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Abstract

Carbon gel catalyst layers were used in dye solar cells. These layers were prepared on flexible

plastic substrates at low temperatures (130 °C). The carbon gel, demonstrated excellent flexibility

which is an important feature for roll-to-roll production and special applications of dye solar cells.

The use of these low cost and highly flexible catalyst layers resulted in good photovoltaic

performance; only 10 % lower than dye solar cells with rigid glass-based counter electrodes

prepared with thermal platinization at ~400 °C temperature.
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1. Introduction

Nanostructured dye solar cells (DSC) [1] represent a potentially cheap photovoltaics option due to

simple manufacturing methods and cheap materials. Traditionally DSC have been prepared on glass

substrates equipped with transparent conducting oxide (TCO). Although glass is a good option in

terms of performance and stability [2, 3], its high cost [4] and preparation limited to batch

production motivate to find alternatives. A key issue in the commercialization of the DSC is to use

roll-to-roll mass production methods to enable cost-effective solutions. Firstly, flexible substrates

such as plastics are needed for roll-to-roll production. Secondly, flexibility of the electrode on top

of the substrate is required. For instance Miyasaka et al. have demonstrated flexible photoelectrodes

that give good cell efficiency (5.8 %) [5].

In this work the focus is on counter electrodes. The main task of a counter electrode is to efficiently

return the charge from the counter electrode back to electrolyte. Low charge transfer resistances are

reached with Pt catalyst layers which are commonly prepared with a high temperature treatment at

~400 °C [6]. To lower the cost, the use of carbon has been introduced [7]. The structures of DSC

with  Pt  and  porous  carbon  catalyst  layers  are  show  in  Figure  1.  To  compensate  the  high  charge

transfer resistance of carbon, the carbon film is thick, usually around 10-20 μm, in order to have

large surface area for the catalyst reaction [7]. To create good bonding between the particles which

is needed to get high conductivity in the catalyst film, the layer is normally sintered is heat treated

at high temperatures (~450 °C) [7].

When flexible plastic substrates are used, low temperature methods (<150 °C) are required. Instead

of sintering, low temperature pressing has been employed to get good connection between the

particles [8, 9]. These low temperature layers have provided low charge transfer resistance 0.5-2

Ωcm2 [9]. There have, however, been problems with the flaking of the catalyst layer and the related
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poor flexibility [9]. Good flexibility of the counter electrode catalyst layer is, however, essential for

roll to roll mass production and also important for special applications.

In this work we gelatinize carbon paste and combined it to the previously developed pressing

method to produce good adhesion between the particles and achieve sufficient flexibility for roll-to-

roll production. The inspiration for this work came from our previous study, in which very thick

carbon gel was used in a dye solar cell type photovoltaic fiber sensor [10]. In that application, the

current was minimal, in the range of nA, [10] and the electrical performance of the carbon film

were not sufficient to be used as such in normal DSC.

The photovoltaic performance of a DSC equipped with a carbon gel catalyst layer on conducting

plastics is measured. The flexibility and the related mechanical stability are evaluated with bending

tests. To analyze the electrochemical performance, in particular charge transfer resistance, also

electrochemical impedance spectroscopy (EIS) measurements are made.

2. Experimental methods

The carbon gel paste was prepared as follows: 1.6 g of graphite powder (synthetic, conducting

grade, -325 mesh, Alfa Aesar), 0.4 g of carbon black (Printex XE2, Degussa), 0.4 g of Sb-doped

SnO2 (Zelec ECP 3010-XC, Milliken chemicals) and 3 g of 3-methoxypropionitrile (3-MePRN)

were  ground  vigorously  in  a  mortar  for  20  min.  Then  9  g  of  MePRN  and  the  gelator,  0.2  g  of

poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), was added to the mixture. The

mixture was heated at 130 °C for 16 h to gelatinize it. As the commonly used carbon powder

solvents  such  as  water  and  ethanol  boil  below  the  melting  point  of  PVdF-HFP  [8,  9],  3-

methothoxypropionitrile (3-MePRN) was used as a solvent in the carbon gel.  Both 3-MePRN and

PVdF-HFP have been used in the electrolyte of highly stable DSC [2, 3, 11], which is an excellent

feature as their presence in the cell does not compromise the long term stability.
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The carbon gel paste was deposited on ITO-PEN (15 Ω/sq, Peccell) by doctor blading using Scotch

M3  removable  tape  as  the  frame.  Each  layer  was  heated  at  110  °C  for  5  min  and  then  pressed

(pressure 1000 kg/cm2). 3 layers were made on each counter electrode resulting in thickness 7-10

μm which was measured with Dektak M6 Stylus Profiler.

The reference platinized counter electrodes were deposited on fluorine-doped tin oxide (FTO)

coated glass (sheet resistance 15 Ω/sq, Hartford Glass Company, Inc.) with thermal platinization [6]

at 385 °C for 15 min using 10 mM tetrachloroplatinate PtCl4 (Sigma-Aldrich) dissolved in 2-

propanol.

The photoelectrodes were made on FTO-glass with screen printing from titania paste (DSL 18NR-

T,  Dyesol).  The  TiO2 films were sintered at 450 °C for 30 minutes. The resulting TiO2 film

thickness was ~14 μm. The layer was then sensitized in a dye solution consisting of 0.32 mM cis-

bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) bis-tetrabutylammonium (N-

719, Dyesol) in ethanol (99.5 wt-%). 40 μm thick Surlyn ionomer resin film spacer (1601, DuPont)

was used as frame foil and for the sealing. The cells were filled with a commercial liquid electrolyte

(HSE-EL, Dyesol).

Photovoltaic measurements were made using a solar simulator providing 1000 W/m2 AM1.5G (1

sun) equivalent light intensity and a Keithley 2420 SourceMeter to measure the current density –

voltage (i-V) curves. In the measurements, the cells were placed on a black platform and provided

with black masks with a slightly larger aperture size. Electrochemical impedance spectroscopy

(EIS) was made with Zahner Elektrik’s IM6 Impedance Measurement unit. The EIS measurements

were carried out under illumination (red LED, 640 nm) at open circuit. The studied frequency range
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was 100 mHz-100 kHz with 10 mV amplitude. The surface morphology was examined with JEOL

JSM-7500FA, which is an analytical field emission scanning electron microscope (SEM).

3. Results and discussion

3.1. Mechanical properties and manufacturability

The main question that was addressed with the carbon gel catalyst layer was improved flexibility

and adhesion. Firstly, there was no flaking of the carbon gel layer which has been a problem with

the previously used carbon paste layers [9]. As Figure 2 shows, the carbon gel catalyst films

represented excellent flexibility; the carbon gel films could be rolled even to 3 mm bend radius

without  any  visible  cracking.  Even  an  ITO  layer  on  the  PET  substrate  does  not  survive  such

extreme bending stress. This great flexibility of carbon gel films can be fully utilized for instance

when using metal substrates at the counter electrode.

Furthermore, the repeatability of the gel carbon counter electrodes was very good. The preparation

procedure was easy and quick making it well suitable for industrial roll-to-roll production.

The SEM images of the carbon gel layer indicate that the layer is formed of clusters of ~5 μm in

diameter (Figure 3a). The individual particles in the clusters are around 50 nm in diameter (Figure

3b). The white parts of Figure 3 are non-conducting which in practice means that they are

composed of the gelator polymer PVdF-HFP. The gelator appears to be quite evenly distributed in

the film (Figure 3).

3.2. Photovoltaic performance

The photovoltaic performance of the DSC with the low temperature carbon gel counter electrode

was quite close to that of the DSC with thermally platinized counter electrode as Figure 4 shows.
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The efficiency of the former was 4.24 % and that of the latter 4.81 %. The smaller efficiency of the

DSC with carbon gel counter electrode was caused by the lower fill factor FF: carbon gel 54 % and

thermal Pt 61 %. The reasons for the differences in the FF values are discussed in detail with EIS in

section 3.3.

Both DSC with carbon gel and thermal platinization had similar VOC and iSC (Figure 4). This is to be

expected as the open-circuit voltage VOC and short circuit current density iSC mostly depend upon

the photoelectrode. Similarity of those values implies good initial stability of the counter electrode,

e.g. no apparent detachment of catalyst material which would contaminate photoelectrode and

decrease its performance.

3.3. Electrochemical performance

To analyze the lower FF of  the  DSC  with  carbon  gel,  EIS  measurements  were  made  under

illumination at open circuit (OC). The comparison of the counter electrode responses of the

different cells is straightforward when using the same current in the measurements (at OC current is

zero)  [12-14].  Conveniently,  the  cells  gave  also  similar  voltage  at  OC  which  enables  the

quantitative comparison of photoelectrode response as well [12, 13].

As presented in Figure 5a, both carbon gel and thermal Pt based cells show two semicircles in the

Nyquist  plots and two corresponding peaks in Figure 5b. In the case of thermal Pt cells,  the high

frequency peak corresponds to the charge transfer at the counter electrode and the low frequency

peak to the charge transfer at the photoelectrode [12-15]. Contrary to that in the case of porous

carbon electrodes, the response of the charge transfer at the counter electrode is actually at low

frequencies, around 1 Hz [9]. The photoelectrode response is at the same frequencies [12-15],

which causes an overlap of these responses. In other words, the charge transfer resistance Rct at the

carbon gel counter electrode and the recombination resistance at the photoelectrode RPE form
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together the large low frequency semicircle (42 Ωcm2) in Figure 5a. As RPE in the thermal Pt DSC

was  19  Ωcm2 and both carbon gel and thermal Pt cells had similar photoelectrodes, it can be

estimated that Rct in  the  carbon  gel  cells  was  23  Ωcm2.  In  the  DSC  with  thermal  Pt, Rct was  12

Ωcm2.

The Rct of these carbon gel layer was also higher compared to the low temperature carbon layers

presented in the literature. In the carbon gel, the gelator is electrically in active which lowers the

surface area per density unit resulting in smaller Rct value for a film with a given thickness. This is

in practice the tradeoff between being able to get good flexibility to use roll-to-roll mass production

and electrical performance.

In the carbon gel cells, there is also a high frequency semicircle (6 Ωcm2) (Figure 5a). As there is no

such  response  in  the  Pt  cells  at  so  high  frequencies  (Figure  5a),  the  response  is  apparently  also

related to the carbon gel counter electrode. That resistance might be caused by the contact resistance

between the carbon catalyst layer and ITO-PEN (c.f. resistance between ITO-PEN and TiO2 which

typically also appears at high frequencies [14, 16]), or alternatively, the carbon gel catalyst layer is

formed of a few different materials causing some contact resistance between them.

Both  the  ITO-PEN  and  FTO-glass  had  similar  sheet  resistance  (15  Ω/sq).  As  the  cells  with  the

carbon gel counter electrode had almost same series resistance as Pt counter electrode (Figure 5),

this suggests that the carbon gel catalyst layer did not significantly contribute to the sheet resistance.

4. Conclusions

The focus of this study was to improve the roll-to-roll manufacturability of counter electrodes for

dye solar cells by using carbon gel catalyst layer on plastic substrates at low temperatures. The

carbon gel showed excellent flexibility and suitability to roll-to-roll mass production. The
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improvement  of  these  essential  qualities  did  not  compromise  the  performance  of  the  cell:  the

efficiency  was  only  ~10  %  lower  compared  to  the  conventional  glass  based  DSC  with  thermally

platinized counter electrode. The difference in the performance according to electrochemical

impedance analysis was related to the lesser catalytic activity of the carbon gel compared to that of

the thermally platinized layer.
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Figures and captions
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Figure 1. Structure of a DSC with Pt and porous carbon catalyst layers. Not in scale.
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Figure 2. Bending of a counter electrode consisting of carbon gel catalyst layer on ITO-PET.
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Figure 3. SEM images of the carbon gel layer. The scale indicated with the white bar is in a)10

μm and in b) 100 nm.



15

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8

V  / V

i
/m

Ac
m

-2

Carbon
Pt

Figure 4. Typical i-V curves of the DSCs with carbon gel and thermally platinized counter

electrode.
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Figure 5. Typical measured (markers) and fitted (lines) EIS response of the DSCs with the

carbon and Pt counter electrodes as a) Nyquist plot and b) imaginary impedance Z’’ and c)

real impedance Z’ as a function of frequency f. The marker and the line notations marked in

b and c apply also for a.


