes. This is likely related to the fact that the other electrolyte components

such as GuSCN affect the crystallization reaction.11

Like 4-tBP, LiI is also a conventional electrolyte component. The purpose of LiI is to be a

source of I- ions and to shift the conduction band of TiO2 down which helps in the electron

injection increasing the photocurrent. Leaving LiI out of the electrolyte and having PMII

instead as a source of I- ions, the JSC of  the  small  reference  cells  was  lower,  as  to  be

expected (Table 2). However with the NMBI-PMII electrolyte, the performance of
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individual segments, namely JSC was significantly more even (~5 % variation) compared

those cells than contained LiI (240 % variation) (Table 2). Interestingly the middle

segments (2 and 3) have also ~5 % higher JSC compared to outer segments (1 and 4). Only

a small 5% gradual decrease of VOC from segment 1 to 4 was observed which suggests that

there was an uneven distribution of NMBI. The overall result was that the performance of

parallel connected segments with NMBI-PMII electrolyte was actually very close to that

of small reference cell (Table 2).

In recent years, it has become very common to add GuSCN to the electrolyte instead of LiI

to boost the photocurrent and hence also the efficiency. Indeed with NMBI-PMII-GuSCN

the efficiency of the small reference cell was higher than with all the other electrolytes.

The same applies to the parallel connected segmented cells, even though having GuSCN

in the electrolyte actually increased the variation in the performance of the segments

compared to NMBI-PMII; there was e.g. 10 % decrease of VOC from segment 1 to 4 (Table

2).  Interestingly,  the  behavior  of  a  commercially  available  electrolyte  of  an  unknown

composition, HSE from Dyesol, was quite similar to the NMBI-PMII-GuSCN electrolyte,

suggesting a similar composition. Indeed, the Raman spectroscopy results discussed later

in the paper point to the presence of GuSCN in the HSE electrolyte.

The systematic decrease of VOC from segment 1 to 4 is seen with all the studied electrolytes.

In our initial study with 4-tBP-LiI electrolyte similar effect was seen and it was related to

electrolyte filling as that is the only practical difference between the segments and

furthermore the performance of the segments could be modified by changes in the
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electrolyte filling.5 This response can be understood as follows: as the electrolyte along the

surface of TiO2 layer, quickly adsorbing components of the electrolyte attain higher

concentration near the electrolyte filling hole (i.e. the nanoporous TiO2 film behaves as a

filter). It is well known that 4-tBP and NMBI increase VOC and therefore the decreasing of

VOC suggests a drop in their concentration. The molecular filtering effect suggested here is

conceptually similar to the phenomenon used in chromatography. The significance of the

effect on DSC performance is striking and it has been completely ignored in the past apart

from our initial results.5

The molecular filtering effect could theoretically be affected by the speed of electrolyte

filling (rate of adsorption vs. speed of the electrolyte flux in the filling). Indeed, this

common filling technique used here is most likely one of the slowest ones to fill the cell

and the filtering effect might be expected to be enhanced relative to other quicker

electrolyte filling methods. It was, however, confirmed using an electrolyte similar to the

NMBI-PMII-GuSCN electrolyte and fast vacuum pump assisted filling that the spatial

variations did not reduce. This suggests that the rate of electrolyte species adsorption is

much quicker than the filling speed of typical electrolyte insertion methods.

Although the spatial performance variation was significantly evened out by using modern

electrolyte compositions (NMBI-PMII and NMBI-PMII-GuSCN) instead of the traditional

ones,  it  could  not  completely  be  omitted.  For  instance,  with  NMBI-PMII-GuSCN

electrolyte the efficiency of the parallel connected cell was still 10 % lower efficiency

compared to the small reference cell, which is significant from industrial perspective. From
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a practical point of view one of the most problematic issues is that liquid electrolytes which

have been shown to give good stability and performance include a voltage increasing agent,

either tBP or NMBI (or similar e.g. BI). As shown here, both 4-tBP and NMBI appear to

be causing problems and thus finding a commercially interesting electrolyte composition

which would not be subject to this effect remains an important challenge.

The spatial performance variation of JSC was the largest in the cells with presence of LiI

(and absence of PMII) in the electrolyte. Interestingly enough, in our previous study, the

performance of electrolyte containing merely LiI and I2 in the electrolyte solution resulted

in  quite  uniform  performance  in  the  4-segment  cells.5 Hence, it appears that LiI alone

would not cause spatial variation problems. Here it was used only with either 4-tBP or

NMBI, which indicates that there may be chemical interactions between Li+ and these

additives. It has been reported that 4-tBP forms complexes with Li+ which then reduces the

interaction of Li+ ions with the TiO2 film.12,13 Hence in the segments with elevated local

concentrations of 4-tBP and NMBI there could then be a reduction of the amount of Li+

ions. This would then lead to an even higher shift of the TiO2 conduction band which would

in turn reduce electron injection efficiency. In later sections we address whether changes

electron injection are the only factor affecting JSC.

Table 2. Typical performance characteristics of the individual segments and their

parallel connection in comparison to the small reference cell when using different

electrolytes.
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JSC VOC FF η
(mA/cm2) (mV) (%) (%)

4-tBP-LiI
segment 1 3.1 759 72 1.7
segment 2 7.0 779 61 3.3
segment 3 9.9 717 58 4.1
segment 4 10.2 616 57 3.6

parallel connection 7.5 698 57 3.0
small reference 9.9 731 62 4.5

NMBI-LiI
segment 1 4.6 752 70 2.5
segment 2 8.3 762 60 3.8
segment 3 9.4 732 55 3.8
segment 4 10.4 624 43 2.8

parallel connection 8.2 714 51 3.0
small reference 9.7 757 61 4.5

NMBI-PMII
segment 1 8.7 758 66 4.3
segment 2 9.3 728 65 4.4
segment 3 9.6 717 64 4.4
segment 4 8.8 717 65 4.2

parallel connection 9.1 729 65 4.3
small reference 8.7 754 67 4.4

NMBI-PMII-GuSCN
segment 1 9.2 797 66 4.8
segment 2 10.0 746 65 4.9
segment 3 10.2 721 65 4.8
segment 4 9.3 705 64 4.2

parallel connection 9.7 739 65 4.6
small reference 10.1 768 67 5.2

HSE
segment 1 9.9 743 62 4.5
segment 2 10.6 676 64 4.6
segment 3 10.7 639 62 4.3
segment 4 10.1 642 63 4.1

parallel connection 10.3 667 63 4.3
small reference 10.9 704 66 5.1
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3.2. Raman spectroscopy

As the photovoltaic data suggests variations in the 4-tBP and NMBI concentration across

the segmented cells, we wanted to examine those with Raman. The intensity of a Raman

peak I(ν) is given by 14

I(ν) = I0 K(ν) C (1)

where I0 is the intensity of the incident laser light, K(ν) includes the frequency dependent

terms, ν is  the Raman shift  in cm-1, and C is the concentration of corresponding specie.

Assuming that the intensity of the laser power and frequency dependent factors remain

constant, the intensity of species peak at a particular Raman shift is directly proportional

to its concentration. The height of the Raman peak has been therefore been used to estimate

the concentration of different species.14
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Figure 2. Comparison of Raman spectra at the photoelectrodes of reference cells with

the different electrolytes at range a) 0-2400 cm-1 and b) 900-1400 cm-1.

The Figure 2 shows the Raman spectra of the reference cells with the different electrolytes.

The analysis of the Raman spectra reveals that the changes between the electrolytes cause

differences only in the intensity of some of the peaks, but otherwise the form of the spectra

is rather similar. Based on the literature of the Raman peak for 4-tBP should appear at 996

cm-1 and that for NMBI around 1360 cm-1.15,16 However,  Figure  2b  does  not  show any

peaks in those regions which apparently means that the 4-tBP and NMBI have very weak

Raman signals. The samples in the literature were, however, only based on mixture of MBI

and  LiI  in  MPN  or  4-tBP  liquid  whereas  here  the  Raman  spectroscopy  was  done  on
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complete DSCs which also includes dyed TiO2 films. Other studies of complete DSC do

not mention these peaks either.16,17

As Figure 3 indicates, there were instead significant differences in spectra around 2106 cm-

1 which has been associated with the characteristic peak of thiocyanate (SCN-) ligand.17

The SCN- ligand attached to the Ru atom of the dye is involved in regenerating the dye.

The 4-tBP-LiI and NMBI-LiI show a significant increasing trend both in the intensity of

the SCN- from segment 1 to segment 4 (Figures 3a and b) and in the short circuit current

(Table 2). Figure 3f shows clearly that with SCN- peak height below ~500 a.u., there is a

strong correlation between JSC and the amount of SCN- measured using Raman. Therefore

it is plausible to assume that the low JSC in  some  of  the  cells  may  be  limited  by  the

regeneration of the dye due to smaller SCN- concentration. Above peak height 500 a.u., JSC

is not apparently limited by the amount of SCN- in the cell and the increase in SCN- does

not improve JSC any further (Figure 3f). The JSC data in Figure 3f can be fit by a simple

phenomenological model (see figure caption) in which the SCN- peak intensity assumed to

be proportional to the rate of charge separation in the dye molecules (due regeneration

and/or electron injection) where this process competes with an approximately constant rate

of electron-dye recombination or excited state decay. Since our data suggests that it is likely

that regeneration in addition injection efficiency is influenced by the spatial variation of

electrolyte additives, the mechanism influencing photocurrent is almost certainly more

complex than the simple model presented in the figure caption and we do not pursue this

further here. More detailed measurements of regeneration would be required to reach a

quantitative understanding.18
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Associating the peak at 2106 cm-1 with the amount of SCN- attached to the dye is further

confirmed by significantly higher peak in the NMBI-PMII-GuSCN cells (Figure 3) where

additional SCN- is  present  at  high  concentrations  in  the  electrolyte  due  to  GuSCN.  The

peak is similarly high with the HSE electrolyte pointing to the presence of GuSCN or other

source of SCN- in the electrolyte. In case of these cells, the JSC values were higher and did

not vary as much as those without GuSCN (Table 2). As mentioned before, this could be

interpreted as the cells with GuSCN not being limited by regeneration of the dye. It appears

that the variation in the intensity of the SCN - representing the concentration of the SCN- is

indeed related to differences in JSC.

Substitution of SCN- with  4-tBP  and  NMBI  has  been  reported  in  the  literature  and

furthermore it has been stated that differences in the electrolyte composition trigger these

substitution processes.16-18Any degradation of the dye due to the SCN- ligand substitution

could decrease JSC of the DSC if JSC is limited by the regeneration of the dye. Above all,

the SCN- peak is lower for segments with low JSC and high VOC in which regions according

the deductions based on photovoltaic performance NMBI or 4-TBP are in larger quantities.

Here SCN- exchanges most probably with NMBI and/or 4-TBP. On the basis of the

photovoltaic performance it seem possible that the there are also fewer Li+ are on the TiO2

surface where there is more NMBI or 4-tBP. Interestingly, it has been reported that

presence of Li+ ions indeed protects SCN- ligand from the exchange by MBI by forming a

complex between Li+ and MBI and therefore their amounts should be carefully optimized.16

It  seems  likely  that  Li+ prevents  ligand  exchange  also  in  the  case  of  NMBI  and  4-tBP.
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Hence it appears logical that the segments with high concentration of NMBI or 4-tBP with

few Li+ there would be loss of SCN- ligands due to exchange reactions. When large PMI+

ions was used instead of small Li+, there are no such large differences in the peak heights

as indicated by Figures 3b and c which suggests that the PMI+ protects SCN- ligand from

exchange reactions. Indeed, it has been stated also in the literature that bulky counter ions

protect SCN- ligand better compared to small Li+ ions.16

One issue with the Raman measurements is that the very high local light intensity in the

Raman beam could potentially cause artifacts in the data by temporarily or permanently

changing the dye or its ligands. In some studies the high intensity Raman beam has been

indeed used to purposely degrade the cells, but there the intensity of the laser was 6 orders

of magnitudes higher.17 Here the aim was reduce/avoid such effects by finding an optimum:

reducing the beam intensity and measurement time but keeping them sufficiently high to

get good quality data. Here at least no defects or artifacts were seen after the measurements

which are a clear signs of such stability problems. This does not rule out the possibility of

lesser changes in the sample. As the light intensity of the laser is still high compared to e.g.

conditions in a solar simulator, it may affect the time for which a dye stays in oxidation

state. Although the SCN peak in the Raman spectra could be induced by the laser partly or

even solely, even in that case the Raman spectra would still give information about the

spatial distributions in the electrolyte. The interpretation in that case would be that the

electrolyte composition in the different parts of the cell would have varying ability to

regenerate the dye, which is basically the same main conclusion that was presented for the
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case in which the beam was not expected to affect the Raman spectra. Thus, in any case

the effect of spatial distribution of electrolyte is clear.
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Figure 3. Comparison of Raman spectra (2000 – 2300 cm-1) at the photoelectrodes of

segmented cells and corresponding reference cell using electrolyte a) 4-tBP-LiI, b)

NMBI-LiI,  c)  NMBI-PMII,  d)  NMBI-PMII-GuSCN and e)  HSE.  f)  The  SCN- peak

heights of all the segmented and reference cells vs. JSC.  The  solid  line  is  a

phenomenological model fitted to the data: JSC = JMAX (I-I0)/[(I-I0)-R] where JMAX is

maximum photocurrent expected from the device I0 is a background SCN- peak

intensity and R is a recombination (or decay) term inhibiting regeneration (or

injection). The fit parameters are JMAX = 10.5 mA/cm2, I0 = 294 and R = 30.7.

3.3. Optical changes

The spatial variation in the electrolyte additives influences the optical absorption of the

films. Figure 4 shows an example of transmission (T) measurements where normalized

spectra of 1-T for the series of segments with electrolyte containing Li+ and 4-tBP were

plotted. The spectra of the segments are increasingly red shifted as the electrolyte has

passed through/across an increasing quantity of nanoparticulate TiO2.

The changes in 1-T spectra relate to changes absorption. These changes are consistent with

the differences observed in the Raman spectra (Section 3.2) and shed light on the role of

thiocyanate ligand. As is well known in literature, SCN- ligands are used for tuning the

spectral response of a dye towards the red.19,20 Thus  SCN- exchanged from the dye

molecules with 4-tBP in electrolyte, corresponding to a reduction in the SCN - peak at

around 2106 cm-1, would also correspond to a blue shift in the cell absorption spectrum as

observed.
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In order to give an estimation of this phenomenon one can consider that the substitution of

one of the two SCN- in the N719 dye with 4-tBP gives about 30 nm IPCE shift towards

blue side.21 The comparison of optical and IPCE spectra show 15 nm blue shift in the

transmittance (Figure 4) and an almost 20 nm IPCE blue shift from segment 4 to segment

1 (Figure 5). This gives a rough estimation that ~25% of SCN- ligands are exchanged in

the first segment.

Figure 4. Comparison between the normalized (1-T) for segment 1 to 4 for segmented

cell with electrolyte 4-tBP-LiI. The arrows show the blue shift from segment 4 to 1.

3.4. IPCE analysis

Incident-photon-to-collected-electron (IPCE) measurements were carried out to study the

partial quantum efficiencies of the photocurrent generating processes of the cell. The total

IPCE efficiency (ηIPCE) for a given wavelength (λ) is composed of four different factors

which are the light harvesting (ηLH), the electron injection (ηINJ), the charge collection

(ηCOL) and the regeneration efficiencies (hREG):22

	 ( ) = ( )
( )

= ( ) ( ) ( ) ( ) (2)
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where JSC(λ) is the short circuit current density, q is the elementary charge and φ(λ) is the

photon flux. The IPCE spectra were measured from both photo-electrode (PE) and counter-

electrode (CE) side. The different additives in the electrolyte are responsible for particular

features of the IPCE spectra and therefore changes in their quantity can be evaluated from

that basis.

If variations in the IPCE due to differences in light harvesting and electron collection losses

can be neglected, the quantum efficiency (QE) peak height should be approximately

proportional to JSC. Figure 5f shows that relationship between JSC and QE maximum is

roughly linear with the exception of a few single points.

The reasons for the large differences on ηIPCE peak height relate to changes in ηLH, ηINJ,

ηCOL and/or ηREG. The Raman spectra indicated strongly that there may be differences in

ηREG. However, it cannot be quantitatively determined if ηREG is  the  only  or  even  a

dominating factor. By process of elimination, we can deduce which of the other factors can

be causing the major differences in the peak value of the IPCE spectra.
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Figure 5. a-e) ηIPCE from the PE side of the cells with the different electrolytes. Each

graph shows the values for the 4 different segments of the same cell from black curve

(first segment) to blue curve (forth segment) and the value of the reference small non-

segmented cell is given by dashed black curve. Plot f) represents the quantum

efficiency peak value for the different segments (at about 530 nm) of cells vs. the JSC

values. Figure f shows also a linear trend line fitted to all the points and it is set to go

via origin. The legends are organized in the order of decreasing IPCE peak in Figures

a-e.
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Firstly, the cells were optically quite similar; there were some differences in the absorption

as mentioned in the previous section and for cell with NMBI-LiI electrolyte there were also

visible differences in the electrolyte of different segments and cells with electrolyte HSE

have deeper yellow color compared to the others. These differences cause some shifts in

the spectral shape, but cannot explain the large difference in the peak heights and hence

ηLH cannot be the dominating factor causing the difference in the JSC.

Secondly, the comparison of IPCE data from PE and CE side (data not shown) reveals that

the primary difference between the PE and CE illumination can be accounted for by

differences in electrolyte absorption, thus ηCOL cannot explain the major differences in JSC

either.

Hence, it appears also on the basis of IPCE measurements that the dominant differences in

JSC values are likely to be caused by either ηINJ or ηREG. Regarding difference in ηINJ: As

well documented in the literature the shift of the TiO2 conduction band occurs toward more

negative potentials for 4-tBP or NMBI and toward more positive potentials for Li+.23-28 As

the conduction band shifts, it makes the overlap between the TiO2 acceptor states and the

singlet and triplet dye excited states to decrease (with 4-tBP and NMBI) or increase (with

Li+).29-33 Hence, the addition of Li+ facilitates fast electron injection while 4-tBP adsorption

leads to fewer injected electrons.33 The apparent differences in 4-tBP or NMBI and

possibly also with Li+ quantities across the different segments in the case of 4-tBP-LiI and



26

NMBI-LiI electrolytes could cause the low in ηINJ near the electrolyte filling hole leading

to decreased JSC in that area.

Regeneration rate, besides I- concentration,34 is  ruled  by  the  thickness  of  the  Helmholtz

double layer which is dependent on the adsorbed cations 30 and  on  ability  of  cations  to

penetrate between the adsorbed dye and the TiO2.24 A thinner double layer causes I- to

efficiently adsorb onto the oxide.35,36 The  small  cation  Li+ is able to intercalate into the

TiO2 thus reducing the Helmholtz layer, while in the presence of 4-tBP or NMBI its

adsorption is suppressed.25 This last phenomenon causes anions to experience in relative

terms less Coulombic attraction to penetrate between the dye and TiO2, thus reducing the

regeneration rate of the oxidized dye by I-. This could contribute to a reduction in the ηIPCE

peak and, hence, result in a lower JSC.37 This could also explain why in the Li+ containing

cells (4-tBP-LiI and NMBI-LiI) there is low ηIPCE peak and low JSC in segments which

presumably have high concentration of 4-tBP (segments 1 and 2).

3.5. Normalized IPCE spectra

In  order  to  do  a  thorough analysis  of  the  shape  of  the  IPCE spectra  and  possible  shifts

towards blue or red, normalization is applied in order to remove any wavelength

independent variations. In order to study the spectrum shift, values at the half maximum

(normalized spectra at 0.5) are compared. Examples of the normalized spectra for

segmented cells with electrolytes 4-tBP-LiI and NMBI-LiI are presented in Figure 6.
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The critical parameter in the analysis of peak shifts is the light wavelength (λ) at the half

maximum QE value of the normalized IPCE spectrum, which is shown for all the cell types

in Figure 7. The optical difference in the electrolyte in the case of NMBI-LiI discussed

above causes the variation in the left branches / blue side (around 450 nm) of the IPCE CE

spectrum while the right branches / red side (around 600 nm) remain substantially

unaffected (Figure 7). Additionally, there are some differences in the shoulder (blue side,

around 450 nm) of the IPCE PE spectra of NMBI-LiI cells (Figure 6c) which are caused

by the optical differences. These differences are in good qualitative correspondence with

previously made optical measurements of different kinds of electrolytes.38 Other

electrolytes have even color throughout the cells which results in that the half maximum λ

of the IPCE CE (Figure 7a) and the shoulder at the blue side (Figure 6) and are much more

uniform compared to cells with NMBI-LiI electrolyte.



28

Figure 6. Normalized ηIPCE for  segments  with  a,b)  4-tBP-LiI  and  c,d)  NMBI-LiI

electrolytes. a,c) PE IPCE spectra and b,d) CE IPCE spectra are respectively

represented on the left and on the right side. The horizontal dashed lines show the

half maximum value taken as reference for cells comparison.

Half maximum values of the normalized IPCE from CE side illumination show 20 nm

IPCE blue shift (Figure 7b). It was previously mentioned that the normalized 1-T spectra

showed a 15 nm shift. Hence most of the shift is related to changes in the absorption, i.e.

ηLH of the 4-tBP-LiI cells. There may be some added effect causing the larger shift in the

IPCE spectra for instance all the carboxylic acid groups present in the dye may not

anchored onto the TiO2 surface. Hence, because of the base properties of the pyridine
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additives into the electrolyte in presence of 4-tBP, a dye deprotonation effect could be

generated and thus changes in TiO2 surface charge. Deprotonation is also reported to cause

a blue shift in the absorption spectrum 39 and to affect negatively ηINJ.32,40 Moreover, it has

been reported that absorption spectra is affected by intermolecular interactions e.g. the

formation of aggregates.33,41 Katoh et al. proposed the blue shift is not caused by changes

in the number of protons on the carboxylic groups of the dye because any isosbestic point

does not appear in the absorbance spectra but by dye solvation which gives rise to changes

in the absorption coefficient and peak position of the dye.33 The slightly larger IPCE shift

compared to normalized 1-T might be related to wavelength dependent ηCOL or injection

efficiency ηINJ.

Similar blue shifts in the IPCE have been shown in the literature for the addition of 4-tBP,39

but unfortunately the effect of absorption was not quantified. The addition of Li+ ions has

been shown to shift the peak position towards longer wavelengths.22,33,35,42,43 Considering

that the data in Table 2 shows for NMBI the same effects as for 4-tBP cells, the segments

with large amount of 4-tBP or NMBI (near the electrolyte filling hole, i.e. highest in

segment 1) should report a blue shift while those with Li+ (possibly farthest from the filling

hole, i.e. highest in segment 4) a red shift. This behavior is seen clearly in Figures 6 and 7

where the total shift from segment 1 to segment 4 is almost 20 nm for 4-tBP and 10 nm for

NMBI.

The larger shift for 4-tBP could be caused by different complex formation occurring among

electrolyte additives. Intermolecular interactions such as formation of complexes between



30

4-tBP  and  Li+ as  well  as  NMBI  and  Li+ has been verified in the literature.22,33,44 As

proposed by Katoh et al.,33 because of this complex formation, the concentration of Li+

ions on TiO2 surface would decrease, while it would increase in the free electrolyte solution

in the cell. This phenomenon would then increase the amount of 4-tBP adsorbed on the

surface of TiO2.33 If this latter phenomenon occurred for NMBI additive as well, but with

smaller intensity, it may explain the larger blue shift in the segmented cell with 4-tBP-LiI

compared to the other cells which contain NMBI (Figure 7b).

Figure 7. λ values at the half maximum of the normalized IPCE CE illumination for

a) the blue side and d) λ values  at  half  maximum  of  the  normalized  IPCE  PE

illumination for the red side of the spectrum. Increase in λ relates  to  red  shifting

whereas decrease in λ a blue shifting. All of these values are presented for 4-segments

cells and small reference cells with the different electrolytes.

4. Conclusions

We have demonstrated that the molecular filtering effect known from chromatography has

a significant impact on DSC performance. The presence of this phenomenon has not been
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appreciated previously. Our results show significant spatial variations and efficiency losses

up to 35 % as the cell size was increased from 0.4 cm2 to 1.6 cm2. These large variations

are therefore in laboratory sized cells, which have typical sizes of 0.25 - 2 cm2. More

importantly, the relevance to industry is even greater since if there are large variations on

a laboratory scale, there are likely to be even larger ones as device size is increased further.

Uneven spatial performance could be one of the largest loss mechanisms in up-scaling DSC

technology and can partly explain the difference observed between small champion cells

and larger sub-modules

The apparent accumulation of 4-tBP, NMBI and effective loss Li+ is expected to shift the

conduction band of TiO2 higher and reduce electron injection but here they may also affect

dye regeneration: The Raman data showed a good correlation between the SCN - peak

intensity and JSC. The SCN- ligands have been previously been shown to play an important

role in the regeneration of dye and the substitution of SCN- ligands to be sensitive to the

concentration  changes  of  4-tBP,  NMBI  and  Li+. The reduced spatial variations when

replacing LiI with PMII in the electrolyte were interpreted to be related to the ability of

bulky PMI+ cations to protect SCN- ligands better from exchange reactions compared to

small Li+.

The spatial effects are widespread as variation is seen with all the 5 different electrolyte

compositions which are representative of those normally used in the field. The efficiency

losses were the largest (35 %) with conventional 4-tBP-LiI electrolyte. Using a modern

NMBI-PMII-GuSCN electrolyte or a commercially available high stability electrolyte, the
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losses were reduced to 10 %. The efficiency losses are, however, still important from an

industrial point of view. Moreover, we note that practically all the liquid electrolytes which

have been shown to give good stability and performance include either tBP, NMBI or

similar additives such as benzimidazole. Here the molecular filtering effect was seen to

cause problems with both tBP and NMBI. Hence finding a commercially interesting

electrolyte composition which would not be prone to this effect remains a challenge.
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