
MANAGEMENT OF PERVASIVE DISPLAYS

Venkata Praneeth Tatiraju

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 23.11.2015

Thesis supervisor:

Prof. Mario Di Francesco

Thesis advisor:

M.Sc. Mohit Sethi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80718033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Venkata Praneeth Tatiraju

Title: MANAGEMENT OF PERVASIVE DISPLAYS

Date: 23.11.2015 Language: English Number of pages: 9+67

Department of Communications and Networking

Professorship: Data Communication Software

Supervisor: Prof. Mario Di Francesco

Advisor: M.Sc. Mohit Sethi

Traditional signage is being replaced by digital displays that are directly connected
to the Internet and show content from the cloud. These displays increasingly rely on
a standard web-browser and HTML5 technologies for rendering rich media content.
As the number of these displays increase, it is critical to provide user-friendly
and efficient solutions for managing them remotely from the cloud. The remote
management of such displays traditionally relies on proprietary native software
solutions that employ remote desktop access technologies such as Virtual Network
Computing (VNC) and Remote Desktop Protocol (RDP). However, these solutions
are not only resource-intensive in terms of the consumed bandwidth, but also
cumbersome to use on mobile devices such as smartphones and tablets.
In this thesis, we design a new remote-management solution that relies on available
web technologies including HTML5, WebRTC and WebSocket. In particular, we
use the WebSocket protocol and a Publish/Subscribe communication pattern for
our proposed solution. To demonstrate the feasibility of this remote-management
solution, we implement a proof-of-concept HTML5-based application for a repre-
sentative digital signage scenario. Three different versions are implemented and
realized on top of state-of-the-art JavaScript libraries, namely mutation-summary,
sharejs, and socket.io.
The performance of these solutions is evaluated in terms of payload, round trip
time, throughput, and application response time. The obtained results show that
mutation summary has low latency and is best suited for non-interactive content.
ShareJS and Socketio are more suitable for real-time collaborative applications.
Lastly, we also analyze the libraries from a programmer’s perspective and present
important implementation related considerations.

Keywords: WebSocket, Socket.io, ShareJS, Mutation Summary, HTML5, Cloud
server, Cloning, Virtual Network Computing.

iii

Preface
Foremost, I am grateful to Professor Mario Di Francesco for supervising my thesis and
providing me an opportunity to work with him. His excellent guidance, motivational
support and feedback helped me to complete this thesis successfully. I also thank my
instructor Mohit Sethi, for his patience, guidance and feedback at all stages of my
thesis.
I am thankful to my friends and family for extending their support during the difficult
times.
Thank You!

Otaniemi, 23.11.2015

Venkata Praneeth Tatiraju

iv

Abbreviations
HTTP Hypertext Transfer Protocol
HTTPS Hyper Text Transfer Protocol Secure
WWW World Wide Web
MIME Multipurpose Internet Mail Extensions
HTML Hypertext Markup Language
VNC Virtual Network Computing
AJAX Asynchronous JavaScript and XML
RFB Remote Frame Buffer Protocol
TCP Transmission Control Protocol
IP Internet Protocol
UDP User Datagram Protocol
NTP Network Time Protocol
RPC Remote Procedure Call
WAMP Websocket Application Messaging Protocol
Pub/Sub Publish/Subscribe
UA User Agent
URI Uniform Resource Identifier
URL Uniform Resource Locator
RTT Roundtrip Transfer Time
OT Operational Transformation
JSON JavaScript Object Notation
SOAP Simple Object Access Protocol
RSS Really Simple Syndication
REST Representational State Transfer
XMPP Extensible Messaging and Presence Protocol
XML Extensible Markup Language
Wi-Fi Wireless Fidelity
TLS Transport Layer Security
SSH Secure Shell
SSL Secure Sockets Layer
CA Certificate Authority
RESP Redis Serialization Protocol

v

Contents
Abstract ii

Preface iii

Abbreviations iv

Contents v

1 Introduction 1
1.1 Research Scope and Goals . 1
1.2 Contributions . 2
1.3 Structure of the thesis . 2

2 Pervasive Displays 3
2.1 Evolution of Pervasive Displays . 3
2.2 Reasons and Requirements to Manage Pervasive Displays 4
2.3 Software Architecture of Pervasive Display Networks 5
2.4 Techniques . 6

2.4.1 Mobile device-based . 7
2.4.2 Multi-content and Multi-application Support 7
2.4.3 Content Distribution and Scheduling 8
2.4.4 Human Computer Interaction 8
2.4.5 Web-based or native software based solutions 9

3 Technologies 10
3.1 Legacy Bi-directional Communication Techniques for web 10
3.2 BrowserChannel . 11
3.3 HTML5 . 11
3.4 WebSocket . 12
3.5 WebRTC . 13
3.6 Desktop Sharing Solutions . 13

3.6.1 Virtual Network Computing 14
3.6.2 x11vnc server . 15
3.6.3 Browser based VNC client solution 16

3.7 Network Time Protocol . 17
3.8 Publish/Subscribe systems . 17
3.9 JavaScript Libraries . 19
3.10 Faye . 20
3.11 Mutation Summary . 20
3.12 Redis . 21
3.13 livedb . 21
3.14 Operational Transformation . 21
3.15 ShareJS . 22
3.16 Socket.io . 23

vi

3.17 Derby.js . 24
3.18 React.js . 24
3.19 timesync.js . 25
3.20 PhantomJS . 25

4 Architecture and Evaluation 26
4.1 System Architecture . 26
4.2 Implementation by scenario . 26

4.2.1 VNC with WebSocket . 28
4.3 Experimental Setup . 28

4.3.1 Metrics . 30
4.4 Results . 31

4.4.1 Page Loading Time . 31
4.4.2 WebSocket Frames Payload 32
4.4.3 Application Response Time 35
4.4.4 Round Trip Time (RTT) . 37
4.4.5 Unique data bytes in TCP payload 42
4.4.6 Actual data packets in TCP payload 44
4.4.7 Throughput . 46
4.4.8 Qualitative Evaluation from programmer’s perspective 50

5 Conclusion 52

References 53

A Ethernet Experiment Related Plots 58

vii

List of Tables
1 Wi-Fi Interface Specifications . 29
2 Ethernet Interface Specifications . 58

viii

List of Figures
1 Display types . 4
2 Basic Digital Signage System Architecture in the recent times 6
3 Websocket Connection Establishment 13
4 Remote Desktop Sharing Operations 14
5 RFB protocol stages . 16
6 Publish/Subscribe pattern . 18
7 Publish/Subscribe pattern with a message broker 19
8 Publish/Subscribe pattern with a network of message brokers 19
9 System Architecture . 27
10 Publish/Subscribe Architecture common to all the implementations . 27
11 VNC with WebSocket . 28
12 DOM complete load time for all the implementations 31
13 WebSocket Frames Payload for the solution based on mutation-summary

library . 32
14 WebSocket Frames Payload for the solution based on ShareJS library 33
15 WebSocket Frames Payload for the solution based on Socketio library 34
16 WebSocket Frames Payload for the VNC solution 34
17 Application response time for the solution based on mutation-summary

library . 35
18 Application response time for the solution based on ShareJS library . 36
19 Application response time for the solution based on Socketio library . 36
20 RTT average for client 1 . 38
21 RTT average for client 2 . 38
22 RTT maximum for client 1 . 39
23 RTT maximum for client 2 . 40
24 RTT minimum for client 1 . 41
25 RTT minimum for client 2 . 41
26 Unique Bytes in TCP payload for the mutation-summary based solution 42
27 Unique Bytes in TCP payload for the ShareJS based solution 43
28 Unique Bytes in TCP payload for the Socketio based solution 43
29 Actual Packets in TCP payload for the mutation-summary based solution 44
30 Actual Packets in TCP payload for the ShareJS based solution 45
31 Actual Packets in TCP payload for the Socketio based solution 45
32 Throughput for client1 and for the mutation-summary based solution 46
33 Throughput for client2 and for the mutation-summary based solution 47
34 Throughput for client1 and for the ShareJS based solution 48
35 Throughput for client2 and for the ShareJS based solution 48
36 Throughput for client1 and for the Socketio based solution 49
37 Throughput for client2 and for the Socketio based solution 49
38 WebSocket Frames Payload for the solution based on mutation-summary

library . 58
39 WebSocket Frames Payload for the solution based on ShareJS library 59
40 WebSocket Frames Payload for the solution based on Socketio library 59

ix

41 Application response time plots . 60
42 Application response time for the solution based on Socketio library . 60
43 RTT average for client 1 . 61
44 RTT average for client 2 . 61
45 RTT maximum for client 1 . 62
46 RTT maximum for client 2 . 63
47 RTT minimum for client 1 . 63
48 RTT minimum for client 2 . 64
49 Unique Bytes in TCP payload . 64
50 Unique Bytes in TCP payload for the ShareJS based solution 65
51 Actual Packets in TCP payload . 65
52 Throughput for the mutation-summary based solution 66
53 Throughput for the ShareJS based solution 66
54 Throughput for the ShareJS based solution 67

1

1 Introduction
Electronic displays that show digital content are indeed replacing traditional notice
boards, billboards and so on. Nowadays, these displays are connected directly to
the Internet and serve content from the cloud. This has opened up new possibilities
for remote access and management of these displays. The proliferation of pervasive
displays has also increased over time due to technological advancements in their
hardware. Moreover, there are large and multi-screen displays that support rich user
interactions.

1.1 Research Scope and Goals

Many of the digital displays are deployed in public areas and it is difficult to estimate
how many people viewed the content. Besides, it is challenging to attract users to
view and interact with the content. With interaction types based on touch, gesture,
and mobile phones, it is now possible to support interactive applications. As the
number of these displays increase, it is critical to provide user-friendly and efficient
solutions for managing them remotely from the cloud.

We investigated existing solutions for remote management of pervasive displays
and found that most of them require installation of native software. A recent
work adopted web-based solution to manage the displays and also supported user
interactions with their mobile phones [53]. However, mobile devices are energy
constrained: performing heavy-duty tasks on these devices consumes a large amount
of resources. There are practical solutions such as code offloading, where complex
computing tasks are performed in the cloud [5, 32]. An example is given by an image
recognition software where complex calculations run on the cloud while the client
with a light-weight software displays the returned results from the cloud. Alternate
solution is to get remote access to the display using thin client software such as
Virtual Network Computing (VNC), Remote Desktop Protocol (RDP) solutions [55].
This type of software connects to a remote desktop server and provides access to
server applications. The client application gives a desktop user interface to the client
and its inputs are sent to the server. However, these solutions are mainly designed for
desktop computers and have performance issues when used in mobile devices. Also,
these solutions are cumbersome to use on devices such as smartphones and tablets.
There are proprietary solutions such as SmartVNC [67] for mobile devices but they
are not freely available. This thesis instead, focuses on providing an efficient solution
in terms of network utilization and delay for remote management of displays. The
proposed solution is based on an extensive literature survey conducted to characterize
the research challenges in the management segment of the pervasive displays. This
thesis considers web based solutions due to the various benefits that they offer: device
and platform independence, ease of use, the need for browser support only and no
additional hardware to play media content.

1.2 Contributions

This thesis leverages modern web technologies specifically – HTML5, WebRTC and
WebSocket – for remote management of pervasive displays. This thesis extends
the recent research work by Oat et al. [42] that provides a web based solution
for controlling the content with the users mobile device. Specifically, we build a
web-based solution for remote management of pervasive displays. We employ three
state-of-the-art JavaScript libraries for real-time collaborative web applications and
implement a representative HTML5 application for digital signage. We then evaluate
the performance of the underlying approach in terms of Round Trip Time (RTT),
overhead and page loading time. We conduct different experiments and measure
these metrics in different network conditions.

This thesis attempts to provide highly efficient solutions for remote management
of displays. Our work is helpful for future research on creating and scheduling multiple
contents to the displays. We also suggest few real-time frameworks not used in this
thesis that could be considered for future research.

1.3 Structure of the thesis

This thesis is organised as follows. Chapter 2 briefly introduces the history of
pervasive displays and then presents their software architecture, along with the
major techniques used for remote management. Chapter 3 overviews traditional
bi-directional communication techniques for web applications and their limitations;
it then introduces current technologies that can be adopted. Chapter 4 describes
the setup of our experimental testbed and the results of the experimental evaluation
conducted. Finally, Chapter 5 concludes the thesis and discusses possible future
work.

3

2 Pervasive Displays
Pervasive displays are digital displays that show different contents such as text, video,
audio and so on. These displays are deployed in public, semi-public and private
spaces such as shopping malls, railway stations, offices and so on. Pervasive displays
are also called ubiquitous displays or digital signage. In this thesis we use, these
terms interchangeably, unless otherwise stated. These displays gained popularity
because of different features that they provide including push-based distribution
(for example advertisements, emergency announcements), context-specific content
(for example web advertising), multimedia content (for example images, videos),
and are easy to upgrade. Advertising is the most important domain for the use
of display networks, as these displays are majorly supported by advertisements [7].
These signage systems are being transitioned from showing content only systems to
systems that support communication and interaction. Technical work in this type of
display networks is often carried out by the graphics (Human Computer Interaction)
and ubiquitous computing communities. In this chapter we briefly introduce, the
evolution of pervasive displays, various reasons and techniques used over the years
for remote management of pervasive displays.

2.1 Evolution of Pervasive Displays

Research in the field of Pervasive displays and digital signage started almost 30 years
back. Since then, tremendous innovations took place in this field. The digital displays
were first put into public use in the form of “media links” during the 1980s. The
media links are created by joining both audio and video links [7]. In the 1990s various
methods were introduced to install information displays in the public environments.
One such method is Flexible Ubiquitous Monitor Project (FLUMP) [21] that used
traditional LCD’s to display multimedia information. Also, wearable devices were
explored for displaying information during that period. In the early 2000s various
methods were explored to use small digital displays for displaying information in
workplaces (e.g., displays as doorplates) [7]. Also, during that period effective use of
the pervasive displays in improving awareness and creating a sense of community at
the workplace is investigated [7]. The capabilities of these device are further extended
to support various features such as live video conversations, display items of relevant
information such as live news, weather feeds and so on. Many other solutions were
developed to provide awareness, and to promote social interaction. In the late 2000s
deployment of pervasive displays in public places such as city centers and university
campuses has significantly increased.

The hardware features for public signage displays evolved from the early split-flap
displays to the recent development of ultra high definition or 4k resolution displays,
and wearable devices like Google Glass [7]. In split-flap displays a series of flaps are
rotated mechanically to form the display as shown in Figure 1a. In today’s world,
there are also video walls (i.e., multi-monitor displays such as the one shown in
Figure 1b) that are designed to overcome the size limitation of LCD displays.

Prior to web technologies, native software was installed on display systems to

4

serve various purposes. With the evolution of Internet technologies modern browsers
(thin-clients) have the ability to play high-quality videos and also support real-time
communication. Therefore many signage systems these days use web technologies to
distribute and manage the display content. Also, with thin-clients a wide-range of
display systems can access the full range of digital signage functionality. Modern
pervasive displays are equipped with the latest display and sensing technologies, and
can connect to the Internet over a wireless connection. Also, these displays can
be managed and serve content from servers deployed in the cloud [7, 53]. Modern
displays also support different user input types such as touch, gesture and mobile
device-based interactions [7]. This has enabled the content designers and display
manufacturers to support wide range of features [7].

Despite the innovation in technologies and display systems, there are many design
challenges involved in creating and distributing the content that add real value to
the viewer. The key challenge here is to identify the capabilities of the installed
pervasive displays in public areas [7].

(a) Traditional Split-flap displays [3] (b) Video Wall displays [26]

Figure 1: Display types

2.2 Reasons and Requirements to Manage Pervasive Displays

Remote management of pervasive displays is necessary for various important reasons
such as:

• Manual monitoring and service restoration during faults is cumbersome.

• Monitoring the display state changes is also a challenging task that is to be
handled by the management part of the signage architecture [7].

• In the case of open display networks [8] the concept of display app-stores
allows both users and display owners to purchase the applications from a
central repository and expects it to be displayed on the screen. This requires
management of interfaces such as those between application server and the
central repository for proper scheduling.

• Securing these displays is critical for various reasons particularly when the
displays support user interactions. For example a user is susceptible to evil
twin attacks where the attacker attracts the user to connect to rogue access

5

point (i.e., same SSID of the original one) and access the phishing pages and
steal sensitive data [11].

• Furthermore, irrespective of the location of the digital displays, the content
must be distributed to these displays almost instantaneously.

These displays also require an easy and non-technical installation and configuration
process. They must show the appropriate content that is targeted and needs proper
scheduling of the content. The management component must be designed carefully
to handle these challenges and several techniques were proposed over the years to
solve some of the challenges.

2.3 Software Architecture of Pervasive Display Networks

The architecture for the digital signage systems can become quite complex based on
the purpose to be solved. However, we base our study on the basic architecture for
signage systems [7, 53] as shown in Figure 2. There are mainly four components in
the software architecture of pervasive displays networks which are content creation,
scheduling and management, display component and interactive devices such as
mobile phones.

In the content creation component, the software and tools used are generic, thus
not specific to signage systems. However, most signage systems provide tools with
simple interface for creating content. These tools can be used for creating different
types of content such as images, videos, audio, animations and textual information.

The main research area of the pervasive displays is scheduling and management and
Human Computer Interaction (HCI). This scheduling and management component
serves the back-end for the signage system architecture and takes care of distributing
the content to the appropriate screen parts of the displays. Modern commercial
signage systems use cloud services for managing the content.

• To achieve content scheduling in non-interactive signage systems, signage
operators usually create display groups and content playlists. The scheduling
and management part takes care of mapping and scheduling of playlists to the
display groups. In interactive signage systems the functionality is complex due
to the factors to be considered such as user interaction, content upload by third
parties and so on. This segment has many challenges to fulfill due to a wide
range of scheduling requirements such as displaying content at specified times,
content rescheduling based on user interaction and displaying the same content
for a certain number of times.

• From an architectural perspective, it is beneficial to separate the management
of pervasive displays from content scheduling and distribution. The display
management component handles various administrative functions such as remote
monitoring of displays, controlling the power states of the device and handling
software updates.

6

The display component (i.e., displays) shows the content served by the cloud servers.
The other features such as sensing and interactions are also supported by the displays.

The device based interactions are often done using mobile devices. Mobile devices
act as a gateway to the displays in the local physical environment. These mobile
devices can be used to control/manage the content on pervasive displays.

Content
Server

Management

Cloud

Wi-Fi Network

SmartPhone

Server

DISPLAY
PERVASIVE

DISPLAY
PERVASIVE

Figure 2: Basic Digital Signage System Architecture in the recent times

2.4 Techniques

There are many ways to manage and distribute the content securely to the appropriate
displays. With the recent advancements in the ubiquitous computing, it is possible
to manage and schedule different types of applications such as real-time interactive
applications, traditional digital signage applications that are often non-interactive
and both these types of applications concurrently [13]. Some of the projects that
support both the interactive and user-contributed content are Instant Places, Screens
In The Wild (project aimed to enhance the digital displays design to benefit public
life), UBI-hotspots (large multipurpose public interactive displays deployed in Oulu),
and e-campus (digital displays connected in a network and used for regular signage
within a campus) [7, 13].
There are various types of techniques introduced over time and are categorized. These
techniques are described next.

7

2.4.1 Mobile device-based

Mobile based interactions are quite popular for some time and is an effective way to
attract users by allowing them to interact with the pervasive displays. There are
different ways for a mobile device to communicate with the nearby digital display.
Earlier techniques used Bluetooth for the communication between the mobile device
and the display located in the physical environment. Later on, due to technical
advancements mobile phone applications were developed to send user inputs to the
applications deployed in cloud for controlling the content on nearby pervasive dis-
plays. Near Field Communication (NFC) tags of the devices are also used to establish
communication between mobile phones and the nearby pervasive displays. Latest
techniques use Quick Response (QR) codes and RFID for accessing information from
the pervasive displays [7]. Oat et al. [42] provide a solution that allows users to
interact with the pervasive screens using their mobile phones. The proposed solution
is a complete web-based solution that leverages latest HTML5 technologies. It also
provides a solution to establish a secure connection between pervasive displays and
users mobile device.

Sethi et al. [53] propose a technique for secure management of cloud connected
digital displays, by introducing a new user-assisted protocol for wireless displays to
establish a secure connection to both the cloud service and wireless access network.
The proposed architecture have separate content and management servers. Connec-
tion is initiated when the user’s mobile device scans the QR code that is displayed on
the screen, and then after the one-step configuration process, the content is showed
on the display.

Erbad et al. [16] proposed a messaging broker (i.e., a middleware) for interactive
large screen display applications which supports mobile device based interactions.
The proposed middleware solution uses abstractions such as channels (i.e., topic in
publish/subscribe pattern), events, state, services and content. However the solution
is built using either outdated or proprietary protocol.

Google [41] proposes an end-to-end framework that uses mobile phone camera to
project the content from the user’s mobile device to the target pervasive displays
or personal computer. The proposed solution uses QR (Quick Response) code to
identify the pervasive display. The content projection to the target display takes
place in three steps. The user first scans the QR code of the target display, then the
barcode turns to checkerboard marker and moves until the user identifies the target
position, and then the content will be projected to the target position. The solution
used web-based architecture for deployment and accessibility to the projector service.

2.4.2 Multi-content and Multi-application Support

Strohbach et al. [62] propose context management framework (CMF) that is able to
evolve with customer needs and new technologies. They developed this framework
to enable bidirectional communication between advertisers and consumers, which
helps the advertisers to increase their campaign efficiency and also add value to the
consumers. Their framework consists of context agents that provide information to

8

the applications with the data received from sensor sources.
Linden et al. [33] propose a web based framework for dynamic partitioning of the

display screens into several virtual screens to accommodate multiple concurrent web
applications both in spatial and temporal dimensions. The proposed architecture is a
scalable and open architecture that allows integration of third party web applications
into UBI-hotspots. The solution used resource manager to control the allocation
of screen estate of the displays to the concurrent web applications and the layout
manager to control the actual layout of the screen that is partitioned into virtual
screens to accommodate different web applications.

Johanson et al. [28] propose a “multibrowsing” framework that allows free move-
ment of the web based content across ubiquitous displays. The proposed solution
leveraged web technologies to build the framework. The framework allows three
different types of roles that can be given to the displays. Based on display’s role they
may have to install or run custom plug-in or service.

2.4.3 Content Distribution and Scheduling

Clinch et al. [6] provide a solution to design application stores for ubiquitous displays,
to distribute third-party applications in open display networks [8]. The proposed
solution concentrated on scheduling and distributing the signage content to the
pervasive screens using an application store. The authors also reported the design
considerations and the limitations of using such an approach. The User Interface
(UI) design in the proposed solution claimed to meet the requirements of application
developers and display owners. The proposed solution solves the purposes such as, it
allows application developers or content providers to upload their content, it allows
display owners to view, purchase, and organise applications and it also allows the
display owners to manage their physical hardware.

There are software solutions such as Scalable Adaptive Graphics Environment
(SAGE) by Jeong et al. [27] middleware, developed to display relevant content on
multi-monitor displays. The SAGE middleware supports streaming real-time data,
High Definition (HD) videos, and high resolution graphics to the scalable display walls.

2.4.4 Human Computer Interaction

Kuikkaniemi et al. [31] employed large interactive public displays to explore the
presentation behaviour in walk-up-and-display scenarios. Specifically, a specialized
system was designed to provide presentation features in addition to the information
browsing feature. The work aims at providing a near real-time experience for content
management (i.e., publishing and subscribing the content), although the details are
not elaborated.

Heikkinen et al. [24] provided a description on the remote monitoring and
management tools developed for the maintenance of UBI-hotspots. The “Nagios”
remote monitoring tool they used is able to detect component and system level issues.
However it could not detect issues in the web-based user interface. To monitor the

9

user interface issues, “Happy page” software is used to fetch the period screen capture
updates from the hotspots. Further Remote Desktop Connection (RDC) and Virtual
Network Computing (VNC) are used for diagnosing the faults.

2.4.5 Web-based or native software based solutions

Heikkinen et al. [25] proposed an event-based communication middleware for a net-
work of large multipurpose displays (i.e., UBI-hotspots). The proposed solution uses
RabbitMQ message broker, a messaging middleware that supports publish/subscribe
pattern and Remote Procedure Call (RPC) to support multiple messaging patterns.
However the message broker does not support transfer of raw streams of media
intensive data.

Olberding et al. [43] propose a solution to various challenges posed by Cloud-
Drops, a set of many tiny interactive stamp-sized displays and each display shows
a bit of digital information. The solution provides a way to map the content to
displays, manage the screen content, and handle user interactions. The proposed
solution supports users to view and interact with three classes of content, which are
document related content, people related content and content related to places. The
content is uploaded to the cloud drops in three different ways, one way is by placing
CloudDrops near to the devices (PC, Laptop, or MAC) and the changes in the user
selected web page snippets are reflected on the CloudDrops, the other way is by
attaching CloudDrops to locations such as walls, doors, and desks, and finally by
grouping the CloudDrops.

Despite all the various techniques mentioned in this chapter, there is no efficient
web based solution for remote management of ubiquitous displays. We aim to provide
a complete web based solution that is effective in terms of performance. Such a
solution is discussed in Chapter 5.

10

3 Technologies
In this chapter, we introduce the technologies that are used in our proposed ar-
chitecture that is detailed in Chapter 4. Firstly we discuss about the evolution of
bi-directional communication techniques used in the web, followed by HTML5 tech-
nologies. We then discuss different types of solutions for desktop sharing. Specifically,
we introduce the concepts of Operational Transform (OT) and Network Time Proto-
col (NTP) to understand the functioning of the relevant libraries that we used. We
also discuss Publish/Subscribe systems. Finally, we detail state-of-the-art JavaScript
libraries that we researched on.

3.1 Legacy Bi-directional Communication Techniques for web

In the conventional client/server network architecture, the client is either a device or
an application and the server is a machine that runs software locally to share their
resources with the clients. Often clients start the communication with servers, how-
ever this approach is not suitable for modern real-time applications. Since the HTTP
protocol is a request/response protocol where the client sends a request to the server
and expects a response from the server, conventional web pages must be reloaded,
when there is an updated content and as a consequence this creates a large overhead.
Due to this limitation several techniques were developed to establish asynchronous
communication where the responses for corresponding requests are received without
reloading the page. These techniques open multiple HTTP connections to establish
bi-directional communication. There are techniques such as polling, long polling and
streaming over Asynchronous JavaScript and XML (Ajax), which are executed at
the client side for retrieving data asynchronously from the web server.

Among them Ajax is a technique used by the client to fetch data asynchronously
from the server by sending a HTTP request to the server.

With the polling technique, the client sends an AJAX script with the request and
expects to be served with the data from the server, asynchronously. However, when
the server could not serve the content due to unavailability, the client starts polling
the server repeatedly until the content is served.

With the long polling technique, the server maintains timeouts and during the
timeout period the server holds the client’s request in its message queue until the
content is available. On content availability the server sends a response to the client.

With the HTTP streaming technique, the server uses a persistent connection
with the client and pushes updates to the client when available. Due to the buffer
mechanism used for streaming, this approach increases the delay in delivering mes-
sages, thus it is not suitable for resource constrained devices. Also, in persistent
connections it is not efficient to allow the client and server to stay connected for a
long time due to various factors such as the time-outs values set by the servers, that
is used to kill the idle connections, limiting the number of simultaneous connections
initiated by the clients to the servers to a maximum of two.
The consequences of both polling techniques are [20]:

• They increase the workload of the server for keeping the requests open.

11

• The HTTP header in each request leads to high overhead in the transport
protocols because of the number of requests made.

• It increases the frequency of polling the webserver.

• A mapping from the outgoing connections to the incoming connections has to
be maintained on the client side.

• The number of different underlying TCP connections increases on the server
side for upstream and downstream exchange of messages with the client.

3.2 BrowserChannel

BrowserChannel is a protocol developed by Google to provide bi-directional com-
munication [29]. It does long polling and does not support WebSockets and cross
domain requests. Also, it does not support Remote Procedure Call (RPC). The
following features are provided by BrowserChannel [29]:

• Messages arrive in order.

• Messages are never received by the server after the connection is closed.

• It works on all major browsers.

• It can send messages even before the connection to the client is established, as
opposed to WebSockets. This saves an extra round-trip if messages are sent
along with the connection request.

• Messages are automatically converted to JSON messages through Google’s
JSON encoder.

3.3 HTML5

HTML5 is the fifth revision of the HyperText Markup Language that is used to
create hypertext documents. HTML5 aims at defining a single markup language that
can be written in HTML or XHTML. HTML5 specification includes the HTML4,
XHTML1, and DOM2 HTML specifications [2]. HTML5 includes several technologies
that allows to create diverse and powerful web-based applications. The following are
some of the powerful HTML5 technologies:

• It provides improved semantics by adding more meaningful elements that can
be used based on the content. Specifically, it adds several new elements like
audio, video, mark, figure, figcaption, data, meter, time, output and so on. It
added improvements in HTML forms and iframe. It added MathML application
to embed mathematical formulas directly.

12

• It adds new connectivity features. These include WebSockets that creates a
permanent connection between user agent and the server, Server-sent events
(for the server to send events to the client) and WebRTC (for real-time com-
munication such as video calling between peers over the web without the need
for external plugins).

• It allows webpages to store data locally on the client side. It also supports
online and offline events.

• It allows to embed and modify multimedia elements such as audio and video. It
is also capable of using the camera Application Programming Interface (API).

• It added canvas element that allows to do 2D/3D graphics on the Web. WebGL
API allows to add 3D graphics to the web.

• It brings in major performance improvements and better integration by intro-
ducing Web Workers (allows scripts to run in background threads).

• It is capable of using various input and output devices in terms of touch events,
geolocation, device orientation detection, pointers and so on.

• It adds several new features for styling that allows to create complex styling
and the newest version of cascading style sheets is called CSS3.

3.4 WebSocket

WebSocket [20] is a new advanced and independent protocol used to establish a full
duplex, bidirectional communication over a single TCP connection. WebSocket runs
over HTTP ports 80, 443 and also support HTTP proxies. The WebSocket protocol
uses two new URI schemes ‘WS’ and ‘WSS’ for non-secure and secure connections
respectively [20]. In the handshake procedure, WebSocket connection is established
by sending an upgrade request using the upgrade request header supported in the
HTTP/1.1 version. During the connection establishment, if there is a proxy server that
is used by the client, then HTTP connect method is used to setup a persistent tunnel.
Also, client can request the server for using WebSocket subprotocols by including the
header field “sec-websocket-protocol”. After the connection is established, WebSocket
supports exchange of message-oriented text and binary data frames between client
and server as long as the connection is available [70]. The WebSocket connection
establishment is shown in Figure 3. To terminate the WebSocket connection, endpoint
must use a clean method to close the underlying TCP connection and TLS session.
To start the WebSocket closing handshake, the endpoint sends the status code, reason
to close and sends a close control frame. On sending and receiving the close control
frame, the endpoint closes the WebSocket connection [70].
WebSocket API is event-driven and greatly improves performance for real-time and
event-based communications. Moreover, WebSocket supports sub-protocols that is
useful to build modular and reusable components. The limitations in establishing
WebSocket connections directly as per the research done by the engine.io team [60]

13

are WebSocket traffic is blocked by many of the corporate proxies, the antivirus and
firewall applications used for personal computers block the WebSocket traffic, and a
few widely used cloud platforms such as Heroku prefer long polling to WebSocket.

Client Server

HTTP Upgrade request

WebSocket connection established

Bi-directional exchange of messages

WebSocket connection closed

T
im

e

over persistent connection

(channel closed by client)

Figure 3: Websocket Connection Establishment

3.5 WebRTC

WebRTC [1] is an API standard that provides plugin-free browser-to-browser, real-
time, audio, video, and data communication. The WebRTC stack provides three
APIs namely, Mediastream, RTCpeerconnection and RTCdatachannel. There is also
a proposed API [52, 71] to capture browser tab content as a mediastream that can
be sent over WebRTC.

3.6 Desktop Sharing Solutions

Desktop sharing solutions employ the common client/server model. In these cases
a thin client software (also called remote desktop software) is installed to access a
computer’s (server) desktop environment remotely from another computer (client)

14

over a network. A client machine accessing the remote computer needs to authen-
ticate itself first, the entire screen content is then sent to the client machine. The
remote desktop software captures client computer’s mouse and keyboard inputs and
sends them to remote computer (server). The remote computer (server) calculates
the changed screen area for the corresponding inputs and then responds by sending
screen updates to the client machine. The operations involved in remote desktop
sharing are shown in Figure 4.

Remote Desktop Client Remote Desktop Server

Client

Connection request sent to server

Initial screen content sent to client

Input events sent to server

Server calculates

Server updates sent to client

Connection closed

the changed
screen content

software
started

Repeated
Operations

Verifies the
client sent

password for
authorization

Client authorized and
connection established

Figure 4: Remote Desktop Sharing Operations

3.6.1 Virtual Network Computing

Virtual Network Computing (VNC) is one of the remote desktop sharing solutions,
which uses Remote Frame Buffer (RFB) protocol for its operation. VNC is a platform
independent solution. Multiple VNC clients can connect simultaneously to the VNC
server.

The RFB protocol works at the frame buffer level and supports all windowing
systems and applications [61]. RFB opens a long-lived process on the server to

15

maintain the state of the framebuffer and make client stateless. Typically, RFB
clients connect to the server on default TCP port 5900, manipulate the framebuffer
for a period of time and then disconnect [61].

In RFB, the display protocol takes care of drawing rectangles of pixel data
at particular coordinates and allows different encodings for the pixel data. These
sequence of rectangles together form a framebuffer update and is sent by server to
the client upon request. The input protocol takes care of capturing the input events
and sending them to the server. The pixel data is sent in a particular format (i.e.,
the representation of individual colours by pixel values) and encoding (i.e., the way
to send rectangle of pixel data) negotiated by both client and the server during the
initial handshake [61].

RFB operates on any reliable protocol such as TCP/IP. There are three phases
in RFB protocol to establish connection and exchange data between client and server
as shown in Figure 5. It starts with the handshake phase in which the server first
sends a ProtocolVersion message consisting of 12 bytes to the client. The client then
responds to the server, with a message specifying the ProtocolVersion to be used.
These steps complete the ProtocolVersion negotiation phase. The client and server
then negotiate on security to be used, by exchanging security type (no authentication
or VNC authentication) messages. In VNC authentication server first sends a random
16-byte challenge to the client and client responds to it by sending a 16 byte encrypted
message [61]. The second phase is the initialisation phase during which the client
first sends ClientInit message, specifying if the server should share the screen, by
leaving all the clients connected or by disconnecting all clients. The server responds
by sending ServerInit message specifying dimensions of the server’s frame buffer,
pixel format and the device name. In the final phase normal protocol interaction
takes place between the client and the server [61].

RFB supports multiple encoding types, any input device that can be mapped to
keyboard and a pointing device, and various extensions for better integration with
the remote server [61].

3.6.2 x11vnc server

x11vnc server is an implementation of VNC servers and allows a computer to be
viewed and controlled remotely and works with any VNC client viewer. This software
polls the server’s (i.e., machine on which x11vnc is installed) frame buffer for changes.
The remote computer (client) can access the desktop environment of the server over
the local network or Internet. This software also supports polling non-x11 frame
buffer devices such as Linux terminal, webcam etc. It contains built-in SSL/TLS
encryption. It also supports VeNCrypt security type. Also x11vnc has client-side
caching that is implemented using brute force.

In this solution the polling algorithm reads data of 32 pixels at a time vertically
and when it reaches the bottom it starts again from top using a different offset.
With this approach it reads data 32 times faster compared to sequential approach
of reading pixel by pixel. The process of reading is made much faster by using x11
DAMAGE extension, which gives the position to focus polling.

16

VNC Client VNC Server

Protocol versions supported

Protocol version to be used

Security type to be used

AuthenticationChallenge

Authentication Response

Security Result

ClientInit message

ServerInit message

Normal Protocol Interaction Phase

Security types supported (none or
VNC authentication)

Handshake
Phase

Initialization
Phase

If VNC au-
thentication

is used

Figure 5: RFB protocol stages

3.6.3 Browser based VNC client solution

noVNC is a cross-browser platform, HTML5 based desktop sharing solution. It uses
HTML5 canvas, WebSocket and typed arrays. This solution provides a python script
(websockify) that is used as proxy and allows the actual HTML5 page to connect
to the TCP socket proxy using WebSocket, and the proxy communicates with the
VNC server over VNC protocol. The proxy is used if the vncserver variant does not
support WebSocket connections. The following features are supported [37]:

• Raw, copyrect, rre, hextile, tight, and tightPNG VNC encodings.

• WebSocket TLS/SSL encryption.

• 24 bit true color and 8 bit color depths.

• Desktop re-size notification and pseudo-encoding.

17

• Local and remote cursor.

• Clipboard copy and paste features.

• Clipping or scrolling modes for large remote screens.

3.7 Network Time Protocol

Network Time Protocol (NTP) is used to synchronize the time of the computer
systems connected to the Internet [38]. NTP maintains the time with an accuracy of
tens of milliseconds over the public Internet, and achieves an accuracy within one
millisecond in local area networks. There can be errors of 100ms or more during
asymmetric routes and network congestion [38]. In NTP implementations timestamp
messages are exchanged over User Datagram Protocol (UDP) port 123. NTP does
not provide information on daylight savings.

NTP client synchronizes its clock with that of the server by polling three or more
servers on diverse networks and computes round-trip delay and offset times.

• The round-trip delay is calculated by taking the difference between the elapsed
time on the client side for sending a request and receiving response, and the
waiting time of the server before sending response [38].

• The offset is calculated by taking the average of the time difference between
the time the client sent the request and the time when the server received the
client’s request, as well as the time difference between the time the server sent
the response and the time when the client received the server’s response [38].

The Simple Network Time Protocol (SNTP) is a simpler version of NTP with less
complexity. It does not store the state for a long period of time and is used in
applications where the accuracy in timing is not critical.

3.8 Publish/Subscribe systems

The publish/subscribe messaging pattern is an approach to deliver information
from publishers (i.e., devices/applications sending updates) to subscribers (i.e., de-
vices/applications receiving updates) in an efficient and timely manner. This is
achieved by first detecting the events (i.e., discrete state transitions) by the publisher
and then delivering them to active subscribers in an asynchronous fashion [63].

Real-time communication systems need an event-driven notification system such
as publish/subscribe, a service that enables to get real-time notifications for only
particular events [63]. There are different types of publish/subscribe solutions used
for internet applications such as, messages can be sent directly from publisher to
subscribers through channels as shown in the Figure 6, through message brokers
in which messages are first sent to the message broker which then takes care of
delivering those messages to subscribers as shown in Figure 7. It is also possible to
increase the scalability of the publish/subscribe network architecture by adding more
message brokers in the network [63] to deliver messages as shown in Figure 8, which

18

is the most common publish/subscribe solution provided in distributed environment.
The latest technologies that support Publish/Subscribe pattern are WebSocket
Application Messaging Protocol (WAMP), MQ Telemetry Transport (MQTT), Pub-
subhubhub protocol. It uses JSON as its message serialization format.

• WAMP [68] is an open standard WebSocket sub protocol that provides struc-
tured messaging by implementing application level messaging patterns: Pub-
lish/Subscribe and Remote Procedure Calls (RPC).

• MQTT [17] is a lightweight publish/subscribe messaging pattern based protocol
designed specifically for resource constrained devices. It is designed to minimise
network bandwidth and to guarentee reliable delivery of messages. It is widely
used in “Internet-of-Things” and “Machine-to-Machine” applications.

• Pubsubhubhub [22] is an open protocol that provides publish/subscribe based
communication. It provides a solution to subscribe, unsubscribe and receive
updates from a web resource. Publishers include references for hub in their
content. Subscribers then access the URL and checks for the hub references
in the received response. If the references are found they subscribe to that
resource URL and then receive updates from those resources.

Publisher Channel

Su
bsc

rib
e

Re
cei
ve

Subscriber

Subscribe

Receive

Receive

Subscribe

Subscriber

Subscriber

Publish

Figure 6: Publish/Subscribe pattern

19

Subscriber

SubscriberSubscriber

SubscriberSubscriber

Publisher Publish

Re
cei
ve

Receive

Receive

Sub
scr

ibe

Subsc
ribe

Subscribe

Message
Broker

Topic 1

Topic 2

Figure 7: Publish/Subscribe pattern with a message broker

Publisher
Topic 1

Message
Broker 1

Message
Broker 2

Publisher
Topic 2

Subscriber

Subscriber

Subscriber

Subscribe

Rece
ive

Subscribe

Rec
eive

Receive

Subscribe

Publish

Publish

Figure 8: Publish/Subscribe pattern with a network of message brokers

3.9 JavaScript Libraries

To share and control the content on remote displays we have VNC solution. Even
though we have a browser based VNC client solution, we need additional software
and intermediaries to setup the VNC server. We aim to provide a complete web
based solution to remotely control the content on digital displays. Also, we aim to

20

provide a solution with better performance. Therefore, we did an extensive literature
survey to find the suitable libraries to implement our solution. The features provided
by these JavaScript libraries are detailed next.

3.10 Faye

Faye [18] is a publish/subscribe messaging system that uses Bayeux protocol [51] (i.e.,
a protocol used to transport asynchronous messages over HTTP with low latency)
to exchange messages asynchronously. It supports messaging server for both Node.js
and Ruby. Faye-websocket [19] is a WebSocket client/server implementation for
Node.js built on top of Faye project. It also support event-source connections (one
way connections and allows server to push the data to the client). It is compliant
with the existing WebSocket standards.

3.11 Mutation Summary

In the old standard [73] (i.e., DOM level 3 Events specification) mutation events were
used to notify any changes made to the structure of a document including attributes,
name and text modifications. Mutation events is a synchronous operation and its
design has significant performance issues such as, they fire for every single change,
they are slow due to event propagation, they are the source of crashes on many user
agents. Also they have improper cross browser support and due to these reasons
mutation events are replaced by mutation observers in DOM Level 4 standards.

Mutation Observers use callback functions, which are used to notify multiple
changes in the DOM at once. Mutation observers is an asynchronous operation and
in this approach, nodes in a document are observed for changes and the corresponding
callback functions are triggered only after all the changes are applied to the DOM [12].
After this, the triggered callback function will have all the DOM changes. Mutation
observers are supported by all modern browsers [12].
Mutation observers have the limitations [45, 12] that is they do not support detecting
CSS style changes such as hover state, they do not support logging timestamp details
of mutations in change records, and the active internal state of the form elements
such as the value of textarea element is not identified accurately.

The Mutation summary library [48] is built on top of the latest DOM mutation
observers API and is an efficient and reliable library. Mutation summary takes all
the changes notified by the mutation observers, computes the net changes that took
place and then delivers those changes to the callbacks. This library provides the
following features [48]:

• It supports four different types of DOM changes that can be observed throughout
the sub-tree, and the changes are attribute changes, element changes includes
only a simple subset of CSS, character data changes, and all changes.

• The time and memory it takes is proportional to the number of changes that
took place; as these changes typically involve a few nodes. It performs faster
in detecting changes.

21

• It ignores changes made during the callback.

• It can handle complex operations.

• It is supported by all modern web browsers.

The limitations of this library are, it does not support pseudo-element matching, it
does not notify the switching of DOM transient states, it does not notify accurately
the internal state changes of the embedded iframe players.

3.12 Redis

Redis [50] is an in-memory data structure store which can be used as a database,
cache and message broker. The Redis Publish/Subscribe messaging system consists of
PUBLISH, SUBSCRIBE and UNSUBSCRIBE mechanisms. The transfer of messages
from publisher to subscribers takes place through channels. The Redis client-server
communication takes place over a specially designed Redis Serialization Protocol
(RESP). Redis supports pipelining and the client can send multiple commands to
the server without waiting for response [50]. The RESP protocol is used only with
stream oriented connections, such as TCP connections, and is capable of serializing
data types such as integers, strings, bulk strings, errors and arrays. Redis client sends
requests to the Redis server as an array of bulk strings representing the arguments
of the command and server replies with one of the RESP data type, specific to the
command [50].

3.13 livedb

Livedb [54] is a wrapper for real-time databases and the current API version has
binding for mongodb database only. Livedb also has in-memory database backend to
store all the documents and operations in memory forever. The data model of livedb
has three properties, namely version, type (OT type) and data (i.e., document data).

Livedb requires three important inputs to operate appropriately. A database
to store actual documents (snapshots), an operations log to store operations and a
livedb driver (in-process or Redis) for managing communication in a multi-server
architecture. Livedb client can be created using either an options object or a database
backend and if database backend is chosen both operations log and snapshots can be
stored in the database. The Redis server has to be used for multi-server architecture
and two redis clients are to be created to handle commands and pubsub respectively.
Livedb supports live queries against the database, projects the real collection of data
with only a limited fields for only JSON documents.

3.14 Operational Transformation

Operational Transformation (OT) [14] is a technique used to maintain consistency
and concurrency control in collaborative software systems. The main idea of the OT
technique is to execute transformation of parameters of an editing operation based

22

on the previously executed concurrent operations. This logic ensures accurate results
and maintains document consistency across all sites [44]. Also, the local response
time is insensitive to network latencies in OT systems [44]. It provides a range of
collaborative functionalities such as group undo, conflict resolution, locking, operation
notification and compression, HTML/XML and tree-structured document editing
etc [44]. Google Docs [44] and Apache Wave [69] use OT as their core technique.

The OT system structure comprises different components. The most common
OT system design separates the high-level transformation control algorithms and
low-level transformation functions [44]. The transformation control algorithm layer
takes care of identifying the operation to be transformed against the new operation
and also the order of transformations. The transformation functions layer determine
transformation of operations based on the operation types, positions and other
parameters. These transformation functions are invoked by the control algorithms.
The responsibilities of the above mentioned layers is determined accurately based on
the transformation properties and conditions [44].

3.15 ShareJS

ShareJS [23] is a client and server library that can be used to implement real-
time concurrent editing web applications. This library is built using operational
transformation (OT) algorithm on text and JSON content. The multi-site real-time
concurrency is achieved using this OT algorithm. This library works on all major
browsers.

ShareJS creates a document object at the server and also maintains the document
version. ShareJS generates operations (i.e., mini commits) as and when the user gives
the input data to the web application. These operations are applied to the document
version. When multiple users are editing the same version of the document, server
handles the operations by taking one of the user’s operations directly and the rest of
them are automatically transformed by the server [23].

The server API exposes three methods namely share.listen(stream) to hand over
control of the stream to sharejs, share.rest() returns a connect or express router to
expose sharejs REST API, and share.use(method, function(action, callback)...) to
intercept requests to the livedb (i.e., a wrapper for real-time databases) backend for
access control using sharejs middleware [23]. ShareJS access the database through a
livedb client.

The client API exposes two classes, Connection and Doc to handle communication
to the sharejs server and store an in-memory copy of the document data including
local edits. The Connection class instance is used to create document references in
the client [23].

ShareJS allows client server communication over browserchannel, WebSocket or
any other transport protocol that guarantees in-order message delivery. This library
is able to provide a node object stream to the server to communicate with the client.
It also provides a WebSocket like api on the client. The transport used must handle
client re-connections. The browserchannel transport takes care of stringifying JSON
messages and also supports sending messages while the connection is in progress, but

23

for other transport mechanisms separate flags have to be enabled to achieve those
functionalities.
Document objects in ShareJS follow the Livedb object model, which is a database
front-end for concurrent editing systems and has the following features [23]:

• They store data on the client side.

• Client can edit data synchronously and sync it with the server automatically.

• Client can also edit data offline and on reconnect data is sent to the server.

The current version of ShareJS supports Plaintext type OT and JSON type OT.
The plaintext OT [64] specification considers document as a large string and edits
the string index directly. Operations are list of components, that traverse along the
document. Each component could represent one of the following actions, a number
N that represents to skip N characters forward, str that represents to insert string
at the current position, d:N that represents to delete N characters at the current
position in the document. This OT type also supports manipulation of selections.
The time complexity of this JSON OT type algorithm is O(N + M).

The JSON OT type can be used to edit arbitrary JSON documents and supports
the operations [30] such as insert, delete, move or replace items in a list and objects,
numerical addition, string editing, arbitrary subtypes such as text, rich-text and to
register them “json0.registerSubtype” is to be called.

3.16 Socket.io

Socket.io [56] is a library used for building real-time web applications and is written
in JavaScript. It has both client side and server side libraries and enables real-time
bidirectional event based communication. It relies on the WebSocket protocol to
provide bi-directional communication and polling is used as a fallback option.

Socket.io enables the client to connect to the server over WebSocket at start and
if the connection fails it downgrades the connection to XMLHttpRequest (XHR)
polling, and again if the connection fails, it is downgraded to flash sockets (used to
establish connection from client side flash applications to the server). It also supports
socket re-connections [56] and rooms (for example chat rooms) to cluster connections.

Socket.io uses engine.io library for lower level abstraction [39]. The connection
procedure in engine.io starts with long polling connection and if the connection fails
upgrades it to better transports, which is opposite to the logic that socket.io operates
on. Therefore, engine.io provides more predictable results and is more reliable [60].

To minimize the number of TCP connections, socket.io supports assigning different
endpoints or paths to the sockets, with the ‘namespace’ feature and the default
namespace being ‘/’ [58]. For each namespace it allows creating multiple arbitrary
channels called rooms to which the sockets can join and leave. By default each socket
joins the room identified by socket’s unique id [58].

In multi-server architecture there is a need to maintain connection between the
requests in a session, and the process that originated them, because of the reason that

24

certain transports such as XHR polling and JSONP polling send multiple requests
during the lifetime of the socket connection [56]. To maintain those connections
socket.io recommends usage of Nginx server or Node.js cluster (a cluster of Node.js
processes). After cluster configuration, for routing messages between multiple nodes
socket.io recommends usage of socket.io-redis adapter library that is built on top of
redis [59]. For passing messages from non-socket.io processes socket.io recommends
usage of socket.io-emitter library in addition to the socket.io-redis library [58].

3.17 Derby.js

Derby.js is an Model-View-Controller (MVC) framework designed to implement
modern realtime, collaborative web applications. Derby.js uses Racer [10], which is a
real-time model synchronization engine for node.js. Racer back-end is built on top
of ShareJS and provides a simple model and event interface. Mappings are used to
translate racer paths (i.e., unique nested JSON objects) to database collections and
documents [10].

Derby.js enable rendering both on server side and client side without dupli-
cating the page rendering code. The technologies used by Derby.js are reactive
programming, operational transforms, browserify and mongodb [9]. It also uses
isomorphic JavaScript that can execute JavaScript applications both on client and
server side. The advantages of this approach are performance optimizations, better
maintainability, and more stateful web applications [65].

3.18 React.js

React.js [49] is a JavaScript library used to create user interfaces solving the challenges
encountered in single page web applications. It handles only the view part in the
Model-View-Controller (MVC) framework. It implements one-way reactive data flow.
This library can be used alongside AngularJS or any other JavaScript libraries to
build real-time interactive applications.

This library uses a technique called virtual DOM (Document Object Model)
that abstracts the actual DOM to perform rendering of subtrees based on the state
changes. It can do rendering on both client and server side. It achieves better
performance by minimising the actual DOM manipulations.

React uses ‘diff’ algorithm to detect state changes in a tree. The state of the art
algorithms, designed to transform the tree structure from one form to another, by
generating minimum number of operations have a complexity of O(n3), where ‘n’ is
the number of nodes. React.js claims that its algorithm has managed to reduce the
complexity to O(n) with powerful custom heuristics based on the assumptions that
the components generate similar or different trees based on the classes. It is also
possible to provide a unique key for elements that is consistent across various renders.
React always reconciles trees level-by-level. It takes two diffs into consideration,
which are Pair-wise diff and List-wise diff.

In pair-wise diff, the tree diff is calculated based on the diff of two nodes. It
identified three different types of node diff such as comparing different node types,

25

comparing different DOM nodes and custom components diff. In different node
types diff both the node types are treated as different sub trees and replaces the
first node type (old state) with the second node type (new state changes). In DOM
nodes diff, the attributes of both the nodes are compared using key-value object and
are updated with the new state changes that took place in linear time. In custom
components the logic used is similar to the one used in calculating different node
type diff and is required to ensure that both the components are of the same type.

In list-wise diff the reconciliation for child nodes is done by assigning an optional
attribute ‘key’ to the every child node. With this key it identifies state changes such
as insertion, deletion, substitution and the complexity for this approach is O(n).

3.19 timesync.js

This library [15] is aimed to provide time synchronization in the client/server and
peer-to-peer (P2P) networks, as the client’s timestamps might not be accurate
compared to the server timestamps. In client/server networks the library calculates
the offset with the client and server timestamps and in (P2P) networks it calculates
the offset by averaging the offset of all peers in the network.

This library uses a simple algorithm in which the client sends the current local
timestamp to the server and on receiving the request the server sends the server-time
along with the request. The client on receiving response from the server takes the
difference of the current time and the sent time and divides the result by two to get
the latency. Then time difference between the current time and the server time is
added to the latency to calculate the clock time difference.

3.20 PhantomJS

PhantomJS [66] is a scriptable, headless browser (i.e., a browser accessed programat-
ically) with a JavaScript API to automate web page interaction. The API enables
automated navigation, screen capture, user behaviour and assertions. It is commonly
used to continuously run browser-based unit tests in a headless environment. It is
based on webkit [47]. PhantomJS does not support CSS 3D transformations, local
storage and WebGL. Libraries that use PhantomJS include:

• Pageloadtime [34] which uses PhantomJS and Googlecharts to do performance
testing and measuring the page load time of web applications. The output is
visually represented using google charts.

• Loadreport [72] which gives a report of the load and speed metrics.

• Phantomas [36], a web based performance metrics collector and monitoring
tool.

26

4 Architecture and Evaluation
In this chapter we introduce the system architecture that we used, followed by the
details on different types of HTML5-based implementations developed with different
JavaScript libraries. We then discuss the experiments conducted to evaluate the
performance of the application. Finally, we will provide the metrics used and the
results obtained from the experiments.

4.1 System Architecture

Our proposed solution is completely web based and leverages HTML5 technologies.
There are three components in our architecture, namely the cloud service where the
application server is hosted, a mobile phone and a ubiquitous display. The roles of
each of the components is as follows:

• The cloud server hosts the application, handles the message exchange between
the client (mobile phone) and the pervasive display.

• The mobile phone acts as the controller, meaning that the display content is
affected by the input at the device.

• The ubiquitous display takes care of rendering the content on its screen, based
on the input messages received from the mobile device.

We deployed our application in the cloud, so that it can be accessed from any network
and is more suitable for Network Address Translator (NAT) environments, where
the client is behind the private network and can be reached from the public Internet
through NAT. The cloud server has two roles: it provides content to both mobile
phone and ubiquitous display; it enables bi-directional communication between these
devices. The requirements of our proposed architecture is that both the mobile phone
and the ubiquitous display must be connected to the Internet and must run a modern
web browser that support WebSocket such as Firefox, Chrome, Opera. The system
architecture with its different components is shown in Figure 9.

4.2 Implementation by scenario

We considered web technologies, specifically HTML5 WebSocket and WebSocket
Application Messaging Protocol (WAMP) to provide simple and elegant solution for
the digital signage scenarios. We created a basic HTML5 presentation application
that contains text and media (i.e., audio, video, images). It supports user interactions
such as swipe control to change the slides, HTML5 player controls to control the
media. This web application is implemented using three popular state-of-the-art
JavaScript libraries mutation-summary, ShareJS, and Socket.io that provide real-time
communication. The web application is designed to automate slide changes for a
given time interval. All these libraries use WebSocket protocol for the data transfer.

In the solution based on mutation-summary [48] JavaScript library, faye-websocket
library is used as the message broker. We created two web applications out of which

27

Application Server

Internet gateway SmartPhoneUbiquitous Display

Cloud
Infrastructure

Figure 9: System Architecture

one application contains the actual content and the other application is just a mirror
page that shows the cloned content. Both these applications are deployed to the
cloud infrastructure. The mobile client accesses the application with the actual
content. The other client laptop accesses the cloned content. Messages are exchanged
in publish/subscribe topic based pattern over Faye’s WebSocket implementation.

In the solution based on ShareJS [23] JavaScript library, livedb is used as the
message broker that provides publish/subscribe mechanism. We used ‘ws’ a Web-
Socket implementation library to use the WebSocket functionality.

In the solution based on Socket.io [56], engine.io is used for the WebSocket
functionality for the transport.

For all the implementations mobile device is the publisher (i.e., client that publishes
messages to the channel) and ubiquitous display is the subscriber (i.e., client that
receives the messages through the subscribed channel) as shown in Figure 10.

Message
Broker

Channel

Subscribe
Publish

Receive messages

Figure 10: Publish/Subscribe Architecture common to all the implementations

The performance of the application for each of these libraries is evaluated to find

28

the best suitable library for the ubiquitous display networks in terms of overhead,
latency and page load time.

Further we used VNC with WebSocket to study and compare the performance of
the application and the plot obtained is common to all the implementations.

4.2.1 VNC with WebSocket

In this experiment the payload is measured when the data is sent from publisher
to subscriber using VNC with WebSocket. In this experiment VNC server is run
on client 2 (Laptop). The VNC server used is ‘X11VNC’ and the version is 0.9.13.
A proxy server is installed on Laptop that accepts websocket connections. Also, a
HTML5-based VNC client application called ‘noVNC’ is installed on the Laptop.
Mobile client uses the VNC client application from a web browser and after successful
authentication accesses the content of the Laptop. Password based authentication is
used and the connection is secured over TLS. The experiment setup is as shown in
Figure 11.

Cloud server
(fss.cs.hut.fi)

Mutation - 8081,8082
ShareJS - 8083
Socket.io - 8084

PORTS

Client 2 (Laptop)
acts as

‘Publisher’

VNC server
running on
Client 2

Establishing WebSocket
connection to VNC server

Client 1 (Mobile)
running ‘noVNC’
client application

and acts as
‘Subscriber’

Data transfer over WebSockets

Figure 11: VNC with WebSocket

4.3 Experimental Setup

The application and other equipment used for the experiment is as follows:

29

• The HTML5 presentation application implemented using three libraries mutation-
summary, ShareJS and Socket.io as mentioned earlier in this section. The time
intervals chosen for the automatic state change logic for the web application
are 1s, 5s, 10s, 20s, 30s, 40s, 50s, 60s. For each of these intervals, slide changes
in the web application. The web application is accessed by both the laptop
and the mobile device. For a particular interval set in the web application, the
state change event is triggered from the mobile. This setup is kept for 1 hour
for each interval to capture the packets.

• Cloud Infrastructure (VirtualMachine) is used to deploy the web application.
The VM instance is created in CSC cPouta service. The OS running on
the server is Ubuntu and the version is 14.04.2 LTS. For the application
implemented using the mutation-summary library, two ports are reserved: port
8081 is used by the application that displays the cloned content, and port
8082 is used by the application that mirrors the content. We used two ports
for the mutation summary implementation just to give an example on how
the content cloning works. The actual content contains HTML5 presentation
application and this content is cloned to the mirrored page. The mirrored
page also contains the cloned slide changes. The application implemented
using ShareJS library is run on port 8083. The application implemented using
Socket.io is run on port 8084.

• The browser used for the experiment is Chrome and Version 44.0.2403.155
(64-bit).

• The mobile used for the experiment is Nexus 5 and the OS installed on it is
Android 5.1.1. This device is called Client 1 in the rest of the thesis.

• The laptop used is Dell Inspiron series and model number is N5010. The OS
installed on it is Ubuntu 14.04 LTS. This device is called Client 2 in the rest
of the thesis.

We considered Wi-Fi interface for our experiment and the specifications of the
interface are mentioned in the below table:

Interface Wi-Fi
Download speed 30.29 Megabits per second
Upload speed 39.99 Megabits per second
Radio Type 802.11n
SSID aalto open
Authentication type open

Table 1: Wi-Fi Interface Specifications

The packets are captured at the cloud server when Wi-Fi interface is used.

30

4.3.1 Metrics

To analyze the performance of the application in pervasive display networks and also
to benchmark the JavaScript libraries used in the implementations, we focused on
evaluating the following metrics:

• Page load time of the web application. We used a library called phatomas [35]
to get a report on the page loading time statistics. The experiment is done by
initiating 10 requests for the three versions of the solution. The generation of
multiple requests is automated using the script provided in the open source
implementation. The final plot gives visual representation of various metrics
related to web application performance.

• WebSocket frames payload is analyzed to get an idea on the actual WebSocket
payload data that is being carried over the wire. WebSocket Frames payload
is plotted by extracting the WebSocket protocol related information from the
captured pcap file using tshark. The resulting csv file is filtered per hostname
(fss.cs.hut.fi) and port (8081/8082/8083/8084). The filtered data is then plotted.

• Application response time is the time taken by an event triggered by client ‘a’
to reflect on the client ‘b’. This metric is studied to understand how fast a
user can see the application state changes that are sent by another user, when
both of them are connected using WebSocket for real-time communication.
To measure this metric an npm library, timesync is used. A timesync client
connects to the server and will synchronize its time. When a publisher (mobile)
sends events, the timestamp of the timesync server at that particular moment
is taken, and sent to the subscribers along with the message. On receiving
the message from the publisher, the subscriber (Laptop) then calculates the
application response time by taking the difference between the timestamp of
the timesync server, at that moment when it received the message and the
timestamp that it received in the message sent by the other client. This delay
is represented as the application response time in applying the changes to the
pervasive displays.

• Maximum, minimum, and average values of round trip times (RTT) per con-
nection. These round-trip-time (RTT) measurements are useful to study the
delay between the client and server communication.

• The average throughput is calculated as the unique bytes sent divided by the
elapsed time i.e., the value reported in the unique bytes sent field divided by
the elapsed time (the time difference between the capture of the first and last
packets in the direction) is used for this measurement.

• TCP payload data, which are unique bytes sent (i.e., total bytes sent excluding
retransmitted bytes and bytes due to window probing). TCP data payload
metric gives the actual data being transmitted without the overhead and can
be used to analyze the bandwidth requirements in display networks.

31

• Actual data packets (i.e., packets with atleast a byte of TCP data payload are
considered).

Tcptrace [46] utility is used to generate csv files from the captured pcap files. These
csv files are then filtered per hostname (fss.cs.hut.fi) and port (8081, 8082/8083/8084).
After pre-processing the data, the resulting TCP metrics are plotted for further
analysis.

4.4 Results

All the following plots are plotted with the data captured over the Wi-Fi interface.

4.4.1 Page Loading Time

The plot in Figure 12 shows the distribution of page loading time. We measured
“DOM complete” metric that gives the time taken by the entire HTML document
and all sub-resources to finish loading.

From Figure 12 we infer that the maximum, minimum, average and median
values of DOM complete loading time are high in the mutation-summary based
implementation. The reason is that in the mutation-summary based solution entire
DOM content is cloned including the CSS styling and takes more time to load
the page. The Socketio based solution has the least maximum loading time value
compared to the other solutions. However, shareJS has least average, minimum and
median loading times. Hence from the above comparisons ShareJS has the least page
loading time because of the reason that sharejs uses Operational Transformation
algorithms to synchronize the DOM content.

5092

13258

9544 9834

2610.06

0

8059

3793 3395 3491.54
4363

7912
6097.4 6065

1289.43

D
O

M
 c

o
m

p
le

te
 lo

ad
 t

im
e

 (
m

ill
is

e
co

n
d

s)

mutation-summary ShareJS Socketio

Figure 12: DOM complete load time for all the implementations

32

4.4.2 WebSocket Frames Payload

We considered WebSocket frames payload for the analysis. We analyze five parameters
also called five point summary, which are smallest value, largest value, first quartile
(i.e., value of 25 percentage of the observations), median (i.e., value of 50 percentage
of the observations), third quartile (i.e., value of 75 percentage of the observations),
inter-quartile (i.e., difference between third and first quartile values), and skewness
of the distributed data i.e., skewed right (observations concentrated on lower end of
the scale) or skewed left (observations concentrated on higher end of the scale) or
symmetric (observations spread equally at the median).

The plot of WebSocket Frames payload metric for the mutation-summary based
solution is shown in Figure 13. The distribution of data is skewed left except at 60s
interval that has symmetric distribution. The maximum value of the data is almost
same at all the event intervals which is about 125 bytes.

Figure 13: WebSocket Frames Payload for the solution based on mutation-summary
library

Following are the conclusions made from the plot for the mutation-summary
based solution:

• The maximum, minimum and inter quartile values are almost same at all
the intervals considering the outliers. From this we can say that the number
of bytes transferred is almost consistent at all the intervals. This is mainly
because when there is a slide change, the corresponding HTML DOM element
properties change and this is sent as a message over WebSocket connection.

• The maximum payload transfer is about 130 bytes in this solution.

• The median value has fluctuated until 30s event interval, then it has a downward
trend till 50s and at 60s interval the value has increased. From these observations

33

we conclude that there is not much variation in the median value for most of
the intervals.

The plot of WebSocket Frames payload metric for the ShareJS based solution is
shown in Figure 14. From the box-plot we observe that the payload median value
is about same i.e., 20 bytes at all the intervals except at 5s that has a value of 120
bytes. The distribution of data is skewed right at all the intervals except at 5s that
has skewed left distribution. The inter-quartile range value is approximately 105
bytes at all the intervals. Also, there are no outliers in this plot.

Event Intervals

Figure 14: WebSocket Frames Payload for the solution based on ShareJS library

Following are the conclusions for the ShareJS based solution from the plots:

• The maximum, minimum and inter quartile values are almost same at all the
intervals. This indicates that the distribution of data is consistent at all the
event intervals except at 5s interval. At 5s interval, the distribution is skewed
left because a particular slide change that contains largest resource has occurred
more frequently.

• The maximum payload transfer is about 130 bytes in this solution. There is not
much variation in the five point summary characteristics except at 5s interval.

The plot of WebSocket Frames payload metric for the Socketio based solution
is shown in Figures 15a and 15b. Figure 15a shows the box-plot data at 1s and 5s
intervals. Figure 15b shows the box-plot data for rest of the intervals. From the
box-plot we observe that the payload median value has a large variation across all
the event intervals and its value coincided with either maximum or minimum value
of the distributed data. The payload median value at 5s, 10s and 20s intervals is
about 57 bytes and at 1s interval it is about 56 bytes. The data is skewed left at 5s,

34

10s, and 20s intervals and skewed right for rest of the intervals. The inter-quartile
range value is approximately between 1 byte for 1s and 5s intervals and has a value
of 57 bytes approximately for the other intervals.

Event Intervals

(a) For the intervals 1s and 5s

Event Intervals
(b) For the intervals 10s, 20s, 30, 40s, 50s,
60s

Figure 15: WebSocket Frames Payload for the solution based on Socketio library

From the plot we infer that for the Socket.io based solution the maximum payload
transfer is about 60 bytes.

The plot of WebSocket Frames payload metric for the VNC with WebSocket
based solution is shown in Figure 16. From the box-plot we observe that the payload
median value is almost same i.e., about 55 bytes at all the event intervals. The
distribution of data is slightly skewed right at all the intervals. The inter-quartile
range value is between 60-70 bytes approximately at all the intervals.

Figure 16: WebSocket Frames Payload for the VNC solution

There is not much variation in VNC with WebSocket based solution as the five
point summary values of this metric is almost same at all the event intervals.

35

On the whole, our inference from the WebSockets frames payload metric related
plots is as follow:

• VNC based solution has maximum payload transfer when compared to other
solutions.

• Mutation-summary based solution has higher values when compared to ShareJS
and Socket.io based solutions. This can potentially be explained since the
mutation-summary library changes the DOM sub-tree for a state change. This
leads to a large payload transfer over the wire. However in ShareJS and Socketio
only the state change message is sent over the wire and the receiving client
renders the DOM based on the received message.

• Socketio based solution has the least payload transfer value compared to other
solutions.

4.4.3 Application Response Time

The plot of application response time metric for the mutation-summary based solution
is shown in Figure 17. From the box-plot median value of the metric is between 10-38
ms approximately at all the event intervals. The distribution of data is skewed right
at all the intervals except at 40s and 50s that has symmetric distribution of data.
The inter-quartile range value is between 9-20 ms approximately at all the intervals.

Event Intervals

Figure 17: Application response time for the solution based on mutation-summary
library

The plot of application response time metric for the ShareJS based solution,
is shown in Figure 18. From the box-plot median value of the metric is between
200-1100ms at all the event intervals. The distribution of data is skewed right at all

36

the intervals. The inter-quartile range value is between 150-1700 ms approximately
at all the intervals.

Event Intervals

Figure 18: Application response time for the solution based on ShareJS library

The plot of application response time metric for the Socket.io based solution,
is shown in Figures 19a and 19b. From the box-plot median value of the metric
is between 100-300 ms at 1s, 5s, and 50s event intervals and at 10s, 20s, 30s, 40s,
and 60s intervals the value is between 30-130 ms approximately. The distribution
of data is skewed right at all the intervals except for the 30s that have symmetric
distribution. The inter-quartile range value is 330-1100ms at 1s, 5s, and 50s event
intervals and at 10s, 20s, 30s, 40s, and 60s intervals the value is between 50-120 ms
approximately.

Event Intervals

(a) For all the intervals respectively

Event Intervals
(b) For intervals 10s, 20s, 30s, 40s, 60s
respectively

Figure 19: Application response time for the solution based on Socketio library

On the whole, our inference from the application response time metric related
plots is as follows:

37

• There is a fluctuation in the median value at all event intervals, in all the three
versions of the solution.

• Both the ShareJS and Socket.io based solutions have large application response
times that can reach upto 3000ms in worst case scenario.

• Mutation-summary based solution has less delay compared to the other two
solutions. This is because of the reason that in this solution only the net
changes are sent over the wire. This algorithm is faster in synchronizing
changes compared to the other solutions.

• The delay value is large in ShareJS and Socketio based solutions because of
the reason that the message brokers are different in these solutions.

• Outliers observed in ShareJS and Socketio based solutions are more in number
at 1s event intervals. In both the solutions these outliers fluctuate over the
event intervals. The reason for more number of outliers is that at 1s event
interval the state changes happen quickly and if there is network delay then the
message transfer delay increases as the messages are queued. This is applicable
to highly interactive applications and the response will be slower in those
applications.

4.4.4 Round Trip Time (RTT)

The plot of Round-Trip Time (RTT) average value for client 1 and for all the solu-
tions, is shown in Figure 20. From the box-plot the approximate median values of
the metric data for the mutation-summary, ShareJS and Socket.io based solutions
over the intervals are in the range 0.5-1.9 ms, 0-0.8 ms, and 0-0.5 ms respectively.
The approximate inter-quartile values in mutation-summary, ShareJS and Socket.io
based solutions over the intervals are in the range 1.6-3.2 ms, 0.2-2.6 ms, 0.2-0.8 ms
respectively. The distribution of data for the solutions is skewed right at all the inter-
vals except at 5s and 10s that has a skewed left distribution for ShareJS based solution.

The plot of Round-Trip Time (RTT) average value for client 2 and for all the
solutions, is shown in Figure 21. From the box-plot the approximate median values
of the metric data for the mutation-summary, ShareJS and Socket.io based solutions
over the intervals are in the range 0.8-1.8 ms, 0-1.8 ms, and 0-1.3 ms respectively. The
approximate inter-quartile values in mutation-summary, ShareJS and Socket.io based
solutions over the intervals are in the range 1-2 ms, 1-2.8 ms, 1-3 ms respectively.
The distribution of data for the solutions is skewed right at all the intervals except
at 1s and 20s. At the 1s interval mutation summary based solution has a skewed
right distribution and in the 20s interval ShareJS had symmetric distribution.

Inference from the RTT average metric related plot is as follows:

• Mutation-summary based solution has slightly higher RTT average value at
all the event intervals compared to other solutions. This could be because of

38

Event Intervals

Figure 20: RTT average for client 1

Event Intervals

Figure 21: RTT average for client 2

the reason that the data transfer is high in this version of the solution and is
inferred from data related to WebSocket frames payload metric. Also, the RTT
average value is less than 6 milliseconds in all versions of the solution.

• Fluctuations are observed in the median values for the mutation-summary
based solution. For the other solutions the value is almost skewed to the lower
value which is approximately 1 milliseconds for both the clients.

• For client 2 the maximum value of RTT average is observed at 40s event interval

39

for the Socketio based solution. This spike in the maximum value could be due
to network disruption and the client took more time to receive a response from
the server.

• The outliers fluctuate over the intervals for both the clients.

The plot of Round-Trip Time (RTT) maximum value for client 1 and for all the
solutions, is shown in Figure 22. From the box-plot the approximate median values
of the metric data for the mutation-summary, ShareJS and Socket.io based solutions
over the intervals are in the range 2-6 ms, 0-2 ms, and 0-1 ms respectively. The
approximate inter-quartile values in mutation-summary, ShareJS and Socket.io based
solutions over the intervals are in the range 4-9 ms, 2-6 ms, 1-3 ms respectively. The
distribution of data for the solutions is skewed right at all the intervals.

mutation
sharejs
socketio

Event Intervals

Figure 22: RTT maximum for client 1

The plot of Round-Trip Time (RTT) maximum value for client 2 and at all the
solutions, is shown in Figure 23. From the box-plot the approximate median values
of the metric data for the mutation-summary, ShareJS and Socket.io based solutions
over the intervals are in the range 2-7 ms, 0-5 ms, and 2-5 ms respectively. The
approximate inter-quartile values in mutation-summary, ShareJS and Socket.io based
solutions over the intervals are in the range 1-10 ms, 3-13 ms, 4-22 ms respectively.
The distribution of data for the solutions is skewed right at all the intervals. The
inter-quartile range value for the solutions over the intervals is between 3-23 ms
approximately.

Inference from the RTT maximum metric related plot is as follows:

• For client 1, mutation-summary based solution has higher five point summary
values. For client 2 these values are higher for the Socket.io based solution. On

40

mutation
sharejs
socketio

Event Intervals

Figure 23: RTT maximum for client 2

the whole mutation-summary based solution has slightly higher RTT maximum
values for all the event intervals compared to the other solutions.

• For client 1, mutation-summary based solution has a median value of around 5
milliseconds for all the event intervals except at 40s and 50s, where the values
are below 5 milliseconds. For the other versions there is not much variation in
the median value and is less then 4 milliseconds.

• For client 2, the median value variation is similar to that of the client value
and the value is less than 8 milliseconds for all the solutions. Also, we noticed
that Socketio based solution has much skewness and could be due to delay in
fetching the large page resources.

• For the outliers maximum value is about 40 milliseconds at all the event
intervals, for both the clients and for the versions based on mutation-summary
and Socketio. The outliers in Sharejs has less maximum value compared to the
other two versions of the solution.

The plot of Round-Trip Time (RTT) minimum value for client 1 and for all the
solutions, is shown in Figure 24. From the box-plot we observe that for all the
solutions the median, maximum, minimum, and quartile values is between 0-0.1 ms.
Overall RTT minimum value observed is around 0 ms for all the solutions.

The plot of Round-Trip Time (RTT) minimum value for client 2 and for all the
solutions, is shown in Figure 25. From the box-plot we observe that for all the
solutions the median, maximum, minimum, and quartile values is between 0-0.6 ms.
Overall RTT minimum value observed is around 0 ms for all the solutions.

For client 1 the ShareJS and Socket.io based solutions have higher values. For
client 2 the values are higher for the mutation-summary based solution. On the

41

mutation
sharejs
socketio

Event Intervals

Figure 24: RTT minimum for client 1

whole mutation-summary based solution has slightly higher values compared to the
other solutions.

mutation
sharejs
socketio

Event Intervals

Figure 25: RTT minimum for client 2

From the RTT minimum plots we observe that the minimum RTT seen in the
RTT samples is less than 0.1 milliseconds for both the clients and at all the event
intervals. The RTT minimum value seen is minimal due to the location of the cloud
server instance and also depending on the type of implementation. The outliers are
observed more for client 2 compared to client1.

From all the RTT measurements we observe that the mutation-summary based

42

solution has higher RTT values compared to other versions of the solution. The
reason could be that the websocket implementation in this library is different from
the other libraries and uses faye-websocket library for the communication. The other
reason could be that the library has many resources to load before sending response
to the client. This pattern is also observed in the page load metric discussed earlier.
However, lower RTT values are observed in this implementation and can still be used
for real-time applications. The other libraries ShareJS and Socket.io, though use
different websocket implementations, perform faster and contain less resources to
load before sending response to the client.

4.4.5 Unique data bytes in TCP payload

The plot of unique data bytes value for the mutation-summary based solution, is
shown in Figure 26. From the box-plot median value of the metric is between 600-700
bytes at all the event intervals. The distribution of data is skewed right at all the
event intervals except at 1s and 5s interval where the distribution is symmetric and
skewed left respectively. The inter-quartile range value is between 50-500 bytes
approximately at all the intervals.

Event Intervals

Figure 26: Unique Bytes in TCP payload for the mutation-summary based solution

The plot of unique data bytes value for the ShareJS based solution, is shown in
Figure 27. From the box-plot median value of the metric is between 100-1000 bytes
at all the event intervals. The distribution of data is skewed right at all the event
intervals except for the 10s and 40s interval where the distribution is symmetric.
The inter-quartile range value is between 1000-7000 bytes approximately at all the
intervals.

The plot of unique data bytes value for the Socket.io based solution, is shown
in Figure 28. From the box-plot median value of the metric is consistent, that is

43

Event Intervals

Figure 27: Unique Bytes in TCP payload for the ShareJS based solution

about 500 bytes at all the event intervals except at 10s interval that has a value of
0 bytes. The distribution of data is skewed right at all the event intervals except
for the 60s where the distribution is symmetric. The inter-quartile range value is
between 1000-2000 bytes approximately at all the intervals.

Event Intervals

Figure 28: Unique Bytes in TCP payload for the Socketio based solution

On the whole, our inference from the unique bytes related plots is as follows:

• The unique bytes values are higher in the Socket.io based solution compared
to other solutions.

44

• We could notice that in the ShareJS based solution the five point summary
values for this metric are higher only at a particular random event interval i.e.,
at 30s. It could be due to increase in the number of operations generated for
the corresponding state change.

• There is not much variation in the median value for all the three versions i.e.,
around 500 bytes.

• Socketio based solution observed fluctuations in the maximum value.

• The outliers are observed more in mutation-summary based solution compared
to the other solutions. There are slight fluctuations in the outliers in this
solution.

4.4.6 Actual data packets in TCP payload

The plot of actual data packets value for the mutation-summary based solution, is
shown in Figure 29. From the box-plot median value of the metric is consistent, that
is around 2 packets at all the event intervals. The distribution of data is skewed right
at all the event intervals except at the 30s and 50s intervals where the distribution is
symmetric. The inter-quartile range value is between 1-2 packets approximately at
all the intervals.

Event Intervals

Figure 29: Actual Packets in TCP payload for the mutation-summary based solution

The plots of actual data packets value for the ShareJS based solution, is shown in
Figures 30a and 30b. From the box-plot median value of the metric is between 0-2
packets at all the event intervals. The maximum, minimum, third quartile and first
quartile values for the solution at 30s interval are 150, 0, 80, 0 packets respectively.
The inter-quartile value is between 2-4 packets at all the intervals except at 30s

45

interval where the value is about 70 packets. The distribution of data is symmetric
at 1s, 20s, 40s, 50s intervals and at 5s, 10s, 30s and 60s intervals it is skewed right.

Event Intervals
(a) For intervals 1s, 5s, 10s, 20s, 40s, 50s, 60s

Event Interval
30s

(b) For 30s interval

Figure 30: Actual Packets in TCP payload for the ShareJS based solution

The plot of actual data packets value for the Socket.io based solution, is shown in
Figure 31. From the box-plot median value of the metric is having a constant value
of 1 packet for all the event intervals except at the 10s interval where the value is
0 packet. The distribution of data is skewed right at all the event intervals except
for 60s where it is symmetric. The inter-quartile range value is between 2-4 packets
approximately at all the intervals.

Event Intervals

Figure 31: Actual Packets in TCP payload for the Socketio based solution

On the whole, our inference from the actual data packets metric related plots is
as follows:

• The median values are almost constant at all the event intervals for Socketio
and mutation-summary based solutions.

46

• For the shareJS based solution fluctuations are observed for the five point
summary values of this metric.

• The five point summary values had a sudden peak at a particular event interval
in the ShareJS based solution i.e., at 30 second. This is also the reason for the
high unique bytes value at 30s interval that is mentioned earlier. The reason
could be due to increase in the number of operations for the corresponding
state change. For rest of the event intervals these values are low.

• The number of packets transferred is high in the mutation-summary based
solution among other solutions considering the median values of the metric.

• The outliers are more in mutation-summary based solution compared to the
other solutions. However, the number of outliers are minimal. Considering
these outliers we can say that at any given event interval a maximum of 6
packets are transferred.

4.4.7 Throughput

Throughput plots are considered without outliers as we observed minimal outliers
and are almost negligible. The outliers are excluded using R boxplots for the reason
that we have sufficient data to analyze and to reduce the skewness of the data. The
plot of throughput value for client 1 and for the mutation-summary based solution, is
shown in Figure 32. From the box-plot median value of the metric is between 0-10000
bytes/second at all the event intervals. The distribution of data is skewed right at
all the event intervals except at 60s interval where the distribution is skewed left.
The inter-quartile range value is between 2000-12500 bytes/second approximately at
all the intervals.

Event Intervals

Figure 32: Throughput for client1 and for the mutation-summary based solution

47

The plot of throughput value for client 2 and for the mutation-summary based
solution, is shown in Figure 33. From the box-plot, median value of the metric is
between 0-14000 bytes/second at all the event intervals. The distribution of data
is skewed right at all the event intervals except at 50s and 60s intervals where the
distribution is skewed left. The inter-quartile range value is between 2500-14000
bytes/second approximately at all the intervals.

Event Intervals

Figure 33: Throughput for client2 and for the mutation-summary based solution

The plot of throughput value for client 1 and for the ShareJS based solution, is
shown in Figure 34. From the box-plot, median value of the metric is between 0-4
bytes/second at all the event intervals. The distribution of data is skewed right at
all the event intervals except at 20s and 50s interval where the distribution is skewed
left. The inter-quartile range value is between 4-10 bytes/second approximately at
all the intervals.

The plot of throughput value for client 2 and for the ShareJS based solution, is
shown in Figure 35. From the box-plot, median value of the metric is between 3-9
bytes/second at all the event intervals. The distribution of data is skewed right at
all the event intervals. The inter-quartile range value is between 2-10 bytes/second
approximately at all the intervals.

The plot of throughput value for client 1 and for the Socket.io based solution, is
shown in Figure 36. From the box-plot, median value of the metric is between 0-5
bytes/second at all the event intervals. The distribution of data is skewed right at all
the event intervals except at 20s and 40s intervals where the distribution is skewed
left. The inter-quartile range value is between 4-11 bytes/second approximately at
all the intervals.

The plot of throughput value for client 2 and for the Socket.io based solution, is
shown in Figure 37. From the box-plot, median value of the metric is between 4-10
bytes/second at all the event intervals. The distribution of data is skewed right at
all the event intervals except at 30s interval where the distribution is skewed left.

48

Event Intervals

Figure 34: Throughput for client1 and for the ShareJS based solution

Event Intervals

Figure 35: Throughput for client2 and for the ShareJS based solution

The inter-quartile range value is between 5-40 bytes/second approximately at all the
intervals.

On the whole, our inference from throughput related plots is as follows:

• Mutation-summary based solution has higher throughput compared to other
solutions. This could be because of the amount of data that is transferred for
a corresponding state change. For client 1, a decreasing trend is observed for
this metric value until 50s interval and then there is a sudden increase in the

49

Event Intervals

Figure 36: Throughput for client1 and for the Socketio based solution

Event Intervals

Figure 37: Throughput for client2 and for the Socketio based solution

value at 60s interval. This trend is because of the number of events generated
at a particular interval.

• For Sharejs and Socket.io based solutions there are fluctuations in this metric
value at all event intervals.

• The throughput is less in Socketio based solution compared to other solutions.

50

4.4.8 Qualitative Evaluation from programmer’s perspective

The mutation-summary [48] library is useful to design screen sharing web applications.
It can clone the entire DOM changes with minimal latency. Also, with the adequate
documentation available, it is not difficult to design web applications using this
library. However it has some limitations apart from the ones mentioned in [48],
such as it cannot clone all the contents of certain DOM (Document Object Model)
elements. As an example iframe content cannot be cloned. We found this when we
tried to clone the embedded youtube iframe media content in our application, across
the clients. It gives only read access to the content for the viewers and because of this
limitation it cannot be used for designing interactive applications. To support user
interactions, the library has to be modified as per the needs. It becomes complicated
to modify the library if there are multiple complex CSS selectors such as pseudo
element (for example "div:first-child"). The mutation-summary API [40] consists of
a single class called “MutationSummary” that can be instantiated with the available
configuration options to observe the changes in the Document Object Model (DOM).
The observed net DOM changes are then passed to the callback function. This makes
it easy to observe all the DOM changes in a single call. Also, the callback function
is provided with only the net-effect of the DOM changes (for example when a new
element is created and then deleted before the callback, the net effect is that nothing
has changed and hence no changes to be sent). There are options to observe only
elements, attributes, character data or all of them by setting the type of query in
the class configuration. There are also methods such as ‘reconnect’ and ‘disconnect’
to dynamically observe or to stop observing changes respectively.
The ShareJS library [23] is useful to design real-time collaborative web applications
such as text editors, multi-player games. There are some considerations for the
programmers that we made during the implementation of the solution using this
library. Our analysis is based on the library version 0.7 that we used for this thesis.
The implementation considerations in this version of the library are:

• Due to the complexity involved in designing Operational Transform algorithms
it is time consuming to implement them for the content other than text and
JSON.

• There are some discrepancies in the information provided in the documentation
due to which the programmer may need to spend time in fixing the issues.

• The older versions of the library are not suitable to design distributed web
applications. That is to design web applications that can run in a distributed
system where multiple components in a connected network communicate with
each other. These web applications are used for different purposes such as load
sharing, database servers, application servers and so on.

Apart from the considerations it is easy to implement the real-time web solutions
using this library. Also, the latest version available is suitable for web applications
suitable for distributed architecture.

The ShareJS server API gives flexibility to choose ‘Redis’ and ‘livedb’ in memory

51

datastore for its back-end and the default one being ‘livedb’. For client-server commu-
nication it supports browserchannel [29], websockets or any other transport protocol
that not only guarantees in order message delivery but also provides websocket-like
API to client and node object stream to the server. However, the recommended one
is browserchannel as some of the features can be used without writing an extra bit
of code to call additional methods (i.e., to re-establish session state of the socket
on reconnect ‘socket.onopen’ method is to be called, to allow data transfer during
connection establishment ‘socket.canSendWhileConnecting = true’ flag is to be set,
and for JSON stringifying ‘socket.canSendJSON = true’ is to be set). Also, as per
the documentation, Socketio is not recommended for the transport especially for
collaborative web applications but it doesn’t mention if this is true for the Socketio
version 1.0.

The ShareJS client API provides methods to; open a connection to the sharejs
server; create or edit documents for storing the client data; subscribe or unsubscribe
document changes; submit or delete operations. However, these methods are fre-
quently changed or removed entirely over the versions and the documentation for
it is sometimes misleading. It is recommended to follow the changelog [4] for the
changes in the latest versions. Also, as per the changelog version 0.7 is not a stable
version yet and improvements are expected.
The Socket.io library [56] version 1.0 is useful to design real-time collaborative web
applications. It is easy to implement real-time web applications using this library.
The documentation is adequate to understand the library functions. One requirement
in this library is that both the server and the client must be using the socket.io
libraries for establishing connection. Both the client and server APIs are easy to use
that comes with proper documentation. The server API provides flexibility to use
any in memory based datastore. The currently available options are redis, mongodb,
and default socket.io adapter are supported. The default in memory based adapter is
called ‘socket.io-adapter’ and the redis adapter is called ‘socket.io-redis’ that is built
on top of default socket.io adapter. The client API provides an option for the client
to reconnect automatically based on the type of reconnection i.e., reconnect after
some delay, maximum reconnection delay and so on. The socket.io library allows
non-socket processes to communication with socket.io servers using ‘socket.io-emitter’
library. It is recommended to check on all the improvements from the blog page of
the Socket.io website [57]. The limitation in socket.io is that it does not establish a
connection when self-signed certificates are used.

52

5 Conclusion
This thesis realized an efficient web-based solution for remote management of pervasive
displays. We leveraged the cloud computing paradigm and deployed a management
server that clones the state changes in the content to the pervasive displays, instead
of sending the entire content for every state change. We adopted HTML5 and
WebSocket to provide low-latency bidirectional communication. We implemented
three versions of a representative digital signage application using state-of-the-art
JavaScript libraries for real-time communication and evaluated the performance of
each of them. Moreover, we also analyzed the performance of the VNC with our
solution for comparison purposes.

We conducted several experiments to study the performance of the application for
each of the considered libraries. We focused on performance metrics such as payload,
round trip time (RTT), application response time, and page load time. We studied
these metrics in different network conditions. From the experiments conducted, we
conclude that the solution based on mutation-summary has less application response
time but slightly higher payload size and RTT values compared to other solutions.
Moreover, the solution based on mutation-summary has overall a higher page load
time. From these observations we suggest that the mutation-summary-based solu-
tion is suited for non-interactive applications. The solutions based on ShareJS and
Socket.io are better suited for real-time collaborative applications. However, the
delay is higher thus making them not the best choice for digital signage scenarios.
There is a trade-off between choosing libraries for real-time applications requiring
user interactions and the applications requiring less delay with no user interactions.

We also experimented with other libraries such as React.js and DerbyJS. One
observation made out of these libraries is that we can build an effective real-time
collaborative web application using ShareJS to observe the state changes of the
Document Object Model (DOM) content and React.js to render the content on the
target machine. We argue that this solution would be effective in terms of delay and
overhead.

We plan to investigate further on effective web based solutions for remote man-
agement of pervasive displays. One aspect would be to provide solutions for the
remote management of multiple content shown at the same time on pervasive displays.
We wish to explore effective solutions to automate error detection and recovery of
pervasive displays.

REFERENCES 53

References
[1] Adam Bergkvist, D Burnett, and Cullen Jennings. “A. Narayanan," WebRTC

1.0: Real-time Communication Between Browsers”. In: World Wide Web
Consortium WD WD-webrtc-20120821 (2012).

[2] Robin Berjon. W3C HTML5 Working Draft. 2012.

[3] Boston to a T: July 2011. url: http://bostontoat.blogspot.fi/2011_
07_01_archive.html (visited on 10/29/2015).

[4] Changelog:share/ShareJS Wiki. url: https://github.com/share/ShareJS/
wiki/Changelog (visited on 10/30/2015).

[5] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. “Clonecloud: elastic execution between mobile device and cloud”. In:
Proceedings of the sixth conference on Computer systems. ACM. 2011, pp. 301–
314.

[6] Sarah Clinch, Mateusz Mikusz, Miriam Greis, Nigel Davies, and Adrian Friday.
“Mercury: an application store for open display networks”. In: Proceedings of
the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM. 2014, pp. 511–522.

[7] Nigel Davies, Sarah Clinch, and Florian Alt. “Pervasive Displays: Understand-
ing the Future of Digital Signage”. In: Synthesis Lectures on Mobile and Perva-
sive Computing 8.1 (2014), pp. 1–128. doi: 10.2200/S00558ED1V01Y201312MPC011.
eprint: http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011. url:
http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011.

[8] Nigel Davies, Marc Langheinrich, Rui Jose, and Albrecht Schmidt. “Open dis-
play networks: A communications medium for the 21st century”. In: Computer
5 (2012), pp. 58–64.

[9] Decision Mapper. url: http://decisionmapper.com/tutorials/derby1
(visited on 09/14/2015).

[10] derbyjs/racer · GitHub. url: https://github.com/derbyjs/racer (visited
on 09/14/2015).

[11] Rachna Dhamija, J. D. Tygar, and Marti Hearst. “Why Phishing Works”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’06. Montréal, Québec, Canada: ACM, 2006,
pp. 581–590. isbn: 1-59593-372-7. doi: 10.1145/1124772.1124861. url:
http://doi.acm.org/10.1145/1124772.1124861.

[12] DOM Standard. url: https : / / dom . spec . whatwg . org / #mutation -
observers (visited on 09/12/2015).

[13] Ivan Elhart, Marc Langheinrich, Nemanja Memarovic, and Tommi Heikkinen.
“Scheduling Interactive and Concurrently Running Applications in Pervasive
Display Networks”. In: Proceedings of The International Symposium on Perva-
sive Displays. ACM. 2014, p. 104.

http://bostontoat.blogspot.fi/2011_07_01_archive.html
http://bostontoat.blogspot.fi/2011_07_01_archive.html
https://github.com/share/ShareJS/wiki/Changelog
https://github.com/share/ShareJS/wiki/Changelog
http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011
http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011
http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011
http://decisionmapper.com/tutorials/derby1
https://github.com/derbyjs/racer
http://dx.doi.org/10.1145/1124772.1124861
http://doi.acm.org/10.1145/1124772.1124861
https://dom.spec.whatwg.org/#mutation-observers
https://dom.spec.whatwg.org/#mutation-observers

REFERENCES 54

[14] C. A. Ellis and S. J. Gibbs. “Concurrency Control in Groupware Systems”.
In: SIGMOD Rec. 18.2 (June 1989), pp. 399–407. issn: 0163-5808. doi:
10.1145/66926.66963. url: http://doi.acm.org/10.1145/66926.66963.

[15] enmasseio/timesync · GitHub. url: https://github.com/enmasseio/
timesync (visited on 09/14/2015).

[16] Aiman Erbad, Michael Blackstock, Adrian Friday, Rodger Lea, and Jalal Al-
Muhtadi. “Magic broker: A middleware toolkit for interactive public displays”.
In: Pervasive Computing and Communications, 2008. PerCom 2008. Sixth
Annual IEEE International Conference on. IEEE. 2008, pp. 509–514.

[17] FAQ - Frequently Asked Questions | MQTT. url: http://mqtt.org/faq
(visited on 10/30/2015).

[18] Faye: Simple pub/sub messaging for the web. url: http://faye.jcoglan.
com/ (visited on 09/22/2015).

[19] faye/faye-websocket-node · GitHub. url: https://github.com/faye/faye-
websocket-node (visited on 09/22/2015).

[20] I Fette and A Melnikov. “Rfc 6455: The websocket protocol”. In: IETF,
December (2011).

[21] Joe Finney, Stephen Wade, Nigel Davies, and Adrian Friday. FLUMP The
FLexible Ubiquitous Monitor Project. 1996.

[22] B Fitzpatrick, B Slatkin, M Atkins, and J Genestoux. PubSubHubbub Core
0.4. Working draft, PubSubHubbub W3C Community Group (2013).

[23] Joseph Gentle. share/ShareJS · GitHub. url: https://github.com/share/
ShareJS (visited on 09/12/2015).

[24] Tommi Heikkinen, Tomas Lindén, Timo Ojala, Hannu Kukka, Marko Jurmu,
and Simo Hosio. “Lessons learned from the deployment and maintenance of
UBI-hotspots”. In: Multimedia and Ubiquitous Engineering (MUE), 2010 4th
International Conference on. IEEE. 2010, pp. 1–6.

[25] Tommi Heikkinen, Petri Luojus, and Timo Ojala. “UbiBroker: event-based
communication architecture for pervasive display networks”. In: Proceedings
of the IEEE International Conference on Pervasive Computing and Communi-
cation Workshops (PERCOM Workshops’ 14). 2014, pp. 512–518.

[26] Infrared touch manufacturer. url: http://www.huitoo.cn/huitoo/en/
Product7000.asp (visited on 10/29/2015).

[27] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh, Julieta
Aguilera, Andrew Johnson, and Jason Leigh. “High-performance dynamic
graphics streaming for scalable adaptive graphics environment”. In: SC 2006
Conference, Proceedings of the ACM/IEEE. IEEE. 2006, pp. 24–24.

[28] Brad Johanson, Shankar Ponnekanti, Caesar Sengupta, and Armando Fox.
“Multibrowsing: Moving web content across multiple displays”. In: Ubicomp
2001: Ubiquitous Computing. Springer. 2001, pp. 346–353.

http://dx.doi.org/10.1145/66926.66963
http://doi.acm.org/10.1145/66926.66963
https://github.com/enmasseio/timesync
https://github.com/enmasseio/timesync
http://mqtt.org/faq
http://faye.jcoglan.com/
http://faye.jcoglan.com/
https://github.com/faye/faye-websocket-node
https://github.com/faye/faye-websocket-node
https://github.com/share/ShareJS
https://github.com/share/ShareJS
http://www.huitoo.cn/huitoo/en/Product7000.asp
http://www.huitoo.cn/huitoo/en/Product7000.asp

REFERENCES 55

[29] josephg/node-browserchannel · GitHub. url: https://github.com/josephg/
node-browserchannel (visited on 09/14/2015).

[30] json0/README.md at master · ottypes/json0 · GitHub. url: https://
github.com/ottypes/json0/blob/master/README.md (visited on 09/13/2015).

[31] Kai Kuikkaniemi, Vilma Lehtinen, Matti Nelimarkka, Max Vilkki, Jouni
Ojala, and Giulio Jacucci. “Designing for presenters at public walk-up-and-use
displays”. In: Proceedings of the 8th International Conference on Tangible,
Embedded and Embodied Interaction. ACM. 2014, pp. 225–232.

[32] Karthik Kumar and Yung-Hsiang Lu. “Cloud computing for mobile users: Can
offloading computation save energy?” In: Computer 4 (2010), pp. 51–56.

[33] Tomas Linden, Tommi Heikkinen, Timo Ojala, Hannu Kukka, and Marko
Jurmu. “Web-based Framework for Spatiotemporal Screen Real Estate Manage-
ment of Interactive Public Displays”. In: Proceedings of the 19th International
Conference on World Wide Web. WWW ’10. Raleigh, North Carolina, USA:
ACM, 2010, pp. 1277–1280. isbn: 978-1-60558-799-8. doi: 10.1145/1772690.
1772901. url: http://doi.acm.org/10.1145/1772690.1772901.

[34] loadfocus/pageloadtime · GitHub. url: https://github.com/loadfocus/
pageloadtime (visited on 09/14/2015).

[35] macbre/phantomas. url: https://github.com/macbre/phantomas (visited
on 10/27/2015).

[36] macbre/phantomas · GitHub. url: https://github.com/macbre/phantomas
(visited on 09/14/2015).

[37] J Martin. noVNC project website. 2011.

[38] D Mills, J Martin, J Burbank, and W Kasch. “RFC 5905: Network Time Proto-
col version 4: Protocol and algorithms specification”. In: Internet Engineering
Task Force (2010).

[39] Gabriel L. Muller. “HTML5 WebSocket protocol and its application to dis-
tributed computing”. In: CoRR abs/1409.3367 (2014). url: http://arxiv.
org/abs/1409.3367.

[40] mutation-summary/APIReference.md at master · rafaelw/mutation-summary.
url: https://github.com/rafaelw/mutation-summary/blob/master/
APIReference.md (visited on 10/29/2015).

[41] Matei Negulescu and Yang Li. “Open Project: a lightweight framework for
remote sharing of mobile applications”. In: Proceedings of the 26th annual
ACM symposium on User interface software and technology. ACM. 2013,
pp. 281–290.

[42] Elena Oat, Mario Di Francesco, and Tuomas Aura. “MoCHA: Augmenting
Pervasive Displays through Mobile Devices and Web-based Technologies”. In:
The 1st IEEE Workshop on Developing Applications for Pervasive Display
Networks (PD-Apps ‘14). Mar. 2014, pp. 506–511. url: http://uc.inf.usi.
ch/sites/all/files/pd-apps2014/papers/1569868391.pdf.

https://github.com/josephg/node-browserchannel
https://github.com/josephg/node-browserchannel
https://github.com/ottypes/json0/blob/master/README.md
https://github.com/ottypes/json0/blob/master/README.md
http://dx.doi.org/10.1145/1772690.1772901
http://dx.doi.org/10.1145/1772690.1772901
http://doi.acm.org/10.1145/1772690.1772901
https://github.com/loadfocus/pageloadtime
https://github.com/loadfocus/pageloadtime
https://github.com/macbre/phantomas
https://github.com/macbre/phantomas
http://arxiv.org/abs/1409.3367
http://arxiv.org/abs/1409.3367
https://github.com/rafaelw/mutation-summary/blob/master/APIReference.md
https://github.com/rafaelw/mutation-summary/blob/master/APIReference.md
http://uc.inf.usi.ch/sites/all/files/pd-apps2014/papers/1569868391.pdf
http://uc.inf.usi.ch/sites/all/files/pd-apps2014/papers/1569868391.pdf

REFERENCES 56

[43] Simon Olberding, Jürgen Steimle, Suranga Nanayakkara, and Pattie Maes.
“CloudDrops: Stamp-sized Pervasive Displays for Situated Awareness of Web-
based Information”. In: ().

[44] Operational transformation - Wikipedia, the free encyclopedia. url: https:
/ / en . wikipedia . org / wiki / Operational _ transformation (visited on
09/13/2015).

[45] Addy Osmani. Detect, Undo And Redo DOM Changes With Mutation Ob-
servers. url: http://addyosmani.com/blog/mutation-observers/ (visited
on 09/12/2015).

[46] Shawn Ostermann. Tcptrace. 2005.

[47] PhantomJS | PhantomJS. url: http://phantomjs.org/ (visited on 09/14/2015).

[48] rafaelw/mutation-summary. url: https://github.com/rafaelw/mutation-
summary (visited on 09/12/2015).

[49] Reconciliation | React. url: https://facebook.github.io/react/docs/
reconciliation.html (visited on 09/14/2015).

[50] Redis. url: http://redis.io/ (visited on 09/13/2015).

[51] Alex Russell, Greg Wilkins, David Davis, and Mark Nesbitt. The bayeux
specification. 2013.

[52] Screensharing a browser tab in HTML5? - HTML5 Rocks. url: http :
//www.html5rocks.com/en/tutorials/streaming/screenshare/ (visited
on 09/14/2015).

[53] Mohit Sethi, Elena Oat, Mario Di Francesco, and Tuomas Aura. “Secure
Bootstrapping of Cloud-Managed Ubiquitous Displays”. In: The 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
Comp 2014). Sept. 2014, pp. 739–750. doi: 10.1145/2632048.2632049. url:
http://www.uta.edu/faculty/mariodf/documents/ubicomp-2014.pdf.

[54] share/livedb · GitHub. url: https://github.com/share/livedb (visited on
09/14/2015).

[55] Pieter Simoens, Filip De Turck, Bart Dhoedt, and Piet Demeester. “Remote
display solutions for mobile cloud computing”. In: Computer 8 (2011), pp. 46–
53.

[56] Socket.IO. url: http://socket.io/ (visited on 09/14/2015).

[57] Socket.IO — Introducing Socket.IO 1.0. url: http://socket.io/blog/
introducing-socket-io-1-0/#future-innovation (visited on 10/30/2015).

[58] Socket.IO — Rooms and Namespaces. url: http://socket.io/docs/rooms-
and-namespaces/#sending-messages-from-the-outside-world (visited
on 09/14/2015).

[59] Socket.IO — Using multiple nodes. url: http://socket.io/docs/using-
multiple-nodes/ (visited on 09/14/2015).

https://en.wikipedia.org/wiki/Operational_transformation
https://en.wikipedia.org/wiki/Operational_transformation
http://addyosmani.com/blog/mutation-observers/
http://phantomjs.org/
https://github.com/rafaelw/mutation-summary
https://github.com/rafaelw/mutation-summary
https://facebook.github.io/react/docs/reconciliation.html
https://facebook.github.io/react/docs/reconciliation.html
http://redis.io/
http://www.html5rocks.com/en/tutorials/streaming/screenshare/
http://www.html5rocks.com/en/tutorials/streaming/screenshare/
http://dx.doi.org/10.1145/2632048.2632049
http://www.uta.edu/faculty/mariodf/documents/ubicomp-2014.pdf
https://github.com/share/livedb
http://socket.io/
http://socket.io/blog/introducing-socket-io-1-0/#future-innovation
http://socket.io/blog/introducing-socket-io-1-0/#future-innovation
http://socket.io/docs/rooms-and-namespaces/#sending-messages-from-the-outside-world
http://socket.io/docs/rooms-and-namespaces/#sending-messages-from-the-outside-world
http://socket.io/docs/using-multiple-nodes/
http://socket.io/docs/using-multiple-nodes/

REFERENCES 57

[60] socketio/engine.io · GitHub. url: https://github.com/socketio/engine.
io#goals (visited on 09/14/2015).

[61] Ariel Stolerman. “RFC 6143: The Remote Framebuffer (RFB) Protocol
Analysis”. In: (2013).

[62] Martin Strohbach and Miquel Martin. “Toward a platform for pervasive display
applications in retail environments”. In: IEEE Pervasive Computing 2 (2011),
pp. 19–27.

[63] Sasu Tarkoma. Publish/subscribe systems: design and principles. John Wiley
& Sons, 2012.

[64] text/README.md at master · ottypes/text · GitHub. url: https://github.
com/ottypes/text/blob/master/README.md (visited on 09/13/2015).

[65] The future of web apps is – ready? – isomorphic JavaScript | VentureBeat | Dev
| by J. O’Dell. url: http://venturebeat.com/2013/11/08/the-future-
of-web-apps-is-ready-isomorphic-javascript/ (visited on 09/14/2015).

[66] Mark Ethan Trostler. Testable JavaScript. " O’Reilly Media, Inc.", 2013.

[67] Cheng-Lin Tsao, Sandeep Kakumanu, and Raghupathy Sivakumar. “SmartVNC:
an effective remote computing solution for smartphones”. In: Proceedings of
the 17th annual international conference on Mobile computing and networking.
ACM. 2011, pp. 13–24.

[68] WAMP - Web Application Messaging Protocol. url: http://wamp-proto.
org/ (visited on 10/30/2015).

[69] David Wang, Alex Mah, and S Lassen. “Google wave operational transforma-
tion”. In: Whitepaper, Google Inc (2010).

[70] Vanessa Wang, Frank Salim, and Peter Moskovits. The definitive guide to
HTML5 WebSocket. Vol. 1. Springer, 2013.

[71] WebRTC Tab Content Capture - The Chromium Projects. url: http://www.
chromium.org/developers/design- documents/extensions/proposed-
changes/apis-under-development/webrtc-tab-content-capture (visited
on 09/14/2015).

[72] wesleyhales/loadreport · GitHub. url: https://github.com/wesleyhales/
loadreport (visited on 09/14/2015).

[73] Lauren Wood, Vidur Apparao, Laurence Cable, Mike Champion, Mark Davis,
Joe Kesselman, Tom Pixley, Jonathan Robie, Peter Sharpe, and Chris Wilson.
“Document object model (dom) level 2 specification”. In: World Wide Web
Consortium. www. w3. org/TR/DOM-Level-2 (2000).

https://github.com/socketio/engine.io#goals
https://github.com/socketio/engine.io#goals
https://github.com/ottypes/text/blob/master/README.md
https://github.com/ottypes/text/blob/master/README.md
http://venturebeat.com/2013/11/08/the-future-of-web-apps-is-ready-isomorphic-javascript/
http://venturebeat.com/2013/11/08/the-future-of-web-apps-is-ready-isomorphic-javascript/
http://wamp-proto.org/
http://wamp-proto.org/
http://www.chromium.org/developers/design-documents/extensions/proposed-changes/apis-under-development/webrtc-tab-content-capture
http://www.chromium.org/developers/design-documents/extensions/proposed-changes/apis-under-development/webrtc-tab-content-capture
http://www.chromium.org/developers/design-documents/extensions/proposed-changes/apis-under-development/webrtc-tab-content-capture
https://github.com/wesleyhales/loadreport
https://github.com/wesleyhales/loadreport

58

APPENDIX

A Ethernet Experiment Related Plots
We also considered Ethernet interface for our experiment and the relevant details are
mentioned in this section.

Interface Download speed Upload speed
Ethernet 94.89 Megabits per second 93.56 Megabits per second

Table 2: Ethernet Interface Specifications

The plot of WebSocket Frames payload metric for the mutation-summary based
solution is shown in Figure 38a. From the box-plot we observe that there is a
variation in the median value over the event intervals. The Figure 38b is a clear
representation of the box-plot for 1s and 5s event intervals of the main plot. The
distribution of data is skewed left at all the event intervals except at 60s where it
has slightly skewed right distribution. At 1s, 10s and 50s event intervals data is
symmetrically distributed and at 60s data is skewed right. The inter-quartile range
value is approximately between 40-80 bytes over the intervals 20s, 30s, 40s, 50s, and
60s and has a value between 3-10 bytes over the intervals 1s, 5s, and 10s.

Event Intervals
(a) For all the intervals

Event Intervals

(b) For the intervals 1s and 10s

Figure 38: WebSocket Frames Payload for the solution based on mutation-summary
library

The plot of WebSocket Frames payload metric for the ShareJS based solution is
shown in Figure 39. From the box-plot we observe that the payload median value
is about same i.e., 20 bytes at all the intervals except at 60s that has a value of 40
bytes. The distribution of data is skewed right at all the intervals. The inter-quartile
range value is approximately between 75-85 bytes over the intervals.

The plot of WebSocket Frames payload metric for the Socketio based solution
is shown in Figures 40a and 40b. From the box-plot we observe that the payload
median value has a large variation over the event intervals. The distribution of data
is skewed left at 1s, 5s, 20s, 30s intervals and is skewed right at 40s, 50s, and 60s

59

Event Intervals

Figure 39: WebSocket Frames Payload for the solution based on ShareJS library

intervals. The inter-quartile range value is approximately between 1 byte at the
intervals 1s, 5s, 10s and has a value of 25 bytes approximately at the other intervals.

Event Intervals
(a) For all the intervals

Event Intervals
(b) For intervals 1s, 5s, 10s

Figure 40: WebSocket Frames Payload for the solution based on Socketio library

The plot of application response time metric for the mutation-summary based
solution is shown in Figure 41a. From the box-plot median value of the metric is
between 20-25 ms approximately at all the event intervals except at 5s that has a
value of 65 ms approximately. The distribution of data is skewed right at all the
intervals except at 10s that has symmetric distribution of data. The inter-quartile
range value is between 4-16 ms approximately at all the intervals.

The plot of application response time metric for the ShareJS based solution is
shown in Figure 41b. The distribution of data is skewed right at all the intervals
except at 30s that has symmetric distribution. The inter-quartile range value is
between 40-120 ms approximately at all the intervals except at 40s that has a value
of 1000 ms.

60

Event Intervals

(a) Mutation-summary based solution

Event Intervals
(b) ShareJS based solution

Figure 41: Application response time plots

The plot of application response time metric for the Socket.io based solution,
is shown in Figures 42a and 42b. From the box-plot median value of the metric is
between 30-110 ms at all the event intervals except at 1s that has a value of 300 ms.
The distribution of data is skewed right at all the intervals except at 50s that have
skewed left distribution. The inter-quartile range value is 900 ms at 1s interval and
for the rest of the intervals it is between 13-70 ms approximately.

Event Intervals

(a) For intervals 5s, 10s, 20s, 30s, 50s, 60s

1sEvent Intervals

(b) For 1s interval

Figure 42: Application response time for the solution based on Socketio library

The plot of Round-Trip Time (RTT) average value for client 1 and for all the
solutions, is shown in Figure 43. From the box-plot the approximate median values
of the metric data for the mutation-summary, ShareJS and Socket.io based solutions
over the intervals are in the range 9.3-10 ms, 8.5-9 ms, and 8.4-9.4 ms respectively.
The approximate inter-quartile values in mutation-summary, ShareJS and Socket.io
based solutions over the intervals are in the range 1.2-2.3 ms, 1-2.3 ms, 0.2-2.2 ms
respectively. The distribution of data for the solutions is skewed right at all intervals.

The plot of Round-Trip Time (RTT) average value for client 2 and for all the
solutions, is shown in Figure 44. From the box-plot the approximate median values
of the metric data for the mutation-summary, ShareJS and Socket.io based solutions
over the intervals are in the range 9.8-10 ms, 8.9-10.4 ms, and 8.8-11 ms respectively.
The approximate inter-quartile values in mutation-summary, ShareJS and Socket.io
based solutions over the intervals are in the range 0.7-2.2 ms, 2.5-3.3 ms, 0.7-4.5 ms

61

mutation
sharejs
socketio

Event Intervals

Figure 43: RTT average for client 1

respectively. The distribution of data for the solutions is skewed right at all intervals
except at 60s that has a skewed left distribution for Socket.io solution.

mutation
sharejs
socketio

Event Intervals

Figure 44: RTT average for client 2

The plot of Round-Trip Time (RTT) maximum value for client 1 and for all
the solutions, is shown in Figure 45. From the box-plot the approximate median
values of the metric data for the mutation-summary, ShareJS and Socket.io based
solutions over the intervals are between 14-16 ms, around 10 ms, and between 8-14 ms
respectively. The approximate inter-quartile values in mutation-summary, ShareJS
and Socket.io based solutions over the intervals are in the range 4-10 ms, 5-20 ms,

62

2-37 ms respectively. The distribution of data for the solutions is skewed right at all
the intervals.

mutation
sharejs
socketio

Event Intervals

Figure 45: RTT maximum for client 1

The plot of Round-Trip Time (RTT) maximum value for client 2 and for all
the solutions, is shown in Figure 46. From the box-plot the approximate median
values of the metric data for the mutation-summary, ShareJS and Socket.io based
solutions over the intervals are in the range 12-15 ms, 9-18 ms, and 10-30 ms
respectively. The approximate inter-quartile values in mutation-summary, ShareJS
and Socket.io based solutions over the intervals are in the range 3-7 ms, 3-15 ms,
3-38 ms respectively. The distribution of data for the solutions is skewed right at all
the intervals except at 5s/10s/50s. At 5s and 50s interval mutation summary based
solution has symmetric distribution and at the 10s interval Socket.io based solution
has symmetric distribution.

The plot of Round-Trip Time (RTT) minimum value for client 1 and for all the
solutions, is shown in Figure 47. From the box-plot the approximate median values
of the metric data for the mutation-summary, ShareJS and Socket.io based solutions
over the intervals are in the range 8.1-8.2 ms, 8.1-8.3 ms, and 8.1-8.2 ms respectively.
The approximate inter-quartile values in mutation-summary, ShareJS and Socket.io
based solutions over the intervals are in the range 0.2-0.3 ms, 0.1-0.2 ms, 0.1-0.3 ms
respectively. The distribution of data for the solutions is symmetric except at 60s
interval that has skewed right distribution.

The plot of Round-Trip Time (RTT) minimum value for client 2 and for all
the solutions, is shown in Figure 48. From the box-plot the approximate median
values of the metric data for the mutation-summary, ShareJS and Socket.io based
solutions over the intervals are in the range 8.05-8.2 ms, 8.2-8.4 ms, and 8.15-8.3 ms
respectively. The approximate inter-quartile values in mutation-summary, ShareJS
and Socket.io based solutions over the intervals are in the range 0.2-0.3 ms, 0.1-0.3

63

mutation
sharejs
socketio

Event Intervals

Figure 46: RTT maximum for client 2

mutation
sharejs
socketio

Event Intervals

Figure 47: RTT minimum for client 1

ms, 0.1-0.3 ms respectively. The distribution of data for the solutions is symmetric
for most of the intervals.

The plot of unique data bytes value for the mutation-summary based solution, is
shown in Figure 49a. From the box-plot median value of the metric is about 600
bytes at all the event intervals. The distribution of data is skewed right at all the
event intervals. The inter-quartile range value is between 30-400 bytes approximately
at all the intervals.

The plots of unique data bytes value for the ShareJS based solution, is shown
in Figures 50a and 50b. From the box-plot median value of the metric is between

64

mutation
sharejs
socketio

Event Intervals

Figure 48: RTT minimum for client 2

Event Intervals
(a) Mutation-summary based solution

Event Intervals
(b) Socketio based solution

Figure 49: Unique Bytes in TCP payload

500-1000 bytes at all the event intervals. The inter-quartile range value is between
500-15000 bytes approximately at all the intervals.

The plot of unique data bytes value for the Socket.io based solution, is shown in
Figure 49b. From the box-plot median value of the metric is between 0-1000 bytes
at all the event intervals. The distribution of data is skewed right at all the event
intervals. The inter-quartile range value is between 800-2000 bytes approximately at
all the intervals.

The plot of actual data packets value for the mutation-summary based solution,
is shown in Figure 51a. From the box-plot median value of the metric is consistent,
that is about 2 packets at all the event intervals. The distribution of data is skewed
right at all the event intervals. The inter-quartile range value is between 2-3 packets
at all the intervals.

The plot of actual data packets value for the ShareJS based solution, is shown
in Figure 51b. From the box-plot median value of the metric is about 2 packets
at all the event intervals. The distribution of data is skewed right at all the event

65

Event Intervals
(a) For intervals 1s, 5s, 10s, 20s, 40s, 50s, 60s
respectively

Event Intervals
(b) For interval 30s respectively

Figure 50: Unique Bytes in TCP payload for the ShareJS based solution

intervals. The inter-quartile range value is between 2-10 packets approximately at
all the intervals except at 1s interval where the value is about 59 packets.

Event Intervals

(a) Actual Packets in TCP payload for the mutation-summary based
solution

Event Intervals
(b) ShareJS based solution

Event Intervals
(c) Socketio based solution

Figure 51: Actual Packets in TCP payload

The plot of actual data packets value for the Socket.io based solution, is shown
in Figure 51c. From the box-plot median value of the metric is between 0-3 packets
at all the event intervals. The distribution of data is skewed right at all the event
intervals except at 20s where it is symmetric. The inter-quartile range value is

66

between 2-5 packets approximately at all the intervals.
The plot of throughput value for client 1 and for the mutation-summary based

solution, is shown in Figure 52a. From the box-plot median value of the metric is
between 0-7000 bytes/second at all the event intervals. The distribution of data
is skewed right at all the event intervals except at 20s and 40s intervals where
the distribution is symmetric. The inter-quartile range value is between 0-14000
bytes/second approximately at all the intervals.

Event Intervals
(a) For client1

Event Intervals
(b) For client2

Figure 52: Throughput for the mutation-summary based solution

The plot of throughput value for client 2 and for the mutation-summary based
solution, is shown in Figure 52b. From the box-plot, median value of the metric
is between 0-9000 bytes/second at all the event intervals. The distribution of data
is skewed right at all the event intervals except at 60s where the distribution is
skewed left. The inter-quartile range value is between 3000-14000 bytes/second
approximately at all the intervals.

The plot of throughput value for client 1 and for the ShareJS based solution,
is shown in Figure 53a. From the box-plot, median value of the metric is between
1-9 bytes/second at all the event intervals. The distribution of data is skewed right
at all the event intervals except at 30s where the distribution is skewed left. The
inter-quartile range value is between 5-12 bytes/second approximately at all the
intervals.

Event Intervals
(a) For client1

Event Intervals
(b) For client2

Figure 53: Throughput for the ShareJS based solution

The plot of throughput value for client 2 and for the ShareJS based solution, is
shown in Figure 53b. From the box-plot, median value of the metric is between 0-20
bytes/second at all the event intervals. The distribution of data is skewed right at

67

all the event intervals except at 20s and 30s interval where the distribution is skewed
left. The inter-quartile range value is between 7-95 bytes/second approximately at
all the intervals.

The plot of throughput value for client 1 and for the Socket.io based solution, is
shown in Figure 54a. From the box-plot, median value of the metric is between 0-7
bytes/second at all the event intervals. The distribution of data is skewed right at
all the event intervals. The inter-quartile range value is between 6-17 bytes/second
approximately at all the intervals.

Event Intervals
(a) For client1

Event Intervals
(b) For client2

Figure 54: Throughput for the ShareJS based solution

The plot of throughput value for client 2 and for the Socket.io based solution, is
shown in Figure 54b. From the box-plot, median value of the metric is between 1-13
bytes/second at all the event intervals. The distribution of data is skewed right at all
the event intervals except at 10s and 20s intervals where the distribution is symmetric.
The inter-quartile range value is between 5-16 bytes/second approximately at all the
intervals.

	Abstract
	Preface
	Abbreviations
	Contents
	Introduction
	Research Scope and Goals
	Contributions
	Structure of the thesis

	Pervasive Displays
	Evolution of Pervasive Displays
	Reasons and Requirements to Manage Pervasive Displays
	Software Architecture of Pervasive Display Networks
	Techniques
	Mobile device-based
	Multi-content and Multi-application Support
	Content Distribution and Scheduling
	Human Computer Interaction
	Web-based or native software based solutions

	Technologies
	Legacy Bi-directional Communication Techniques for web
	BrowserChannel
	HTML5
	WebSocket
	WebRTC
	Desktop Sharing Solutions
	Virtual Network Computing
	x11vnc server
	Browser based VNC client solution

	Network Time Protocol
	Publish/Subscribe systems
	JavaScript Libraries
	Faye
	Mutation Summary
	Redis
	livedb
	Operational Transformation
	ShareJS
	Socket.io
	Derby.js
	React.js
	timesync.js
	PhantomJS

	Architecture and Evaluation
	System Architecture
	Implementation by scenario
	VNC with WebSocket

	Experimental Setup
	Metrics

	Results
	Page Loading Time
	WebSocket Frames Payload
	Application Response Time
	Round Trip Time (RTT)
	Unique data bytes in TCP payload
	Actual data packets in TCP payload
	Throughput
	Qualitative Evaluation from programmer's perspective

	Conclusion
	References
	Ethernet Experiment Related Plots

