
Maria Phan

Web Application Programming Interface Design for a Customer
Portal

Master’s Thesis

Espoo, November 21, 2015

Supervisor: Professor Eljas Soisalon-Soininen

Advisor: M.Sc. (Tech) Antti Tuomi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80718076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Maria Phan

Title:
Web Application Programming Interface Design for a Customer Portal

Date: November 21, 2015 Pages: x + 76

Minor: Software Technology Code: T-220

Supervisor: Professor Eljas Soisalon-Soininen

Advisor: M.Sc. (Tech) Antti Tuomi

Home builders in the home building industry would like to increase customer
satisfaction, by providing a self-service customer portal. In a customer portal,
all stakeholders such as home builders, homeowners and vendors can meet and
communicate and share distributed data. Customer self-service would reduce
the overhead of customer service. Direct communication through portals could
also prevent costly mistakes before they happen. Web Application Programming
Interface (Web API) could provide a framework for builders to brand their own
customer portal website.

A Web API could provide an interface where both components server and client
side could evolve independently. A good API makes it easier to develop software
and provides a building component for the application.

The purpose of this thesis is to design Web APIs for a customer portal in the home
building industry. This thesis presents a design of a Web API, which concentrates
on the architectural design of a Web API, including versioning and security. This
design provides resource APIs, with Uniform Resource Identifier (URI) versioning
and token based SHA-256 message authentication. The implementation of Web
APIs allows the home provider to customize their own customer portal according
to their own brand.

Keywords: Web API, REST, HTTP, URI, Web Architecture, CRUD,
Versioning, HMAC, Customer Portal

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Maria Phan

Työn nimi:
Web -ohjelmointirajapinnan suunnittelu asiakasportaalille

Päiväys: 21. marraskuuta 2015 Sivumäärä: x + 76

Sivuaine: Ohjelmistotekniikka Koodi: T-220

Valvoja: Professori Eljas Soisalon-Soininen

Ohjaaja: Diplomi-insinööri Antti Tuomi

Kodin rakennuttajat haluaisivat lisätä asiakastyytyväisyyttä tarjoamalla itsepal-
veluportaalia. Asiakasportaalissa kaikki sidosryhmät, kuten rakennuttajat, ko-
din omistajat ja myyjät, voivat kommunikoida suoraan keskenään ja jakaa infor-
maatiota. Itsepalvelu vähentäisi taakkaa asiakaspalvelussa. Suora kommunikointi
portaalin kautta ehkäisisi vakavat virheet etukäteen. Web-ohjelmointirajapinta
(Web API) tarjoaisi rakennuttajille välineet muokata Web-portaaliaan yhtiönsä
brändin mukaisesti.

Web API tarjoaisi rajapinnan, missä sekä asiakaspuoli että palvelinpuoli voivat
kehittyä itsenäisesti. Hyvä API-design helpottaa ohjelmiston suunnittelemista ja
tarjoaa rakennuselementin sovelluksen kehittämiselle.

Tämän diplomityön tarkoitus on suunnitella Web API -asiakasportaali kodin ra-
kennuttajille. Tässä tutkielmassa esitellään Web API -arkkitehtuuriin design, joka
sisältää versioinnin ja truvallisuuden suunnittelua. Tämä malli tarjoaa resurssi-
keskeisen Web API:n, joka käyttää URI-versiointia ja Secure Hash -algoritmiin
perustuvaa viestin autentikaatiota.

Asiasanat: Web API, REST, HTTP, URI, Web -arkkitehtuuri, CRUD,
versiointi, HMAC, asiakasportaali

Kieli: Englanti

iii

Acknowledgements

I am very grateful to CEO of Kova Finland OY Jouko Väkiparta for providing
this amazing possibility to write the thesis. I am deeply grateful to my
supervisor, Professor Eljas Soisalon-Soininen for being my supervisor and for
guidance and ideas in writing this thesis. I thank my instructor M.Sc. (Tech)
Antti Tuomi for valuable feedbacks and insights and also for the patient,
helpful, and concrete comments on my thesis draft.

I am grateful to my colleagues for making Kova Finland Oy a great place to
work. It is full of laughter and an inspirational place to learn while working.

Thank you, Hanna Hirvonen, Paula Puupponen, and Hanna Kaskela, for sup-
porting me on my thesis writing process. Thank you, Elizabeth Pekkarinen,
for helping me with the English grammar. Thank you, Heidi Pentikäinen,
for giving feedbacks for the Finnish abstract.

I would like to thank my parents Phan Si Trang and Nguyen Thi Oanh, for
being enthusiastic and creative for all new things that are shaking the world.
Thank you for being an example of never giving up or being afraid of failures.

I want to express my gratitude to four persons who has deeply influenced
me in my life with their endless wisdom and kindness. My very dear friend
who has recently passed away, Helena Viherhaka, my Vietnamese teacher,
Nguyen Kim Quyen, my awesome viola teacher, Pekka Jylhä and last but
not least, Heikki Pekkarinen, who is like a father to me.

iv

I dedicate this work to my loving and supporting husband, Tuukka Eeron-
heimo, who has been encouraging me patiently all this time. I thank my son,
Elia, for being my little firefighter.

Thank you, God, for giving me the peace and wisdom to write this thesis
and to survive this hard work. Whatever I do I want to do all things for your
glory. Yay yay yay \0/

Hämeenlinna, November 21, 2015

Maria Phan

v

Abbreviations and Acronyms

API Application Programming Interface
CRUD Create, Retrieve, Update and Delete
CST Customer Service Team
FIPS Federal Information Processing Standard
HMAC Hash-based message authentication code
HATEOAS Hypermedia as the Engine of Application State
HTTP Hypertext Transfer Protocol
IoT Internet of Things
JSON JavaScript Object Notation
MAC Message authentication code
MD5 Message Digest 5
NIST National Institute of Standards and Technology
REST Representational State Transfer
RMM REST Maturity Model
RPC Remote Procedure Calls
SHA Secure Hash Algorithm
URI Uniform Resource Identifiers
URL Uniform Resource Locator
URN Uniform Resource Name
XML Extensible Markup Language
W3C The World Wide Web Consortium
WWW World Wide Web

vi

Contents

Abbreviations and Acronyms vi

1 Introduction 1
1.1 Goals of the Thesis . 2
1.2 Structure of the Thesis . 2

2 Web Application Programming Interface 4
2.1 Web API versus a Website . 5
2.2 Web API Architecture . 5
2.3 Web API Architectural Styles 6

2.3.1 Tunneling . 7
2.3.2 Uniform Resource Identifier 7
2.3.3 Representational State Transfer 7

2.4 Web API as Web Services: REST vs SOAP 7
2.5 Summary . 10

3 Representational State Transfer (REST) 11
3.1 REST as Coined by Roy Fielding 11
3.2 Constraints of REST Architectural Style 12

3.2.1 Client-Server . 13
3.2.2 Stateless . 13
3.2.3 Cache . 14
3.2.4 Uniform Interface . 14
3.2.5 Layered System . 14
3.2.6 Code-On-Demand . 15
3.2.7 Uniform Interface Constraint for Web APIs 16

vii

Contents

3.3 Summary . 18

4 RESTful Web API 19
4.1 Building RESTful Web APIs by the REST Maturity Model

(RMM) . 19
4.1.1 Level 0: One URI and One HTTP Verb 20
4.1.2 Level 1: Unique URIs for Resources 22
4.1.3 Level 2: HTTP Verbs 24
4.1.4 Level 3: HATEOAS . 25

4.2 Summary . 28

5 Versioning 29
5.1 When Is Versioning Needed 30

5.1.1 Case 1: Adding New Fields to Representation 30
5.1.2 Case 2: Renaming or Removing Fields from Represen-

tation . 31
5.1.3 Case 3: Changing Resource Entity 31
5.1.4 Case 4: Changing URI 31
5.1.5 Case 5: Change in a program running under API . . . 32

5.2 Versioning methods . 32
5.2.1 The URI Way . 32
5.2.2 The Hypermedia Way 32

5.3 Summary . 33

6 Security 34
6.1 Authentication and Authorization 34
6.2 Token Based Authentication 35
6.3 Hash function . 36

6.3.1 SHA . 38
6.4 HMAC . 38
6.5 Unsafe and Non-idempotent POST 41

6.5.1 Data Annotations . 41
6.5.2 Under Posting . 42
6.5.3 Over Posting . 43

6.6 Summary . 44

7 Application 45
7.1 The home Building Industry in the USA 45

7.1.1 Types of Home Builders 46

viii

Contents

7.1.2 Community Life Cycle 47
7.1.3 Sales Process from Lead to Home Owner 48

7.2 Sapphire Build . 48
7.3 Customer Portal . 49

7.3.1 Different Portal Users 50

8 Design and Implementation 53
8.1 Requirements . 53

8.1.1 General . 54
8.1.2 Lead . 55
8.1.3 Prospect . 55
8.1.4 Under Contract . 55
8.1.5 Homeowner . 56

8.2 Design and Implementation 56
8.2.1 Web API Architecture Style 56
8.2.2 Versioning . 57
8.2.3 Security . 57

9 Result and Discussion 60
9.1 Evaluation and Challenges . 60

9.1.1 Architectural Style . 60
9.1.2 Versioning . 61
9.1.3 Security . 62

9.2 Future work . 63

10 Conclusions 64

A Web API Documentation and HTTP Status Codes 72
A.1 Web API Documentation . 72

A.1.1 General . 72
A.1.2 Lead . 73
A.1.3 Home Owner . 74

A.2 HTTP Status Codes . 75

ix

List of Figures

2.1 Web service without Web API, adapted from [8]. 6
2.2 Web service with Web API, adapted from [8]. 6
2.3 Distribution of APIs: REST versus SOAP, adapted from [59]. 9

3.1 Representation of resource in state transition. 12
3.2 REST derivation by style constraints, adapted from [32]. . . . 15
3.3 Customer represented in JSON text format. 17

4.1 Diagram of the Richardson’s REST Maturity Model adapted
from [37]. 20

4.2 Uniform Interface, adabated from [34] 24
4.3 Client-server request-response example. 26

6.1 A token credentials flow, adapted from [3]. 36
6.2 Hash functions based on block ciphers. 37
6.3 HMAC-SHA256 generation. 40

7.1 Housing market index [50]. 46
7.2 Sales process from Lead to Home Owner. 51
7.3 SapphireBuild and a customer portal operate from one database. 52

8.1 Token based authentication and authorization. 58

x

Chapter 1

Introduction

The use of self-service technologies is increasing across industries and there
has been a big shift in industries developing self-service web portals [64] [57].
Self-service technologies usage will continue to grow because it reduces labor
costs and increases customer satisfaction [23].

In order to increase satisfaction with customer service, home builders in the
home building industries want to provide a self-service customer portal. Via a
portal, homeowners can be in contact with any concerns 24/7 from all around
the world. Direct communication between customers and customer services
through portals may prevent costly mistakes before they happen [11]. Instead
of using a general customer portal, with Web-based application interfaces
(Web APIs) each home builder can customize and brand their own portal.

A Web API [2] would provide an interface where both components server
and client side could evolve independently. Web API is a software interface
exposed on the Web using Hyper Text Transfer Protocol (HTTP) and is used
for developing Web applications accessible via the website. Web APIs give
freedom and flexibility in customizing a Web application.

1

Chapter 1. Introduction

1.1 Goals of the Thesis

The purpose of this thesis is to provide customer portal Web APIs for home
builders, that allow the client side application to evolve independently from
the server side. The characteristics of the design of a customer portal Web
APIs are evaluated. The design of the Web APIs has three design goals.

First, in order to let both client and server side to evolve independently, the
degree of dependency between both elements should be minimized. How to
design a Web API that keeps a client and a server separate?

Second, like any software, in time Web APIs are going to evolve and change
to meet the changing needs of customers. How to provide versioning in the
evolving Web API?

And thirdly, security is an important part of a design. Web APIs provide
resource access via the interface. How to secure the access and let only
limited access to Web API resource?

1.2 Structure of the Thesis

The remaining chapters of this thesis are organized as follows:

Chapter 2 explains what Web Application Programming Interfaces (API) are
and gives a description of Web APIs for customer portal.

Chapter 3 introduces the Representational State Transfer (REST) architec-
ture. Web APIs that adhere to REST architectural style are called RESTful
Web APIs.

Chapter 4 shows how the RESTful style is applied to Web APIs according
to four steps of Richardsons REST Maturity Model [61].

Chapter 5 introduces two ways of versioning Web APIs: a Uniform Resource
Locator (URL) way and a Hypermedia way.

Chapter 6 describes security and validation used in Web APIs. Hash-based

2

Chapter 1. Introduction

Message Authentication (HMAC) can be used in authenticating each Web
API credentials.

Chapter 7 presents home building industry in the USA and introduces Sap-
phire Build and how it is related to Customer Portal. In addition, it presents
requirements for different customer portal users: lead, prospect, customer
under contract and homeowner.

Chapter 8 describes the implementation of the Web API for a customer
portal.

Chapter 9 evaluates the design of the Web API for a customer portal. Chal-
lenges and future work are discussed.

Chapter 10 summarizes the design and result of this thesis.

3

Chapter 2

Web Application Programming

Interface

First, this chapter introduces Application Programming Interfaces (API).
Then a brief description of different Web API architectural styles is given.
Finally, we discuss why from the two dominant architectural approaches
the Representational State Transfer (REST) style is more popular than the
SOAP standard.

API provides an interface for developers to build a software application for
colleagues, partners, or third-party developers [42]. It allows developers to
access data and services to build applications. Famous examples of applica-
tions are Facebook, Twitter, and Youtube [59]. APIs can be accessible to
any developer, only visible for partners or used privately between teams. In
this thesis, the APIs are only visible for partners.

4

Chapter 2. Web Application Programming Interface

2.1 Web API versus a Website

Web API is a software interface exposed to the Web over Hyper Text Transfer
Protocol (HTTP) [2]. Web APIs are used for developing Web applications
accessible via the website.

A website provides consumable information such as news and blogs. A web-
site can be altered, but all the changes are visible to users. Instead, an API
has a contract and its programs are built on top of that contract, i.e., a de-
veloper cannot alter anything in the contract of the API without violating
the applications built on top of it. However, this does not hold for implemen-
tation. The interface remains consistent, whereas the implementation can be
changed on a daily basis. Similar to websites APIs are expected to be avail-
able 24/7. An API should be treated like a software product. However, this
does not mean that the API never changes. If a change in an API breaks
an application built on top of that, it is called a breaking change. There
should be maintainability such as versioning and backward compatibility for
necessary breaking changes. In this way, the API can keep up with a growing
business and meet the changing need of customers [42].

2.2 Web API Architecture

Let’s consider a basic architecture without an API where each client applica-
tion has its own business logic, which connects directly to a database. This
is illustrated in Figure 2.1. Business logic layer carries out the operations
between a server side and the user interface [4]. Each client’s business logic
needs to be maintained in synchronization with each other when providing
new features. This makes maintainability and evolvability very expensive
since each application needs to be updated accordingly [8].

Figure 2.2 depicts the same architecture with a central API which has the
same business logic for all applications. Each client uses the same API to get,
create, update and delete resources. The change in business logic is made
only in one place [8].

5

Chapter 2. Web Application Programming Interface

Figure 2.1: Web service without Web API, adapted from [8].

Figure 2.2: Web service with Web API, adapted from [8].

2.3 Web API Architectural Styles

An architectural style is not a standard. Moreover, it defines the set of
style and characteristics. Take, for example, a Gothic cathedral, where a
cathedral is built in Gothic style. By observing various buildings, one can
determine whether or not the building has certain qualities of Gothic style
such as pointed arches, rib vault, and flying buttresses [20]. In the same way,
architectural styles for Web API have certain qualities and characteristics.
The main Web API design styles are tunneling style, URI style, and REST
architectural style [2].

6

Chapter 2. Web Application Programming Interface

2.3.1 Tunneling

A well-known implementation of tunneling style is SOAP protocol used in
the remote procedure call (RPC) style [46]. It can use HTTP as a transport
protocol. However, SOAP is a transport protocol agnostic and does not make
use of HTTP verbs [46].

2.3.2 Uniform Resource Identifier

The Uniform Resource Identifier (URI) style is a resource-centric API, where
each noun is considered as a resource. Resources are Created, Retrieved, Up-
dated or Deleted (CRUD) [63]. CRUD operations are mapped with HTTP
methods GET, POST, PUT, and DELETE respectively. Each resource is
identified with unique URI. More details about CRUD and URIs are pre-
sented in section 4.1.3.

2.3.3 Representational State Transfer

The REST style is similar to the URI style. REST utilizes hypermedia to
create interactions focused on tasks instead on resources [63]. More details
about REST will be presented in Chapter 3.

Since the URI style can be considered as a substyle of REST, in the next
section we can focus on differences between REST and SOAP.

2.4 Web API as Web Services: REST vs SOAP

According to the World Wide Web Consortium (W3C) [65], a web service is
a software system designed to support communication between interoperable
machines over a network. There are several approaches to web services. The
two most dominant models for designing Web services are REST style web
services and SOAP [56].

There has been a lot of research regarding the advantages and the disadvan-
tages of REST and SOAP as Web services [43] [36] [49] [56] [55]. One of the

7

Chapter 2. Web Application Programming Interface

most common questions in debates is “Which is better, REST or SOAP?”.
However, they provide totally different approaches. REST is an architec-
tural style [32] for building client-server applications. SOAP is a protocol
specification for exchanging data between different elements [65].

Since REST is a Web architectural style and SOAP is a standard, it is more
reasonable to compare REST with the remote procedure call (RPC) style of
building client-server applications [43]. Though, SOAP does not require the
RPC style.

As opposed to SOAP protocol, REST does not define a standard nor give
definite guidelines to developers. It is more of a design approach for Web
architecture. REST style is derived from several Network-based architectural
style. The web service that adheres to the REST architectural style is called
a RESTful web service. REST is used in accessing resources through a single
consistent interface i.e. API [32].

In fact, one of the main characteristics and constraints of REST is a uni-
form interface constraint. That is, REST considers any kind of information
as a resource, which can be identified with unique Uniform Resource Iden-
tifiers (URI). When REST is applied on HTTP1, it uses HTTP methods
GET, POST, PUT and DELETE for resource manipulation. More about
the uniform interface constraint will be described in section 3.2.4.

SOAP builds several layers on the top of HTTP. Unlike REST, SOAP does
not take advantage of HTTP possibilities and functionality. SOAP uses only
the HTTP POST verb. Thus, SOAP responses cannot be cached with unsafe
POST verb. Whereas with REST, the GET requests can be cached, which
can be used to increase scalability [43].

REST uses many data formats such as JavaScript Object Notation (JSON)
and eXtensible Markup Language (XML), whereas SOAP permits only XML [60]
. JSON is generally used as data presentation [32]. In addition, JSON is also
a subset of JavaScript, which is used to build web applications. More about
JSON will be presented in section 3.2.7.2.

REST provides a lower barrier to implementing services and is more flexible
to develop [56]. In web services coupling means an ability to modify the

1Note that, both REST and SOAP are protocol independent, since this thesis provides

Web API design, it will focus on HTTP as a transfer protocol.

8

Chapter 2. Web Application Programming Interface

web service without affecting the clients. Under this definition, SOAP-based
services are more tightly coupled compared to the REST. In loose coupling,
the client depends on the API and the service contract. It does not require
a change on the client side when there is a change on the service side [52].

SOAP implementations may have overhead on the network bandwidth con-
sumption and execution time. Complexity makes it difficult for developers
to change SOAP APIs and services without great code modifications [56].
REST is a simpler, more lightweight solution and, therefore, provides better
performance [49]. Nevertheless, due to the simplicity of the REST approach,
it might not be the best choice for operationally and functionally very com-
plex systems [18]. Both REST and SOAP can be used to implement the same
service, but, in general, SOAP should be used when a particular feature of
SOAP is needed. However, the ease-of-use of REST makes it more desirable
to adopt [43]. As we can see in figure 2.3 REST is more popular than SOAP.

Figure 2.3: Distribution of APIs: REST versus SOAP, adapted from [59].

9

Chapter 2. Web Application Programming Interface

2.5 Summary

This chapter has provided the rationale for choosing a RESTful web API
approach for a customer portal. The next chapter will go into details of REST
answering these questions: what is REST and what are the characteristic of
it?

10

Chapter 3

Representational State Transfer

(REST)

This chapter introduces the Representational State Transfer (REST) style,
it gives a brief background on REST and describes how REST architectural
style works. Web APIs that adhere to REST style are called RESTful web
APIs.

3.1 REST as Coined by Roy Fielding

Representational State Transfer (REST) is an architectural style for dis-
tributed hypermedia systems such as World Wide Web (WWW) [32]. REST
was coined in 2000 by Roy Fielding in his Ph.D. dissertation “Architectural
Styles and the Design of Network-based Software Architectures” at the uni-
versity of California, Irvine. Fielding had a desire to understand and eval-
uate the architectural design of WWW [33]. REST architectural style was
developed as an abstract model of the Web architecture to guide redesign
and definition of the Hypertext Transfer Protocol (HTTP) and Uniform Re-
source Identifiers (URI) [33]. Fielding wanted to improve the HTTP without

11

Chapter 3. Representational State Transfer (REST)

breaking the Web [7]. The dissertation was done in parallel with Fielding
authoring the Internet standards for the HTTP/1.1 and URI, which define
generic the interface on the World Wide Web. Fielding is also one of the
editors in developing Web standard for the World Wide Web Consortium’s
(W3C) “Do Not Track” and co-founder of the Apache Software Foundation.
Fielding is a major contributor in the world of Web [7].

Fielding gives a following description of REST:
“The name “Representational State Transfer” is intended to evoke an image
of how a well-designed Web application behaves: a network of web pages (a
virtual state-machine), where the user progresses through the application by
selecting links (state transitions), resulting in the next page (representing the
next state of the application) being transferred to the user and rendered for
their use.” [32].

Figure 3.1 presents the state transitions of a Web page in state 1 transferring
to state 2 after the link has been selected.

Web page in state 1 The same web page in state 2
Link selected

Figure 3.1: Representation of resource in state transition.

The Web consists of resources, which can be any information. For example,
customer identified with an id = 1 can be presented as a resource, which is
accessible by the following URL

http://www.builderscustomerportal.com/customer/1

A representation of the resource is returned, for example, customer1.html.
The returned representation sets the client application in a state. When a
hyperlink is selected from that page customer1.html, the new result will set
the client into new representation state. Thus, the client application changes
(transfers) it’s state in each representation of the resource. That is why it is
called Representational State Transfer [27].

3.2 Constraints of REST Architectural Style

The modern Web architecture emphasizes scalability, the generality of inter-
faces, independent deployment of components, minimizing latency, enforcing

12

Chapter 3. Representational State Transfer (REST)

security, and encapsulating legacy systems [33]. REST is a coordinated set
of architectural constraints that attempt to minimize latency and network
communication and maximize the independence and scalability of compo-
nent [33]. To reflect the desired properties of a modern Web architecture
REST defines the following six constraints (the last is optional) as part of an
architectural style.

3.2.1 Client-Server

A client-server style is the most common web architectural style. A server
component offers services to clients and is waiting for a request to be made
upon these services. A client component requests a service from the server,
which either rejects or performs the request and sends a respond back to the
client. According to Andrews, [19] client-server system is a process, where
the client is a triggering process and the server is a reactive process. The
clients request triggers a server, which in return reacts by responding to the
clients requests.

The Client-Server (CS) constraint is about separation of concerns, i.e., sepa-
rating software components [47] via modularization. Modular programming
emphasizes separating the functionality of a program into independent mod-
ules accessible through interfaces. In the Client-Server constraint, the in-
terface (i.e. API) enforces separation of concerns in the system design [60].
The separation moves all the interface functionality into client-side. It sim-
plifies the server component in order to improve scalability. The separation
minimizes coupling, i.e., the degree of dependency between two elements.
Furthermore, the separation allows both the client-side and server-side to
evolve independently, requiring that the interface does not change.

3.2.2 Stateless

A communication between the client (server consumer) and the server (server
provider) is stateless. More precisely put, the server-side component is state-
less, thus, no session state is allowed on the server-side [32]. All of the
application states is entirely kept on the client-side. Each client request is
treated independently from the past or concurrent clients. They must con-
tain all the necessary information and cannot use any stored context on the
server.

13

Chapter 3. Representational State Transfer (REST)

The Client-Stateless-Server (CSS) constraint allows the application to scale [20].
In addition, it makes the server components to be lightweight. However, a
disadvantage of client-stateless-server is that it may cause an overhead. The
overhead is caused by increasing data repetition sent by requesting the same
services causing a decrease in a network performance [32].

3.2.3 Cache

Client applications should cache responses, that are identified cacheable. [32].
Cacheable responses can be reused for later responses. Thus, the requests are
equivalent to later requests and it will produce the same response. Client-
Cache-Stateless-Server (C$SS) constraint reduces latency, will speed up the
user-perceived performance and reduce a load on the network and server-side
components [20].

3.2.4 Uniform Interface

All servers and clients within a RESTful architecture share a single com-
mon interface for all operations. The interface between clients and servers
decouples components from each other [32]. A uniform interface constraint
improves simplicity and visibility of the system by making it possible for
both sides to evolve independently. However, the trade-off is a decrease in
efficiency, due to transferring information in a standardized form.

The uniform interface constraint is defined by four interface constraints: iden-
tification of resources; manipulation of resources through representations;
self-descriptive messages; and, Hypermedia As The Engine Of Application
State (HATEOAS). These are the constraints related to Web API and will
be discussed in more details in section 3.2.7.

3.2.5 Layered System

A REST compliant systems can be comprised of multiple architectural layers
where no layer can “see past” the next [29]. A client cannot ordinarily tell
whether it is connected directly to the end server or to an intermediary.
Intermediary servers may improve system the scalability by load balancing
and by providing shared caches. Layers can encapsulate legacy services and

14

Chapter 3. Representational State Transfer (REST)

protect new services from legacy clients. Each layer provides services to
their neighbors, each layer having the limited view to their neighbors. This
constraint makes it possible to evolve the system by adding, removing and
changing layers without changing the client-side code. The trade-off is a
reduction in performance [32].

3.2.6 Code-On-Demand

The server extends the functionality of the client by sending back code that
the client needs to execute. Code-On-Demand (COD) typically relies on
the use of Web-based technologies, such as JavaScript, where the client can
download a javascript sent from a server [29].

The primary purpose of Code-On-Demand constraint is to allow logic within
clients (such as Web browsers) to be updated independently from server-side
logic. However, this reduces visibility, which is why this constraint is optional.
Code-On-Demand is the only optional constraint, that is, architectures that
do not use this feature are still considered RESTful [32].

The overall picture of REST can be seen in Figure 3.2.

Figure 3.2: REST derivation by style constraints, adapted from [32].

15

Chapter 3. Representational State Transfer (REST)

3.2.7 Uniform Interface Constraint for Web APIs

The four constraints of the uniform interface are resource identifiers, resource
representations, self-descriptive messages, and HATEOAS.

3.2.7.1 Resources and Resource Identifiers

REST is based on two keywords: resources and representations. A word
resource is for information abstraction in REST [32]. The resource can be
any information: a document, an image, a service (e.g. “today’s weather’ in
Otaniemi’), a collection of resources and so on. The resource can be anything
as a hypertext reference, which either perform on the resource or act as a
new representation of the resource.

RESTful services based on HTTP use unique Uniform Resource Identifier
(URI) for each resource [32]. For example the following URL

http://www.builderscustomerportal.com/customer/1

may display customer details with ID number one.

3.2.7.2 Media Types for Representations of Resources

Media types are ways to represent resource passed between client and server [1].
Every resource has at least one representation, which can be a document or
image. The representations are returned in media types [32]. Most frequently
adopted media types are JavaScript Object Notation (JSON) and eXtensi-
ble Markup Language (XML) [32]. This thesis uses JSON text format in a
representation of resources.

JavaScript Object Notation (JSON) is a lightweight, text-based, language-
independent text format for the serialization of structured data [9]. JSON can
represent four primitive types and two structured types. The four primitive
types are strings, numbers, booleans, and null and two structure types as
objects and arrays. JSON is minimal, portable, textual, and a subset of
JavaScript. An example of JSON presentation of a customer is in Figure 3.3.

16

Chapter 3. Representational State Transfer (REST)

Figure 3.3: Customer represented in JSON text format.

3.2.7.3 Self-Describing Messages

Each client request and server response with a self-descriptive message. That
means each message contains all the information necessary for clients and
servers to interact and complete the task. A resource’s desired state can
be represented in a client’s request message and a resource’s current state
may be represented in the server’s response message. Thus, a self-descriptive
messages are stateless and context-free. The server may accept or deny the
client’s request in a response message. In HTTP, each message consists of
headers and a body [1].

3.2.7.4 Hypermedia as the engine of application state (HATEOAS)

Hypermedia As The Engine Of Application State (HATEOAS) [32] is one
of the main constraints of REST. Hypertext is text which contains links to
other texts [65] and hypermedia is a term used for hypertext which is not
constrained to be text. For example, hypermedia can include graphics, video,
and sound. Some people also refer to HATEOAS simply as a hypermedia
constraint [12].

A hypermedia-driven site provides information to navigate the site’s REST
interfaces dynamically by including hypermedia links with the responses.

HATEOAS definition according to Fielding [31]:
“The simultaneous presentation of information and controls such that the
information becomes the affordance through which the user (or automaton)

17

Chapter 3. Representational State Transfer (REST)

obtains choices and selects actions.”

In other words, a client can read pages and either follow links or submit
forms.

Another way to approach HATEOAS is to think an application as a finite
state machine, which consists of all the possible state of the application and
the transition happens via hypermedia, that is given URLs in representa-
tions. HATEOAS is easy to implement for small and simple applications,
but with something more complex the number of states may easily explode.
HATEOAS may be complex to implement to the whole application. But can
still be applied in a small and simple part of the application. The HATEOAS
constraint decouples client and server by improving the independent evolv-
ability. HATEOAS enhance discoverability, both humans and machines can
follow links. With HATEOAS no versioning is needed [7]. If the entity needs
to be removed or changed, only the URI is removed or changed respectively.
REST architectural style was designed to model applications that evolve in
the scale of decades [7] [32].

3.3 Summary

REST is an architectural style based on the design and architecture of the
Web. It is used for distributed hypermedia such as World Wide Web. REST
was designed to support software engineering over decades. Web APIs that
adhere to REST style are called RESTful Web APIs. The next chapter shows
how REST architectural style is applied to Web APIs.

18

Chapter 4

RESTful Web API

Web APIs that adhere to REST architectural style are called RESTful Web
APIs. This chapter shows how RESTful style is applied on Web APIs in
practice.

4.1 Building RESTful Web APIs by the REST

Maturity Model (RMM)

Richardson REST Maturity Model (RMM) [61] is meant to guide a developer
to build a RESTful API in four ascending levels. The higher an API adheres
to the levels, the more mature it is in the RESTful style. RMM consists of 4
levels (0-3). Level 0 the tunneling style discussed in Section 2.3.1. It consists
one Uniform Resource Identifier (URI) and one Hypertext Transfer Protocol
(HTTP) verb. The first step to RESTful approach is adding a unique URI
for each resource in level 1, which still has one HTTP verb. The next step in
level 2 is to add HTTP verbs and final step in level 3 is adding Hypermedia
As The Engine of Application State (HATEOAS). RMM with 4 maturity
levels is shown in Figure 4.1.

19

Chapter 4. RESTful Web API

Level 0: Single URI and Single HTTP Verb

Level 1: Add Unique URIs

Level 2: Add HTTP verbs

Level 3: Add HATEOAS

Figure 4.1: Diagram of the Richardson’s REST Maturity Model adapted

from [37].

4.1.1 Level 0: One URI and One HTTP Verb

In level 0 HTTP is used only as a tunneling system, where only one URI
and one HTTP verb is used for different operations and resources. As dis-
cussed in Section 2.3.1, the tunneling style resembles the most RPC/SOAP
services [46].

Consider the example of a customer submitting a service request using RPC/SOAP
adapted from [20]. The system exposes a service at the URL /serviceRequest.

To submit service request, a client send the following:

POST /serviceRequest HTTP 1.1
Content-Type: application/xml
Content-Length: xx

<submitServiceRequest id = ”1”>
</submitServiceRequest>

20

Chapter 4. RESTful Web API

The server responds that the service request is submitted:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

<submitServiceRequestResponse>
Service request submitted
</submitServiceRequestResponse>

Note that instead of using an HTTP status code 201 Created the status is
in respond body. HTTP is being used only as a transportation protocol.
Another example of responding the submitted service request would be the
following:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

<submitServiceRequestResponse>
<error code = “100”>Submitting a service request failed<error >
<reason>Missing information</reason>

</submitServiceRequestResponse>

Similar to the previous respond instead of using HTTP status code the error
code is part of the respond body.

To check all the service request that are “In Warranty Request”, the client
sends a getServiceRequests request:

POST /serviceRequest HTTP 1.1
Content-Type: application/xml
Content-Length: xx

<getServiceRequest name= “In Warranty Request”>
</getServiceRequest>

21

Chapter 4. RESTful Web API

The server respond with the list:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

<getServiceRequestResponse>
<serviceRequests>

<serviceRequest id = ”1” name= “In Warranty Request”/>
<serviceRequest id = ”2” name= “In Warranty Request”/>

<serviceRequests>
</getServiceRequestResponse>

4.1.2 Level 1: Unique URIs for Resources

In level 1 the first step to more RESTful Web API is to propose resources [46].
Level 1 provides unique URIs for different resources. A resource is any in-
formation that is made available for clients. The idea is to design URIs
analogically with the resource set. Take, for example:

All the customers:
http://www.homebuilder.com/api/customers

A customer with id=1:
http://www.homebuilder.com/api/customers/1

To create a customer with identity id = 1:
POST http://www.homebuilder.com/api/customers HTTP 1.1
Content-Type: application/json
Content-Length: xx

{
“id” = ”1”,
“FirstName” = “John”,
“LastName” = “Smith”

}

22

Chapter 4. RESTful Web API

The server responds that the customer is created:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

<createCustomerResponse>
A customer with id = 1 created
</createCustomerResponse>

Notice that in Level 1, the status of response is still part of the body response.

To retrieve the customer with identity id = 1:

POST http://www.homebuilder.com/api/customers/1 HTTP 1.1
Content-Type: application/json
Content-Length: xx

The server responds with the JSON presentation of the customer:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

{
“id” = ”1”,
“FirstName” = “John”,
“LastName” = “Smith”

}

However, Level 1 still uses only one single HTTP verb like POST for retriev-
ing the resources.

23

Chapter 4. RESTful Web API

4.1.3 Level 2: HTTP Verbs

According to Richardson’s REST Maturity Model [61] shown in Figure 4.1,
an API should be using HTTP verbs, in order to be more RESTful. Note that
REST is an architectural style and is completely protocol agnostic. REST
does not force to use HTTP protocol [32]. This thesis applies RESTful Web
APIs over HTTP.

In level 1 POST is used for all methods, but in level 2, the idea is to map
HTTP verbs as consistent as possible, e.g., GET for retrieving, POST for
creating a resource and DELETE for removing a resource.

Adding different HTTP verbs limits how to interact with resources. Clients
operate on resources with the following HTTP verbs: GET, POST, PUT, and
DELETE. These are the main verbs and define the uniform interface [34].
GET-verb signifies that the resource is fetched as read-only data. POST
indicates that a new resource is created. PUT is used for updating the
existing resource. DELETE indicates that the client wants to delete the
resource. See figure 4.2. These operation types are called also CRUD (Create,
Retrieve, Update, and Delete).

Figure 4.2: Uniform Interface, adabated from [34]

In level 2 an API should be able to deal with caching, scalability and fail-
ures [46]. Excluding POST, another benefit is that the rest of the HTTP
verbs: GET, PUT, and DELETE are idempotent [34]. Idempotent means

24

Chapter 4. RESTful Web API

that a certain action can be applied multiple times without changing the
result.

GET on a service can be called multiple times without a change in the re-
source. The same update can be PUT with the same result. Using DELETE
on the same resource again is not possible. The only unsafe verb is POST.
More detailed information about POSTing a resource in a safe environment
is described in subsection 6.5.

GET is a safe method. Safe methods do not modify resources. Thus, safe
methods can be cached. Caching is important in order to service to be
scalable [32]. Idempotency is important in building a fault-tolerant API [20].
Take for example POST, which is not an idempotent verb, calling it multiple
times creates multiple resources. For example, what happens, if a POST
request is sent out to the server and the request times out. Is the resource
actually created? Is it safe to retry again? With idempotent methods, it
is safe to resend the request until getting a response from the server. Non-
safe (and non-idempotent) methods will never be cached by any middleware
proxies [20].

4.1.3.1 HTTP status codes

Clients request a service from a server and the server response to client’s
request by the 3-digit integer HTTP status code [65]. It is a bad practice to
use HTTP status code 200 (OK) when something is wrong or only HTTP
status code 500 (Internal Server Error) for all the bad client’s requests. The
2xx class of status codes indicates success in client’s request. The 4xx class
of status code implies client error and the 5xx class means server error in
the request. More details about HTTP status codes will be found from [65].
The meaning of HTTP status codes is described in Appendix A.2

In Figure 4.3 a client requests a customer resource with GET HTTP method
and a server responds with HTTP status code 200 OK appended with the
customer as JSON media type format.

4.1.4 Level 3: HATEOAS

Level 3 Hypermedia As The Engine of Application State (HATEOAS) is one
of a precondition for RESTful applications. The principle behind HATEOAS

25

Chapter 4. RESTful Web API

Figure 4.3: Client-server request-response example.

is that a Web application can navigate from one state of the application to
the next state entirely through hypermedia links provided dynamically by
an application server [46]. A REST client needs no prior knowledge about
what actions to take next. The World Wide Web is the best example for
hypermedia. The user starts from a home page and navigates following
different links to another representation of the web page. Similarly, in REST
compliant applications, a client makes transitions through an applications
state only by navigating through hypermedia links provided within a resource
representation returned from the server. That is, given a starting URI, the
client should be able to navigate without prior knowledge of the possible
navigation paths. Whenever a resource is returned from the service, it should
include the URIs that can be applied in the next request.

The RMM provides a good model for developing RESTful Web API, however,
it is not a definition of constraints itself [46]. If the application adheres only
to a maximum of level 2 it is not considered RESTful. Applications that are
on level 3 are considered to be RESTful. However, even that still does not
mean that the whole service is RESTful. Roy Fielding stated that level 3
HATEOAS of RMM is a precondition of REST.

“What needs to be done to make the REST architectural style clear on
the notion that hypertext is a constraint? In other words, if the engine of
application state (and hence the API) is not being driven by hypertext, then
it cannot be RESTful and cannot be a REST API. Period. Is there some

26

Chapter 4. RESTful Web API

broken manual somewhere that needs to be fixed?” -Roy Fielding [31]

For example, the following HATEOAS JSON presentation for a customer
with status “Prospect”. The customer is a prospective home buyer who can
print saved brochures.

When a prospective customer decides to buy a house and becomes a home-
owner the status of the customer is updated respectively as “HomeOwner”.
Now in addition to printing brochures the homeowner can also view its home
information and submit service request related to the house as following
HATEOAS JSON presentation suggest.

27

Chapter 4. RESTful Web API

4.2 Summary

This chapters provided a detailed description of RESTful Web APIs. The
next two chapters discuss versioning and security of Web APIs for a customer
portal.

28

Chapter 5

Versioning

Business concerns are changing in time and APIs must evolve to meet the
changing needs. The question is, how to create a Web API that can evolve
over a period of years. There are two choices; either to go along with the
existing API adding new features without breaking anything or create a new
one [20]. If a change in an API may break a contract, that is an application
built on it, the breaking change should be introduced in a next version.

Up to this chapter, this thesis has discussed Web API, REST style applied on
HTTP protocol and how to build a RESTful Web API by 4 steps of RMM.
The next two chapters discuss versioning and security.

This chapter focuses on versioning of Web API. Where possible, the con-
straints of the REST architectural style will be applied on versioning. REST
is not an end goal, but rather a means to reach the goal. It is possible that
some REST constraints are violated in order to achieve evolvability in Web
API.

29

Chapter 5. Versioning

5.1 When Is Versioning Needed

If there is a breaking change in a Web API contract, it should be introduced
in a next version. The next question is what is the contract in a Web API?
In a Web API, clients have access to representations of resources via URIs.
From this point of view, the contract in Web APIs consists of

1. Resource

2. Representation of resource

3. URI as a Resource identifier

URIs and representation of resource are used to build a web application
on top of its API. In the next sections, different breaking change in JSON
representation and URIs are introduced.

5.1.1 Case 1: Adding New Fields to Representation

Customer JSON:

In case 1 adding new fields to representation is not a breaking change, for
example, a new data field, e.g., “Fax” is added to a customer JSON as follows

30

Chapter 5. Versioning

Adding contents to a representation does not break the API contract, clients
will not be aware of something that is not used before. They will get the
same presentation with additional fields. Hence, no version is needed.

5.1.2 Case 2: Renaming or Removing Fields from Rep-

resentation

Renaming or removing fields is a breaking change and in such cases the
version is used. For example renaming data field “Phone” to “PhoneWork”
would break the application build on top that API, because references to the
customer.Phone data field would not exist anymore.

5.1.3 Case 3: Changing Resource Entity

Changing a resource entity entirely is a breaking change. Instead of version-
ing it is more reasonable to introduce a new Web API, a new resource with
its own URI.

5.1.4 Case 4: Changing URI

Changing a URI is a breaking change. The URI is a unique resource identifier
to resource. From the RESTful point of view, changing URI means it points
to an entirely new resource entity. Practically, it is the same as changing a
resource entity.

31

Chapter 5. Versioning

5.1.5 Case 5: Change in a program running under API

If a change in a program does not violate the API contract, then there is no
breaking change.

5.2 Versioning methods

Versioning can be made several ways. Two most common ways to make API
versions; the URL way and the hypermedia way [44].

5.2.1 The URI Way

The URI way is a simple way for versioning an API. This versioning is spec-
ified the a ‘v‘ prefix. And is placed all the way in the left so that it has the
highest scope.

Version 1: /api/v1/customer/1

To update to the next API version, increase the version number

Version 2: /api/v2/customer/1

Only positive integers are used.

The advantage of versioning the URI way is that clients know which version
they are using. The drawback is that it is not RESTful because different
version URIs still link to same resource entity [7]. Another drawback is
that the older API versions need to be maintained also and this may cause
overhead in a Web API development [30].

5.2.2 The Hypermedia Way

The hypermedia way in accept headers, which describes how the data is
represented, for example below:

32

Chapter 5. Versioning

GET /api/customer/1 HTTP/1.1
Accept: application/json; version=1

This technique versions the representation. However, it is a more complicated
approach and it is also more difficult to test. Instead of introducing new
version number in a URL with few characters, a developer has to add a
relatively high number of line of codes to address the right version of a
representation of a resource [13]. Clients cannot test straightforwardly via a
URI. Instead, they have to construct a request and configure an appropriate
accept header [15].

From these two ways, the URI versioning is for both client and server-side
developer easier to consume.

5.3 Summary

This Chapter introduced different version cases and how they should be ver-
sioned. Next chapter discusses the security of Web APIs. How Web APIs
are authenticated and authorized? and ends with security analyze of data
posted to a server.

33

Chapter 6

Security

Previously, this thesis has discussed how to create a Restful Web API and
versioning of a Web API. Security is also an important part of the design.
Web API security is a major concern when requesting resources via URIs.
Without security, the resources are available to everyone to operate on. Web
API security is based on two questions: first, is the user of the resource really
who he claims to be and does that user have access to that resource [46]. This
chapter will cover the security of a Web API and introduce a token based
authentication used in a customer portal. Then it will discuss a validation
of unsafe POST verb.

6.1 Authentication and Authorization

Authentication validates user identity with a question, “Is the user of the
API service who he claims to be?” [46] For example, a user logs in with
his username and password and the server authenticates the user by his
password.

Authorization is challenged the user’s permission with a question, “Is the
user allowed to do what he is trying to do?” [46] For example, a user is
allowed to get a resource but not to create a resource.

34

Chapter 6. Security

6.2 Token Based Authentication

Before token based authentication, the traditional way to have application
to remember user logged in is store user info in a session. On every client’s
request, the server checks the session state and then responds. Session state
on the server can cause overhead when there are many users authenticated.
Another problem is since sessions are stored in the server memory, it does
not allow the server to scale [32].

Token-based authentication is stateless. No information about the user is
stored on the server or in a session [65]. Stateless means that if a client
authenticates a user with a username and password, then on the next client’s
request, the server won’t know who is requesting the resource. The client
would have to authenticate again. Stateless allows the application to scale.
Furthermore, token based authentication decouples the client and the server,
since authentication and authorization are handled only in the server side.

The basic steps in the token-based authentication are as follows:

1. A user logs in with a username and a password.

2. An authorization server validates credentials.

3. The authorization server provides a token to the client.

4. The client stores the token and sends it along with every user’s further
request.

5. The server verifies token and responds with a representation of a re-
source.

Figure 6.1 depicts the token based authentication steps.

The token is used for authentication and authorization of the user. Stateless
tokens that are valid forever will be a problem. The token should consist
an expiration time. In this thesis the token consist of three parts; userID,
expiration time and a Hash-based message authentication code (HMAC).
HMAC is used to validate data integrity and authentication of the token’s
userID and an expiration time of the token.

35

Chapter 6. Security

Figure 6.1: A token credentials flow, adapted from [3].

Authentication of a message means that a message has not been modified
(data integrity) or changed while in transit and the receiving third party can
verify the message. Data integrity detects accidental and intentional message
changes while authenticity verifies the origin of the message [21].

6.3 Hash function

A hash function H is an algorithm that takes a variable-length of input data
m and generates a fixed length string, which is called the hash value h [21].
Message authentication code (MAC) is a particular use of the hash to verify
the integrity of the data received.

Hashing is used to secure the communication since hash algorithms are fast
and energy efficient among cryptographic algorithms [21] [58]. Hash h1 is gen-
erated from credentials m and is concatenated with credentials (denoted by
|) m | h1 as token. When authorizing the token, a new hash h2 is calculated
from the credentials given in the token. If h1 equals h2, the authentication
is successful.

A cryptographic hash function is a function which is considered practically
impossible to invert, that is, one cannot recreate the input data from hash
value alone [21]. Hash functions with only the property of compressing a
message to smaller size have diverse computational uses, but when used in
cryptography the hash algorithm needs more properties.

36

Chapter 6. Security

The basic requirements of a cryptographic hash function are listed below [21]:

• H(x) is relatively easy to compute the fixed length hash value h for any
variable length message x

• H(x) is one-way mapping:

– it is infeasible to generate a message from its hash

– it is infeasible to modify a message without changing the hash

• H(x) is strongly collision-free:

– it is infeasible to find two different messages x, y with the same
hash H(x)=H(y)

Hash functions are usually designed from scratch or made out of a block
cipher in a black box way [25]. Hash functions based on block ciphers is
illustrated in Figure 6.3. Some of the known hash functions constructed
from scratch are SHA-family [53] and MD5 [62].

Figure 6.2: Hash functions based on block ciphers.

37

Chapter 6. Security

6.3.1 SHA

The Secure Hash Algorithm (SHA) [28] is a family of cryptographic hash
function published by the National Institute of Standards and Technology
(NIST) as a U.S. Federal Information Processing Standard (FIPS) [53] in-
cluding SHA-0, SHA-1, SHA-2 and SHA-3 families.

This thesis uses SHA-256 from the SHA-2 family hash functions. SHA-256
produces a fixed length hash value of 256 bits or 32 bytes. SHA-256 is
cryptographically stronger hash function than MD5 (hash length of 128 bits
or 16 bytes) and SHA-1 (hash length 160 bits or 20 bytes) [26] [21].

What is achieved in security will be lost in performance, that is, MD5 is
fastest, then SHA1 and the SHA256 is the slowest from the three [21]. It
is not recommended to use MD5 and SHA1 since they have known security
vulnerabilities [21] and they are already broken in several studies [38] [66].
Although, SHA-1, till date, is still the most widely used hash function, in
spite of several successful cryptanalytic attacks against it [38]. However, the
attacks remain impractical due to high computation complexity and associ-
ated cost [38]. There is no known SHA-256 break yet.

6.4 HMAC

Message authentication is a prime necessity in the world of open comput-
ing and communications. Hash-based message authentication code (HMAC)
algorithm’s purpose is to verify the integrity and the consistency of the
data [45]. Mechanisms that provide such an integrity check based on a secret
key are called “message authentication codes” (MAC). Typically, message
authentication codes are used between two parties that share a secret key in
order to validate a message transmitted between these parties.

HMAC uses a secret key in conjunction with a hash function to produce a
hash that is appended to the message. Any cryptographic hash function,
such as Message Digest 5 (MD5) or Secure Hash Algorithm (SHA-1), may
be used in the calculation of an HMAC: the resulting MAC algorithm is
termed HMAC-MD5 and HMAC-SHA1 accordingly [45]. Security strength
of the HMAC depends on the cryptographic strength of the underlying hash
functions, the size of its hash output, and on the size and quality of the key.

38

Chapter 6. Security

An iterative hash function breaks up a message into blocks of a fixed size
and iterates over them with a compression function. For example, MD5 and
SHA-1 operate on 512-bit blocks. The size of the output of HMAC is the
same as that of the underlying hash function (128 or 160 bits in the case of
MD5 or SHA-1, respectively), although it can be truncated if desired.

39

Chapter 6. Security

HMAC definition from [45]

HMAC(K,m) = H((K ⊕ opad)|H((K ⊕ ipad)|m)) (6.1)

where, H is a cryptographic hash function
K is a secret key
| denotes concatenation
⊕ denotes exclusive or (XOR)
opad is the outer padding (0x5c5c5c...5c5c, hexadecimal constant)
ipad is the inner padding (0x363636...3636, hexadecimal constant)

K is a secret key padded to the right with extra zeroes to the input block
size of the hash function. If the secret key is longer than that block size, it
is a hash of the original key.

Figure 6.3: HMAC-SHA256 generation.

The token based authentication is using HMAC-SHA256 to authenticate the
userID and expiration time of the token.

40

Chapter 6. Security

6.5 Unsafe and Non-idempotent POST

This thesis uses ASP.NET Web API as a framework for developing Web
APIs. In this framework, HTTP verb POST is used for both creating and
updating a resource. The main HTTP methods used in this thesis are GET
and POST. Therefore, this thesis will only focus on the security analysis
of GET and POST. As discussed in Section 4.1.3 GET is both idempotent
and safe verb, POST in the other hand is not idempotent and not safe. A
safe verb does not modify a resource and an idempotent verb can be called
many times without different outcome. By definition, safe verbs are also
idempotent verbs.

Usually when saving or updating received data sent by a client, it is validated
before doing any further processing. The main goal is that instead of corrupt
data only valid data is saved into the server. This section discusses data
annotation in validation, under and over posting problems.

6.5.1 Data Annotations

ASP.NET Web API uses attributes to set validation rules for properties [68].
Consider the following model of a customer, which represents the homeowner
with HomeID:

The “Required” attribute says that the properties “HomeID” and “Name”
must not be null and the “Range” attribute determines that the property
“Age” must be between 0 and 100

Suppose that a client sends a POST request with the following JSON repre-
sentation:

41

Chapter 6. Security

Note that the client did not include the required “Name” property. When
Web API converts the JSON into a Customer instance, it validates the val-
idation attributes. During validation, it cannot find the “Name” property.
Thus, this model state is not valid.

6.5.2 Under Posting

Under-posting happens when some properties are left out [68]. For example,
suppose that the client is sending the following:

The “Age” property is now missing. In ASP.NET Web API, the model
binding is assigned a default value of zero for missing properties. Thus, the
model state is valid. This might seem a desirable property in a POST creation
but in a POST update it might cause the problem. In the POST update
operation, it is good to have the choice to distinguish between “zero” and “not
set” by adding “?”-character after type variable as follows. attribute [68]:

42

Chapter 6. Security

To force clients to set a value, make the property nullable by “?” character
and set the Required [68]:

6.5.3 Over Posting

A client can also include additional properties into a JSON [68]. For example:

A property “Gender” is included in the JSON and does not exist in the
Customer model. In this case, the value is ignored. However, Over-posting
is a problem if the model consists read-only properties that are not supposed
to be modified. For example:

In this case, an infiltrator might add “IsAdmin” = “true” and promote them-
selves to the administrator. The safe workaround for this is to introduce a
model, which consist exactly the updateable properties.

43

Chapter 6. Security

6.6 Summary

This chapter discussed the security of Web APIs. The token-based message
authentication HMAC-SHA256 of Web APIs was introduced. In addition,
data validation in over-posting and under-posting is reviewed. Next chapter
gives a background to the home building industry and a brief overview of
Sapphire application and customer portal for home builders.

44

Chapter 7

Application

This chapter discusses home building industry in the United States of Amer-
ica. Furthermore, the chapter introduces SapphireBuild portal and describes
different customer portal users.

7.1 The home Building Industry in the USA

The home building industry in the USA compasses several of the nation’s
largest publicly-traded home builders [48]. Strategically, all home builders
follow a similar operating model, which is primarily purchasing a land and
construction on that land. The home building market can be separated in
three categories. Some home builders are in an affluent market providing
luxury homes. Others focus on an entry-level category, where home buyers
make their purchase decision based on their ability to secure affordable fi-
nancing. However, a majority of home builders are in a “first-time buyer”
segment. The price is slightly higher than that of an entry model.

At the last peak of the housing cycle in 2006 (see Figure 7.1), the ten biggest
home builders constitute for about 35% of housing starts [48]. The majority
of home builders consist of small private home builders. In good economic
times, it is common for big home building companies to expand their land

45

Chapter 7. Application

positions by buying small regional home builders.

The home building industry accounts for 66bn in revenue with an annual
growth of 3.7%. The industry employs 398,391 people over 251,773 busi-
nesses [41].

Figure 7.1: Housing market index [50].

Figure 7.1 shows that in last three years the home building industry of United
State of America is recovering well from the last bottom of the housing cycle
in 2009. In 2005 2 million new homes were started, in 2009 the number of
started homes dropped to 554 000 and in 2014 is has increased to 1 mil-
lion [22].

7.1.1 Types of Home Builders

Home building industry consists of three kinds of home builders: production
builders, building manufacturers and custom builders [40]. These builders
can be measured by the number of houses they build per year. The largest
group is production builders, the second largest is building manufacturers
and the smallest is custom builders. However, custom builder constitutes
the majority of home builder companies in the housing business [40].

7.1.1.1 Production Builders

Production builders provide houses in communities. They own the land their
houses are built on and usually participate in community development. The

46

Chapter 7. Application

houses can be either single-family or multifamily homes such as townhouses,
apartment buildings, and condos [51]. Some production home builders pro-
vide houses in either of the categories and some in both. The production
homes are pre-designed home models and can have design options, for exam-
ple, to replace the bathtub with a larger shower. However, the changes are
not possible to the extent with custom homes [40].

7.1.1.2 Building Manufacturers

Building manufacturers build their houses in factories. There are two kinds
of home builders; mobile home builders and modular home builders [40].
Mobile homes are basically, houses on wheels which can be moved wherever
the home buyer desires. Modular homes are prefabricated buildings built in
multiple sections called modules. Modular homes are usually 78-80 percent
complete before transported to a building site and then assembled. Unlike
mobile homes, modular homes do not have axles or frame, therefore they are
typically transported to their new location by flat-bed trucks [35].

7.1.1.3 Custom Builders

Custom builders typically create a unique home with the wide range of design
options. Custom homes are attractive for home buyers that desire to select
more details to their home. Home buyers can customize their home, which is
generally not possible to such an extent with production builders and building
manufacturers [54]. A custom home is more expensive than a production
model of similar size and floor plan since high volume production builders
save in buying materials in bulk.

This thesis focuses in production builders building single family homes. In
the next two subsections, the Community Life Cycle and Sales Process will
be described as it applies to production builders building single family homes.
Details about building manufacturers and custom builders will not be dis-
cussed.

7.1.2 Community Life Cycle

Production builders construct houses in communities [54]. First the builder
buys a piece of land to build the community on. After that, the builder

47

Chapter 7. Application

applies for the building permits and hires the contractors to build the com-
munity infrastructure. The community is divided into sections called lots.
Builder builds showpieces of their models on some of the lots. One of them
is used as a community sales office and the remaining lots are available for
home buyers. From the sales and marketing point of view, the community
life cycle ends when all the lots and also the model homes are sold out [40] [6].

7.1.3 Sales Process from Lead to Home Owner

A process starts when a prospective home buyer visits the home builder web-
site, clicks a brochure of a home model and leaves a contact information [5].
From that moment on, they are considered as a lead, which is a possible
prospect. Customers who fill in their contact information other way are also
considered leads [39].

A lead manager scans through the leads records and will assign prospective
home buyers to a sales representative. If there has been more communication
between a sales representative and a lead, the sales representative can up-
grade the lead to a prospective buyer by status “Prospect” [5]. On the other
hand, leads, who visit the sales office and leave their contact information are
also upgraded to prospects [5].

A prospective home buyer visits the sales office, where the home buyer is
given a tour in the model homes. The prospect is shown possible options
to select style or design from a menu in several product categories (such as
flooring, appliances, and countertops). After signing the contract of buying
a new home and paying earnest money, the new home buyer is allowed 30-60
days to visit the design center and to finish the rest of the selections [40].
During this time, home buyers under the sales contract are waiting for their
house to be build. Home buyers become homeowners when they move into
their new house [5]. Figure 7.2 illustrates the whole process from a lead to
the homeowner.

7.2 Sapphire Build

A software company Kova Solutions Inc provides a software business so-
lution SapphireBuild for local home builders in the USA [10]. The primary

48

Chapter 7. Application

platform is .NET, Microsoft Windows Server, and Microsoft SQL Server. Ko-
vaSapphire is a web-based operational management software for production
builders to aid all stakeholders in the building process [17]. KovaSapphire
lets different stakeholders work from the same database [24] with support for
a complete home life cycle. This includes marketing, sales, home building
process and customer relations management.

Homeowners can submit service requests on the Internet via a customer por-
tal. Working from the same database allows both portals: a customer portal
and SapphireBuild to have an access to a complete history of a home, in-
cluding vendors and warranties. Thus, a Customer Service Team (CST) can
effectively communicate with the homeowners via Sapphire Build [11]. Fig-
ure 7.3 depicts the communication via portals between a customer and a
customer service team.

7.3 Customer Portal

A Web portal is a gateway allowing users to access diverse information and
content found on the Internet [67]. In essence, a web portal is a website
where divergent and aggregated data can be accessed from one single entry
point [14]. A portal is a Web site or a Web service that provides information
content to serve a specific audience.

A Customer Portal is a gateway for customers, vendors, and home building
providers to distribute shared data [11]. Customers can log in, review and
update their private information about their home and contact details as well
as make service requests. The customer portal will provide an opportunity
for customers for self-managing contact and home information. Homeowners
can be in contact with any concerns 24/7. Direct communications between
customers and customer services, through portals, may prevent costly mis-
takes before they happen. Customers can make a service request and follow
the process. This will provide service transparency, access, and control to
the service request process.

49

Chapter 7. Application

7.3.1 Different Portal Users

A customer portal is designed for different users; lead, prospect, a customer
under contract and homeowner. The sales process from lead to homeowner
was described in detail in Subsection 7.1.3.

7.3.1.1 Lead

A lead is an individual who has provided contact information [39]. For ex-
ample by registering on a home provider site or printing a brochure of a
home model for the first time, customers are asked to leave their contact
information via web forms citeFromLeadToHomeOwner.

7.3.1.2 Prospect

A prospect is a prospective home buyer. Prospect can be either a customer
who visits the sales office and provides contact information [5] or someone
who has been in a two-way interaction with a lead manager [39] and being
promoted to a prospect by the lead manager [5].

7.3.1.3 Under Contract

A prospective home buyer becomes a customer, who is under a contract after
signing of a contract [5]. Home buyers under the contract are in a state of
waiting for their house to be built.

7.3.1.4 Homeowner

Home buyers become homeowners when they get keys to their new home [5].

50

Chapter 7. Application

Figure 7.2: Sales process from Lead to Home Owner.

51

Chapter 7. Application

Figure 7.3: SapphireBuild and a customer portal operate from one

database.

52

Chapter 8

Design and Implementation

This chapter covers the requirements, design, and implementations of Web
APIs for a customer portal. IEEE 1471 [16] is adopted as the conceptual
framework of the design. First the stakeholders of customer portal Web
APIs are identified, after that their concern and needs are described.

8.1 Requirements

Stakeholders may be individuals, teams, or organizations with interests or
concerns related to a system. The main users of a customer portal are dif-
ferent portal users such as leads, prospects, customers who are under sales
contract and homeowners. A web-based customer portal gives 24/7 access
to users. Users can view their home information, contact details and request
services related to warranty. The customer portal will be role-based and the
view will be customized according to the role of the portal user. The fur-
ther requirements regarding each portal user will be described later in this
section.

Web APIs for a customer portal are implemented and maintained by the
developers. Web developers use Web APIs to implement and maintain their
web-based customer portal. A Web API improves loose coupling and lets

53

Chapter 8. Design and Implementation

both client and server side evolve independently. Developers can focus on
providing Web API services and Web developers can focus on web designing.

A company that offers an API is called an API provider. People that use an
API to create the applications are called developers. People that use an API
based application are called end users [42].

Owners of the customer portals are home builders. They offer customer
service via the customer portal. The customer portal is role based and is
customized for each role of a user. Since this thesis focuses on the customer
portal design, the requirements are described only for portal users. In the
next section, the requirements for different portal users will be described.

Different users of a customer portal are Lead, Prospect, Under Contract, and
Homeowner.

8.1.1 General

Each user, a lead, a prospect, a customer under contract and a homeowner in
a customer portal log into their account using an email address as a username.

In a case the password is forgotten, a user can reset his or her password by
providing a portal account related email. The reset link is then sent to the
user’s email. Via the link the user is asked to provide a new password.

In the portal user can change their password. The old password, a new
password and a confirmation for the new password are asked in a changing
password process. The password has some complexity requirements.

1. Login to the portal

2. Reset Password

3. Change Password

54

Chapter 8. Design and Implementation

8.1.2 Lead

When a customer registers on the home builders site or prints a brochure
of a home model for the first time, a new lead is asked to provide contact
information. The lead is sent an email message containing a username, a
password, and a link to the customer portal. Lead can view and reprint
brochures in the customer portal.

1. Reprint their brochures

8.1.3 Prospect

After providing contact information via the home builders site or at the sales
office, a lead is upgraded to the prospective home buyer. The prospect is
still able to do everything a lead can do. In addition, the prospect can
communicate directly and book appointments with a sales representative.

1. Direct communication with a sales representative

2. Book appointments with a sales representative

8.1.4 Under Contract

After signing a sales contract, a customer under a contract has all the same
advantages as a prospect has. Furthermore, after the construction of a new
house has begun, up-to-date information on the status of the construction
process is shown in a customer portal. For example, “Framing has been
completed.” An under contract is able to see contact information for the
people responsible for the building process such as a design representative,
superintendent, and quality assurance inspector to name a few.

1. Up-to-date on the status of construction.

2. See contact information for the people responsible for the building pro-
cess

55

Chapter 8. Design and Implementation

8.1.5 Homeowner

A homeowner has all the communication methods as a customer under con-
tract. However, since the home is built, the status of construction is needless
to show anymore. A customer portal provides a complete history of a home,
including the vendors, and selected options for a model house. The home-
owner can view home information and warranties.

The customer can submit a service request with an ability to list the actual
service request items and post photos for each. They are able to see the
status of service request progress and the appointment for the service request
inspection time.

1. View home information

2. Submit service request

3. Save tenant information

4. Save customer information

8.2 Design and Implementation

The requirements are done in several phases. The first phase includes require-
ments related to general user requirements, Lead, and Home Owner. At the
moment of writing this thesis, only the first phase has been done. The im-
plemented Web API are in Appendix A.1. The rest of the requirements will
be implemented as a future work.

8.2.1 Web API Architecture Style

Web APIs were implemented by Richardson’s Rest Maturity Model Level
2 introduced in Section 4.1.3. Adding different HTTP verbs limits how to
interact with resources. In this thesis, clients operate on resources with GET
and POST verbs. ASP.NET Web API framework uses POST verb for both
data creation and update. DELETE verb is not used in this thesis. HTTP
Status codes are presented in Appendix A.2

56

Chapter 8. Design and Implementation

8.2.2 Versioning

This thesis implements the Web API for a customer portal the URI way in
version 3 as follows:

Version 1: /api/v3/customer/1

The Web API documentation is presented in Appendix A.1.

8.2.3 Security

8.2.3.1 Token Based Authentication with HMAC-SHA256

This thesis is using HMAC-SHA256 to authenticate the userID and expira-
tion time of the token. With userID 1 and expiration time1 of 8 hours and
an HMAC = TlaOGgBNu((the example token would be 1,8,TlaOGgBNu((
where each part is separated with ‘,’-character. The token is provided in
each client request as a URL query parameter. The server authenticates the
token before operating on a requested resource. The token-based authenti-
cation with given example is depicted in Figure 8.1.

1Base64 is used for encoding the expiration time for inclusion in URLs.

57

Chapter 8. Design and Implementation

Figure 8.1: Token based authentication and authorization.

8.2.3.2 Posting and Validation

ASP.NET Web API uses attributes to set validation rules for properties [68].
Data validation attributes are implemented for save tenant and save customer
info as follows:

58

Chapter 8. Design and Implementation

The “Required” attribute says that the “HomeID”, “Name” and “Phone”-
properties must not be null. The “ValidZipCode” and “ValidPhoneNumer”
attributes determine that the properties have to be in certain valid forms. In
addition, it is validated that no null or empty “”-characters are saved in the
update.

A client can also include additional properties into a JSON. In case the added
property does not exist in the model, the value is ignored. Over-posting is a
problem if the model consists of read-only properties that are not supposed
to be modified. This thesis uses the workaround suggested in Section 6.5.3.

59

Chapter 9

Result and Discussion

This chapter evaluates the requirements of the web APIs for a customer
portal. In addition, the encountered challenges and problems are represented
and finally a future work is proposed.

9.1 Evaluation and Challenges

This section evaluates and discusses encountered problems and challenges in
implementing Web API for a customer portal.

9.1.1 Architectural Style

Hypermedia as the Engine of Application State (HATEOAS) is a constraint
of the REST architectural style. According to Section 4.1.4 a customer portal
Web APIs implemented are not RESTful. They do not fulfill Richardson
REST Maturity Model Level 3: HATEOAS, which is one of the requirements
for the RESTful architectural style.

As Fielding stated: “software design on the scale of decades: every detail is

60

Chapter 9. Result and Discussion

intended to promote software longevity and independent evolution. Many of
the constraints are directly opposed to short-term efficiency. Unfortunately,
people are fairly good at short-term design, and usually awful at long-term
design” [31].

With HATEOAS, the software can evolve independently over a decade. In
our design, it does not need to be RESTful in the HATEOAS way. HA-
TEOAS enhances discoverability and makes an application more open to
other application. However, Web APIs for a customer portal are only for our
customer Web developers and are not designed to be public. In addition,
the HATEOAS constraint is not so practical in real life, since the number of
different states may explode in more complicated systems.

9.1.2 Versioning

Chapter 5 presented different version types. The URL way is as follows:

Version 1: /api/v1/customer/1

and the Hypermedia way in accept headers:

GET /api/customer/1 HTTP/1.1
Accept: application/json; version=1

The URI way is a simple way for versioning an API. The advantage of the URI
versioning is that clients know which version they are using. The drawback
of the URI way is that it is not RESTful since different versions of URIs still
link to the same resource entity [7]. Another drawback is that the older API
versions need to be maintained also and this may cause overhead in Web API
development [30].

The hypermedia way of versioning in accept headers versions the representa-
tion. However, it is a more complicated approach and it is also more difficult
to test. Instead of introducing a new version number in a URL with few
characters, a developer has to add a relatively high number of line of codes
to address the right version of a representation of a resource [13]. Clients
cannot test straightforwardly via a URI. Instead, they have to construct a
request and configure an appropriate accept header [15].

61

Chapter 9. Result and Discussion

From these two ways, the URI versioning is for both the client and the server
side developer easier to consume.

Section 5.1 presented different version cases. Adding new fields to a repre-
sentation did not break a Web API contract. Whenever there is a renaming
or removing fields of an existing representation, it is a breaking change and
should be introduced in the next version. Changing a resource entity should
introduce an entirely new URI.

The drawback in versioning is that it tightly couples to the evolution poli-
cies of the Web API providers [30]. Clients are forced to update to new
versions to avoid breaking changes in their Web applications. One solution
recommended is Web APIs should not be changed too often [30]. The rep-
resentation should be as minimal as possible since it is easier to add new
properties than remove old ones [20]. One important observation is that the
early versions of Web APIs are invariably unstable and change-prone [30].
In this thesis, the process is done in cooperation with client developers in
small iterations asking feedback until the requirements are met. In addition,
an example of a Web API implementation has been given to get additional
feedbacks.

9.1.3 Security

9.1.3.1 Token Based Authentication with HMAC-SHA256

Since, no information about the user is stored on the server or in a session,
token based authentication is stateless. [65]. Stateless authentication allows
the application to scale. Furthermore, token based authentication decouples
the client and the server. Authentication and authorization are handled only
on the server side. In addition, the token consists of expiration time, which
is an important part of the design.

Token based authentication uses HMAC-SHA256. SHA-256 is cryptographi-
cally a stronger hash function than MD5 or SHA-1 [26] [21]. It is not recom-
mended to use MD5 and SHA1 since they have known security vulnerabili-
ties [21] and they are already broken in several studies [38] [66]. Although,
SHA-1, till date, is still the most widely used hash function, in spite of several
successful cryptanalytic attacks against it [38]. However, the attacks remain
impractical due to high computation complexity and associated cost [38].

62

Chapter 9. Result and Discussion

There is no known SHA-256 break yet.

9.1.3.2 Posting and Validation

The implemented Class Tenant and CustomerInfo still have an “Under-
posting”-problem. Under-posting happens when some properties are left
out. For example, suppose that the client is updating a CustomerInfo where
StreetAddress or City-properties are left out. In a model binding, it is as-
signed a default value of empty character “” for missing properties. This
is a problem when updating [68]. In Section 6.5.2 it was suggested to use
“?”-character after variable type as “not set”. This was not implemented,
but can be implemented as a future work. The current implementation only
validates that no null or empty “”-properties are updated.

In addition, a safe workaround for POST verb in new entity creation has not
been implemented. If during a POST creation task, the request time-outs,
there is no way to know has the request reached the server or not. This needs
to be taken into consideration in future work.

9.2 Future work

In the future, we are going to implement the rest of the Web API requirements
and a safe workaround for POST verb when creating a new instance. Also
an “Under-posting”-problem needs to be taken into consideration in future
Web API implementations.

Although, it was not possible to implement the pure RESTful Web API
with HATEOAS constraint. The idea of loose coupling and independent
evolving of the client and the server without breaking changes in Web API
is attractive. It is possible to implement HATEOAS in some small Web API
scenarios, where the state of actions is small and limited. If the HATEOAS
is used then no versioning is needed, just change the URIs in a representation
of a resource.

In addition, we are going to maintain and evolve web APIs and build our own
customer portal as a prototype for introducing customer portal Web APIs.

63

Chapter 10

Conclusions

The purpose of this thesis is to design a Web-based Application Programming
Interface (Web API) for a customer portal in the home building industry. The
implementation of Web APIs allows the home provider to brand their own
customer portal independently from the server side. Web developers can use
Web APIs as a building element in their Web applications.

This thesis presents a design of a Web API. At the center of the design is the
architectural design of Web API including versioning, and security of Web
APIs. The goal of this thesis is to provide such a design that both client side
and server side can evolve independently.

With implemented Web APIs, homebuilders can customize their Web site.
Loose coupling was not gained fully, due to versioning in URIs that can
force clients to update to the next version to avoid breaking changes in their
applications.

In the future, we are going to implement the rest of the Web API require-
ments. In addition, we are going to maintain and evolve Web APIs and build
our own customer portal as a prototype for introducing pustomer portal Web
APIs.

64

Bibliography

[1] A Guide to REST and API Design. CA Technologies http://transform.
ca.com/rest-api-design-guide.html. Accessed: 2015-08-31.

[2] API Design 201: Web API Architectural Styles.
API Academy http://www.apiacademy.co/resources/

api-design-201-web-api-architectural-styles/. Accessed: 2015-10-
20.

[3] ASP.NET. ASP.NET http://www.asp.net/web-api, Se-
curity http://www.asp.net/web-api/overview/security/

individual-accounts-in-web-api. Accessed: 2015-05-13.

[4] Definiton of Business Logic. https://www.techopedia.com/definition/

27382/business-logic. Accessed: 2015-10-20.

[5] Discussions with Antti Tuomi. 2015-07-30.

[6] Discussions with Jouko Väkiparta. 2015-08-21.

[7] eMag Web APIs: From Start to Finish. http://www.infoq.com/

articles/Web-APIs-From-Start-to-Finish. Accessed: 2015-11-07.

[8] Introduction to REST and .net Web API.
http://blogs.msdn.com/b/martinkearn/archive/2015/01/05/introduction-
to-rest-and-net-web-api.aspx.

[9] JSON. http://www.json.org/. Accessed: 2015-05-13.

[10] Kova Finland. http://www.kovafinland.com/. Accessed: 2015-08-07.

65

http://transform.ca.com/rest-api-design-guide.html
http://transform.ca.com/rest-api-design-guide.html
http://www.apiacademy.co/resources/api-design-201-web-api-architectural-styles/
http://www.apiacademy.co/resources/api-design-201-web-api-architectural-styles/
http://www.asp.net/web-api
http://www.asp.net/web-api/overview/security/individual-accounts-in-web-api
http://www.asp.net/web-api/overview/security/individual-accounts-in-web-api
https://www.techopedia.com/definition/27382/business-logic
https://www.techopedia.com/definition/27382/business-logic
http://www.infoq.com/articles/Web-APIs-From-Start-to-Finish
http://www.infoq.com/articles/Web-APIs-From-Start-to-Finish
http://www.json.org/
http://www.kovafinland.com/

Bibliography

[11] Sapphire Build. MiTek http://www.kovasolutions.com/

ProductModules/SapphireBuildOverview.aspx. Accessed: 2015-08-
07.

[12] Understanding HATEOAS. https://spring.io/understanding/

HATEOAS. Accessed: 2015-10-15.

[13] Versioning ASP.NET Web API Services Using HTTP
Headers. https://seroter.wordpress.com/2012/09/25/

versioning-asp-net-web-api-services-using-http-headers/. Ac-
cessed: 2015-11-06.

[14] What is a Portal, Really? http://compnetworking.about.com/od/

internetaccessbestuses/l/aa011900a.htm. Accessed: 2015-08-27.

[15] Your API versioning is wrong, which is why I decided to do
it 3 different wrong ways. http://www.troyhunt.com/2014/02/

your-api-versioning-is-wrong-which-is.html. Accessed: 2015-11-15.

[16] Iso/iec/ieee systems and software engineering – architecture description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000) (Dec 2011), 1–46.

[17] MiTek Acquires Kova Solutions, LLC. Business Wire
http://www.businesswire.com/news/home/20131010005121/en/

MiTek-Acquires-Kova-Solutions-LLC#.VcRWMvntlBc, October 2013.
Accessed: 2015-08-07.

[18] Aihkisalo, T., and Paaso, T. Latencies of service invocation and
processing of the rest and soap web service interfaces. In Services (SER-
VICES), 2012 IEEE Eighth World Congress on (June 2012), pp. 100–
107.

[19] Andrews, G. R. Paradigms for process interaction in distributed
programs. ACM Comput. Surv. 23, 1 (Mar. 1991), 49–90.

[20] Block, G., Cibraro, P., Felix, P., Dierking, H., and Miller,
D. Designing Evolvable Web APIs with ASP.NET, 1st ed. O’Reilly
Media, Inc., 2014.

[21] Boyles, T. CCNA Security Study Guide: Exam 640-553. SYBEX Inc.,
Alameda, CA, USA, 2010.

[22] Bureau, U. S. C. New Privately Owned Housing Units Started.
https://www.census.gov/construction/nrc/pdf/startsan.pdf. Ac-
cessed: 2015-08-21.

66

http://www.kovasolutions.com/ProductModules/SapphireBuildOverview.aspx
http://www.kovasolutions.com/ProductModules/SapphireBuildOverview.aspx
https://spring.io/understanding/HATEOAS
https://spring.io/understanding/HATEOAS
https://seroter.wordpress.com/2012/09/25/versioning-asp-net-web-api-services-using-http-headers/
https://seroter.wordpress.com/2012/09/25/versioning-asp-net-web-api-services-using-http-headers/
http://compnetworking.about.com/od/internetaccessbestuses/l/aa011900a.htm
http://compnetworking.about.com/od/internetaccessbestuses/l/aa011900a.htm
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.businesswire.com/news/home/20131010005121/en/MiTek-Acquires-Kova-Solutions-LLC#.VcRWMvntlBc
http://www.businesswire.com/news/home/20131010005121/en/MiTek-Acquires-Kova-Solutions-LLC#.VcRWMvntlBc
https://www.census.gov/construction/nrc/pdf/startsan.pdf

Bibliography

[23] C., C. The self-service industry’s best and worst
of 2009. http://www.kioskmarketplace.com/articles/

the-self-service-industrys-best-and-worst-of-2009/. Accessed:
2015-10-05.

[24] Caulfield, J. Software Program Allows Builders to Operate from Sin-
gle Database. http://www.builderonline.com/building/operations/

software-program-allows-builders-to-operate-from-single-database_

o, September 2011. Editor: Builder, Accessed: 2015-07-24.

[25] Chang, D., Gupta, K. C., and Nandi, M. Rc4-hash: A new hash
function based on rc4. In Proceedings of the 7th International Conference
on Cryptology in India (Berlin, Heidelberg, 2006), INDOCRYPT’06,
Springer-Verlag, pp. 80–94.

[26] Cheng, N., Wang, Y., Zhao, X., and Li, N. The digital fingerprint
of xml electronic medical records based on hmac-sha256 algorithm. In
Communication Software and Networks (ICCSN), 2011 IEEE 3rd In-
ternational Conference on (May 2011), pp. 338–340.

[27] Costello, R. L. Building Web Services the REST Way. http://www.
xfront.com/REST-Web-Services.html.

[28] Dang, Q. Changes in federal information processing standard fips 180-
4, secure hash standard. Cryptologia 37, 1 (Jan. 2013), 69–73.

[29] Ebert, J. SOA with REST: Principles, Patterns & Constraints
for Building Enterprise Solutions with REST by Thomas Erl, Benjamin
Carlyle, Cesare Pautasso, Raj Balasubramanian. SIGSOFT Softw. Eng.
Notes 38, 3 (May 2013), 32–33.

[30] Espinha, T., Zaidman, A., and Gross, H.-G. Web api growing
pains: Stories from client developers and their code. In Software Main-
tenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week - IEEE Conference on (Feb 2014), pp. 84–93.

[31] Fielding, R. T. Roy Fielding on REST APIs must
be hypertext-driven. http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-driven. Accessed: 2015-05-13.

[32] Fielding, R. T. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, 2000. AAI9980887.

[33] Fielding, R. T., and Taylor, R. N. Principled design of the modern
web architecture. ACM Trans. Internet Technol. 2, 2 (May 2002), 115–
150.

67

http://www.kioskmarketplace.com/articles/the-self-service-industrys-best-and-worst-of-2009/
http://www.kioskmarketplace.com/articles/the-self-service-industrys-best-and-worst-of-2009/
http://www.builderonline.com/building/operations/software-program-allows-builders-to-operate-from-single-database_o
http://www.builderonline.com/building/operations/software-program-allows-builders-to-operate-from-single-database_o
http://www.builderonline.com/building/operations/software-program-allows-builders-to-operate-from-single-database_o
http://www.xfront.com/REST-Web-Services.html
http://www.xfront.com/REST-Web-Services.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Bibliography

[34] Flanders, J. RESTful .NET: Build and Consume RESTful Web Ser-
vices with .NET 3.5. O’Reilly Media, Inc., 2008.

[35] freshome. Design & Architecture Magazine, 10 Basic Facts You
Should Know About Modular Homes. http://freshome.com/2013/03/

27/10-basic-facts-about-modular-homes/. Accessed: 2015-07-28.

[36] Fu, C., Belqasmi, F., and Glitho, R. Restful web services for
bridging presence service across technologies and domains: an early fea-
sibility prototype. Communications Magazine, IEEE 48, 12 (December
2010), 92–100.

[37] Giridhar, C. Maturity Model of Web Services.
QCon talk https://technobeans.wordpress.com/2012/09/12/

maturity-model-of-web-services/, September.

[38] Hassan, M., Khalid, A., Chattopadhyay, A., Rechberger, C.,
Guneysu, T., and Paar, C. New asic/fpga cost estimates for sha-1
collisions. In Digital System Design (DSD), 2015 Euromicro Conference
on (Aug 2015), pp. 669–676.

[39] HiP. What is a Lead? What is a Prospect? What’s
the Difference? http://high-impact-prospecting.com/

what-is-a-lead-what-is-a-prospect-whats-the-difference/. Ac-
cessed: 2015-07-29.

[40] Hyväri, P. 3D Visualization of Configured Homes. Master’s thesis,
Department of Computer and Science and Engineering, Aalto University
School of Science, Espoo, Finland, 1 2007.

[41] IBISWorld. Home Builders in the US: Market Research Re-
port. http://www.ibisworld.com/industry/default.aspx?indid=169.
Accessed: 2015-07-24.

[42] Jacobson, D., Woods, D., and Brail, G. APIs: A Strategy Guide.
Oreilly and Associate Series. O’Reilly Media, 2011.

[43] Jon Flanders. More On REST. https://msdn.microsoft.com. Ac-
cessed: 2015-09-02.

[44] Joudeh, T. Building ASP.Net Web API REST-
ful Service. http://bitoftech.net/2013/12/16/

asp-net-web-api-versioning-accept-header-query-string. Accessed:
2015-05-13.

68

http://freshome.com/2013/03/27/10-basic-facts-about-modular-homes/
http://freshome.com/2013/03/27/10-basic-facts-about-modular-homes/
https://technobeans.wordpress.com/2012/09/12/maturity-model-of-web-services/
https://technobeans.wordpress.com/2012/09/12/maturity-model-of-web-services/
http://high-impact-prospecting.com/what-is-a-lead-what-is-a-prospect-whats-the-difference/
http://high-impact-prospecting.com/what-is-a-lead-what-is-a-prospect-whats-the-difference/
http://www.ibisworld.com/industry/default.aspx?indid=169
https://msdn.microsoft.com
http://bitoftech.net/2013/12/16/asp-net-web-api-versioning-accept-header-query-string
http://bitoftech.net/2013/12/16/asp-net-web-api-versioning-accept-header-query-string

Bibliography

[45] Krawczyk, H., Bellare, M., and Canetti, R. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104 (Informational), Febru-
ary 1997.

[46] Kurtz, J., and Wortman, B. ASP.NET Web API 2: Building a
REST Service from Start to Finish, 2nd ed. Apress, Berkely, CA, USA,
2014.

[47] Laplante, P. A. What Every Engineer Should Know About Software
Engineering (What Every Engineer Should Know). CRC Press, Inc.,
Boca Raton, FL, USA, 2007.

[48] Line, V. Industry Analysis: Homebuilding. http://www.valueline.

com/Stocks/Industries/Industry_Analysis__Homebuilding.aspx#

.VdXH_PntlBc. Accessed: 2015-08-15.

[49] Mulligan, G., and Gracanin, D. A comparison of soap and rest
implementations of a service based interaction independence middleware
framework. In Simulation Conference (WSC), Proceedings of the 2009
Winter (Dec 2009), pp. 1423–1432.

[50] NAHB. Housing Market Index (through August 2015). http://www.

nahb.org/. Accessed: 2015-08-21.

[51] NAHB. Production Homes. http://www.nahb.org/

en/consumers/home-buying/types-of-home-construction/

types-of-construction-production-homes.aspx. Accessed: 2015-
07-24.

[52] Nath, S. Web services: Design choices for space ground system inte-
gration. In MILITARY COMMUNICATIONS CONFERENCE, 2012 -
MILCOM 2012 (Oct 2012), pp. 1–6.

[53] National Institute of Standards and Technology. FIPS PUB
180-2: Secure Hash Standard. 2004.

[54] NewHomeSource. Is a Custom or Production Home Builder Right
for You? http://www.newhomesource.com/resourcecenter/articles/

is-a-custom-or-production-builder-right-for-you. Accessed: 2015-
07-28.

[55] Pagni, M., Hau, J., and Stockinger, H. A multi-protocol bioin-
formatics web service: Use soap, take a rest or go with html. In Cluster
Computing and the Grid, 2008. CCGRID ’08. 8th IEEE International
Symposium on (May 2008), pp. 728–734.

69

http://www.valueline.com/Stocks/Industries/Industry_Analysis__Homebuilding.aspx#.VdXH_PntlBc
http://www.valueline.com/Stocks/Industries/Industry_Analysis__Homebuilding.aspx#.VdXH_PntlBc
http://www.valueline.com/Stocks/Industries/Industry_Analysis__Homebuilding.aspx#.VdXH_PntlBc
http://www.nahb.org/
http://www.nahb.org/
http://www.nahb.org/en/consumers/home-buying/types-of-home-construction/types-of-construction-production-homes.aspx
http://www.nahb.org/en/consumers/home-buying/types-of-home-construction/types-of-construction-production-homes.aspx
http://www.nahb.org/en/consumers/home-buying/types-of-home-construction/types-of-construction-production-homes.aspx
http://www.newhomesource.com/resourcecenter/articles/is-a-custom-or-production-builder-right-for-you
http://www.newhomesource.com/resourcecenter/articles/is-a-custom-or-production-builder-right-for-you

Bibliography

[56] Pautasso, C., Zimmermann, O., and Leymann, F. Restful web
services vs. ”big”’ web services: Making the right architectural decision.
In Proceedings of the 17th International Conference on World Wide Web
(New York, NY, USA, 2008), WWW ’08, ACM, pp. 805–814.

[57] Philip, N. Empowering the customer of the future through self serving
web portals-using www.truvolounge.ie as a case study. http://trap.

ncirl.ie/507/, 2010.

[58] Potlapally, N., Ravi, S., Raghunathan, A., and Jha, N. A
study of the energy consumption characteristics of cryptographic algo-
rithms and security protocols. Mobile Computing, IEEE Transactions
on 5, 2 (Feb 2006), 128–143.

[59] Programmable Web. http://www.programmableweb.com/,
Most Popular APIshttp://www.programmableweb.com/news/
most-popular-apis-least-one-will-surprise-you/2014/01/23. Ac-
cessed: 2015-05-13.

[60] Ramanathan, R. Handbook of Research on Architectural Trends in
Service-Driven Computing. Advances in Systems Analysis, Software En-
gineering, and High Performance Computing:. IGI Global, 2014.

[61] Richardson, L. Justice Will Take Us Millions Of Intri-
cate Moves. QCon talk http://www.crummy.com/writing/speaking/

2008-QCon/, 2008.

[62] Rivest, R. The md5 message-digest algorithm, 1992.

[63] Song, Y., Xu, K., and Liu, K. Research on web instant messaging
using rest web service. In Web Society (SWS), 2010 IEEE 2nd Sympo-
sium on (Aug 2010), pp. 497–500.

[64] Strother, J., Fazal, Z., and Rettich, K. From full-service to self-
service: The airline industry takes off. In Professional Communication
Conference (IPCC), 2010 IEEE International (July 2010), pp. 191–194.

[65] W3C. Web Service http://www.w3.org/TR/ws-gloss/, SOAP
http://www.w3.org/TR/soap12/, HTTP/1.1 http://www.w3.

org/Protocols/rfc2616/rfc2616-sec10.html#sec10, Hypertext
http://www.w3.org/WhatIs.html, Token Based Authentication
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/

fp/token_based_authentication/. Accessed: 2015-11-05.

[66] Wang, X., Yin, Y. L., and Yu, H. Finding collisions in the full sha-1.
In Advances in Cryptology - CRYPTO 2005: 25th Annual International

70

http://trap.ncirl.ie/507/
http://trap.ncirl.ie/507/
http://www.programmableweb.com/
http://www.programmableweb.com/news/most-popular-apis-least-one-will-surprise-you/2014/01/23
http://www.programmableweb.com/news/most-popular-apis-least-one-will-surprise-you/2014/01/23
http://www.crummy.com/writing/speaking/2008-QCon/
http://www.crummy.com/writing/speaking/2008-QCon/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/soap12/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://www.w3.org/WhatIs.html
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/

Bibliography

Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings (2005), vol. 3621 of Lecture Notes in Computer Sci-
ence, Springer, pp. 17–36.

[67] Washington, M., and Lackey, I. Building Websites with DotNet-
Nuke 5. Packt Publishing, 2010.

[68] Wasson, M. Model Validation in ASP.NET Web API.
http://www.asp.net/web-api/overview/formats-and-model-binding/

model-validation-in-aspnet-web-api. Accessed: 2015-05-13.

71

http://www.asp.net/web-api/overview/formats-and-model-binding/model-validation-in-aspnet-web-api
http://www.asp.net/web-api/overview/formats-and-model-binding/model-validation-in-aspnet-web-api

Appendix A

Web API Documentation and HTTP

Status Codes

General HTTP response status codes for Web APIs are already introduced
in Section A.2 they will not be shown in the Web API documentation. The
posts and the responses are returned in JSON.

A.1 Web API Documentation

A.1.1 General

Login
URI api/v3/Customer/Login
HTTP verb POST
Body [Required]

string Email
[Required]
string Password

Success string token=userID;expiration time;HMAC-SHA256

72

Appendix A. Web API Documentation and HTTP Status Codes

Email Password Reset Link
URI api/v3/Customer/EmailPasswordResetLink?token={token}
HTTP verb POST
Body [Required]

string Email
Success string resetURL = http://example.com/ResetPassword.html?

PasswordResetToken={GeneratedPasswordResetToken}
Reset Password
URI api/v3/Customer/ResetPassword?token={token}
HTTP verb POST
Body [Required]

string NewPassword
[Required]
string NewPasswordConfirm

Success -
Change Password
URI api/v3/Customer/ChangePassword?token={token}
HTTP verb POST
Body [Required]

string OldPassword
[Required]
string NewPassword
[Required]
string NewPasswordConfirm

Success -

A.1.2 Lead

Print Brochures
URI /api/v3/Lead/ListBrochures?token={token}
HTTP verb GET
Body -
Success List<LeadBrochure>

string Name
string Description

73

Appendix A. Web API Documentation and HTTP Status Codes

Print Brochure
URI /api/v3/Lead/PrintBrochure/[LeadBrochureID]?token={token}
HTTP verb GET
Body [Required]

int LeadBrochureID
Success int LeadBrochureID

string URLforBrochure

A.1.3 Home Owner

Get Homes
URI /api/v3/Home/ListHome?token={token}
HTTP verb GET
Body -
Success List<string>HomeID
Submit Service Request
URI /api/v3/Home/SaveServiceRequest?token={token}
HTTP verb POST
Body [Required]

string HomeID
[Required]
string Description
[Required]
string Name
List<ServiceRequestItem>

Success List<ServiceRequest>
View Home Information
URI api/v3/Home/GetInfo/homeID?token={token}
HTTP verb GET
Body [Required]

string HomeID
Success string Name

string WarrantyStatus
date WarrantyExpirationDate
BuyerInfo
Community
Lot
Model
List<SelectedHomeOptions>

74

Appendix A. Web API Documentation and HTTP Status Codes

Save Tenant Information
URI /api/v3/Home/SaveTenant?token={token}
HTTP verb POST
Body [Required]

string HomeID
[Required]
string Phone
[Required]
[ValidPhoneNumber]
string Name

Success -
Save Customer information
URI /api/v3/Home/SaveCustomerInfo?token={token}
HTTP verb POST
Body [Required]

string HomeID
string StreetAddress
string City
[ValidZipCode]
string ZipCode
[ValidStateCode]
string StateCode
[ValidPhoneNumber]
string PhoneHome

Success -

A.2 HTTP Status Codes

Status Code API meaning
200 OK Response to a successful GET, PUT or DELETE
201 Created Response to a POST that a resource is created suc-

cessfully
204 No Content Response to a DELETE, where a successful request

won’t be returning a body
400 Bad Request The request parameters are not valid
401 Unauthorized When an authentication is failed
403 Forbidden When an authentication succeeded but authenticated

user’s access to the resource is forbidden
404 Not Found When a requested resource does not exits

75

Appendix A. Web API Documentation and HTTP Status Codes

410 Gone Indicates that the resource at this end point is no
longer available. Useful as a response for old API
versions

500 Internal Server Error The server encountered an unexpected condition
501 Not Implemented The service is not implemented
503 Service Unavailable The service is unavailable due to maintenance

76

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Goals of the Thesis
	1.2 Structure of the Thesis

	2 Web Application Programming Interface
	2.1 Web API versus a Website
	2.2 Web API Architecture
	2.3 Web API Architectural Styles
	2.3.1 Tunneling
	2.3.2 Uniform Resource Identifier
	2.3.3 Representational State Transfer

	2.4 Web API as Web Services: REST vs SOAP
	2.5 Summary

	3 Representational State Transfer (REST)
	3.1 REST as Coined by Roy Fielding
	3.2 Constraints of REST Architectural Style
	3.2.1 Client-Server
	3.2.2 Stateless
	3.2.3 Cache
	3.2.4 Uniform Interface
	3.2.5 Layered System
	3.2.6 Code-On-Demand
	3.2.7 Uniform Interface Constraint for Web APIs

	3.3 Summary

	4 RESTful Web API
	4.1 Building RESTful Web APIs by the REST Maturity Model (RMM)
	4.1.1 Level 0: One URI and One HTTP Verb
	4.1.2 Level 1: Unique URIs for Resources
	4.1.3 Level 2: HTTP Verbs
	4.1.4 Level 3: HATEOAS

	4.2 Summary

	5 Versioning
	5.1 When Is Versioning Needed
	5.1.1 Case 1: Adding New Fields to Representation
	5.1.2 Case 2: Renaming or Removing Fields from Representation
	5.1.3 Case 3: Changing Resource Entity
	5.1.4 Case 4: Changing URI
	5.1.5 Case 5: Change in a program running under API

	5.2 Versioning methods
	5.2.1 The URI Way
	5.2.2 The Hypermedia Way

	5.3 Summary

	6 Security
	6.1 Authentication and Authorization
	6.2 Token Based Authentication
	6.3 Hash function
	6.3.1 SHA

	6.4 HMAC
	6.5 Unsafe and Non-idempotent POST
	6.5.1 Data Annotations
	6.5.2 Under Posting
	6.5.3 Over Posting

	6.6 Summary

	7 Application
	7.1 The home Building Industry in the USA
	7.1.1 Types of Home Builders
	7.1.2 Community Life Cycle
	7.1.3 Sales Process from Lead to Home Owner

	7.2 Sapphire Build
	7.3 Customer Portal
	7.3.1 Different Portal Users

	8 Design and Implementation
	8.1 Requirements
	8.1.1 General
	8.1.2 Lead
	8.1.3 Prospect
	8.1.4 Under Contract
	8.1.5 Homeowner

	8.2 Design and Implementation
	8.2.1 Web API Architecture Style
	8.2.2 Versioning
	8.2.3 Security

	9 Result and Discussion
	9.1 Evaluation and Challenges
	9.1.1 Architectural Style
	9.1.2 Versioning
	9.1.3 Security

	9.2 Future work

	10 Conclusions
	A Web API Documentation and HTTP Status Codes
	A.1 Web API Documentation
	A.1.1 General
	A.1.2 Lead
	A.1.3 Home Owner

	A.2 HTTP Status Codes

