
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Jarno Niklas Alanko

Space-efficient clustering of metagenomic
read sets

Master’s Thesis
Espoo, December 31, 2015

Supervisors: Professor Jorma Tarhio, Aalto University
Advisor: Ph.D. Fabio Cunial

Ph.D. Djamal Belazzougui

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80718322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Jarno Niklas Alanko

Title:
Space-efficient clustering of metagenomic read sets

Date: December 31, 2015 Pages: 66

Major: Information and Computer Science Code: T-79

Supervisors: Professor Jorma Tarhio

Advisor: Ph.D. Fabio Cunial
Ph.D. Djamal Belazzougui

The collection of all genomes in an environment is called the metagenome of
the environment. In the past 15 years, high-throughput sequencing has made
it feasible to sequence entire environments at once for the first time in history,
which has resulted in a variety of interesting new algorithmic problems. This
thesis focuses on the basic problem of clustering the reads from an environment
according to which species, or more generally, taxonomic unit they originate from.

In this work, we identify and formalize two fundamental string processing tasks
useful in clustering metagenomic read sets. We solve the two problems with space
efficiency in mind using the recently developed bidirectional Burrows-Wheeler in-
dex. The algorithms were implemented in a way which makes parallel processing
possible. Our tool is experimentally shown to give good results for simple sim-
ulated datasets, and to use less than 10 times less space and time compared to
two recently published metagenome clustering tools.

Keywords: Burrows-Wheeler transform, metagenomics, clustering, space-
efficient

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Jarno Niklas Alanko

Työn nimi:
Tilatehokas metagenomisten DNA-fragmenttien ryhmittely

Päiväys: 31. joulukuuta 2015 Sivumäärä: 66

Pääaine: Tietojenkäsittelytiede Koodi: T-79

Valvojat: Professori Jorma Tarhio

Ohjaaja: Ph.D. Fabio Cunial
Ph.D. Djamal Belazzougui

Kaikkien ympäristössä esiintyvien genomien joukkoa kutsutaan kyseisen
ympäristön metagenomiksi. Viimeisen 15 vuoden aikana kehitetyt korkean
läpisyötön sekvenssoriteknologiat ovat mahdollistaneet ensimmäistä kertaa histo-
riassa kokonaisen ympäristön metagenomin kartoittamisen. Tämä kehityssuunta
on johtanut uusiin mielenkiintoisiin algoritmisiin ongelmiin. Tämä työ käsittelee
ympäristöistä näytteistettyjen DNA-fragmenttejen ryhmittelyä lajien, tai ylei-
semmin taksonomisten yksiköiden mukaan.

Työssä tunnistetaan ja formalisoidaan kaksi merkkijono-ongelmaa, jotka ilmen-
tyvät metagenomisten DNA-fragmentteja ryhmittelyssä. Ongelmiin esitetään ti-
latehokkaat ratkaisut käyttäen hiljattain kehitettyä kaksisuuntaista Burrows-
Wheeler indeksiä. Algoritmit toteutettiin pitäen silmällä rinnakkaista laskentaa.
Työssä osoitetaan, että uusi toteutus antaa hyviä tuloksia yksinkertaisille simu-
loiduille näytteille, ja että työkalu on kymmenen kertaa nopeampi ja tilatehok-
kaampi, kuin kaksi hiljattain julkaistua metagenomisten näytteiden ryhmittelyyn
tarkoitettua työkalua.

Asiasanat: Burrows-Wheeler muunnos, metagenomiikka, ryhmittely, ti-
latehokas

Kieli: Englanti

3

Acknowledgements

I wish to thank my advisors Fabio Cunial, Djamal Belazzougui for sustained
guidance, professor Veli Mäkinen for helpful discussions, professor Jorma
Tarhio for acting as the supervisor for the thesis, my friends Mohsin Ali
Khan, Antti Laaksonen and Jani Koskinen for helping with proofreading,
and the algorithm competition circle of people in Finland for support and
encouragement.

Espoo, December 31, 2015

Jarno Niklas Alanko

4

Notation and acronyms

Throughout the thesis, the letter S is reserved for the string for which an
index has been built. The alphabet of S is denoted with Σ, and the size of
the alphabet is denoted with σ. Greek letters α, β, . . . are used to denote
substrings of S and characters c, d, . . . are used to denote single characters.
All indexing in the thesis starts from 1.

Notation

Σ The alphabet of a string.
σ Size of the alphabet of a string.
T [i] The character at index i of string T .
T [i..j] The substring of T between indices i and j, inclusive.
T <lex T

′ The string T is lexicographically smaller than the string T ′.
T <colex T

′ The string T is colexicographically smaller than the string T ′.
TT ′ The concatenation of T and T ′.
|T | The length of the string or array T .
T̄ The reverse of T .

T̃ The reverse complement of T .
[i→α , j

→
α] The lexicographic interval of a substring α.

[i←α , j
←
α] The colexicographic interval of a substring α.

Acronyms

BWT Burrows-Wheeler transform
SA Suffix array
ISA Inverse suffix array

5

Contents

Notation and acronyms 5

1 Introduction 8

2 Biological background 10
2.1 The structure of the DNA molecule 10
2.2 DNA sequencing technologies 11
2.3 Taxonomy . 11
2.4 Metagenomics . 12

3 Preliminary data structures 13
3.1 Model of computation . 13
3.2 Suffix trees . 14
3.3 Suffix arrays . 17
3.4 Bit vectors with rank and select support 18
3.5 Wavelet trees . 20
3.6 The Burrows-Wheeler transform 21

3.6.1 Inverting the BWT . 23
3.6.2 Searching for patterns using the Burrows-Wheeler trans-

form . 24
3.6.3 The relationship with the suffix tree 25

3.7 Union-find data structure . 26

4 The bidirectional BWT index 27
4.1 Left- and right extensions . 28
4.2 Left- and right maximality . 30
4.3 Iterating all right-maximal nodes of the suffix tree 31
4.4 Iterating all nodes of the suffix tree using only the forward BWT 32
4.5 Applications of the bidirectional index in bioinformatics 32

4.5.1 Iterating all reverse complement right-maximal sub-
strings . 33

6

4.5.2 Finding the intervals of k-mers 34
4.5.3 Marking the intervals of k-submaximal repeats 35
4.5.4 Locating suffixes by sampling the suffix array 36
4.5.5 Generalization to multiple strings 37

5 Clustering metagenomic read sets 38
5.1 Challenges . 39
5.2 Existing tools . 39
5.3 MetaCluster . 42
5.4 Solving the filtering problem with the bidirectional index . . . 47
5.5 Solving the precluster problem with the bidirectional index . . 48

6 Implementation 51
6.1 Correctness . 52
6.2 Performance . 53

7 Conclusion 60

Bibliography 62

7

Chapter 1

Introduction

Since the emergence of high-throughput sequencing, the amount of avail-
able genomic data has grown exponentially. An active field of research is
the study of efficient algorithms and data structures to process the con-
stant influx of new data. Several representations of classical text indices
have been developed in the past decade [11, 14, 32] in order to meet the de-
mand of efficient data structures stemming from high-throughput sequencing.
Burrows-Wheeler type indices are especially popular in bioinformatics. The
Burrows-Wheeler transform, originally designed for data compression [5], has
proven to be a versatile and space-efficient data structure for string match-
ing problems. The direction of research using the Burrows-Wheeler as a text
index, initiated by P. Ferragina and G. Manzini [10] in the year 2000, has
grown considerably in recent years. The aim of this work is to apply the
bidirectional BWT index introduced in 2009 [22] to metagenome clustering.

Many algorithmic problems in bioinformatics stem from the limitations
of the present sequencing technology. With the current technology, the DNA
sequence of an organism can not be read in one piece, but instead has to be
sequenced as a number of short segments sampled from random locations in
the genome. The length of these reads typically range from tens of base pairs
to a thousand base pairs 1. Another limitation is that none of the next gener-
ation sequencing technologies can differentiate which of the complementary
strands of the DNA helix a read was sampled from. Due to constraints im-
posed by molecular chemistry, the string of bases on one strand completely
determines the string of bases on the other strand, and the two strands are
transcribed in opposite directions. The sequences transcribed from opposite
strands in the same location of the genome are called reverse complements of
each other. Algorithms that work on datasets generated by high-throughput

1The exception being Pacific Bioscience’s RS II sequencer, which can read over ten
thousand base pairs at a time, but with a very low accuracy, see Table 2.1.

8

CHAPTER 1. INTRODUCTION 9

sequencing technologies should be able to exploit this structure of the DNA.
It is shown in this thesis that the bidirectional BWT index is well suited to
deal with this structure.

High-throughput sequencing has made it feasible to sequence entire en-
vironments at once. The collection of all genomes in an environment is
called the metagenome of the environment. To this date, most metagenomics
projects are run with short read sequencing technologies. A basic problem
in metagenomics is to group the reads according to which species, or more
generally, taxonomic unit they originate from. The problem has been studied
in the literature for around 10 years (a survey of the literature is presented
in Section 5.2). There exists a variety of tools to solve the clustering prob-
lem, but none of these tools address the issue of space efficiency, which is
becoming a problem, since the sizes of the datasets are ever increasing.

In this work, we identify and formalize two fundamental string process-
ing tasks useful in clustering metagenomic read sets. The first is related
to separating high-abundance species from low-abundance species, and the
second is related to finding and grouping overlapping reads together. We
present a novel, space-efficient solution to these problems using the bidirec-
tional Burrows-Wheeler index. Chapter 2 introduces the biological concepts
necessary for the thesis and Chapter 3 fills in the necessary algorithmic pre-
liminaries. Chapter 4 builds on Chapter 3 by presenting the bidirectional
BWT index and our novel concept of reverse complement right-maximal sub-
strings. Chapter 5 applies the data structures and concepts in Chapter 4 to
implement a metagenomic read clustering pipeline, and the performance is
briefly evaluated against two state-of-the art clustering tools in Chapter 6.
Chapter 7 discusses the results in more detail and sketches a path forward.

Chapter 2

Biological background

DNA is the common information coding material in all living organisms
on Earth. The sequence information coded in the DNA determines which
proteins a cell produces, and at which rates. This in turn determines the
biological function of the cell. In this chapter we describe the essential biology
needed to understand the clustering problem.

2.1 The structure of the DNA molecule

DNA is a long molecule with two complementary strands running parallel
in a helical structure. The strands are bound together by hydrogen bonds
between the basic molecules. There are four different basic molecules between
the strands: adenine, cytosine, guanine and thymine. These are commonly
represented with the letters A,C,G and T, respectively. This allows us to
represent a DNA strand as a string with alphabet {A,C,G, T}. A substring
of k consecutive bases is called a k-mer. The molecular chemistry between
the bases dictates that A and T can only bind with each other, and C and
G can only bind with each other. Therefore, the sequence of one strand
completely determines the sequence in the complementary strand. We denote
the complement mapping with the function fc : {A,C,G, T} → {A,C,G, T}
defined by fc(A) = T, fc(C) = G, fc(G) = C and fc(T) = A.

Both strands of the DNA can encode genes. The sequence on one strand
is transcribed in a different direction from that of the other strand. For
example, if the sequence ACGTACTAC is read from one strand, then the
same segment of the genome will be read as GTAGTACGT from the other
strand, i.e. the string is reversed and every character is complemented, or
more formally:

10

CHAPTER 2. BIOLOGICAL BACKGROUND 11

Definition 2.1.1. Reverse complement. A substring α is the reverse com-
plement of a substring β if and only if |α| = |β| and fc(α[i]) = β̄[i] for all
indices i, where β̄ is the reverse string of β.

2.2 DNA sequencing technologies

The DNA sequence of an organism can range from a few thousand base
pairs of a viral genome to billions of base-pairs in the human genome. The
sequence can not be read as a whole with currently available technology, but
a large amount of small snippets of the code can be read, which can then
be assembled to form the complete genome. These snippets are commonly
called reads in the field of bioinformatics. The length of a read can vary from
50 base pairs to tens of thousands of base pairs, depending on the sequencing
technology used (see Table 2.1).

DNA sequencing technology is prone to errors. The errors come in three
types: insertions, deletions and substitutions. Some sequencing technolo-
gies are more prone to some types of errors than others. Algorithms that
analyse read sets should somehow take into account these errors. A chal-
lenge is distinguishing natural single base mutations (called single nucleotide
polymorphisms, or SNPs for short) from these sequencing errors.

Technology 454 GS FLX HiSeq 2000 (Illumina) SOLIDv4 Sanger 3730xl PacBio RS II
Read length 700 100 50+35 or 50+50 400-900 10000-15000
Reads per run 106 3 · 109 1.3 · 109 5 · 104 5 ·105

Run time 24 hours 3-10 days 7-14 days 20mins - 3 hours up to 4 hours
Accuracy 99.9% 98% 99.94% 99.999% 77.14%

Table 2.1: Comparison of sequencing technologies [1, 25]

2.3 Taxonomy

The classical definition of what a species is, given by Ernst Mayr in 1942, is
“groups of actually or potentially interbreeding natural populations, which
are reproductively isolated from other such groups” [29]. This definition is
now known as the biological species concept. However, it does not work for
bacteria, as bacteria reproduce asexually. For lack of a better alternative,
bacterial taxonomists agreed in 1988 to define species on the basis of a DNA-
DNA similarity of more than 70% [41]. This highlights the considerable DNA
diversity within a single bacterial species, since if the threshold of 70% was

CHAPTER 2. BIOLOGICAL BACKGROUND 12

applied to animal classification, the whole order of primates would be a sin-
gle species [34]. More sophisticated definitions, which integrate phenotypic,
genotypic and phylogenetic information have also been proposed [37]. To
this date, bacterial taxonomy is ultimately determined case by case by tax-
onomists without a rigorous method. For example, the species Escherichia
coli encompasses a wide variety of strains with only 20% shared DNA [26],
but it is still classified as a species for historical reasons. There exists au-
thoritative taxonomy databases, such as the NCBI taxonomy database [9],
which try to represent the latest consensus of the biological community.

2.4 Metagenomics

Metagenomics is the study of the genomes present in an environment as a
single entity. The environment can be for example the human gut, or a fresh-
water lake. The set of the genomes of all species present in an environment
is called the metagenome of the environment. The metagenome can be ap-
proximated by indiscriminately sampling reads from all DNA that is present
in the environment. Such a sample is called a metagenomic shotgun dataset.

Determining the species composition of a metagenome gives insight to the
inner workings of the environment. For example, it has been shown that a
certain type of gut metagenome is linked to susceptibility to Chron’s disease
[28]. Some interesting questions are: which species live in the environment,
how abundant is each species, which biochemical processes are active, and
which sets of species are responsible for which biochemical process. There
exists online servers to do this kind of analysis, such as the MG-Rast [30]
and WebMGA [42] servers.

To get an adequate coverage of a metagenome, an enormous amout of
data must be collected compared to traditional single genome sequencing.
Therefore high-throughput sequencing is required, which with the present
technology produces only short reads with relatively high error rates com-
pared to traditional Sanger sequencing. (see Table 2.1).

Chapter 3

Preliminary data structures

This chapter describes the data structures and concepts needed in the sub-
sequent chapters. First, we describe suffix trees and suffix arrays. These
two structures are not used directly in the main work of the thesis, but the
conceptual framework surrounding the structures is required. Next we de-
scribe how to index bit vectors and strings for rank queries, which are used
together with the Burrows-Wheeler transform to build a succinct text index.
Last, we briefly describe the Union-Find structure, which is needed in the
metagenomic clustering application.

3.1 Model of computation

Our model computer is an abstract machine with U memory cells. Each
memory cell contains dlog2 Ue bits and can therefore store the address of any
memory cell in binary. The number dlog2 Ue is called the memory word size
of the machine. We assume that the machine can perform basic arithmetic
operations like addition, subtraction, multiplication, division and taking re-
mainders, as well as bitwise boolean operations, in constant time for two
memory words. The machine supports random access, i.e. the contents of a
memory cell can be fetched in constant time given the address.

The time complexity of an algorithm is measured in terms of the number
of memory accesses and the basic operations mentioned. Space complexity is
measured not in terms of the number of memory cells used, but in terms of
the number of bits used. For instance, storing a permutation of the numbers
from 1 to n in our model takes O(n log n) bits of space, since representing
each integer takes O(log n) bits. The numbers might not be aligned with
memory words, but they can be easily retrieved by bit shifting and taking
remainders.

13

CHAPTER 3. PRELIMINARY DATA STRUCTURES 14

This model approximates a real modern computer quite well, but it has its
limitations. For example, our model does not have a memory cache. With a
memory cache, sequential access is typically considerably faster than random
access. However, this does not change the asymptotic time complexity of
algorithms, because the cache only gives a constant time speedup to memory
access.

3.2 Suffix trees

A suffix tree is one of the most fundamental data structures in string process-
ing. It is often the case that even though an algorithm does not construct a
suffix tree, it can be interpreted as traversing through an implicit suffix tree.
As this is particularly the case with algorithms on the bidirectional Burrows-
Wheeler index, which is the main tool in this thesis, we introduce suffix trees
in a reasonable level of detail here. From here on we assume that the input
string S is terminated with a unique character $ that is lexicographically
smaller than all other characters of S.

Definition 3.2.1. Suffix tree. A suffix tree for the string S is a rooted tree
with edges labelled with characters such that for each substring α of S there
is a unique path starting from the root such that the concatenation of the
labels on the path is α.

For example, Figure 3.1 shows a suffix tree of the string ”banana$”. The
children of a node are ordered lexicographically from left to right. The ter-
minator symbol $ at the end of S ensures that there is a one-to-one corre-
spondence from suffixes of S to the leaves of the tree. There exists a number
of algorithms to build the suffix tree in O(|S|) time [15]. The construction
algorithms are complicated and irrelevant to the thesis, so we will not discuss
them.

The number of nodes in a suffix tree can be quadratic in the length of
S. In the worst case every character of S is distinct, and the suffix tree has
|S|(|S|+1)/2+1 nodes, the sum of the lengths of all suffixes, plus one for the
root. However there is a way to represent the tree in space linear in |S| with
no loss of information. The trick is to compress chains of nodes of degree 1 by
replacing the whole path with just one edge, and labelling the edge with the
concatenation of the original edge labels. Figure 3.2 shows the compressed
version of the tree in Figure 3.1. The number of nodes in the tree is now
linear in S. The reasoning is as follows. Let n be the number of leaves and
m the number of internal nodes in the tree. The number of edges is at least
2m, since every internal node has at least two children. On the other hand

CHAPTER 3. PRELIMINARY DATA STRUCTURES 15

$

a

$

$

$

1

2

3

4

5
6

7 b

a

n

a

n

a

$

n
a

n
a

$

n

a

n

a

$

Figure 3.1: Suffix tree of ”banana$”

$

a

banana$

na

$

na$

$

na

$ na$

1

2

3

4

5

6

7

Figure 3.2: Compressed representation of the suffix tree of tree of ”banana$”

for any tree it holds that the number of edges is n+m− 1. Combining these
two facts gives n+m− 1 ≥ 2m, from which we can solve m ≤ n− 1, which
means m ≤ |S| − 1, since the leaves are in a one-to-one correspondence with
the suffixes of S. The bound is tight, because m = |S|−1 when the alphabet
of S has only a single character in addition to the terminating $.

CHAPTER 3. PRELIMINARY DATA STRUCTURES 16

Even though the number of nodes is now linear in S, the sum of the
lengths of the path labels is still quadratic. However the labels can be rep-
resented with only two integers by storing the starting position of the label
in S along with the length of the label. In summary, the suffix tree can
be represented by keeping S and representing a linear number of nodes and
edges, with the labels of each edge represented with two integers with values
up to |S|. Under our model of computation, each such integer takes O(log n)
bits of space, so the total space complexity is O(n log n).

Still, this representation supports only a very basic traversal of the tree.
Depending on the application, a suffix tree may need to support more com-
plicated operations. Sadakane et al. [32] define that a full functionality suffix
tree supports the following operations.

• root(): returns the root node.

• isleaf(v): returns yes if v is a leaf, and no otherwise.

• child(v, c): returns the node w that is a child of v and label of the edge
(v, w) begins with character c, or returns null if no such child exists.

• sibling(v): returns the next sibling of node v.

• parent(v): returns the parent node of node v.

• edge(v, d): returns the d-th character of the edge-label of an edge point-
ing to v.

• depth(v): returns the length of the concatenation of labels from the
root to v.

• lca(v, w): returns the lowest common ancestor between nodes v and w.

• suffixlink(v): If the concatenation of the labels from the root to a node
v is xα, where x is a character and α is a (possibly empty) substring,
returns a node u such that the concatenation of labels from the root to
u is α. If v is the root, returns the root.

All operations can be implemented in constant time while retaining the space
complexity of O(n log n), but the constant coefficients in the space complex-
ity tend to be rather large. However, there are ways to reduce the space
complexity from O(n log n) to O(n log σ), where σ is the size of the alphabet,
using sophisticated data structures at the cost of a polylogarithmic factor in
|S| in the time complexities of the operations [32].

CHAPTER 3. PRELIMINARY DATA STRUCTURES 17

3.3 Suffix arrays

The suffix array of a string S is a data structure closely related to the suffix
tree of S. It is defined as follows:

Definition 3.3.1. Suffix array. A suffix array, denoted SA, of a string S
is an array of length |S| such that SA[i] is the starting position of the i-th
suffix in lexicographic order among all suffixes of S.

For example, take the string ”banana$”. Table 3.1 shows the lexicographi-
cally sorted list of all suffixes of the string. The suffix array (7, 6, 4, 2, 1, 5, 3)
can be read from the starting positions of the suffixes in the second column.

Rank Suffix Position
1 $ 7
2 a$ 6
3 ana$ 4
4 anana$ 2
5 banana$ 1
6 na$ 5
7 nana$ 3

Table 3.1: Suffixes of banana$

The suffix array can be built in linear time by building the suffix tree of S,
and traversing the suffix tree depth first by visiting the children of a node in
lexicographic order. This will visit the leaves in lexicographic order of the
path labels i.e. the suffixes they represent. The starting position of the suffix
of the i-th visited leaf gives the value of SA[i]. There also exist linear time
algorithms for building the suffix array directly without building the suffix
tree first [18, 21].

The suffix array is deeply related to the suffix tree data structure. For
every node v in the suffix tree, there exists an interval in the suffix array such
that the suffixes in the interval are the suffixes at the leaves of the subtree
of v. For example, in Figure 3.1, the node that is connected to the root with
the character a corresponds to the interval (1,3) in the suffix array in Table
3.1. In fact, if the suffix array is coupled with an array that stores the length
of the longest common prefix of all lexicographically adjacent suffixes, then
one can already simulate bottom-up traversal of the suffix tree.

CHAPTER 3. PRELIMINARY DATA STRUCTURES 18

3.4 Bit vectors with rank and select support

Let B be a bit vector of length n. Many string algorithms use rank queries
on bit vectors as a basic building block for more complicated procedures. A
rank query on a bit vector is defined as follows:

Definition 3.4.1. Rank query on a bit vector. The rank of an index i in a
bit vector is the number of ones in the range of positions from 1 to i.

The inverse operation of rank is called select.

Definition 3.4.2. Select query on a bit vector. A select query takes an
integer j, and returns the position of the j-th one in the vector from the
beginning.

If space consumption is not an issue, the answer to all rank and select queries
can be precomputed, as there are only n different meaningful queries for both
query types. This easily gives a support for constant time rank queries with
O(n log n) bits of space. However, it turns out that even sublinear space if
sufficient to support constant time rank queries [17].

The idea is to reduce the problem into a smaller subproblem, until the
subproblem can be solved in constant time. Remarkably, a constant number
of reductions is sufficient. The target is to reduce the problem to computing
a rank query for an array of length log(n)/2. There are only 2log(n)/2 =

√
n

possible binary arrays of length log(n)/2, and only log(n)/2 different places
to query inside such an array, so we can afford to store the answers to all
possible rank queries for each array. The answers can be stored as log(n)

bit binary numbers. In total, this lookup table takes
√
n log2 n

2
bits, which

grows slower than linearly in n. Table 3.2 shows an example of this table for
log(n)/2 = 3.

Then, we will precompute some values to be able to reduce any rank
query to exactly three table lookups. First, we divide the array into blocks
of size log2 n. For each such block, we store the number of ones up to, but
not including the first index of the block as a log n bit binary integer. There
are n/ log2 n such blocks, so the table takes n/ log n bits of space, which is
less than linear in n. Then, we subdivide each block into miniblocks of size
log(n)/2. For each miniblock we store the number of ones from the start of
the bigger block up to, but not including the first index of the miniblock. As
the number of ones inside the bigger block is at most log2 n, these numbers
take only log log2 n = 1+log log n bits each to represent. There are 2n/ log(n)
miniblocks in total, so storing this information takes (1+log log n)2n/ log(n)

CHAPTER 3. PRELIMINARY DATA STRUCTURES 19

bits, which is again less than linear in n. This term asymptotically dominates
the space complexity, so the total space complexity is O(n log log n/ log n).

For an example, take the following binary string:

1010010101101001110110100111011010010001101001010110100101011001.

The length of the string is 64 bits, so the sizes of the big blocks are 36 bits, and
the sizes of the miniblocks are 3 bits. For each 3-bit string we compute the
rank of all the three positions. Table 3.2 shows the precomputed values for all
possible 3-bit strings. Figure 3.3 shows in red the precomputed cumulative
ranks of both the large and the small blocks.

1 2 3
000 0 0 0
001 0 0 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
110 1 2 2
111 1 2 3

Table 3.2: Precomputed values

1010010101101001110110100111011010010001101001010110100101011001

0 2 3 4 6 7 10 12 13 15 17 19 0 0 2 3 5 7 8 9 11 12

0 20

Figure 3.3: Precomputed cumulative ranks

Now we can answer any rank query with exactly three lookups to the pre-
computed tables – first look up the number of ones up to the superblock con-
taining the query positions, then up to the miniblock containing the query
index, and finally the count inside the miniblock up to the query position.

Given an index that supports rank queries on a bit vector, it is easy to
count the number of ones in any continuous interval in the bit vector. The
number of ones in the range of indices [i, j] in vector B is equal to rank(B, j)
− rank(B, i− 1). The select query can be implemented in O(log n) time by
binary searching the desired bit using the rank queries. There are also ways
to implement the select query in constant time with sublinear space [7], but

CHAPTER 3. PRELIMINARY DATA STRUCTURES 20

they are not needed in the algorithms used in this thesis, and therefore not
discussed.

3.5 Wavelet trees

There is a natural generalization of rank and select queries from bit vectors
to strings.

Definition 3.5.1. Rank on a string. The rank of symbol c at position i in
a string S is the number of occurrences of c in the prefix S[1..i].

A wavelet tree is a data structure occupying O(n log σ) bits of memory that
can answer rank queries on a string in time O(log σ). It is built on top of an
efficient implementation for rank queries on bit vectors.

A wavelet tree is essentially a binary search tree in which every node v is
associated with a subset of the alphabet A(v) ⊆ Σ such that if node u is an
ancestor of v, then A(v) ⊆ A(u). For a simpler explanation assume that σ is
a power of two. The tree is then a complete binary tree of height log2(σ) and
the subalphabets associated to the nodes are defined recursively as follows:

• Suppose v is an internal node. Let left(v) and right(v) denote the left
and right children of v, respectively. The subalphabet of v is A(left(v))
∪ A(right(v)).

• The subalphabets associated with the leaves are single characters, and
the leaves are ordered lexicographically from left to right with respect
their characters.

Each node v conceptually represents the subsequence Sv of S consisting of
only the characters of S that are in A(v). For each node v, we build a bit
vector Bv of length equal to |Sv|, where Bv[i] = 0 if Sv[i] is in the first half
of A(v), and 1 otherwise. The sum of the lengths of all the bit vectors is
n log σ. All bit vectors are indexed for rank queries.

The generalized rank query can be computed by traversing from the root
of the wavelet root to the leaf corresponding to the desired character. Sup-
pose we want to compute the rank of character c up to and including position
i. Starting from the root, let v be the current node. While descending down
the tree, we maintain the number kv of positions j in the prefix S[1..i] such
that S[j] ∈ A(v).

Initially, kroot = i since A(root) is the whole alphabet. The values kright(v)

and kleft(v) can be deduced from kv by kright(v) = rankBv(c, kv) and kleft(v) =
kv − rankBv(c, kv). We find the leaf u with A(u) = {c} by applying these

CHAPTER 3. PRELIMINARY DATA STRUCTURES 21

formulas recursively down the tree, and visiting only nodes whose alphabet
contains c. At the leaf u we can deduce rankS(c, i) = ku. The depth of the
tree is logarithmic in σ, and rank queries take constant time, so the time
complexity is O(log σ).

In this work we use one additional operation on wavelet trees. The op-
eration takes an index i and a character c, and returns the sum of ranks of
lexicographically smaller characters in the prefix S[1..i], i.e. the sum∑

d∈Σ,d≤c

rank(i, d) (3.1)

This can be done by in time O(σ log σ) by directly evaluating Formula 3.1
using the wavelet tree. This can be improved to O(log σ) by counting all
characters simultaneously with only one traversal. The key is that if the
subalphabet of the current node v is completely disjoint or completely con-
tained in the set {d ≤ c | d ∈ Σ}, then we need not visit the descendants of
the node. Fortunately, we only have to sum up at most one node at each level
of the tree. We can thus decompose the sum in Formula 3.1 into O(log σ)
parts such that we only have to traverse O(log σ) nodes (see Figure 3.4). For
details, see Algorithm 1.

A B C D E F G H

Figure 3.4: The sum of the number of characters lexicographically smaller or
equal to G is the sum of the kv values of the yellow nodes.

3.6 The Burrows-Wheeler transform

The Burrows-Wheeler transform is a permutation on a string invented by
Michael Burrows and David Wheeler in 1994 [5]. It was originally used
for text compression, because it tends to form long sequences of the same
characters if the text is repetitive, which can be exploited e.g. by encoding

CHAPTER 3. PRELIMINARY DATA STRUCTURES 22

Algorithm 1 Evaluating Formula 3.1 for index i and character c.

1: return count(root, i, c, i)
2: procedure count(node v, count kv, character c, index i)
3: if max(A(v)) ≤ c then return kv
4: if min(A(v)) > c then return 0
5: kright(v) = rankBv(c, kv)
6: kleft(v) = kv − rankBv(c, kv)
7: return count(left(v), kleft(v), c, i) + count(right(v), kright(v), c, i)
8: end procedure

long runs of characters by specifying the character and the length of the run.
For convenience, we define the transform only for strings terminated with a
unique character $ that is lexicographically smaller than all characters in the
input S.

Definition 3.6.1. Burrows-Wheeler transform. Let S be a $-terminated
string of length n, and SA be the suffix array of S. The Burrows-Wheeler
transform BWT is a string of length n such that BWT [i] = S[SA[i] − 1] if
SA[i] 6= 1, and S[n] otherwise.

Sorted suffixes BWT
banana $ a
banan a$ n
ban ana$ n
b anana$ b
banana$ $
bana na$ a
ba nana$ a

Table 3.3: Lexicographically sorted suffixes of banana

To make indexing easier, we assume the convention that S[0] means S[n]
and the substring S[0..n] means S[n..n]. Table 3.3 shows an example of the
Burrows-Wheeler transform for the string banana$. The Burrows-Wheeler
transform can be interpreted as the list of left extensions of all suffixes of
S in lexicographical order. Lemma 1 describes a property that allows us
to infer the lexicographical rank of the left extension of a suffix given the
lexicographical rank of the suffix, which is the key property for the inversion
of the BWT.

CHAPTER 3. PRELIMINARY DATA STRUCTURES 23

Lemma 1. The number of suffixes that are lexicographically smaller than the
left extension of S[i..n] is equal to the number of positions j such that either
BWT [j] <lex BWT [i] or (j < i and BWT [j] = BWT [i]).

Proof. IfBWT [j] <lex BWT [i], then by definition S[SA[j]−1] <lex S[SA[i]−
1], and therefore S[SA[j] − 1..n] <lex BWT [SA[i] − 1..n]. On the other
hand if j < i and BWT [j] = BWT [i], then the suffixes S[SA[j] − 1..n]
and S[SA[i] − 1..n] start with the same character, but since by the def-
inition of the suffix array it holds that S[SA[j]..n] <lex S[SA[i]..n], we
have that S[SA[j] − 1..n] <lex S[SA[i] − 1..n]. Similarly if the two con-
ditions of the Lemma do not hold for a position j, then S[SA[j]− 1..n] >lex

BWT [SA[i]− 1..n]

3.6.1 Inverting the BWT

Lemma 1 is the foundation for an algorithm to invert the Burrows-Wheeler
transform. The inversion is based on backward steps on the string.

Definition 3.6.2. Backward step. Given the lexicographical rank of a suffix
S[i..n], a backward step gives the lexicographical rank of the suffix S[i−1..n].

The backward step can be implemented by counting the number of BWT
positions that satisfy either of the conditions in Lemma 1. To do the com-
putation efficiently, some preprocessing has to be done on the BWT. The
count of positions that fulfil the first condition only depend of the character
at the index i. Given that the alphabet size is typically small compared to
the length of the string, the count of positions that fulfil the first condition
can be precomputed in a table for all distinct characters. This array is often
called the C-array in the literature.

Definition 3.6.3. C-array. The C-array is an array of length σ such that
C[i] is the number of characters in S that have lexicographical rank strictly
less than i.

The count of positions that fulfil the second condition can be solved by a rank
query (see Definition 3.5.1) on the BWT. The answers to the rank queries
for all positions can be precomputed by one linear pass over the BWT , or
by indexing the BWT as a wavelet tree, making the space consumption
smaller, but increasing the query complexity from O(1) to O(log σ). The
original string can be recovered from the BWT by executing n backward
steps starting from the first position of the BWT. The details are shown in
Algorithm 2.

CHAPTER 3. PRELIMINARY DATA STRUCTURES 24

Algorithm 2 Inverting the Burrows-Wheeler transform

1: Precompute the C-array.
2: Build an index to answer rank queries on the BWT
3: S ← empty string
4: k ← the index of $ in S.
5: for i = 1→ |S| do
6: S ← S ·BWT [k] // concatenation
7: k ← C[BWT [k]] + rankBWT (k,BWT [k])
8: end for
9: return S.

3.6.2 Searching for patterns using the Burrows-Wheeler
transform

Observe that the lexicographic ranks of the suffixes that are prefixed by α
form a continuous interval. We call this interval the lexicographic interval or
lexicographic range of α. The terms suffix array interval and BWT interval
are also used in the literature. For example, the lexicographic range of the
substring ab in the string ababbababab$ is (8, 11) (see Table 3.4).

Rank Suffix BWT
1 $ b
2 ab$ b
3 abab$ b
4 ababab$ b
5 ababbababab$ $
6 abbababab$ b
7 b$ a
8 bab$ a
9 babab$ a
10 bababab$ b
11 babbababab$ a
12 bbababab$ a

Table 3.4: the lexicographic range of the substring ba in the string
ababbababab$

Given an interval corresponding to a substring α, the BWT can be used
to find the interval corresponding to the substring cα for any c ∈ Σ. This
operation is called a left extension.

CHAPTER 3. PRELIMINARY DATA STRUCTURES 25

Definition 3.6.4. Left extension. A left extension takes an interval [i, j]
representing the substring α and a character c, and returns an interval rep-
resenting the substring cα, or an empty interval if no such substring occurs
in S.

The left extension can be implemented using the backward step operation.
Let [i, j] be the interval of a substring α, and suppose we want to find the
interval of cα. The BWT tells us the character that precedes each of the
suffixes in the lexicographic range [i, j]. The lexicographic ranks of suffixes
that are prefixed by α and preceded by c are exactly the indices k in the BWT
such that i ≤ k ≤ j and BWT [k] = c. For example let S = bbbb$baaabaa,
α = ba and c = a. From Table 3.4 we see that the BWT has the character a
only at positions 8,9 and 11 in the lexicographic range (8,11) of ba. Executing
backward steps for these three positions gives the positions 3, 4 and 5, which
is the lexicographic range of aba.

However, it is not necessary to execute the backward step for all of the
positions k which match the criteria i ≤ k ≤ j and BWT [k] = c. As with
all substrings, the suffixes that are prefixed by cα form a continuous lexico-
graphic interval. It suffices to find the first and last index of this interval.
By Lemma 1, this is the range [C[c] + rankBWT (ic, c), C[c] + rankBWT (jc, c)],
where ic and jc are the indices of the first and the last occurrences of c in
the interval [i, j]. By definition of ic and jc we know that c does not appear
in the BWT intervals [i, ic− 1] and [jc + 1, j], we can simplify the expression
to [C[c] + rankBWT (i, c), C[c] + rankBWT (j, c)].

We can now find the interval of any substring α of S step by step by
starting from the empty string and applying the left extension operation for
the characters of α from right to left. The length of the interval gives the
number of occurrences of α, but does not give the positions of the occurrences
yet, only the lexicographical ranks of the suffixes that have α as a prefix. The
text positions of a suffix can be looked up in constant time from the suffix
array of S. This way, we can find the text positions of all occurrences of α in
time O(|α| log σ+occ), where occ is the number of times α appears in S. The
suffix array is often stored in some compressed form to save space [3]. The
combination of a BWT indexed for rank queries, a C-array and a sampled
suffix array is called an FM-index, and there are many variants.

3.6.3 The relationship with the suffix tree

Recall that a suffix link is a directed edge from the node corresponding to
the substring cα to the node corresponding to the substring α. The suffix
links induce a suffix link tree. When talking about the suffix link tree, the

CHAPTER 3. PRELIMINARY DATA STRUCTURES 26

directions of the edges are usually reverse so that the edges point away from
the root of the tree. The edge in the inverse direction of a suffix link is called
a Weiner link.

Definition 3.6.5. Suffix link tree. The suffix link tree of a string S is the
tree induced by all Weiner links of the suffix tree of S.

The substring search algorithm can be interpreted as traversing the suffix
link tree along the path of the query substring.

3.7 Union-find data structure

The union-find data structure, also known as the disjoint set data structure,
is a structure that maintains sets of disjoint elements, and supports two
operations:

• find(x): returns a handle to the set containing element x.

• union(s1, s2): merges the two sets s1 and s2, and returns a handle to
the newly formed set.

A structure implementing these operations for the set of integers from 1 to n
can be implemented in O(n log n) bits of space, such that the union-operation
takes constant time, and the find-operation takes O(α(n)) time on average,
where α is the inverse Ackerman function. The data structure works by
representing each set as a tree, where the root of the tree is the handle of the
set. The union-operation is implemented by making the root of the larger
tree point to the root of the smaller tree. This guarantees that all trees are
of height O(log n). The find-operation is implemented by traversing the tree
from the given element to the root. The elements on the way to the root can
be directly attached to the root after this, which gives the O(α(n)) average
time complexity for the find operation. A more detailed exposition can be
found in e.g. [8].

Chapter 4

The bidirectional Burrows-Wheeler
index

The Burrows-Wheeler transform is asymmetric in the sense that it allows
backward steps and left extensions, but not forward steps and right exten-
sions. The bidirectional Burrows-Wheeler transform is a way of making the
index symmetric such that these operations become possible. The idea dates
back to 2009 in the literature [22]. The bidirectionality gives the index more
expressive power and allows one to solve more complicated problems in suc-
cinct space, such as finding all maximal unique matches between two strings
[4].

The bidirectional index consists of the regular BWT along with the BWT
of the reverse string, denoted BWT . The regular BWT can be interpreted as
the list of all left extensions of lexicographically sorted suffixes, whereas the
BWT can be interpreted as the list of all right extensions of colexicographi-
cally sorted prefixes. A string α is defined to be colexicographically smaller
than a string β if and only if the reverse string of α is lexicographically
smaller than the reverse string of β.

Algorithms based on the bidirectional Burrows-Wheeler index maintain
two intervals instead of one. First, the lexicographic range of the suffixes
that are prefixed by the current substring, and second, the colexicographic
range of all prefixes that are suffixed by the current substring. We call
the first the lexicographic interval or lexicographic range, and the second
the colexicographic interval or colexicographic range of the substring. For
example in the string abbabbaabbababbabaababa, the lexicographic range
of the substring aab is (3,4) and the colexicographic range is (14,15). See
Table 4.1.

27

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 28

Rank BWT Suffixes in lexicographic order Prefixes in colexicographic order BWT
1 a $ $ a
2 b a$ $a b
3 b aababa$ $abbabbaabbababbabaa b
4 b aabbababbabaababa$ $abbabbaa b
5 b aba$ $abbabbaabbababbabaaba b
6 b abaababa$ $abbabbaabbababbabaababa $
7 a ababa$ $abbabbaabbaba b
8 b ababbabaababa$ $abbabbaabbababbaba a
9 b abbaabbababbabaababa$ $abba b
10 b abbabaababa$ $abbabbaabba b
11 a abbababbabaababa$ $abbabbaabbababba b
12 $ abbabbaabbababbabaababa$ $abbabba a
13 a ba$ $ab b
14 a baababa$ $abbabbaabbababbabaab a
15 b baabbababbabaababa$ $abbabbaab b
16 a baba$ $abbabbaabbababbabaabab a
17 b babaababa$ $abbabbaabbabab b
18 b bababbabaababa$ $abbab b
19 b babbaabbababbabaababa$ $abbabbaabbab a
20 a babbabaababa$ $abbabbaabbababbab a
21 a bbaabbababbabaababa$ $abb a
22 a bbabaababa$ $abbabbaabb a
23 a bbababbabaababa$ $abbabbaabbababb a
24 a bbabbaabbababbabaababa$ $abbabb a

Table 4.1: The bidirectional index for the string abbabbaabbababbabaababa.

4.1 Left- and right extensions

In Section 3.6.2, we saw how to compute the lexicographic interval of a
substring cα given the lexicographic interval of the substring α. Now we show
how to compute both the lexicographic and the colexicographic intervals of
cα given the lexicographic and the colexicographic intervals of α.

Some new notation is in order to explain the procedure. We denote the
start and end indices of the lexicographic interval of a substring α with i→α
and j→α , respectively, and the start and end points of the colexicographic
interval of the same substring with i←α and j←α , respectively.

Let the current substring be α, and let us extend to the left with the
character c. First we find the updated lexicographic interval [i→cα, j

→
cα] using

the method described in Chapter 3 section 3.6.2. Next we find the colexico-
graphic interval [i←cα, j

←
cα]. The start of the interval is computed by counting

the number of prefixes of S that are suffixed by a substring β such that
β <colex cα. Every prefix with colexicographc rank strictly less than i←α ful-
fills this criterion, and every prefix with colexicographic rank strictly greater

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 29

than j←α does not. Only the prefixes with colexicographic rank in the interval
[i←α , j

←
α] remain to be considered. For these, we want to count the number of

prefixes that are suffixed by dα for some d < c. We simply count the num-
ber of positions in the forward BWT in the interval [i→α , j

→
α] that contain a

character smaller than c. These are precisely the desired occurrences of α
that are preceded by a character smaller than d. This can be done in time
O(log σ) 1 using the method described section 3.5. The end point j←cα can be
easily deduced from the fact the the length of the colexicographic interval
must be the same as the length of the lexicographic interval. A summary of
the left extension procedure is shown in Algorithm 3.

For example, let us search for the string aab from the string S = ab-
babbaabbababbabaababa. Table 4.1 shows the BWT, the reverse BWT, the
lexicographically sorted list of suffixes, and the colexicographically sorted list
of prefixes. Initially we set i→ = i← = 1 and j→ = j← = |S|. By repeatedly
applying Algorithm 4 we obtain the sequence of interval pairs:

(i→, j→), (i←, j←) = (1, 24), (1, 24)

(i→b , j
→
b), (i←b , j

←
b) = (13, 24), (13, 24)

(i→ab, j
→
ab), (i

←
ab, j

←
ab) = (5, 12), (13, 20)

(i→aab, j
→
aab), (i

←
aab, j

←
aab) = (3, 4), (14, 15)

The algorithm for a right extension is similar, but with the roles of BWT and
reverse BWT switched. The procedure is a straightforward modification of
Algorithm 3, and it is shown for completeness in Algorithm 4. The C-array
that appears in the algorithms is the same as in Definition 3.6.3.

Algorithm 3 Left extension on the bidirectional BWT

1: procedure ExtendLeft(intervals [i→α , j
→
α] and [i←α , j

←
α], character c)

2: i→cα := C[c] + rankBWT (i→α , c)
3: j→cα := C[c] + rankBWT (j→α , c)
4: i←cα := i←cα +

∑
d∈Σ, d<c

(rankBWT (j→α , d)− rankBWT (i→α − 1, d))

5: j←cα := i←cα + (j→cα − i→cα)
6: return [i→cα, j

→
cα], [i←cα, j

←
cα]

7: end procedure

1The time complexity can be further improved to constant time by using monotone
minimal hash functions [4]. The techniques involved are rather complex, and we will not
discuss them here.

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 30

Algorithm 4 Right extension on the bidirectional BWT

1: procedure ExtendRight(intervals [i→α , j
→
α] and [i←α , j

←
α], character c)

2: i←αc := C[c] + rankBWT (i←α , c)
3: j←αc := C[c] + rankBWT (j←α , c)
4: i→αc := i→αc +

∑
d∈Σ, d<c

(rankBWT (j←α , d)− rankBWT (i←α − 1, d))

5: j→αc := i→αc + (j←αc − i←αc)
6: return [i→αc, j

→
αc], [i←αc, j

←
αc]

7: end procedure

4.2 Left- and right maximality

We will now introduce the concepts of left- and right maximal substrings,
which will be central in the applications of the bidirectional index.

Definition 4.2.1. Right-maximal substring. A substring α of a string S is
right-maximal if and only if there exist at least two distinct characters c and
d such that both αc and αd are substrings of S.

Definition 4.2.2. Left-maximal substring. A substring α of a string S is
left-maximal if and only if there exist at least two distinct characters c and
d such that both cα and dα are substrings of S.

Definition 4.2.3. Maximal substring. A substring α is maximal if it is both
left- and right maximal.

In other words, a substring α is right-maximal if and only if the suffix tree
of S branches at the locus of α, and the substring α is left-maximal if and
only if the suffix link tree branches at the locus of α.

Checking both maximality conditions is easy given the bidirectional in-
dex. The substring α is left-maximal if and only if the lexicographic interval
of α in the forward BWT contains two or more distinct characters, and sym-
metrically α is right-maximal if and only if the colexicographic interval in
the reverse BWT contains two or more distinct characters. This can be com-
puted with O(σ) rank queries on the interval of the corresponding BWT,
giving a total time complexity of O(σ log σ).

There is also a simple data structure to improve this to constant time by
storing a bit vector B of length equal to the length of the BWT. For example,
to implement left maximality checks define B[i] = 1 if and only if i = 1 or
the character at position i in the BWT differs from the character at position
i−1. The substring α is left-maximal if and only if the interval B[i→α +1..j→α]
contains at least one bit set to 1. This can be checked in constant time by

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 31

indexing B for constant time rank queries. Symmetrically, the same trick
works in the other direction.

4.3 Iterating all right-maximal nodes of the

suffix tree

Algorithms that use the suffix tree often do not use the full functionality
of the suffix tree. For example, to find the lexicographic intervals of all
repeating substrings of length k, one traverses the suffix tree and reports
the current lexicographic interval when string depth k in the tree is reached.
The only information needed is the depth and the lexicographic range of the
current node. The parent-child relationships, or in other words the topology
of the suffix tree is irrelevant. In these applications, the bidirectional index
can often be used to implement the same algorithm. In this section we show
how the bidirectional index can iterate the lexicographic ranges of all right-
maximal suffix tree nodes efficiently.

Each substring α of S corresponds to a node in the suffix tree of S and
to a node in the suffix link tree of S. The corresponding node in the suffix
tree is the node such that the concatenation of the edge labels from the root
down to the node is α, and the corresponding node in the suffix link tree is
a node such that the concatenation of the path labels from the root is the
reverse string of α.

Lemma 2. If the label of a node in the suffix link tree is not right-maximal,
then none of its children are right-maximal either.

Proof. Suppose the substring α is non-right-maximal and there exists a right
maximal child eα for some extension e in the suffix link tree. If this was the
case, then there would exist substrings eαc and eαd, for distinct c, d ∈ Σ
by the right-maximality of eα, but this also implies that substrings αc and
αd exist as they are part of eαc and eαd respectively, which contradicts the
assumption that α was not right-maximal.

By induction Lemma 2 implies that if a node in the suffix link tree is non
right-maximal, then all the nodes in its subtree are non right-maximal. On
the other hand, for every right-maximal substring, there is a path in the
suffix link tree from the root to a node corresponding to that substring such
that every node on the way is right-maximal. This means that to iterate
every right-maximal substring, we only need to iterate the right-maximal
nodes of the suffix link tree, as the nodes of a suffix tree of S are in one-to-to
correspondence with the right-maximal substrings of S. There are at most

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 32

|S| right-maximal nodes, so the iteration can be done in linear time in |S|.
Algorithm 5 shows the iteration loop.

Algorithm 5 Iterating the lexicographic intervals of all right-maximal sub-
strings using the bidirectional index

1: stack ← Empty iteration stack
2: push ([1, n], [1, n]) to stack
3: while stack is not empty do
4: ([i→α , j

→
α], [i←α , j

←
α]) := top of the stack

5: for all c ∈ Σ do
6: ([i→cα, j

→
cα], [i←cα, j

←
cα]) := ExtendLeft(([i→α , j

→
α], [i←α , j

←
α]), c)

7: if ([i→cα, j
→
cα], [i←cα, j

←
cα]) is right-maximal then

8: push ([i→cα, j
→
cα], [i←cα, j

←
cα]) to stack

9: end if
10: end for
11: end while

4.4 Iterating all nodes of the suffix tree using

only the forward BWT

Algorithm 5 does not use the full functionality of the bidirectional index
since it never uses the right extension operation. In fact it turns out that it
is possible to iterate all suffix link tree nodes with just the forward BWT [3].
If this is all that is needed, then the reverse BWT is unnecessary.

The trick is to store for all substrings α in the iteration stack of Algo-
rithm 5 the intervals of right extensions αc for all c ∈ Σ. This can be done
without having the reverse BWT because if we know all the intervals αc for
a node corresponding to α in the suffix tree, then we can compute for any
left extension dα all intervals of right extensions dαc for c ∈ Σ by simply left
extending the intervals αc. This information is enough to decide whether a
substring α is right-maximal. The substring α is right-maximal if and only
if at least two of the intervals αc are non-empty.

4.5 Applications of the bidirectional index in

bioinformatics

A prominent feature of most DNA shotgun sequencing technologies is that
the reads come from both of the complementary strands, and the sequencer

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 33

can not tell from which strand each read was sampled from. Since repeating
substrings are rare in bacterial genomes and metagenomes, if one finds the
reverse complement (see Definition 2.1.1) of a long susbtring in another read,
then most likely both reads have been sampled from the same part of the
same genome, just from different strands of the DNA. Identifying pairs of
reads where this happens is useful in bioinformatics. The bidirectional index
is a clean solution to the problem

4.5.1 Iterating all reverse complement right-maximal
substrings

From here on we denote the reverse complement of a string α with α̃. We call
a substring reverse complement right-maximal (RC right-maximal for short)
if there are two distinct characters c, d ∈ Σ such that αc or α̃c is a substring
of S, and αd or α̃d is a substring of S. Algorithm 6 describes how to iterate
all RC right-maximal substrings of a string in a linear number of steps in
|S| and space O(|S| log σ). To our knowledge, no such algorithm has been
described in the literature before.

The idea is to maintain two synchronized iterators at the same time. One
iterates the suffix link tree of S, and the other mirrors all movements to the
suffix link tree of S̃. Each node in the iteration stack is now represented
by a total of four intervals describing the lexicographic and colexicographic
ranges of both the current string and the reverse complement. The algorithm
emulates traversal of the suffix link tree of the read set combined with the
reverse complement of the read set.

Whenever the main iterator extends the current string α to the left with a
character c, the mirror iterator extends α̃ to the right with the complement
character of c. If the resulting substring cα is RC right-maximal, a new
stack frame consisting of the 4 intervals [i→cα, j

→
cα], [i←cα, j

←
cα], [i→c̃α, j

→
c̃α], [i←c̃α, j

←
c̃α]

is pushed to the iteration stack.
The algorithm decides whether the substring cα is RC right-maximal by

using the intervals [i←cα, j
←
cα] and [i→c̃α, j

→
c̃α]. The interval [i←cα, j

←
cα] in the reverse

BWT lists all right-extensions of cα and the interval [i→c̃α, j
→
c̃α] in the forward

BWT lists all left-extensions of c̃α. Let Σ1 = {c | c ∈ BWT [i←cα..j
←
cα]} be the

set of distinct characters in BWT [i←cα..j
←
cα] and Σ2 = {c̃ | c ∈ BWT [i→c̃α..j

→
c̃α]}

be the set of reverse complements of the distinct characters in BWT [i→c̃α, j
→
c̃α].

The string cα is RC right-maximal if and only if |Σ1 ∪ Σ2| ≥ 2. This con-
dition can be checked by checking the existence of each character c ∈ Σ in
both intervals BWT [i←cα..j

←
cα] and BWT [i→c̃α..j

→
c̃α] with 2σ rank queries on the

wavelet trees of BWT and BWT .

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 34

Algorithm 6 Iterating all RC right-maximal substrings

1: stack ← Empty iteration stack
2: push (([1, n], [1, n]), ([1, n], [1, n])) to stack
3: while stack is not empty do
4: [i→α , j→α], [i←α , j←α], [i→α̃ , j→α̃], [i←α̃ , j←α̃] := top of the stack
5: for c ∈ Σ do
6: [i→cα, j

→
cα], [i←cα, j

←
cα], := ExtendLeft([i→α , j→α], [i←α , j←α], c)

7: [i→c̃α, j
→
c̃α], [i←c̃α, j

←
c̃α] := ExtendRight([i→α̃ , j→α̃], [i←α̃ , j←α̃], c̃)

8: if [i→cα, j
→
cα], [i←cα, j

←
cα], [i→c̃α, j

→
c̃α], [i←c̃α, j

←
c̃α] is RC right-maximal then

9: push
(
[i→cα, j

→
cα], [i←cα, j

←
cα], [i→c̃α, j

→
c̃α], [i←c̃α, j

←
c̃α]
)

to stack
10: end if
11: end for
12: end while

4.5.2 Finding the intervals of k-mers

A common task in bioinformatics is to find all distinct k-mers (substrings
of length k) of a string S. We define an equivalence relation on the suffixes
such that two suffixes si and sj are equivalent if and only if |si| ≥ k, |sj| ≥ k
and si[1..k] = sj[1..k]. This equivalence relation partitions the suffixes based
on the first k characters. The set of suffixes in a single equivalence class
are lexicographically adjacent, which means we can represent the class as a
lexicographic interval. The whole partition can be conveniently represented
as a single bit vector B of length |S| such that B[i] = 1 if and only if the
suffix with rank i is the lexicographically least of its equivalence class. In
other words, the start of the interval of each class is marked with a 1.

The goal is to mark the intervals of all nodes which are at depth k or
greater, and their parent is at depth k − 1 or less. Visually, we are looking
to find the ”frontier” of suffix tree nodes that are at depth greater or equal
to k.

The algorithm makes use of both the left and the right extension proce-
dures. The left extension is used as a black box iterator to enumerate the
lexicographic intervals of all right-maximal suffix tree nodes. The right ex-
tension is used in each node to find the lexicographic intervals of all children
of the node in the suffix tree. If the depth of the current node is less than
k, the starting points of the lexicographic interval of each of its children in
the suffix tree are marked in the bit vector B. The algorithm works in time
O(nσ log σ).

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 35

Algorithm 7 Marking all k-mers

1: stack ← Empty iteration stack
2: push ([1, n], [1, n], 0) to stack
3: B := bit vector of length n initialized to zeroes
4: while stack is not empty do
5: ([i→α , j

→
α], [i←α , j

←
α], depth) := top of the stack

6: if depth < k then
7: for all c ∈ Σ do
8: ([i→αc, j

→
αc], [i

←
αc, j

←
αc]) := ExtendRight(([i→α , j

→
α], [i←α , j

←
α]), c)

9: if [i→αc, j
→
αc] is valid then

10: B[i→αc] = 1
11: end if
12: end for
13: end if
14: for all c ∈ Σ do
15: ([i→cα, j

→
cα], [i←cα, j

←
cα]) := ExtendLeft(([i→α , j

→
α], [i←α , j

←
α]), c)

16: if ([i→cα, j
→
cα], [i←cα, j

←
cα]) is right-maximal then

17: push ([i→cα, j
→
cα], [i←cα, j

←
cα], depth + 1) to stack

18: end if
19: end for
20: end while

4.5.3 Marking the intervals of k-submaximal repeats

k-submaximal repeats are a class of repeats with applications in metagenomic
clustering [27]. The definition is as follows:

Definition 4.5.1. k-submaximal repeat. A substring α is a k-submaximal
repeat if and only if α is a maximal repeat of length at least k and there does
not exist a maximal repeat β such that |β| ≥ k and β is a substring of α.

The lexicographic intervals of all k-submaximal repeats can be found with
two passes over the suffix link tree. First, we mark all right-maximal k-mers
in a bit vector B using the iteration loop in Algorithm 5 by marking the start
and the end point of the current interval with a 1 every time we are at depth
k. On the second pass, we try to extend each right-maximal k-mer to the
left such that it also becomes left-maximal, stopping if the current interval
is a subinterval of the interval of a right-maximal k-mer. Every interval that
was successfully extended to left maximality is an interval of a k-submaximal
repeat.

Suppose we are extending the k-mer α to the left. Let M be the shortest
maximal repeat such that α is the rightmost k-mer of M . By extending

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 36

α to the left we enumerate all lexicographic intervals of every suffix of M
of length at least k. For each of these suffixes βα we check whether the
lexicographic interval of βα is a subinterval of some right-maximal k-mer.
This is equivalent to checking whether the parity of i→βα in B is odd. If this
happens, then the k-mer is a prefix of βα, and thus M is not k-submaximal.
If this does not happen for any suffix βα of M , then M is k-submaximal and
we can report the interval of M .

Algorithm 8 Finding all k-submaximal repeats

1: B := bit vector of length n with right-maximal k-mers marked
2: stack := Empty iteration stack
3: push ([1, n], [1, n], 0) to stack
4: while stack is not empty do
5: [i→α , j

→
α], [i←α , j

←
α], depth := top of the stack

6: if depth ≥ k and LeftMaximal([i→α , j
→
α]) then

7: Report [i→α , j
→
α]

8: continue
9: end if

10: for all c ∈ Σ do
11: ([i→cα, j

→
cα], [i←cα, j

←
cα]) := ExtendLeft(([i→α , j

→
α], [i←α , j

←
α]), c)

12: if ([i→cα, j
→
cα], [i←cα, j

←
cα]) is right-maximal then

13: if depth + 1 ≤ k or rankB(i→cα) is even then
14: push ([i→cα, j

→
cα], [i←cα, j

←
cα], depth + 1) to stack

15: end if
16: end if
17: end for
18: end while

4.5.4 Locating suffixes by sampling the suffix array

All the algorithms described in this chapter report only the lexicographic
intervals, not actual text positions of the desired suffixes. These can be
easily converted to text positions by looking the positions up from the suffix
array of S. However, the suffix array takes O(n log n) bits of space, which
can be an order of magnitude greater than the O(n log σ) space taken up by
the bidirectional index. Fortunately, there is a way to convert lexicographic
ranks into text positions without storing the whole suffix array.

This is done as a separate step after the iteration of the suffix link tree. We
modify suffix link tree iteration routine to mark all the lexicographic ranks of
the interesting suffixes in a bit vector of length |S|. After this, we execute |S|

CHAPTER 4. THE BIDIRECTIONAL BWT INDEX 37

backward steps on the forward BWT starting from the empty suffix. In effect
we walk through S backwards while maintaining the lexicographic rank of
the suffix starting from the current position. This gives us the values ISA[i]
for i = |S| . . . 1, where ISA is the inverse suffix array. If ISA[i] = k, we can
deduce that SA[k] = i. Walking the string backward in this way generates
us every value of the suffix array, albeit in a unpredictable order. Every time
we get a new suffix array sample, we check if the position is marked in the
bit vector we built earlier, and report the current text position if this is the
case.

4.5.5 Generalization to multiple strings

There is a standard trick to generalize all the algorithms described in this
section from a single string S to a set of strings {S1, . . . , Sm}. The trick is to
concatenate all of the strings S1, . . . , Sm, putting a separator character that
does not appear in the alphabet of any of strings between the strings. In
practice this can usually be the same ”dollar” symbol that is used to mark
the end of the string in a regular BWT. Then we modify the suffix link tree
iteration algorithms such that the separator symbol is not considered a valid
left- or right extension.

Another way to do the concatenation is to take two symbols that are not
part of the alphabet of any of the strings, and separate the strings with a
unique binary string formed out of the two external characters. This increases
the length of the BWTs by m logm, where m is the number of strings.
The advantage is that now Algorithm 5 can be used without modifications,
because the separators guarantee that there is no right-maximal substring
that spans the separator into two strings. The disadvantage is that this
requires some extra effort depending on the application to avoid reporting
suffixes which start inside a separator sequence.

Chapter 5

Clustering metagenomic read sets

Finding groups of reads in a metagenomic sample which originate from the
same species is called metagenome clustering. The task is closely related to
metagenome assembly, which is the problem of reconstructing the prevalent
genomes found in a metagenomic sample. Metagenomic clustering is a relax-
ation of the problem of assembly, where we are only interested if two reads
originate from the same genome, but not in the order the reads appear in
the genome.

Clustering algorithms are commonly classified into supervised and un-
supervised algorithms. Supervised algorithms use some reference database
describing the ground truth to aid in clustering, whereas unsupervised meth-
ods run without a need for external data. The algorithm described in this
thesis is unsupervised. While unsupervised algorithms tend to be less accu-
rate than supervised algorithms, a major problem with supervised methods
is that the reference databases are incomplete, because most of the bacterial
species are difficult to culture. [2] Therefore, unsupervised de novo methods
which do not rely on outside information are needed. Unsupervised methods
can work on datasets which are wildly different from the reference databases,
and can discover new species.

Clustering of metagenomic reads has numerous applications. For exam-
ple, the clusters can be used to estimate the number of species in a sample.
The advantage of using clustering over assembly is that clustering is cheaper
to run, because we do not have to spend time aligning and resolving conflicts.
Assembly can to be slow and demand lots of memory [46].

The problem of metagenome assembly can be solved by reducing the prob-
lem of assembling a metagenome to the problem of assembling the individual
clusters produced by a clustering algorithm. Single genome assembly has al-
ready been studied extensively in the literature, and there exists a multitude
of tools for it [46].

38

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 39

Unsupervised clustering could also be helpful for annotating unknown
reads. There exist regions in genomes which are highly preserved, but which
differ between species. These sparse regions are called barcode sequences. If
a cluster contains even a single barcode sequence, then the whole cluster can
be annotated accordingly [35].

5.1 Challenges

The problem of clustering by species is ill-defined, because as we saw in
Chapter 2, there is no exact definition of what constitutes a species based on
DNA alone. Therefore any clustering algorithm can only approximate the
official consensus taxonomy defined by biologists. Acknowledging this, there
are good heuristics for the problem based on long shared k-mers and short
k-mer distributions.

Imperfections of sequencing technologies create another set of problems.
Various types of sequencing errors introduce noise into the reads. To deal
with this, we detect and disregard reads which seem to contain many errors.
Present technologies can also produce chimeric reads, which are formed by
the concatenation of reads from multiple species. However, this is a relatively
rare phenomenon [cite], so we make the simplifying assumption that a read
can only originate from one species.

5.2 Existing tools

Numerous tools for the clustering problem have been proposed in the liter-
ature. We will present a brief survey of the most important unsupervised
tools in the literature.

TETRA [35, 36] (2004) is one of the first algorithms dedicated to clustering
metagenomes in the literature. The algorithm computes the distribution of
tetranucliotides, i.e. 4-mers, for all input sequences. A k-mer is considered
equal to its reverse complement. The choice of using precisely 4-mers instead
of any other length k-mers is rationalized by arguing that shorter k-mers do
not provide a strong enough phylogenetic signal, while the discriminatory
power of distributions longer of k-mers is unclear. From the 4-mer vectors,
the tool computes a vector of z-values for each input sequence measuring the
statistical under- or over representation of each 4-mer in each input sequence.
All z-value vectors are then compared pairwise using the Pearson correlation
coefficient as the distance measure.

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 40

The method is only suitable for long sequences in the range of 40 thousand
base pairs, because the phylogenetic signal carried by the 4-mer distribution
is faint. It is also not suitable for large sets of input sequences, because it
compares all pair of sequences pairwise, implying a quadratic running time
with respect to the number of sequences.

CompostBin [6] (2008) is based on the euclidean distance on a low-dimensional
projection of the space of k-mer distributions. This tool first finds the 6-mer
distribution vector of every read in the read set. Since the number of di-
mensions 46 is very large, the vectors are projected into a three dimensional
space using an abundance-weighted variant of principal component analysis.
A nearest neighbor graph is then constructed such that every read has an
edge to its six nearest neighbors in the three-dimensional feature space. The
edges are weighted inverse exponentially with respect to the euclidean dis-
tance of the pair of feature vectors. Finally the clusters are iteratively cut
into two pieces trying to maximize the weight of the edges crossing the cut,
and minimize the sum of weights within each half of the cut, until the de-
sired number of clusters is reached. Like all k-mer composition vector based
methods, this tool is only shown to work for long reads of length 1000 base
pairs.

LikelyBin [20] (2009) tries to simulaneously estimate the underlying k-mer
distributions and the mixing ratios of the species in the read set using the
heavy weight machinery of the Metropolis-Hastings Markov chain Monte
Carlo algorithm.

The quality of the clustering starts to degrade when the read length de-
creases under 400 base pairs. The authors claim the quality, run time and
memory to be on par with CompostBin. The time and space complexity of
LikelyBin scales linearly with respect to the number of reads and number
of species, but exponentially with respect to the k-mer length used. The
authors write that values of k over 5 are infeasible to use.

SCIMM [19] (2010) models each species with an interpolated Markov model
(IMM). An interpolated Markov model is a combination of multiple Markov
models with varying degrees. The probability of a sequence given an IMM
is computed as a weighted average of the probabilities of the constituent
models. The algorithm alternates between two phases. In the first phase,
the sequences are assigned to the most likely IMM, and in the second phase
the parameters of the IMMs are re-computed to best match assignment in
the second phase. These two steps are alternated until convergence.

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 41

The method is shown to work well for environments with ten or fewer
species. The number of clusters k must be chosen by the user. Higher values
of k will split dominant species into multiple clusters. However, the method
does not work well for shorter reads, such as 100 base pairs, making it un-
suitable for some high throughput sequencing platforms (see Table 2.1).

AbundanceBin [43] (2011) makes the assumption that two reads with long
k-mers of similar frequency over the whole sample likely originate from the
same species. The k-mers that occur only once are disregarded as they likely
contain a sequencing error or come from a rare species. The algorithm clus-
ters the k-mers using an expectation maximization algorithm, simultaneously
optimizing the genome lengths and abundance ratios to best explain the data.
When the expectation maximization has converged, each read is assigned to
the k-mer cluster that has the highest probability of having generated the
read under their model.

The authors show that their tool works even for very short reads down to
75 base pairs in length. They run the algorithm on simulated samples con-
sisting of two species with varying abundance ratios, and conclude that the
tool only works well if the abundance ratio of the two species is 2:1 or higher.
They also show that the classification is better the higher the parameter k,
and settle for a value of k = 20 in their experiments.

MetaCluster [23, 39, 40, 44, 45] (2010-2012) is a mature tool, which has
been published five times with gradual improvements each time. It combines
two insights. First, the observation that long k-mers are most likely contained
in only one species in the sample and second, the short k-mer distribution
of long segments (over 1000 base pairs) of a genome identify the genome. It
solves the problem of the high dimensionality of the short k-mer composition
vectors compared to read length by grouping reads into initial clusters on the
grounds of long shared k-mers, and then running a variant of K-means on
the short k-mer composition vectors of the initial clusters. The authors show
that the tool can also find low abundance species by a two-round approach,
where the most abundant species are identified first, and the same algorithm
is then ran again on the remaining reads with slightly different parameters
to identity rares species.

MBBC [38] (2015) is the latest tool for the problem. It combines k-mer
abundance information much like AbundanceBin and Markov models much
like SCIMM. The algorithm consists of two phases. First, an initial clus-
tering is constructed using an expectation maximization utilizing the k-mer
abundance information. Then in the second phase the clusters are refined by

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 42

constructing a Markov model out of the reads in each cluster, and iteratively
reassigning reads to the most likely Markov model and retraining the models.

The authors show that their tools performs better than AbundanceBin
and MetaCluster, but admit that the comparison might not have been to-
tally fair, because they did not spend time choosing the parameters for the
competing tools, and used the default parameters instead.

Summary. A variety of statistical methods have been successfully applied
to the problem. However, none of the tools use sophisticated enough data
structures to mention in the papers, which hints that there could be room for
improvement in time and space complexity of the implementation. The paper
of LikelyBin seem to be the only one which even mentions the algorithmic
time and memory complexity of the implementation.

Technical performance, especially memory consumption, is a real issue in
practice, since metagenomic datasets can be large. For example at the time
of writing, the MG-Rast server [30] hosts 2450 projects of size larger than 109

base pairs and 90 projects of size larger than 1010 base pairs. For a dataset
with n = 1010 base pairs, merely storing n 32-bit pointers to the data will
already take 40 gigabytes of memory, which is far beyond the capacity of a
typical desktop computer at the time of writing. Pointerless data structures
which take O(n log σ) bits of space instead of O(n log σ) have a significant
advantage in these datasets, as σ is only four in DNA. Taking for example
n = 1010, we have log n ≈ 33 and log σ = 2, a factor of 15 improvement.

The pipeline of MetaCluster is the best suited for the bidirectional BWT
index described in this thesis. The other tools are more geared towards
statistical estimation using counts of k-mers. While we might be able to
implement most of the tools using our framework, MetaCluster stands out
as the most interesting from a string algorithms and data structures point of
view. Metacluster is also the most mature of the tools, having been published
five times with incremental improvements. Therefore, in this work we focus
on the pipeline of MetaCluster.

5.3 MetaCluster

We shall now describe the pipeline of MetaCluster in more detail. The
pipeline starts with filtering reads which originate from a low-abundance
species. This is detected by counting the frequencies of each k1-mer in a read
over the whole set of reads. It is implicit in all MetaCluster papers, that a
k-mer is considered equivalent to its reverse complemented pair. If a read
does not contain a k1-mer of frequency τ1 for some choice of threshold τ1,

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 43

Filter reads

Form preclusters

K-means on preclusters

Figure 5.1: The pipeline of MetaCluster

then we discard the read. MetaCluster uses the value k1 = 16 based on the
data analysis in [12], and takes τ1 as a user specified parameter. The Meta-
Cluster 5 paper provides a way to calculate τ1 to filter away all reads from all
species with sequencing depth less than d given k1, the average read length,

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 44

the average genome length, the error rate, and the tolerated probability of a
mistake.

Figure 5.2 shows the distribution of the frequency of the most common
16-mer in a read set from a real human gut metagenome sequencing project
[31]. The distribution is visibly bimodal. The interpretation is that the
reads that contribute to the left peak come from a rare species, or possibly
contain many errors, whereas the reads in the right peak correspond to reads
from species with high abundance and few errors. Visually it seems from
the figure that the threshold of τ1 = 10 would be the best to separate the
two components. Determining this local minimum algorithmically would be
possible, but it is not totally clear if the distribution has this bimodal shape
for all datasets. The probabilistic estimation of τ1 to filter away reads with a
sequencing depth of less than 10 with a probability of 80% in the Metacluster
5 paper gives τ1 = 4, which is reasonable, although a bit low on the basis of
figure 5.2. However improving the estimation of this parameter is outside of
the scope of this thesis.

The next step in the pipeline is to form preclusters of reads that come
from the same species with a very high probability. MetaCluster decides
that two reads come from the same species if they share a k2-mer of length
at least 36. The preclusters containing two such reads are merged if the
probability of a false positive merge does not exceed a user-defined threshold
value. The parameter k2 = 36 was chosen by probabilistically estimating the
threshold at which two reads sampled in a nearby region of a genome are
merged together in the same precluster with 99% accuracy.

Figure 5.3 shows experimental evidence that the choice of k2 = 36 is
reasonable. The Figure shows the distribution of the length of the average
match over all starting positions from a reference genome of Escherichia coli
to a reference genome of a species in the genus of Acidovorax from the NCBI
databse [33]. These two genomes are far apart in the tree of life, which means
that their evolutionary lines have diverged far away in the past, which in turn
means that their genomes should have little similarity. The Figure shows that
there are next to no matches of length 36 between the species. The lengths
of both genomes are approximately 5 million base pairs, which means that
the average match length would be log4(5 · 106) = 11.1 if the strings were
random. The peak of the histogram coincides with this value, which implies
that most of the matches can be attributed to chance alone.

Finally, MetaCluster clusters the pre-clusters using a variant of the K-
means algorithm using the Spearman footrule (Definition 5.3.1) on short
k3-mer distributions of the preclusters as a distance measure. The clusters
produced by the K-means algorithm are further refined by joining two clusters
if the Spearman footrule average distance between clusters is sufficiently low.

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 45

0 10 20 30 40
0

0.05

0.1

0.15

0.2

Number of occurrences of the most common kmer in read

F
re

q
u

e
n
c
y

Figure 5.2

The value k3 = 5 is chosen to keep the dimensionality of the distributions
reasonable. Figure 5.1 shows a summary of the pipeline. The whole pipeline
can be ran again on the reads that did not pass the filtering with slightly
different parameters k1, τ1 and k2 to attempt to cluster reads with lower
abundances.

Definition 5.3.1. Spearman footrule. Let A and B be arrays of length n.
Build arrays A′ and B′ such that A′[i] is the number of positions j such that
A[j] < A[i], or A[j] = A[i] and j < i, and similarly for B′. Let fA′(i) and
fB′(i) be functions that return the index of value i in A′ and B′, respectively.
The Spearman footrule distance between A and B is then

∑n
i=1 |fA′(i) −

fB′(i)|.

The algorithmically challenging parts of the pipeline are the filtering and
the precluster building, as these require searching for k-mers over the whole

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 46

0 10 20 30 40 50 60 70 80 90
Repeat length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq
ue
nc
y

Matching statistics distribution from Escherichia coli 042 to Acidovorax sp. JS42

Figure 5.3

read set. The K-means phase involves only finding all k-mers locally within
a precluster, which can be easily done without sophisticated pointerless data
structures, because preclusters can be processed independently of each other
and the sizes of the preclusters are small in practice. In this work we focus on
the problems of filtering and precluster building. We now formalize the two
problems in the language of string algorithms. First, the filtering problem:

The filtering problem: Given a set of strings R, find all strings s ∈ R
such that s contains a k-mer α such that the combined number of occur-
rences of α and α̃ in R is at least τ . In the case where α = α̃, we do not
double count the occurrences.

Next, we formulate the precluster problem without including the probabilis-
tic reasoning in MetaCluster about not merging too large preclusters if the
probability of a false positive merge is too high. The reason for this is to
be able to formulate a cleaner, purely string-algorithmic problem. Given a

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 47

solution to the string algorithmic problem, incorporating the probabilistic
reasoning into the solution is not difficult.

The precluster problem: Given a set of strings R, partition R into equiv-
alence classes such that two strings s1, s2 ∈ R are in the same class if and
only if there is a k-mer α such that α or α̃ is a substring of s1 and α or α̃ is
a substring of s2 .

5.4 Solving the filtering problem with the bidi-

rectional index

The goal is to remove all reads from the read set that do not contain a k1-
mer that appears in at least τ1 times in the read set. The index we use is a
bidirectional BWT index built for the concatenation of all reads where the
reads are delimited with a special unique separator character outside of the
alphabet of the read set.

The first step is to find and compute the lexicographic intervals of all RC
right-maximal (see section 4.5.1) k-mers. We will fill these intervals with ones
in a bit vector B of length equal to the length of the BWT. The intervals can
be marked by extending the iteration framework in Algorithm 6. In addition
to the four interval pairs, we also store the string length of the substrings
corresponding to the intervals in the stack.

Suppose we take the stack frame corresponding to a k1-mer α from the
stack. The number of occurrences of α and α̃ combined in equal to the
size of the union of the intervals [i→α , j

→
α] and [i→α̃ , j

→
α̃]. Since intervals of

distinct k-mers do not overlap, this is equal to (j→α − i→α + 1) + (j→α̃ − i→α̃ + 1)
unless α = α̃, in which case the intervals are equal, and the combined size
is just (j→α − i→α + 1). If the combined size is greater than τ1, we fill both
intervals with ones in B. After all k-mer have been iterated, we walk the
concatenation of reads backwards while maintaining the lexicographic rank
of the suffix starting from the current position using the technique described
in section 4.5.4. Whenever the lexicographical rank of the current suffix is
marked in B, we flag the current read to be kept, and output the read once
we reach the start of the read.

It may not be immediately clear why it is enough to only consider the RC
right-maximal k1-mers. We will now argue the correctness of the algorithm
using a short Lemma.

Lemma 3. A read contains a k1-mer α such that the combined frequency of
α and α̃ is at least τ1 if and only if the read contains a RC right-maximal

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 48

k1-mer β such that the combined frequency of β and β̃ is at least τ1.

Proof. (⇒) Suppose a read r has a k1-mer α such that α and α̃ have at least
τ occurrences combined. Extend the α to the right until it is not RC right-
maximal anymore. The number of occurrences remains the same after doing
this. Then contract the substring from the left until it has length k1 again.
The number of occurrences can only increase while doing this, and the final
substring β remains RC right-maximal and by construction r contains β.
(⇐) Trivial, as a RC right-maximal k1-mer is a special case of a k1-mer.

Lemma 3 says that if a read should be kept, then it has a RC right-maximal
k1-mer of combined frequency τ1, and on the other hand, if it should not be
kept, then there is no such k1-mer, and therefore we need to only consider
the RC right-maximal subset of k1-mers for the purpose of filtering.

The total space needed by the algorithm is equal to the size of the bidi-
rectional index and the bit vector B combined. The number bits needed is
therefore 2|S| log σ + |S| + o(|S| log σ), where the first term comes from the
two Burrows-Wheeler transforms, the second term comes from the bit vector
B and the last term comes from the rank support structures (wavelet trees)
of the Burrows-Wheeler transforms.

5.5 Solving the precluster problem with the

bidirectional index

Now we show how to solve the precluster problem using the bidirectional
index built for the concatenation of the read set. We define that the rank of
a read is the number of reads that come before it in the concatenation, plus
one to make the ranks start from one. We solve the problem in two phases.
First, we compute the equivalence classes of the relation where two reads are
related if and only if there is a k2-mer that is contained in both reads. Next
we will merge all equivalence classes C1 and C2 such that there is a k2-mer
α such that α is contained in some read in C1, and α̃ is contained in some
read in C2.

To implement the merging operations, we use a Union-Find data structure
(see section 3.7) as a black box with operations find(r) which gives a handle
to the class containing the read r, union(C1, C2), which merges the classes
C1 and C2 and and size(C), which gives the size of the class C. We initialize
the structure such that every read is in a separate equivalence class initially.

In the first step, we iterate and mark the start and end points of the
lexicographic intervals of all right-maximal k2-mers in a bit vector B of length

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 49

equal to the size of the BWT using Algorithm 5. We index B for rank-queries
(see section 3.4) so that we can check whether an index i is inside a marked
interval by checking whether B[i] = 1 or the rankB(i) is odd. Each marked
interval is associated with the set of reads at the start points of the suffixes
in the interval. For each marked interval we store the class handle of one
of these reads. The handles are stored in an array H of length equal to
the number of marked intervals such that if position i is inside a marked
interval in B, the class handle corresponding to the interval can be found at
H[rankB(d i

2
e)]. We initialize the array H with null values.

After initializingH, we walk the concatenation backwards while maintain-
ing the lexicographic rank i→ of the suffix starting from the current position
and the rank r of the read containing the suffix using the backward step of
the forward BWT. At each step, we check whether the current lexicographic
rank i→ is in a marked interval in B. If so, let ` = rankB(d i→

2
e) be the index

of the class handle corresponding to the interval containing i→ in H. If H[`]
is null, we set H[`] = find(r), else we execute union(H[`], find(r)).

After this is done, we merge all classes C1, C2 that share a reverse comple-
mented k2-mer. At this point we free the bit vector B and the array H from
memory and initialize another bit vector B2 of length equal to the length of
the BWT with zeroes. We iterate all RC right-maximal k-mers using algo-
rithm 6 and at each such k-mer α, if the interval [i→α̃ , j

→
α̃] is non empty, we

know we should merge the class of the interval [i→α , j
→
α] with the class of the

interval [i→α̃ , j
→
α̃]. However we can not do it yet, because we do not know the

corresponding cluster handles, so pick arbitrary positions i ∈ [i→α , j
→
α] and

j ∈ [i→α̃ , j
→
α̃], mark B2[i] = 1 and B2[j] = 1 and write the pair of positions

i, j to disk for future reference. When finished, we index B2 for rank queries.
Finally after all RC right-maximal k-mers have been iterated, we find the

read ranks corresponding to all marked positions in B2 by backward stepping
through the BWT. We can store these in an array H2 of length equal to the
number of marks in B2 such that H2[i] contains the read rank of the marked
position with rank i in B2. Then we proceed to stream the position pairs
previously written to disk. For each pair i, j, we look up the read ranks
ri and rj from H2[rankB2(i)] and H2[rankB2(j)], respectively, and execute
the command union(find(ri), find(rj)). After all is done, the classes in the
union-find structure are exactly the desired equivalence classes.

In practice, MetaCluster sets a maximum size threshold for the sizes of the
preclusters, because the probability of a false-positive merge due to shared
long k2-mers in distinct species increases quickly as the sizes of the equiv-
alence classes to be merged increases. This can be implemented by simply
querying the sizes of the equivalence classes to be merged, and skipping the
merge operation if the sum of the sizes is above a specified threshold.

CHAPTER 5. CLUSTERING METAGENOMIC READ SETS 50

In summary, the algorithm requires the bidirectional index, the union-
find structure and the auxiliary data arrays B,B2, H and H2. However only
a subset of the arrays is stored in memory at any given time. Figure 5.4
shows an overview of the structures stored in memory over time, and the
space complexities of each of the structures. The line next to each structure
represents the time period the structure is held in memory. The symbols λ
and λrc denote the number of right-maximal and RC right-maximal k2-mers
in |S|, and the symbol R denotes the number of reads. The sublinear terms
in the time complexities come from the rank support structures, and the
2R logR space complexity of the union find structure comes from the fact
that for each read we need to store a pointer to its parent in the structure,
and the size of the subtree attached to it to maintain the balance of the
trees. The peak of the memory usage occurs the latter half of the algorithm,
at which we need a total of 2|S| log σ + (2R + λrc) logR + |S| + o(|S| log σ)
bits of space. In practice for real datasets, our experiments suggested that
this is usually less than 16|S|, i.e. two bytes per character.

Bidirectional index

Union-find

B

H

B2

H2

2|S| log σ + o(|S| log σ)

2R logR

|S|+ o(|S|)
λ logR

|S|+ o(|S|)
λrc logR

Time

Space complexityData structure

Figure 5.4: Overview of the data structures used during the preclustering
algorithm.

Chapter 6

Implementation

The bidirectional index was implemented in C++ using the succinct data
structures library by Simon Gog et al. [13]. The implementation is avail-
able at https://github.com/jnalanko/BD BWT index. The interface of the
index along with the associated time complexities are shown in Table 6.1.

Operation Input Output Time Complexity
Extend left Interval pair of a substring α Interval pair of the substring cα O(σ log σ)

and a symbol c ∈ Σ
Extend right Interval pair of a substring α Interval pair of the substring αc O(σ log σ)

and a symbol c ∈ Σ
Right maximality Interval pair of a substring α Boolean value whether α is right-maximal O(σ log σ)
Left maximality Interval pair of a substring α Boolean value whether α is left-maximal O(σ log σ)
Backward step Lexicographic rank r Lexicographic rank of S[(SA[r]− 1)..|S|] O(log σ)

Table 6.1: Supported operations

A complete clustering pipeline including filtering, preclustering and K-means
in available at https://github.com/jnalanko/bwtCluster. The imple-
mentation goes by the name bwtCluster. The pipeline was implemented
with support for multithreaded processing using the threading support in
the C++11 standard library.

Before building the BWTs, the read set is sorted. The reads are con-
catenated and a dollar character is placed in between each read, and at the
start and the end of the whole concatenation. This gives the concatenation
the useful property that the suffix starting at the dollar preceding the i-th
read in the concatenation has lexicographic rank i + 1, and the last dollar
has lexicographic rank 1. The ropebwt library [24] was used for the parallel
construction of the Burrows-Wheeler transforms.

The BWT inversion (Algorithm 2) was straightforward to modify for
parallel processing. Given T threads, we simply divide the text into T parts
of approximately equal size, and backward step through each part in parallel.

51

CHAPTER 6. IMPLEMENTATION 52

If there are m dollars in the text, we set the i-th thread to start at the dollar
with rank bm/T ci, and end where the previous thread starts. Because of
the sorting of the read set, we know the lexicographic ranks of the dollars
needed to start the threads. The parts are completely independent, so no
synchronization primitives are needed.

The suffix link traversal (Algorithm 5) based algorithms were more chal-
lenging to parallelize. We assign a disjoint subtree of the suffix link tree for
each thread. The problem with this is that the subtrees might not be of equal
size. To address this issue, we have a simple mechanism to balance work be-
tween threads. Whenever a thread has finished processing its subtree, it sets
a flag to indicate it has run out of work. At every iteration, every thread
checks this flag, and if it is set, it gives the stack frame at the bottom of its
iteration stack to the new thread, which will then start iterating the subtree
attached to that stack frame. This results in some synchronization overhead,
but in practice the suffix link tree traversal takes only a small fraction of
the total running time of the pipeline, so we chose not to spend time on
implementing more sophisticated synchronization mechanisms.

Our pipeline does not exactly replicate the pipeline of MetaCluster. For
instance, our pipeline does not allow mismatches in reads, while MetaCluster
allows one mismatch, and our tool does not try to estimate the number
of clusters in K-means and instead takes the number of clusters as a user
specified parameter. Replicating MetaCluster completely turned out to be
difficult, because what is actually implemented in MetaCluster is a mixture
of the methods presented in the MetaCluster papers [23, 39, 40, 44, 45], and
finding out the details directly from the source code seemed difficult and time
consuming. We chose not to spend too much time on this, because the focus
of the thesis is not to replicate MetaCluster down to the details. A proper
comparison to MetaCluster is deferred to an upcoming scientific publication
on the project.

6.1 Correctness

The correctness of our tool was tested on low complexity simulated data. We
ran three experiments, each on a different level of taxonomy. All test datasets
contain exactly two species, with tenfold coverage with paired end reads of
length 100 base pairs and no errors. The first dataset contains the species
Vibrio cholerae and Vibrio vulnificus, both from the genus Vibrio. We call
this the species level dataset. The second dataset contains Vibrio cholerae
and Photobacterium gaetbulicola, both from the family Vibrionaceae, but
different genuses. This is called the genus level dataset. The third dataset

CHAPTER 6. IMPLEMENTATION 53

contains Vibrio cholerae and Escherichia coli, both from the class Gammapro-
teobacteria, but different families. This is called the family level dataset. The
source genomes were taken from the NCBI databse. We used the same same
parameters as MetaCluster, namely k = 16, τ = 4 for filtering, k = 36 for
preclustering and k = 4 for K-means. The number of clusters in K-means
was set to 2, as our tool can not estimate the number of clusters by itself.

For each dataset, we measured the average purity of the preclusters, and
the final clusters. The purity of a cluster containing n1 reads from one
species of the dataset and n2 reads from the other species is defined to be
max(n1, n2)/(n1 + n2), so a perfect cluster has purity 1, and a completely
mixed cluster purity 0.5. Each experiment was ran 10 times and the average
results were computed. The results are listed in Table 6.2. It is shown that
the preclusters are good quality on all tested levels of taxonomy, but the
final clusters are reasonable only starting at the genus level. We tried to
run the same test cases with MetaCluster, but the program fails and prints
an error message saying that the number of preclusters is too small because
the coverage is too low. We were only able to run MetaCluster successfully
on the datasets used in the MetaCluster papers, but for those we do not
know the true species of the reads, so they could not be used to assess the
correctness of the clusters.

Dataset Precluster purity Final cluster purity
Species level 0.97197 0.63395
Genus level 0.99951 0.94117
Family level 0.99395 0.98287

Table 6.2: Results of low complexity data

6.2 Performance

The peak memory and running time of our tool was compared to MetaCluster
and MBBC. The experiments were conducted on A machine with 32GB of
RAM and two Intel Xeon E5540 2.53GHz CPUs with 4 cores each. Figure
6.4 shows the memory usage of both MetaCluster and bwtCluster plotted as
a function of time on a sample from a human gut sequencing project [31]
(sample id ERR011087), which is one of the benchmark datasets used in the
paper presenting MetaCluster 5.0 [40]. The memory usage was measured at
intervals of 100 milliseconds using the resident memory size reported by the
Unix ps command. Our implementation was 10 times faster and used 10

CHAPTER 6. IMPLEMENTATION 54

times less memory at peak. However, here it is important to keep in mind
the fact that our algorithm does not do everything that MetaCluster does,
as explained in the introduction of this chapter.

A similar comparison was conducted against the MBBC software. The
test dataset was an example dataset provided by the MBBC package. The
memory consumption as a function of time is shown in Figure 6.5. Our
implementation was over 5 times faster, and uses 50 times less space.

The parallelization of the key algorithmic components, i.e. the BWT
inversion and the suffix link traversal with and without reverse complements
were benchmarked on a machine with two Intel Xeon E5-2420 CPUs, each
with 6 cores running at 1.90GHz and 124GiB of DDR3 RAM clocked at
1333 MHz. The machine can run 24 parallel threads with hyperthreading.
A 42MB freshwater sample from MG-Rast was chosen as the test dataset,
because its moderate size allows running the algorithms multiple times to
even out the variance in the running time. Figure 6.3 shows the time and
the speedup factor over a single thread as the function of number of threads
used for the BWT inversion. Figures 6.2 and 6.1 show the same plots for a full
traversal of the suffix link tree without reverse complements (Algorithm 5)
and with reverse complements (Algorithm 6), respectively. As expected, we
see that the BWT inversion parallelizes much better than the suffix link tree
traversal. The best running time for inversion is achieved with 24 threads,
which is exactly the number of parallel threads our benchmarking machine
is able to run with hyperthreading. However, the speedup is only 14-fold,
even though in theory it could be up to 24-fold. This is most likely due to
low level hardware details.

The performance for the suffix link tree traversal however saturates at 5
threads already. This is because there is now synchronization between the
threads. It is interesting to note that when the number of threads is increased
over 12, which is the number of cores in the machine, the performance starts
to degrade, stabilizing at around 18 threads. It seems that the gains from
hyperthreading are overshadowed by the overhead of context switching. The
performance for the reverse complement enhanced traversal is slightly bet-
ter, because the backward step operation is heavier, which means a smaller
portion of the time is spent dealing with the synchronized parts of the code.

CHAPTER 6. IMPLEMENTATION 55

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of threads
10000

20000

30000

40000

50000

60000

70000

80000

90000

M
illi

se
co

nd
s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of threads
0

1

2

3

4

5

6

Sp
ee

du
p

fa
ct

or
 o

ve
r s

in
gl

e
th

re
ad

ed

Figure 6.1: Full suffix tree traversal with reverse complements

CHAPTER 6. IMPLEMENTATION 56

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of threads
5000

10000

15000

20000

25000

30000

35000

40000

45000

M
illi

se
co

nd
s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of threads
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

fa
ct

or
 o

ve
r s

in
gl

e
th

re
ad

ed

Figure 6.2: Full suffix tree traversal without reverse complements

CHAPTER 6. IMPLEMENTATION 57

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of threads
0

1000

2000

3000

4000

5000

6000

M
illi

se
co

nd
s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of threads
0

2

4

6

8

10

12

14

16

Sp
ee

du
p

fa
ct

or
 o

ve
r s

in
gl

e
th

re
ad

ed

Figure 6.3: BWT inversion

CHAPTER 6. IMPLEMENTATION 58

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time (hours)

M
e
m

o
ry

 (
g
ig

a
b
y
te

s
)

Human gut metagenome with 390 million base pairs

BWT cluster

Metacluster

Figure 6.4: MetaCluster vs BWTcluster

CHAPTER 6. IMPLEMENTATION 59

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

4

time (seconds)

M
e
m

o
ry

 (
g
ig

a
b

y
te

s
)

MBBC example dataset

BWT cluster

MBBC

Figure 6.5: MBBC vs metacluster

Chapter 7

Conclusion

The purpose of the thesis was to apply recent research on Burrows-Wheeler
type indices in the field of metagenomics. The pipeline of the clustering
tool MetaCluster was determined to be suitable to implement on top of the
bidirectional Burrows-Wheeler index. A new theoretical concept, reverse
complement right-maximality, was introduced. The filtering and the cluster-
ing problem in MetaCluster were solved using the bidirectional index with
the notion of RC right-maximality. The algorithms were implemented with
support for parallel processing using C++ on top of the SDSL library. Ex-
periments showed that our implementation performs better in both time and
space consumption in practice. Preliminary experiments suggest that the
quality of the clustering is good for samples with two species and no errors,
given the species are from a different genus. Unfortunately, a proper com-
parison in the quality versus MetaCluster could not be conducted because of
problems running the MetaCluster software.

The work was presented in September 2015 in London in the workshop
on compression, text and algorithms (WCTA), organized in conjunction with
the 22nd edition of the International Symposium on String Processing and
Information Retrieval (SPIRE).

Many theoretical and practical questions were left unanswered. Perhaps
most important of all on the theory side, the question whether the algorithms
presented can be modified for efficient approximate matching, such that two
substrings are considered a match if they differ only in a limited number of
positions. There is a folklore trick to tolerate one mismatch, but tolerating
multiple mismatches is difficult. The need to also take into account reverse
complemented repeats further complicates the problem. The observation to
tolerate one mismatch is that the mismatch could be in the first half of the
string, or in the second half of the string but not both. To find all matches
of a substring α tolerating one mismatch, one can find the lexicographic

60

CHAPTER 7. CONCLUSION 61

interval of all exact matches of the first half of α, and from there explore
all the right halves of α, allowing branching on one mismatch, and then do
the same in the reverse direction, matching the second half of α exactly and
allowing one mismatch in the first half. This has a chance to be effective in
practice, because if α is long, the number of exact occurrences of the first
and the second half of α is often small, and therefore the branching caused
by allowing the mismatch is manageable. Implementing a mismatch-tolerant
pipeline would make our tool better comparable to MetaCluster. Further
research could be done on how to tolerate a limited number of insertions or
deletions between strings, an adapt those algorithms to take into account
reverse complement matches.

On the more practical side of things, the evaluation of the purity of the
clusters of our tool could be done in greater depth. Interesting experiments
to run include finding out how the tool works when errors are introduced,
the number of species is increased and the abundance ratios of the species is
varied. The results could be then compared to those of the state-of-the-art
tools. It would also be interesting to run the clustering on real metage-
nomic samples, and try get a new biological insight on the structure of an
environment.

Another direction would be to try to apply the clustering to compress read
sets. A cluster could be encoded by building a single reference genome for
the cluster, and representing the reads as pointers to this reference genome,
encoding the mismatches separately. The idea exists in the literature [16],
but it has not been explored in depth. For this however we would need to
implement the heuristics of MetaCluster to estimate the number of clusters
for the final K-means phase.

Bibliography

[1] AllSeq knowledge bank. http://allseq.com/knowledgebank/

sequencing-platforms/pacific-biosciences. Accessed: 10.9. 2015.

[2] Amann, R. I., Ludwig, W., and Schleifer, K.-H. Phylogenetic
identification and in situ detection of individual microbial cells without
cultivation. Microbiological reviews 59, 1 (1995), 143–169.

[3] Belazzougui, D. Linear time construction of compressed text indices
in compact space. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing (2014), ACM, pp. 148–193.

[4] Belazzougui, D., Cunial, F., Kärkkäinen, J., and Mäkinen,
V. Versatile succinct representations of the bidirectional burrows-
wheeler transform. In Algorithms–ESA 2013. Springer, 2013, pp. 133–
144.

[5] Burrows, M., and Wheeler, D. J. A block-sorting lossless data
compression algorithm. Technical Report 124 Palo Alto, CA: Digital
Equipment Corporation (1994).

[6] Chatterji, S., Yamazaki, I., Bai, Z., and Eisen, J. A. Com-
postbin: A dna composition-based algorithm for binning environmental
shotgun reads. In Research in Computational Molecular Biology (2008),
Springer, pp. 17–28.

[7] Clark, D. Compact Pat Trees. PhD thesis, University of Waterloo,
1998.

[8] Cormen, T. H. Introduction to algorithms. MIT press, 2009.

[9] Federhen, S. The ncbi taxonomy database. Nucleic acids research
40, D1 (2012), D136–D143.

62

http://allseq.com/knowledgebank/sequencing-platforms/pacific-biosciences
http://allseq.com/knowledgebank/sequencing-platforms/pacific-biosciences

BIBLIOGRAPHY 63

[10] Ferragina, P., and Manzini, G. Opportunistic data structures with
applications. In Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on (2000), IEEE, pp. 390–398.

[11] Ferragina, P., and Manzini, G. Indexing compressed text. Journal
of the ACM (JACM) 52, 4 (2005), 552–581.

[12] Fofanov, Y., Luo, Y., Katili, C., Wang, J., Belosludtsev,
Y., Powdrill, T., Belapurkar, C., Fofanov, V., Li, T.-B.,
Chumakov, S., et al. How independent are the appearances of n-
mers in different genomes? Bioinformatics 20, 15 (2004), 2421–2428.

[13] Gog, S., Beller, T., Moffat, A., and Petri, M. From theory
to practice: Plug and play with succinct data structures. In 13th Inter-
national Symposium on Experimental Algorithms, (SEA 2014) (2014),
pp. 326–337.

[14] Grossi, R., and Vitter, J. S. Compressed suffix arrays and suffix
trees with applications to text indexing and string matching. SIAM
Journal on Computing 35, 2 (2005), 378–407.

[15] Gusfield, D. Algorithms on strings, trees and sequences: computer
science and computational biology. Cambridge University press, 1997.

[16] Hach, F., Numanagić, I., Alkan, C., and Sahinalp, S. C. Scalce:
boosting sequence compression algorithms using locally consistent en-
coding. Bioinformatics 28, 23 (2012), 3051–3057.

[17] Jacobson, G. J. Succinct static data structures. PhD thesis, Carnegie
Mellon University, 1988.

[18] Kärkkäinen, J., and Sanders, P. Simple linear work suffix ar-
ray construction. In Automata, Languages and Programming. Springer,
2003, pp. 943–955.

[19] Kelley, D. R., and Salzberg, S. L. Clustering metagenomic se-
quences with interpolated markov models. BMC Bioinformatics 11, 1
(2010), 544.

[20] Kislyuk, A., Bhatnagar, S., Dushoff, J., and Weitz, J. S.
Unsupervised statistical clustering of environmental shotgun sequences.
BMC Bioinformatics 10, 1 (2009), 316.

BIBLIOGRAPHY 64

[21] Ko, P., and Aluru, S. Space efficient linear time construction of suffix
arrays. In Combinatorial Pattern Matching (2003), Springer, pp. 200–
210.

[22] Lam, T. W., Li, R., Tam, A., Wong, S., Wu, E., and Yiu, S.-
M. High throughput short read alignment via bi-directional bwt. In
Bioinformatics and Biomedicine, 2009. BIBM’09. IEEE International
Conference on (2009), IEEE, pp. 31–36.

[23] Leung, H. C., Yiu, S.-M., Yang, B., Peng, Y., Wang, Y., Liu,
Z., Chen, J., Qin, J., Li, R., and Chin, F. Y. A robust and
accurate binning algorithm for metagenomic sequences with arbitrary
species abundance ratio. Bioinformatics 27, 11 (2011), 1489–1495.

[24] Li, H. Fast construction of fm-index for long sequence reads. Bioinfor-
matics (2014), 3274–3275.

[25] Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu,
L., and Law, M. Comparison of next-generation sequencing systems.
BioMed Research International 2012 (2012).

[26] Lukjancenko, O., Wassenaar, T. M., and Ussery, D. W. Com-
parison of 61 sequenced escherichia coli genomes. Microbial ecology 60,
4 (2010), 708–720.

[27] Mäkinen, V., Belazzougui, D., Cunial, F., and Tomescu, A. I.
Genome-Scale Algorithm Design. Cambridge University Press, 2015.

[28] Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K.,
Pelletier, E., Frangeul, L., Nalin, R., Jarrin, C., Chardon,
P., Marteau, P., et al. Reduced diversity of faecal microbiota in
crohn’s disease revealed by a metagenomic approach. Gut 55, 2 (2006),
205–211.

[29] Mayr, E. Systematics and the origin of species, from the viewpoint of
a zoologist. Harvard University Press, 1942.

[30] Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass,
E. M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R.,
Wilke, A., et al. The metagenomics rast server–a public resource
for the automatic phylogenetic and functional analysis of metagenomes.
BMC bioinformatics 9, 1 (2008), 386.

BIBLIOGRAPHY 65

[31] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S.,
Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada,
T., et al. A human gut microbial gene catalogue established by
metagenomic sequencing. nature 464, 7285 (2010), 59–65.

[32] Sadakane, K. Compressed suffix trees with full functionality. Theory
of Computing Systems 41, 4 (2007), 589–607.

[33] Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E.,
Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M.,
DiCuccio, M., Federhen, S., et al. Database resources of the na-
tional center for biotechnology information. Nucleic acids research 39,
suppl 1 (2011), D38–D51.

[34] Staley, J. T. Biodiversity: are microbial species threatened?: Com-
mentary. Current Opinion in Biotechnology 8, 3 (1997), 340–345.

[35] Teeling, H., Meyerdierks, A., Bauer, M., Amann, R., and
Glöckner, F. O. Application of tetranucleotide frequencies for the as-
signment of genomic fragments. Environmental microbiology 6, 9 (2004),
938–947.

[36] Teeling, H., Waldmann, J., Lombardot, T., Bauer, M., and
Glöckner, F. O. Tetra: a web-service and a stand-alone program for
the analysis and comparison of tetranucleotide usage patterns in dna
sequences. BMC bioinformatics 5, 1 (2004), 163.

[37] Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters,
K., and Swings, J. Polyphasic taxonomy, a consensus approach to
bacterial systematics. Microbiological reviews 60, 2 (1996), 407–438.

[38] Wang, Y., Hu, H., and Li, X. Mbbc: an efficient approach for
metagenomic binning based on clustering. BMC Bioinformatics 16, 1
(2015), 36.

[39] Wang, Y., Leung, H. C., Yiu, S.-M., and Chin, F. Y. Metacluster
4.0: a novel binning algorithm for ngs reads and huge number of species.
Journal of Computational Biology 19, 2 (2012), 241–249.

[40] Wang, Y., Leung, H. C., Yiu, S.-M., and Chin, F. Y. Meta-
cluster 5.0: a two-round binning approach for metagenomic data for
low-abundance species in a noisy sample. Bioinformatics 28, 18 (2012),
i356–i362.

BIBLIOGRAPHY 66

[41] Wayne, L. G., and ICSB, J. C. International committee on system-
atic bacteriology: announcement of the report of the ad hoc committee
on reconciliation of approaches to bacterial systematics. Zentralblatt für
Bakteriologie, Mikrobiologie und Hygiene. Series A: Medical Microbiol-
ogy, Infectious Diseases, Virology, Parasitology 268, 4 (1988), 433–434.

[42] Wu, S., Zhu, Z., Fu, L., Niu, B., and Li, W. Webmga: a customiz-
able web server for fast metagenomic sequence analysis. BMC genomics
12, 1 (2011), 444.

[43] Wu, Y.-W., and Ye, Y. A novel abundance-based algorithm for bin-
ning metagenomic sequences using l-tuples. Journal of Computational
Biology 18, 3 (2011), 523–534.

[44] Yang, B., Peng, Y., Leung, H., Yiu, S.-M., Qin, J., Li, R., and
Chin, F. Y. Metacluster: unsupervised binning of environmental ge-
nomic fragments and taxonomic annotation. In Proceedings of the First
ACM International Conference on Bioinformatics and Computational
Biology (2010), ACM, pp. 170–179.

[45] Yang, B., Peng, Y., Leung, H. C., Yiu, S.-M., Chen, J.-C., and
Chin, F. Y. Unsupervised binning of environmental genomic fragments
based on an error robust selection of l-mers. BMC bioinformatics 11,
Suppl 2 (2010), S5.

[46] Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., and Shen,
B. A practical comparison of de novo genome assembly software tools for
next-generation sequencing technologies. PloS one 6, 3 (2011), e17915.

	Cover page
	Notation and acronyms
	Contents
	1 Introduction
	2 Biological background
	2.1 The structure of the DNA molecule
	2.2 DNA sequencing technologies
	2.3 Taxonomy
	2.4 Metagenomics

	3 Preliminary data structures
	3.1 Model of computation
	3.2 Suffix trees
	3.3 Suffix arrays
	3.4 Bit vectors with rank and select support
	3.5 Wavelet trees
	3.6 The Burrows-Wheeler transform
	3.6.1 Inverting the BWT
	3.6.2 Searching for patterns using the Burrows-Wheeler transform
	3.6.3 The relationship with the suffix tree

	3.7 Union-find data structure

	4 The bidirectional BWT index
	4.1 Left- and right extensions
	4.2 Left- and right maximality
	4.3 Iterating all right-maximal nodes of the suffix tree
	4.4 Iterating all nodes of the suffix tree using only the forward BWT
	4.5 Applications of the bidirectional index in bioinformatics
	4.5.1 Iterating all reverse complement right-maximal substrings
	4.5.2 Finding the intervals of k-mers
	4.5.3 Marking the intervals of k-submaximal repeats
	4.5.4 Locating suffixes by sampling the suffix array
	4.5.5 Generalization to multiple strings

	5 Clustering metagenomic read sets
	5.1 Challenges
	5.2 Existing tools
	5.3 MetaCluster
	5.4 Solving the filtering problem with the bidirectional index
	5.5 Solving the precluster problem with the bidirectional index

	6 Implementation
	6.1 Correctness
	6.2 Performance

	7 Conclusion
	Bibliography

