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Two-dimensional time-dependent numerical model-

ing of edge e�ects in dye solar cells

Kati Miettunen,∗ Janne Halme, Anne-Maria Visuri, Peter Lund

New Energy Technologies Group, Department of Applied Physics, Aalto University,
P.O.Box 15100 FI-00076 AALTO, Finland

∗ corresponding author, email: kati.miettunen@tkk.�

Abstract

A two-dimensional transient model of dye solar cells (DSC) describing the electro-
chemical reactions in the cell has been prepared. The model includes the relevant
components of DSCs: the photoelectrode, the electrolyte, and the counter electrode.
The solved variables are potential and the concentrations of the di�erent ion species,
which can be used to determine e.g. the current-voltage characteristics of the cell.
The largest bene�t of this model is its 2D features which enable the study of lateral
inhomogeneity. Using the model, a new phenomenon was described: lateral current
density distribution caused by a small di�erence in the size between photoelectrode
and counter electrode, typical to laboratory test cells, causes tri-iodide to move from
the edge region to the active area of the cell. This process takes relatively long time
(8 min) and can be important for performance characterization and design of DSCs.
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Notation

Symbols

A active area m2

a absorption coe�cient 1/m
C capacitance F
c concentration mol/m3

D di�usion coe�cient m2/s
d distance between the electrode substrates m
dCE thickness of the counter electrode m
dPE thickness of the photoelectrode m
EF Fermi energy eV
F Faraday constant C/mol
f F/(RgasT ) 1/V
i current density A/m3

ilim limiting current density A/m2

i0 exchange current density A/m3

K equilibrium constant
k reaction rate constant 1/s
kB Boltzmann constant J/K
m ideality factor
N ion �ux mol/(m2s)
n number of transferred electrons
Qj current source A/m3

q elementary charge C
R resistance Ω
Rgas gas constant J/(Kmol)
s stoichiometric coe�cient
T temperature K
um mobility m2mol/(Js)
u x-velocity m/s
V voltage V
v y-velocity m/s
x distance from the PE substrate m
z charge number
α transfer coe�cient
δts time-scaling coe�cient
η overpotential V
η e�ciency
ηOC open-circuit voltage V
λ wavelength nm
σ conductivity S/m
υ reaction rate mol/(m3s)
Φ incident spectral photon �ux photons/(m2s)
φ electric potential V
σ0 Conductivity of TiO2 at equilibrium S/m
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Subscripts

a activation
b backward reaction
CE counter electrode
CT charge transfer
col collection
d di�usion
el electrolyte
f forward reaction
g generation
i ion species
inj injection
LH light harvesting
IPCE indicent photon to collected electron
rec recombination
s series
0 initial, equilibrium
PE photoelectrode
ph photo
t transport

Abbreviations

ALD atomic layer deposition
CE counter electrode
CV cyclic voltammetry
e− electron
DSC dye solar cell
I iodine
I− iodide
I−3 tri-iodide
I-V current-voltage
O oxidized species
OC open circuit
PE photoelectrode
Pt platinum
R reduced species
SC short circuit
TiO2 titanium dioxide
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1 Introduction

Photoelectrochemical cells such as dye solar cells (DSCs) may become a technically
and economically possible alternative to the present-day silicon solar cells. The low-
cost fabrication of DSCs due to their simple construction and low-cost materials is
a clear advantage. In addition, solar light-to-current conversion e�ciencies of over
10 % [1] are adequate for a wider use of the cells. Currently the up-scaling of the
DSC technology is a topical issue. In addition to current collection, there are several
other challenges such as spatial performance distribution when going for larger scale
[2]. In larger area cells, it is important to understand and evaluate the signi�cance
of di�erent kinds of inhomogeneity and edge e�ects. In the investigation of such
questions modeling is an e�cient tool as it would very di�cult or even impossible to
obtain the information through measurements. The previously made models have,
however, mainly been one-dimensional (1D) and cannot answer such questions. This
gives the motivation to develop two-dimensional (2D) models of DSC. In this work
we focus on electrochemical 2D modeling which in addition to electrical performance
(I-V performance) gives information also on the mass transport in the electrolyte.

The earliest electrochemical models date to the 1990's [3, 4, 5], and some of the very
early models are in some part outdated as the knowledge about the reaction mech-
anisms in DSCs has grown. A good basic one dimensional model was introduced by
Ferber et al. [4] and it has been used largely as a basis for this work. In that model,
the space between the photoelectrode substrate and the counter electrode is �lled
by a pseudohomogenous medium consisting of porous TiO2, dye, and electrolyte.

Oda et al. continued the basic model by Ferber et al. [4] by adding a separate bulk
electrolyte layer. Such a layer is also present in the models made by Papageorgiou et

al.[3] and by Hyk and Augustynski [6]. An additional modi�cation made by Ferber
and Luther [7] is the implementation of the Helmholtz layers using the Stern's mod-
i�cation of the Gouy-Chapman theory. The Helmholtz layers describe the double
layer charging between two phases. The layers are typically only a few nanometers
thick [8] and they can be omitted when studying only microscale ionic distribution
of the cells.

In the basic model of Ferber et al. [4] and in the extension [7] the only back
reaction at the photoelectrode taken into account is the charge recombination from
the TiO2 to the electrolyte. This is usually adequate with the exception that at
low light intensities current leakage from the substrate to the electrolyte is typically
signi�cant [9, 10, 11] and therefore needs also to be taken into account. There are
also a series of other back reactions, such as recombination via oxidized dye, which
importance needs to be evaluated on the basis of the employed materials, but with
common dyes such as N719 can be assumed negligible.

Dye solar cell models are typically one dimensional. An exception to this the further
work by Ferber and Luther [7] in which they separated the TiO2 and electrolyte to
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study the charge transfer processes in those media. That model is in principle
two-dimensional, but only describes a very thin (∼ 50 nm) slice of a dye solar cell
making it practically only one dimensional. Only quite recently Gagliardi et al. [12]
published a steady-state 2D in which the TiO2 and electrolyte still separated but
the photoelectrode composed of several columns instead of a single one making the
model truly 2D.

Cao et al. [13] added the time dependence into the continuity equation describing
the charge carrier transport in the TiO2 �lm. The model of Cao et al. focuses on
the photoelectrode and does not describe a complete solar cell. The mathematical
formulation presented in their work reduces in steady state to the equations used in
the basic model by Ferber et al. [4].

Recently, a simple analytical 1D dye solar cell model to simulate I-V curves based on
physical parameters was presented [14]. Its relations to electrochemical impedance
spectroscopy (EIS) was shown in that work [14].

Here we introduce a two dimensional transient dye solar cell model. The equations
in 2D format are solved numerically using the COMSOL Multiphysics modeling
software. The spatial distribution of potential and concentrations of the di�erent
ion species modeled in a vertical cross-section of the cell. Similar to the previous 1D
model [14], the parameters of this model can be largely determined by EIS. To make
the application of this model easy, the theory behind the model, the determination of
model parameters and the construction of the model using COMSOL Multiphysics
are explained in detail. The model is applied to investigate the edge e�ects in typical
cell setup, where the counter electrode is somewhat larger than the photoelectrode.
It is shown that the cell geometry has signi�cant e�ects on the ion concentrations
at the active region and the time to reach steady state conditions.
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2 Theoretical section

In this model, all the three main components are modelled: the photoelectrode (PE),
the counter electrode (CE), and the electrolyte. The photoelectrode is modeled
here as a pseudo-homogeneous medium of TiO2, dye, and redox electrolyte. This
composition describes the electrode well and a similar one has been used for the
photoelectrode in 1D modeling [4, 15]. The realization of a pseudo-homogeneous
electrode with COMSOL is similar to the one used by Hottinen et al. in the case of
a polymer electrolyte membrane fuel cell model [16].

The dye molecules absorb the incoming photons which is here modeled with the
Lambert-Beer law. The excited electrons are injected into the conduction band of
the semiconductor. The electrons di�use through the nanoparticles and are collected
at the back contact. The electrons may also leak from the photoelectrode to the
electrolyte. The most signi�cant current leakage pathways are from the TiO2 layer
and from the substrate to the I−3 ions in the electrolyte. There are also a series
of other back reactions, such as recombination via oxidized dye, the importance of
which needs to be evaluated on the basis of the employed materials, but which for
common dyes such as N719 can be assumed negligible. The contact between the
TiO2 and the substrate is assumed ideal. This is in most cases a valid presumption
since a TiO2 - substrate contact resistance has been detected only in the case of few
alternative substrates [11, 17].

The electrolyte I− and I−3 ions function as mediators for the electrons between the
photoelectrode and the counter electrode, i.e. the anode and the cathode. The
oxidized dye molecules are reduced with the I− ions, which, when oxidized, form I−3
ions. I−3 is again reduced at the cathode into I− by the electrons from the external
circuit. The total reaction is

I−3 + 2e− 
 3I−, (1)

where the net forward reaction occurs at the counter electrode and the net backward
reaction at the photoelectrode. The mass transport of the ions is here described by
the Nernst-Planck equation and electroneutrality.

At the counter electrode, the substrate is covered with a material of high electrocat-
alytic activity, usually a Pt layer [18] of a few nanometers or a few micrometers thick
porous carbon [19, 20]. The counter electrode can be modeled as an interface (cf. Pt)
or a as pseoudohomogeous mixture of catalyst and electrolyte (cf. porous carbon).
The charge transfer at the counter electrode is described by current-overvoltage
equation.

The 2D model presented here is to some extent a numerical extension of our previous
analytical 1D DSC device model [14], but with the following di�erences:

Instead of pure di�usion according to the Fick's law assumed in [14], mixed di�usion
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and migration according to the using the Nernst-Plack equations are used to model
the ionic transport in the electrolyte.

In [14] the e�ects of electrode porosity on the mass transport in the electrolyte
were neglected. Here, they are taken into account similar to Ferber et al. [4], by
modeling the electrode domains as overlapping pseudo-homogenous e�ective media
of the electrode and the electrolyte phases. As a result, the local ion concentrations
in the pores of the �lm are calculated as a part of the model solution.

In [14] the e�ect of electrolyte concentrations on the photoelectrode function was
omitted. In the present model, the ion concentrations in the pores of the �lm
are coupled to the interfacial charge transfer reaction (recombination) at the TiO2

surface through the local over-potential, similar to Ferber et al. [4]. The e�ect of
ion concentration on the charge transfer reaction inside a pore counter electrode are
taken into account in a similar fashion.

In [14] the non-ideality of the photoelectrode I-V characteristics was accounted for
by adding a posteriori the ideality factor in the mathematical expression for the solar
cell I-V curve � an approximation necessary to reach an analytical solution. Here,
the non-ideality is introduced as non-linear electron recombination, as proposed by
Bisquert and Mora-Seró [21], thus rooting it to a microscopic physical model [22].

Finally, in contrast to [14], the implementation of the model with COMSOL Mul-
tiphysics brings about the possibility to run 2D and transient simulations at the
macroscopic scale of the solar cell. This is the main new functionality of our model
compared to previous numerical DSC models [4], and will be our focus in the prac-
tical examples later in the paper.

2.1 Charge and mass transport in the electrolyte

The movement of dissolved ion species in the electrolyte is described by the Nernst-
Planck equation

Ni = −ziuiFci∇φ−Di∇ci + ciu, (2)

whereNi is the ion �ux, zi the charge number, ui the mobility, ci the concentration, φ
the electric potential and Di the di�usion coe�cient of ion species i. The mobilities
and di�usion coe�cients are related as Di = RgasTui [23], where Rgas is the gas
constant. F is the Faraday constant and u the bulk velocity of the solution.

The �rst term in eq. (2) stands for migration and the second term for di�usion. The
third term indicates the motion of the solution with a bulk velocity, i.e. convection.
This term is assumed very small and is left out on the grounds of the porosity of
the electrodes and the small distance between them [3].

Eq. (2) is valid for dilute solutions, which have been determined as solutions with
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solute concentrations below 0.1 M [24, 25, 26]. In this model the concentrations
of some ion species are slightly higher, exceeding 0.5 M. However, we anticipate
that applying eq. (2) should not cause a signi�cant error. Eq. (2) has been used
frequently in electrolyte modeling in similar cases [4, 7, 27, 28].

As chemical reactions are assumed to occur at the electrodes only, no ions are
produced nor consumed in the bulk electrolyte,

∂ci
∂t

+∇ ·Ni = 0. (3)

Eq. (1) states that at the anode, I− is consumed and I−3 produced and at the cathode,
vice versa. Cations, here Li+, do not take part in the reactions. The production
of ion �ux is proportional to the current density per unit volume i due to charge
transfer at the electrode-electrolyte interfaces

∂ci
∂t

+∇ ·Ni =
si
nF

i, (4)

where si is the stoichiometric coe�cient of species i in the redox reaction (1),
sI− = −3, sI−3 = 1 and sLi+ = 0.

The bulk electrolyte is assumed to be electrically neutral,∑
i=I−,I−3 ,Li

+

zici = 0, (5)

While electroneutrality is not a fundamental law of nature, it has been observed to
apply in all solutions except in a thin electric double layer of 1 to 10 nm near the
boundary surfaces of the solution.

2.2 Limiting current density

At su�ciently high currents, the rate of the reaction at the electrodes is no longer
controlled by rate of electron transfer but by the rate of the transport of ions to
the electrode surfaces. The maximum current density that di�usion can convey is
called the limiting current density ilim. Since the cI− in the electrolyte is typically
much larger, here nine times larger, than cI−3 , the current in the cell is limited by

the transport of I−3 . ilim for I−3 is obtained as [29]

ilim =
4FDI−3

cI−3 ,0

d
, (6)

where F is Faraday's constant, DI−3
the di�usion coe�cient of I−3 , cI−3 ,0 the equilib-

rium concentration of I−3 and d the thickness of the electrolyte layer (i.e. distance
between the electrode substrates). ilim can be determined from I-V measurements of
symmetric CE-CE cells, and when ilim and cI−3 ,0 are known, DI−3

can be calculated

using eq. (6) [29].
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2.3 Charge-transfer at the counter electrode

The current density per unit volume iCE produced at the counter electrode in a
one-electron transfer reaction

O + e− 
 R (7)

between an oxidized species O and a reduced species R is described by the current-
overpotential equation [8]

iCE = i0

[
cr
cr,0

e−αfηCE − co
co,0

e(1−α)fηCE
]
, (8)

where the coe�cient i0 is the exchange current density, f=F/(RgasT ), co and cr are
the concentrations of oxidized and reduced species and co,0 and cr,0 their equilibrium
(initial) concentrations. α is the transfer coe�cient, α ∈ [0, 1], which determines
the symmetry of the overpotential-current curve and ηCE is the voltage between the
electrolyte and the counter electrode, ηCE = φel − φCE.

In DSCs, the reaction at the electrodes is not, however, a one-electron reaction but
consists of three consecutive steps [30]:

(I− 
 I + e−)× 2 charge-transfer reaction, (9)

2I 
 I2 fast chemical reaction, (10)

I2 + I− 
 I−3 fast chemical reaction. (11)

The reduced and oxidized species of eq. (8) are therefore I− and I, respectively. The
reactions listed above resulting in a half order process are widely used but also �rst
and second order processes have also been suggested [31, 32, 33]. More investigation
is apparently still needed to de�ne the correct reactions at each electrode. For
the examples shown later in this work, the selection of reaction process should not
signi�cantly in�uence.

Equations (10) and (11) are as fast chemical reactions assumed to be always in
equilibrium [4]. Hence, the law of mass action, which describes solutions in dynamic
equilibrium, can be applied to the reaction

I 

1

2
I−3 −

1

2
I− (12)

and the concentration of I written in terms of the concentrations of I− and I−3 and
an equilibrium constant K,

cI = Kc
1
2

I−3
c
− 1

2

I− . (13)

Substituting cI from eq. (13) and cI− into eq. (8) gives

iCE = i0

[
cI−

cI−,0
e−αfηCE −

√
cI−3 cI

−,0

cI−cI−3 ,0
e(1−α)fηCE

]
. (14)
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2.4 Charge-transfer resistance at the counter electrode

The value of i0 needed for eq. (14) can be determined with the charge transfer resis-
tance at counter electrode-electrolyte interface RCT . This can be done by deriving
RCT from eq. (14). With small currents, the concentrations of ion species can be
approximated with their equilibrium values, which leads to

iCE = i0
[
e−αfηCE − e(1−α)fηCE

]
(15)

known as the Butler�Volmer equation. The approximation is good when current is
less than 10 % of ilim [8].

ηCE is a sum of activation overpotential ηa, also called the surface overpotential
[23], and concentration overpotential, or di�usion overpotential, ηd. ηa is due to the
rate of the charge-transfer reaction at the interface. Whereas when the transfer of
ions is not as fast as the charge-transfer reaction would require, the current through
the interface becomes limited by di�usion. Here approximating the concentrations
with equilibrium ones excludes the mass-transfer e�ects, and the voltage between the
electrode and the electrolyte is then assumed to be the pure activation overpotential,
ηCE ≈ ηa.

The charge-transfer resistance RCT in the case of porous counter electrode can be
presented as a resistance corresponding to a unit volume rCT , rCT = RCTAdCE,
where A is the area and dCE the thickness of the counter electrode. For an interface
type counter electrode rCT = RCTA. rCT , which thus has the units [Ωm3] or [Ωm2]
depending on the electrode type, is de�ned as

rCT = − dηa
diCE

. (16)

Di�erentiating both sides of eq. (15), we get

rCT = − 1

i0

[
−αfe−αfηa − (1− α)fe(1−α)fηa

]−1
(17)

and when ηa = 0,

i0 =
1

frCT,0
. (18)

Hence i0 can be determined through measuring the RCT of a symmetric CE-CE
cell with impedance spectroscopy in open circuit conditions where ηa = 0. At open
circuit, the both electrodes are assumed to have the same RCT and the resistance
of one electrode is half of the measured resistance. i0 can then be calculated from
eq. (18). RCT can also be determined by measuring complete DSCs at open cir-
cuit: when there is no current through the cell, the voltage loss takes place at the
photoelectrode-electrolyte interface and the overpotential at the counter electrode
is zero, as assumed in eq. (18).
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2.5 Current generation at the photoelectrode

The current density per unit area generated in the PE at a speci�c wavelength λ
can be written as ∫ dPE

0

ig(λ, x)dx = qΦ(λ)ηLH(λ)ηinj(λ), (19)

where ig is the current density per unit volume, x the distance from the PE substrate,
q elementary charge, Φ the incident spectral photon �ux, ηLH the light-harvesting
e�ciency, and ηinj the electron injection e�ciency. ηLH is the probability of an
incident photon to be absorbed by a dye molecule, which depends on the absorption
coe�cient of the dye and the thickness of the photoelectrode. ηinj is the probability
of an excited dye molecule to inject the electron to the TiO2.

Note that, the incident-photon-to-collected-electron e�ciency ηIPCE is a product of
three terms,

ηIPCE(λ) = ηLH(λ)ηinj(λ)ηcol(λ), (20)

where ηcol is the collection e�ciency. Here ηcol is in this model taken into account
via the analysis of the recombination and transport characteristics of the PE.

The position dependence of ηLH can be described with the Beer-Lambert law. The
law assumes the absorbing medium to be non-scattering, homogeneous and isotropic.
The photoelectrode can usually be approximated to be such with reasonable accu-
racy. For instance due to the small size of the 20-nm-diameter TiO2 particles,
scattering in the photoelectrode �lm is negligible [34]. Using the Beer-Lambert law,
ηLH is

ηLH(λ) =

∫ dPE

0

a(λ)e−a(λ)xdx, (21)

where a is the absorption coe�cient of the dye. Hence, ig(λ, x) can be written as

ig(λ, x) = qΦ(λ)ηinj(λ)ae−ax. (22)

Eq. 22 can be used for modeling the current generated by monochromatic light. In
the case of a full solar spectrum, the current per unit volume at distance x from the
substrate is

ig(x) = q

∫ λmax

λmin

Φ(λ)ηinj(λ)a(λ)e−a(λ)xdλ, (23)

where λmin and λmax re�ect the spectral response of the dye. Note that the eqs.
(23) and (22) take into account only the light that penetrates the photoelectrode
for the �rst time. Secondary e�ects such as back re�ection are not included. The
focus of this model is in the mass and change transport and hence detailed optical
analysis is omitted here.
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2.6 Charge recombination at the photoelectrode

The density of electrons in the conduction band ne can be written

ne = ne,0e
EF−EF,redox

kBT . (24)

where ne,0 is equilibrium density of electrons in the conduction band, EF Fermi
energy, EF,redox the redox Fermi level of the electrolyte, and kB Boltzmann constant.
In terms of energy levels, photovoltage VPE corresponds to the di�erence of the PE
Fermi level and the redox Fermi level of the electrolyte,

qVPE = EF − EF,redox. (25)

The concentration and density of electrons in the semiconductor are proportional,
and can be written based on eqs. 24 and 25 as

ce = ce,0e
qVPE
kBT . (26)

As explained in section 2.3, the charge-transfer from TiO2 to the electrolyte is an
elementary (one-step) reaction described by the chemical equation

I−
kf


kb

I + e− (27)

where kf and kb are the corresponding rate constants. The net reaction rate of the
backward direction, i.e. the recombination rate of electrons from the semiconductor
to the electrolyte, is

vnet = kbcIce
β − kfcI− . (28)

where we have with factor β taken into account that recombination reaction may
not be linear in the electron concentration [21, 22]. At equilibrium, the forward and
backward reaction rates are equal,

kbcI,0ce,0
β = kfcI−,0. (29)

Here ci,0 are the equilibrium concentrations. By substituting kf from eq. (29) into
eq. (28) we get

vnet = kb

(
ce
βcI −

ce,0
βcI,0

cI−,0
cI−

)
. (30)

By inserting cI from eq. (13) and using eq. (26) for the electron concentration, vnet
turns into

vnet = kbKce,0

(√
cI−3
cI−

e
qβVPE
kBT −

√
cI−3 ,0

cI−,0
cI−

)
. (31)
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If the net reaction rate is chosen to have a unit [m=3s=1], the recombination current
irec per unit volume is vnet multiplied by the elementary charge:

irec = irec,0

(√
cI−3
cI−

e
qβVPE
kBT −

√
cI−3 ,0

cI−,03
cI−

)
, (32)

where irec,0 = qkbKce,0
β.

Considering the recent discussion on the non-linear nature of the electron recombi-
nation in DSC [21, 22], it is worth noting that the present numerical model allows
replacing eq. (28) in principle with any kind of expression arising from a detailed
physical description of the recombination mechanism. For example, Bisquert et al.
[35] have shown that the exponent β in eq. (28) can be explained with a physical
model that assumes that electron recombination occurs mainly via electron trap
states distributed exponentially in energy in the band gap of the TiO2. Note that if
variations in the electrolyte concentration can be neglected, i.e. the concentrations
are �xed to their equilibrium values, eq. 28 reduces to

vnet = k′b

(
cβe − c

β
e,0

)
(33)

where k′b = kbcI,0. From eq. 33, it follows that the recombination current per unit
volume becomes

irec = i′rec,0

(
e
qβVPE
kBT − 1

)
(34)

where i′rec,0 = qkbcI,0c
β
e,0. Eq. (34) is identical to the well know I-V characteristics

of a non-ideal diode, where the factor β is often replaced with the ideality factor
m = β−1. While eq. (34) can be used to approximate analytical modeling of DSC,
we use here eq. (32) instead, since the concentration variations are solved explicitly
as a part of the numerical model.

2.7 Recombination resistance at the photoelectrode

In the eq. 32, there are two unknown parameters, irec,0 and β, that need to be deter-
mined experimentally for the model simulations. They can be determined through
measuring the recombination resistance Rrec of the photoelectrode with impedance
spectroscopy. The recombination resistance is a voltage-dependent resistance which
limits the recombination current from the photoelectrode to the electrolyte. Here,
only the recombination from TiO2 to the electrolyte is considered as it is the domi-
nant recombination route. The recombination resistance depends on the photovolt-
age VPE as

rrec = −dVPE
diPE

, (35)
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where rrec is the measured resistanceRrec (in units [Ωm
2]) multiplied by the thickness

of the photoelectrode dPE, rrec = RrecdPE. iPE is the total current per unit volume
in the photoelectrode,

iPE = ig − irec. (36)

Neglecting the current dependence of the electrolyte concentrations, the recombina-
tion resistance becomes (eqs. (32, 35 and 36)

rrec =
kBT

βqirec,0

√
cI−

cI−3
e

−qβVPE
kBT . (37)

At small currents, close to open circuit conditions, the concentrations of ion species
can be approximated to have their equilibrium values, ci ≈ ci,0. The coe�cient irec,0
can therefore be determined using eq. (37),

irec,0 =
kBT

βqrrec,OC

√
cI−,0
cI−3 ,0

e
−qβVOC
kBT , (38)

where rrec,OC is the recombination resistance at open circuit and VOC the open circuit
voltage. The values for irec,0 and β can be calculated from eq. 38 by measuring
rrec,OC at least at two di�erent light intensities as explained in section 5.

It is worth noting that contrary to many other numerical models, except e.g. that of
Ferber et al. [4], the present model includes also the in�uence of iodide and triiodide
concentrations on the electron recombination, as evident from eq. (37). Note that
the concentration dependence in eq. (37) is a �rst order approximation, since the
concentrations were not di�erentiated with respect to the cell current when deriving
eq. (37). In the numerical simulations, we use directly eq. (32) (as a part of eq.
(43)), which is not subject to this approximation.

2.8 Conductivity of the photoelectrode

Assuming that the mobility µ of the conduction band electrons is constant, the
conductivity σ of the TiO2 photoelectrode �lm can be written as [36]

σ = qµne = r−1t = σ0e
qVPE
kBT . (39)

where rt [Ωm] is the electron transport resistivity and σ0 is the conductivity at
equilibrium in the dark. The voltage dependence of the conductivity follows from
the assumption of "ideal" Boltzmann statistics of the conduction band electrons (eq.
24). Ideal voltage dependence of rt, and thus σ, has been found also experimentally
by impedance spectroscopy [37, 36, 38], although not for all cases [36]. In the absence
of a well established physical model for non-ideal electron transport, we use eq. (39)
in the present work.
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2.9 Substrates

The substrates a�ect the performance of the cell with their sheet resistance and
the photoelectrode substrate also by current leakage to the electrolyte. In high
e�ciency cells, the current leakage via the substrate is often prevented by using a
recombination blocking layer.

The sheet resistance of the substrates Rs can be taken into account with a simple
IR-correction to the calculated IV-data, and EIS measurements can be used to
determine its value. Note that the sheet resistance and current collector grid are
perpendicular to the cross section of the cell. Hence if the model is expanded to 3D
the sheet resistance and di�erent current collector structures can be easily added
as separate modeling domain. The model for the current collection is shown in our
previous work [39].

The current leakage via substrate dominates at the low voltages [9, 11, 36]. It should,
however, be noticed that it has only a negligible e�ect on the IV curve of dye solar
cells at high light intensities such as at 1 Sun [7, 10, 11]. Hence, at high light
intensities, recombination via substrate has been and can be in many cases omitted.
At low light intensities the e�ect of substrate needs to be taken into account if
recombination blocking layer is not employed.

If necessary, the current leakage via the photoelectrode substrate can be modeled.
In practice the photoelectrode substrate acts similarly to a counter electrode with
a very small i0 (14). Hence, it can be modeled with the same equations as the
counter electrode. The value for i0 can be measured from a SU-CE cells [11, 40] in
open circuit conditions, or, alternatively from a complete DSC with the cell voltage
of 0 V with eq. (18). In the latter case, it is assumed that Rrec >> RSU at
VPE=0. Normally this is a very good assumption e.g. with FTO glass substrates
the di�erence is more than two orders of magnitude at VPE=0 [11].
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3 Solving the model with COMSOL Multiphysics

3.1 Application modes and the analysis type

COMSOL Multiphysics is a modeling software that uses the �nite element method
to solve partial di�erential equations numerically. The model was built using two
ready-made application modes, 'Nernst-Planck' and 'Conductive media DC' [41].
The transient type analysis is embedded in the 'Nernst-Planck' mode. The concen-
trations of ions and the potential of the electrolyte were solved in the 'Nernst-Planck'
mode and the electrode potentials were solved in the 'Conductive Media DC' mode.
The porosity of the electrodes is realized by overlapping the electrode domains with
the electrolyte domain. The model could also be made in the general mode called
'PDE, General form'. The usage of ready made applications modes is, however,
easier. An example of the modeled geometries is shown in Figure 1.

Figure 1: An example of the modeled geometries. The electrode and electrolyte
domains are overlapping. The boundaries are marked with numbers from 1 to 12.
The dimensions are not in scale.

3.2 Subdomain equations

In the 'Nernst-Planck' mode the current continuity equation from which the poten-
tial of the electrolyte is solved has the form

∇ ·

[
F
∑
i

zi(−zium,iFci∇φel −Di∇ci)

]
= F

∑
i

ziRi, (40)

where φel is the potential of the electrolyte and Ri the reaction rate of species i. Ri

is ∇ ·Ni de�ned by eq. (4) which relates iCE and iPE to the charge transfer in the
electrolyte. The material balance equation for the concentrations has the form (cf.
eq. (2)

δts
∂c

∂t
+∇ · (−D∇c− zumFc∇φel) = R− u · ∇c, (41)
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where δts is a time-scaling coe�cient, c the concentration being solved, R the reaction
rate and u the velocity as a vector quantity. Because convection in the electrolyte
was not taken into account, both x-velocity u and y-velocity v were set to zero. For
δts, the default value 1 was used. In the 'Nernst-Planck' mode, the concentrations of
two of the ion species are solved from eq. (41) and the third one, here cLi+ , directly
from electroneutrality condition, eq. (5). In the electrolyte areas that overlap the
electrodes, the porosity of the electrode (typically about 50 %) has been taken into
account by diving the di�usion coe�cients Di with factor 2.

In the 'Conductive Media DC' mode, the current continuity equation is of the form

−∇ · d(σ∇V − Je) = dQj, (42)

where d denotes thickness, Je the external current density, andQj the current source.
For d, the default value 1 was used and both components of Je were set to zero. All
conductivities were modeled as isotropic. Qj refers to current via electrodes i which
is entered as a subdomain expression and de�ned separately in each domain based
on eqs. (14), (22), (32) and (25):

PE: iPE = qaΦηinje
−ax − irec,0

[√
cI−3
cI−

efβVPE −

√
cI−3 ,0

cI−,03
cI−

]
, (43)

CE: iCE = i0

[
cI−

cI−,0
e−αfηCE −

√
cI−3 cI

−,0

cI−cI−3
e(1−α)fηCE

]
. (44)

3.3 Boundary conditions

The boundary conditions used in modeling are gathered in Tables 1 and 2. The
equations in Table 1 correspond to the geometry of Figure 1, where the counter
electrode is modeled as a domain. In the case where the counter electrode is modeled
as a boundary, boundaries 6, 8, and 10 vanish and the insulating conditions at
boundary 4 are replaced with the �ux and inward current �ow conditions written in
Table 2. The current leakage via substrate could be taken into account with similar
equations as shown for boundary type counter electrode (Table 2) at boundary 5.

The 'Conductive media mode' calculates the potential φ in the di�erent domains.
The voltage over the cell Vcell is controlled by setting constant potentials at the
counter electrode and photoelectrode boundaries that indicate contacts to the ex-
ternal circuit. In the model, zero potential level is selected to be at the counter
electrode boundary. Therefore, the value of the potential at the photoelectrode cor-
responds to the value of Vcell (Table 1). This way, the direction and magnitude of
the current through the cell is determined by the voltage.
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Table 1: Boundary conditions in the geometry of Figure 1. The zero potential
was selected to be at the counter electrode (boundary 4), hence the potential at
the photoelectrode substrate (boundary 5) is then equal to the cell voltage.

Variable Boundary Condition Equation

ci
1, 2, 3, 4, 5, 10,
11, 12

Insulation/Symmetry n ·Ni = 0

φel
1, 2, 3, 4, 5, 10,
11, 12

Electric insulation n · J = 0

φPE
7, 9, 12 Electric insulation n · J = 0
5 Electric potential φPE = Vcell,

φCE
6, 8, 10 Electric insulation n · J = 0
4 Electric potential φCE = 0

Table 2: Boundary conditions at boundary 4 in Figure 1 in the case of a boundary
counter electrode.

Variable Condition Equation
ci Flux −n ·Ni = si

nF
i

φel Inward current �ow −n · J = i
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4 Experimental Methods

The parameters i0, irec,0, β, σ0 andDI−3
in the model were determined experimentally

by studying the I-V characteristics and impedance spectra of dye solar cells and
counter electrode cells built on glass substrates. The DSCs were assembled using
materials and methods described in [40] with the exception that there was a 4 nm
compact ALD TiO2 blocking layer on the photoelectrode FTO-glass substrate to
prevent recombination from the substrate [11]. The area of the photoelectrode was
0.4 cm2. In the CE-CE cells, 40 µm thick Surlyn ionomer resin �lm 1601 was used
instead of the 25 µm thick 1702 �lm used in [40] and in the electrolyte, 0.05 M I2
was used instead of 0.03 M.

I-V and electrochemical impedance spectroscopy (EIS) measurements were per-
formed using Zahner Elektrik's IM6 Impedance Measurement unit (Zahner Elektrik)
and Autolab PGSTAT302N (Eco Chemie). The I-V and EIS measurements of the
complete DSCs were performed at di�erent light intensities in OC. The measure-
ments were made in a black box and a LED of 639 nm wavelength was applied as
a light source. The I-V measurements of the CE-CE cells were taken in the dark
in the voltage range -1 V�1 V and with a scan rate of 20 mV/s. All the EIS mea-
surements were made in the frequency range 100 kHz�100 mHz and with a 10 mV
amplitude. The equivalent circuit analysis was similar to our previous publications
[11, 40], using the ZView2 software.

5 Material parameters

The constants and experimental parameters used for modeling are in Table 4. The
initial concentrations of ion species are those of the electrolyte composition used
in the measured DSCs. The absorption coe�cient a of the dyed photoelectrode
has been obtained through optical measurements at the 640 nm wavelength. This
wavelength matches su�ciently well the 639 nm LED used in measuring the DSCs.
σ0 was determined according to eq. (39) using Rt data from the EIS measurements
(Table 3, voltage point 0.4635 V).

The di�usion coe�cient of I−3 was measured from a CE-CE cell with electrolyte
layer thickness of 40 µm and I−3 concentration of 50 mol/m3. I-V measurements
(Figure 2) were made to determine the limiting current density ilim, here the value
was 23.42 mA/cm2. Using eq. (6), the resulting value for DI−3

was 4.8545 ·10−10

m2/s. The di�usion coe�cients are assumed to be equal for all ion species. This
is a common practice in these types of models since it is di�cult to determine the
separate coe�cients reliably.

The recombination resistance of the PE and the charge-transfer resistance of the
CE were determined from the impedance spectra at three di�erent OC voltages
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corresponding to di�erent light intensities shown in Table 3. The coe�cient i0 was
then calculated from eq. (18) for all values of RCT and the average is shown in Table
4. With two values for Rrec, irec,0 and β can be solved from a pair of equations using

Table 3: Resistance values at di�erent light intensities i.e. di�erent OC voltages
de�ned via impedance spectroscopy.

VOC (V) RCT (Ω) Rrec (Ω) RT (Ω) Rs (Ω)
0.4635 - 3407.8 1758.9 14.805
0.5985 33.650 215.24 - 15.931
0.6260 30.683 112.57 - 14.294
0.6430 28.479 74.050 - 13.411

eq. (38). irec,0 and β (Table 4) were averaged from the three values obtained by
making all the possible combinations of the di�erent values for Rrec, from the above
mentioned three di�erent light intensities.

Table 4: Constants and parameters used in the model.

Constants Symbol Value
Boltzmann constant kB 1.380665 · 10−23 J/K
Elementary charge q 1.60218 · 10−19 C
Faraday constant F 96485.3 C/mol
Gas constant Rgas 8.31447 J/(molK)
Number of transferred electrons n 2
Stoichiometric coe�cient of I− sI− −3
Stoichiometric coe�cient of I−3 sI−3 1

Stoichiometric coe�cient of Li+ sLi+ 0
Parameters

Absorption coe�cient a 0.04 1/µm
Charge transfer current density i0 26.073 A/m2

Conductivity of TiO2 at equilibrium σ0 3.099 · 10−12 S/m
Di�usion coe�cients of all ion species DI− , DI−3

, DLi+ 4.8545 · 10−10 m2/s

Ideality factor β 0.618
Initial concentration of I− cI−,0 470 mol/m3

Initial concentration of I−3 cI−3 ,0 30 mol/m3

Initial concentration of Li+ cLi+ 500 mol/m3

Equilibrium recombination current density irec,0 13.731 · 10−10 A/cm2

Temperature T 298.15 K
Transfer coe�cient α 0.5
Thickness of the TiO2 layer dPE 15 µm
Distance between the electrode substrates d 20 µm
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6 Veri�cation against experimental data

Figure 2: Measured and simulated I-V characteristics of a) a CE-CE cell and b)
a complete DSC. The resistance parameters are given in Table 3.

The model was veri�ed against experimental data by comparing measured I-V curves
of a DSC as well as CE-CE with the corresponding simulated I-V curves. For this
purpose, the inactive boundaries, i.e. boundaries 2 and 3 in Figure 1 were omitted,
which rendered the simulation essentially one-dimensional. This correspondence to
the real situation in the measured CE-CE cells, where the Pt catalyst layer covers
the whole substrate surface. It is also a valid approximation of the situation in a
complete DSC, as shown later in section 7.3.

The catalyst layer in the measured DSC and CE-CE cell was a very thin Pt layer
which was modeled as a boundary counter electrode. The photoelectrode in the DSC
was equipped with a recombination blocking layer meaning that current leakage via
substrate can be omitted. The light source in the measurement was a red LED which
gave approximately 0.15 Sun illumination. This way heating of the DSC could be
prevented as it is di�cult to cool thick glass based DSCs at full 1 sun illumination.
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The correspondence of the simulated and measured I-V data of the CE-CE cell
is good (Fig. 2). There are small deviations around the voltages ±0.3 V, where
the gradient of the curve begins to decrease. These are, however, smaller than the
deviations between the di�erent measured curves, which are due to hysteresis and
di�erences between I-V sweeps. Hence, the measured and the simulated data are in
practice the same when taking into account the measurement accuracy.

The measured and simulated data of the complete dye solar cells (Fig. 2 b) are also
corresponding. This is in fact a very good result when taking into account that the
only model parameter which was �xed according to the experimental I-V curve was
the product Φηinj so that the iSC of the measured and simulated data matched. In
other words, with the photocurrent generation adjusted, the model predicts well the
experimentally observed VOC and �ll factor, as well as the slope of the I-V curve,
using independently determined parameters.

7 Results and discussion

As already pointed out, the main new feature of the present numerical DSC model
arises from the capability to run transient 2D simulations of the cell operation at
the scale of the complete devises. However, whether such simulations of the cell are
actually needed in practice is not obvious. Being a thin layer electrochemical cell
where several millimetres wide electrode are situated at a distance of only few tens of
micrometers from each other, it is usually a fair assumption that the electric current
�ows through the device exactly perpendicular to the co-planar electrodes, which
makes 1D simulations valid for most practical cases. The need for 2D simulations
arises only when the one-dimensionality is broken by some structural features in
the lateral dimensions of the cell. In the rest of the paper, we demonstrate this by
investigating one such case, which in fact, is a standard type laboratory scale DSC.
The transient analysis on the other hand gives useful information related to e.g. the
expected time to reach stead state.

In the simulations, we will be looking at the cross-section of a DSC that has a 15 µm
thick and 4 mm wide PE �lm (dyed nanoporous TiO2, in Fig. 1) facing a 5 mm wide
planar CE (thin �lm of Pt, regions 2 and 4 in Fig. 1), both sitting on parallel FTO
coated glass substrates that are separated from each other with 20 µm thick edge
sealant, so that there is 5 µm of free electrolyte between the PE and CE. While at
the CE, the catalyst layer covers the entire FTO surface wetted by the electrolyte,
at the PE side of the cell there is 0.5 mm passive area that is not covered by the PE
�lm, at the both sides of the PE �lm. This is the typical structure of a small sized
DSC laboratory test cell used for material testing and experimental studies [14, 42].
Since the PE and CE are centered with respect to each other, the simulations need
to be done only for the half of the cross section of the cell. I.e. the vertical borders
10, 11 and 12 on the right of Fig. 1 can be considered as a symmetry axis cutting
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the cell half at the center the cell. The cell is assumed to have in�nite length in the
dimension perpendicular to the paper, which corresponds roughly to a long unit cell
in a large DSC module.

In this typical DSC geometry, the exact one-dimensionality is broken by the di�erent
size of the PE and CE, which creates an edge region next to the PE containing an
excess volume of electrolyte as well as extra catalytic CE surface area. In the
following simulations we take a look what happens in this edge region under normal
cell operation, and how it a�ects the cell performance. This issue seems to have been
completely neglected in the previous literature. More speci�cally, we investigate the
following phenomena, taking place in the typical DSC:

1. With time-dependent simulation of the 2D distribution of tri-iodide concentration
in the cell, we investigate how the excess electrolyte volume in the edge region
in�uences mass transport in the rest of the cell as well as the time to reach steady
state operation after turning on illumination. This has implications to the cell
performance and its experimental evaluation. In this scenario, it is assumed that
any in�uence of charge trapping and detrapping is fast relative to the transient
electrolyte e�ects of interest.

2. By simulation of the current density distribution at the counter electrode, we
investigate to which extent the extra catalyst material in the edge region is actually
utilized in the charge transfer reactions. Any un-utilized catalyst increases the solar
cell manufacturing costs without contributing to its output power.

Unless otherwise mentioned, the same cell geometry (described above) applies to
both of the cases. The material parameters are the same as for the simulated I-V
curve in Figure 2b.

7.1 2D distribution of tri-iodide and time to reach the steady

state

The simulation starts from a situation where the concentration of ions is even across
the cell, which corresponds to the real life situation of the cell being in the dark and
unpolarized. At t=0, light intensity corresponding to ca. 0.15 suns is turned on and
the solar cell is polarized close to the short circuit conditions (Vcell = 0.2 V).

Fig. 3 shows the evolution of the tri-iodide concentration in the cell. Note how the
I−3 becomes almost completely depleted from the edge region next the PE (on the
left) and accumulates in front of the PE. This is a rather unexpected result that will
be discussed below.

The time required to reach the �nal steady state distribution can be examined by
selecting a point in the modeled domain and plotting its values against time. In this
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case, the lower right corner in Fig. 3, i.e. center of the cell on the CE, stabilized
last. Fig. 4 shows that this took about 1000 s. Note how right at the start of the
simulation, there is a fast drop in the I−3 concentration at the CE from its initial
value of 30 mol m−1 in 1 s to ca. 26.5 mol m−1. This transient is very fast and it is
partially established already at the initialization of the numerical simulation (Fig.
3 t = 0 s). Note that at time t = 0, the simulation gives actually the �rst calculated
solution which already deviates from the initial settings. This transient corresponds
to the di�usion of tri-iodide across the distance d = 20 µm between the PE and CE
as the current in the cell starts �owing and the tri-iodide is consumed at the CE.
The time required for this can be estimated as t = d2

DI3−
= 0.8 s, which is consistent

with the time step of 1 s used in the simulation. After the initial transient, a slow
recovery of the I−3 concentration occurs as excess I−3 available in the edge region
di�uses to the area in front of the PE, with the striking result that, at the steady
state, the I−3 concentration at the CE (32 mol m−1) exceeds its initial equilibrium
concentration (30 mol m−1) (Fig. 3). In e�ect, the excess I−3 of the edge region has
moved into to active area of the cell and has been engaged in the cell operation.
The time required to reach the steady state corresponds thus to the time it takes
for the I−3 to di�usion across ca. 2 mm in the lateral dimension of the cell, i.e. t =
8200 s, which is roughly the same order of magnitude as the simulation result that
gave stabilization time of 1000 s (Fig. 4).

These above observations have the following important practical implications, which
we brie�y point out here, while leaving their quantitative analysis as a topic of future
investigations. Firstly, the increase of the I−3 concentration in the active area of the
cell due to transfer of the excess I−3 from the edge region improves mass transport
between the electrode, so that the mass transport resistance at the counter electrode
decreases and the limited current density increases (cf. [14] for the e�ect of these on
cell performance). However, at the same time the I−3 concentration at the PE will
be higher than what it would be without the edge region, which promotes electron
recombination and causes additional optical losses due to absorption of light by
the I−3 in the pores of the TiO2 �lm. In the same simulation, there was transfer
of I− laterally in the cell, in the opposite direction to I−3 , i.e. from the PE area
to the edge region (not shown). In principle, the decreased I− concentration can
retard regeneration of the dye at the PE. In other words, this cell geometry favors
CE performance at the expense of PE performance. We could argue that this is
obvious since the CE is larger than the PE, meaning that the current density and
thus voltage losses will be lower at the CE than at the PE. However, as shown in
the next section, the current density at the CE is con�ned rather well to the region
right opposite to the PE, which implies that the I−3 distribution is not a result of
the current density per se. Instead, as explained in the next Section, it is result of
spontaneous adjustment of the current distribution to minimize the overall voltage
loss at the CE side of the cell.

The loss of I−3 from the edge region should correspond to bleaching of the color of
the electrolyte in the edge region. We have indeed observed this experimentally by
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visual inspection of the solar cells when passing current though them: the brownish-
yellow color characteristic to the I−3 fades in the edge region when the cell is put
in operation. The e�ect could be seen even in blank cells, consisting of two CEs of
di�erent size, i.e. the PE replaced with a Pt on FTO, electrically isolated from rest
of the substrate by cutting the FTO between the borders 3 and 5 in Fig. 1. This
con�rms that the e�ect is due to current passing in the cell, rather than just the
illumination of the solar cell.

What we have essentially witnessed here both by simulations and experiments is a
color change in the DSC as a function of its operation. This may be an important
issue from the point of view of practical DSC product design. Much of the present
advantages of DSCs over other photovoltaic technologies are based on its unique
visual aspects such as color and semi-transparency, which one might want to �x by
the design, rather than allow them to vary depending on the operating conditions.

Change of the electrolyte color upon cell operation can be important also from the
point of view of accurate performance characterization of DSC. In fact, the present
results may explain why it has been so di�cult to obtain a good �t of the IPCE
model of DSC to measured IPCE spectra at wavelengths below 500 nm where the
light absorption by the I−3 is strong [43, 44, 33]. Note that IPCE measurements are
taken at the short circuit condition, i.e. when current density in the cell is at the
maximum. According to the present results even relatively low current density can
change the tri-iodide concentration in the active area of the cell, compared to the
equilibrium concentration in separate optical sample cells used for determining the
electrolyte transmittance experimentally. As a result of the I−3 accumulation to the
active area, the electrolyte transmittance becomes overestimated compared to the
real situation in the solar cell.

Also the relatively long time to reach a steady state operation, more than 8 minutes
predicted by the simulation, can be problematic, especially in cases where the cell
performance is limited by mass transport in the cell. In practice, the slow lateral
distribution of the electrolyte species in a polarized cell could cause drift in the
cell properties during long measurements. In fact, this could be an explanation
to the drift observed often the EIS data of complete DSCs at the low frequencies
where the EIS spectrum is dominated by the electrolyte di�usion impedance. The
present results gives thus a practical recommendation for building a DSC test cell.
In order to avoid electrolyte drift during the measurements, it is advisable cut the
thermoplastic (e.g. Surlyn) sealant exactly to the size of the PE �lm, in order to
minimize the edge region in the cell. Note that merely sizing the CE exactly to
the size of the PE (e.g. by laser scribing the FTO), would not be su�cient due to
the practical di�culty in placing such electrodes exactly opposite each other. This
becomes clear from the results in the Section 7.2 below.
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Figure 3: The concentration pro�le [mol/m3] of I−3 with a cell voltage 0.2 V at
di�erent points in time (0 s, 10 s, 100 s, 500s, 1000 s). The electrodes in the
studied cell had di�erent width as indicated with the borders of the geometry (see
Fig. 1): the counter electrode was full width (2.5 mm) and the photoelectrode
only 2 mm, leaving 0.5 mm of inactive substrate at the PE side (on the left in the
�gure). Note that the scaling of the x- and y-axis are di�erent.

Figure 4: The concentration of I−3 as a function of time t in the low right corner
of the modelled domain (Fig. 3). The initial concentration was 30 mol m−3. The
inset shows the up-scale of the �rst 5 s.

7.2 Current distribution at the counter electrode

In the preparation of a typical laboratory scale DSC, the Pt catalyst is deposited
on the FTO coated glass substrate by drop casting a Pt precursor solution on it.
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In the solar cell, the Pt catalyst covers thus the whole electrolyte wetted FTO
surface bordered by the edge sealant, and as a result the CE is larger than the
PE [42]. Whether this extra Pt at the edge region of the cell contributes to the
overall CE performance in the operating cell is a relevant question regarding accurate
device characterization, but it is important also for the optimization of the cost-
performance ratio of DSCs.

Figure 5 shows the current distribution at the counter electrode in the same sim-
ulation as discussed above. It can be clearly seen that the current density, that is
restricted to �ow through the dye-sensitized TiO2 �lm at the PE side, distributes
itself laterally at the CE side only about 50 µm beyond the edge of the PE �lm (Fig.
5 b). Hence, it can be concluded that the Pt deposited in the edge region of the cell
is almost completely unutilized in the cell operation.

The reason for the con�nement of the current right opposite of PE is the very short
distance between the electrodes (5 µm) compared to the lateral dimensions of the
cell, or more precisely, the high voltage losses associated with transfer of current over
long distances laterally in the electrolyte. Note that the current density distribution
adjusts itself to minimize the overall voltage loss in the cell, i.e. the current always
�nds the path of least resistance. Here, lateral distribution of the current density
into the edge region at the CE is e�ectively restricted by increase of the I−3 mass
transport overvoltage at the CE as a function of distance across which the I−3 needs
to di�use. Indeed, it was shown in the previous Section that I−3 is essentially depleted
in the edge region even at a moderate cell current density. This corresponds to a
mass transport limited condition at the CE surface, making it essentially inactive
in the charge transfer process. A further contribution to the current con�nement
comes from the Ohmic resistance in the electrolyte.

To complete the mental picture of the processes behind the present phenomena, we
point out how the dramatic depletion of I−3 from the edge region in the operating
cell (Figure 3) results from the principle of spontaneous current distribution that
minimizes the overall voltage loss at the CE side of the cell. This voltage loss is
minimized when the current distribution is as uniform as possible, since this mini-
mizes the local current density at the CE surface. The maximum for the uniformity
is determined by the ability of the current to �ow to the edge region. This ability is
limited by the rapid rise in the I−3 mass transport overvoltage at the CE for a given
current density, when the current path length is increased, as already mentioned. As
a result, a spontaneous adjustment of the current distribution at the CE takes place,
in which as much current density is passed to the edge region as possible without
increasing the overall voltage loss, but on the contrary decreasing it. In practice,
this corresponds to a local current density at the CE that is right before the onset of
the rapid increase in the I−3 mass transport overvoltage (cf. Figure 14c in ref. [14],
the value of which is the lower the longer the distance to the edge of the PE. This
value of the current density corresponds to low I−3 concentration at the CE surface,
which explains the depletion of I−3 in the edge region.
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The restricted current distribution at the CE has two practical implications. Firstly,
in the performance characterization of DSCs, such as with electrochemical impedance
spectroscopy (EIS), the current density and charge transfer resistance (in Ωcm2)
should be calculated based on the area de�ned by the geometric overlap of PE and
CE, which in practice is normally equal to the area of the PE �lm. This has been
a standard practice in our case, as justi�ed by qualitative reasoning based on the
internal resistances as discussed above. The present simulation result veri�es it
quantitatively.

Secondly, from the point of view of industrial manufacturing of DSCs, the result
implies that distributing the catalyst to larger areas than that de�ned by the PE
�lm is waste of catalyst material. Omitting the potentially expensive catalyst at the
edge regions of the cell is thus one way to reduce the manufacturing costs without
e�ects on the cell performance. Of course, the best solution would be to omit the
edge region altogether, so that the active area losses of the DSC module would be
minimized. However, to which extent this can be realized in practice depends on
the manufacturing tolerances of a given DSC module technology.

Figure 5: The current pro�le at the counter electrode in the cases where the
counter electrode is max lenght (here 0-2.5 mm) or matching with photoelectrode
(here 0.5-2.5 mm). a) The whole simulated pro�le and b) the pro�le from 0.2 mm
to 0.8 mm.

7.3 Further development and applications

In addition to the edge e�ects caused by having a larger counter electrode, the
model is applicable for many other situations where there is some asymmetry in the
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structure or operation of the cell. One important case is the segmented cell method
[2, 45, 46, 47], which is a new in-situ technique for aging studies. A typical question
related to segmented cells is how quickly the neighbouring segments a�ect each
other, and for this purpose both 2D and transient modeling features are required.

The transient feature can also be applied for analysis of voltage and current steps.
Additionally it can be applied to study degradation for instance by introducing
leakages in the form of ion �uxes or sink terms at the boundaries.

It would also be interesting to make a real sized 3D model of a DSC. From the
theoretical point of view this is easy, but the number of elements to be calculated
becomes enormous. The size of the elements is de�ned in relation to the smallest
dimension. In the case of DSCs, the limiting dimension is the thickness of the
cell. Scaling the model suitably, the dimensions can be adjusted to the same order
of magnitude and the number of studied elements can be reduced to a reasonable
level. In a 3D model it would be possible to take into account also the e�ects of
sheet resistance of the substrates and current collector grid.

In addition we want to point out how they could in principle be taken into account
to further develop the model. The present model neglects the e�ect of spatially
varying and current dependent iodide concentration on the regeneration of the dye
(eq. 4 in [14]). In an operating cell under illumination, the iodide concentration at
the photoelectrode is lower than at the equilibrium, as it is constantly consumed
in the dye regeneration while its supply from the counter electrode is limited by
di�usion [5]. The reduced iodide concentration can in principle decrease the dye
regeneration rate and thereby increase direct recombination of electrons with the
oxidized dye, apparently diminishing electron injection e�ciency. Although there is
some indirect experimental evidence of injection limitations due to iodide depletion
[5], the signi�cance and theoretical treatment of this e�ect remains to be clari�ed.
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8 Conclusions

A numerical 2D transient model of dye solar cells was developed using the COMSOL
Multiphysics software. The model includes all the important inner components of
a dye solar cell: the photoelectrode, the electrolyte, and the counter electrode. The
simulated I-V data was veri�ed against the experimental data of a dye solar cell and
a symmetric counter electrode - counter electrode cell. The unique features of the
model are the capability to simulate spatial distribution and transient phenomena.
Here the model was applied to the study of edge e�ects and revealed that a typical
small blank space (0.5 mm) on the photoelectrode side can signi�cantly change the
distribution of ions and the time to reach steady state.

In a dye solar cell, where the photoelectrode is smaller than the counter electrode,
tri-iodide ions move from the inactive edge region to the active region between the
electrodes when photocurrent is �owing. In a normal homogeneous case, the tri-
iodide concentration at the counter electrode decreases when current is drawn from
the cell. However, in this case with smaller photoelectrode, the excess ions from the
edge region actually over compensated the tri-iodide concentration at the counter
electrode so that it was higher than the initial equilibrium value. Although having
a larger counter electrode signi�cantly a�ected the ion concentration, it was further
shown that the current was driven at the counter electrode through only about 50
µm larger area compared to the photoelectrode. Furthermore, the examination of
the stabilization time showed that as much as an 8 minutes' stabilization time was
required even when having only this 0.5 mm misalignment between the electrodes.
The modelled misalignment between the electrodes is quite typical and its e�ect
on the ion concentration and relatively long stabilization time might explain some
common issues such as the drifts in EIS measurements and problems in the �tting
of IPCE spectra.

In addition to these examples, the model can be used in the prediction electrochem-
ical performance the dye solar cells and in their design. In particular, the model
suits to special cases such as the analysis of segmented cells. The model can easily
be developed further to meet the needs of di�erent speci�c purposes.
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