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Tiivistelmä 

Tämän diplomityön tavoitteena on kirjallisuutta apuna käyttäen selvittää syitä antrakinonin (AQ) 

mahdolliselle karsinogeenisuudelle, sekä kokeellisesti todentaa AQ:n uusi mahdollinen 

toimintamekanismi neutraalisulfiittikeitossa. Todentamisessa käytetään apuna kuutta erilaisen 

redox-potentiaalin omaavaa kinonia, joita altistetaan pelkistäville keitto-olosuhteille. Ajatus uuden 

toimintamekanismin taustalla on selvittää ovatko matalamman redox-potentiaalin omaavat 

lisäaineet parempia antioksidantteja ja siten tehokkaampia keittokemikaaleja. Lisäksi työssä 

käydään lyhyesti läpi kirjallisuudessa esiintyviä antrakinonin reaktiomekanismeja, sekä 

tarkastellaan AQ:n ja polysulfidin (PS) välistä synergiaa. 

Keittokokeet suoritettiin kahdessa osassa. Ensin selvitettiin kokeissa käytettävien kinoneiden 

kykyä pelkistyä natriumsulfiitin vaikutuksesta ja toisessa osassa tutkittiin kyseisten kinoneiden 

vaikutusta puuhakkeeseen neutraaleissa keitto-olosuhteissa. Liuenneen ligniinin pitoisuus, 

ligniinin molekyylimassajakauma, sekä loppu-pH mitattiin suodoksista. Lisäksi kappaluku ja 

kokonaissaanto mitattiin saaduista massoista.  

Tulosten mukaan on selkeää näyttöä siitä, että AQ poistaa ligniiniä kaikkein tehokkaimmin. 

Vaikka matalampi redox-potentiaali näyttäisi viittaavan parempaan delignifiointiasteeseen, asia ei 

ole yksiselitteinen. Verrattaessa lisäaineettomiin referenssikeittoihin, AQ oli kinoneista ainoa joka 

vaikutti merkittävästi puuhakkeen delignifiointiasteeseen. Tämä saattaa viitata siihen, etteivät 

muut lisäaineet välttämättä toimi katalyytinomaisesti annetuissa olosuhteissa, eivätkä siten pysty 

tehokkaaseen ligniinin poistoon. Vaihtoehtoisesti pelkistyneet kinonimuodot saattavat olla 

kykenemättömiä pilkkomaan ligniiniä yhtä tehokkaasti kuin antrahydrokinoni (AHQ), tai sitten 

niiden pelkistyneet muodot eivät yksinkertaisesti ole yhtä stabiileja kuin AHQ.  

Viimeisimpien tutkimusten mukaan antrakinonin käyttö sellun keitossa voidaan nähdä hyvin 

kyseenalaisena. Kuitenkin on yhä epävarmaa miksi AQ aiheuttaa syöpää testieläimissä ja millaisia 

ovat ihmisille haitalliset annosmäärät. Joka tapauksessa, tämän tutkimuksen perusteella voidaan 

todeta että ymmärrys antrakinonia kohtaan on hieman lisääntynyt, vaikkakaan ei ratkaisevasti. 

Näyttää siis siltä, että AQ:n toimintamekanismin selvittäminen vaatii lisätutkimuksia.  

 

Avainsanat  

Antioksidantti, antrakinoni, AQ, delignifiointi, hapettuminen, karsinogeenisuus, ligniini, 

lisäaine, pelkistyminen, polysulfidi, PS, reaktiomekanismi, redox-potentiaali, synergia, 

toimintamekanismi 



 

Aalto University, P.O. BOX 11000,  

00076 AALTO 

www.aalto.fi 

Abstract of Master's thesis 
 

 

 

 

Author Sakari Vuorinen 

Title of thesis The role of anthraquinone in neutral sulphite pulping of wood 

chips 

Department Department of Forest Products Technology 

Professorship Forest Products Chemistry Code of professorship Puu-19 

Thesis supervisor Professor Tapani Vuorinen 

Thesis advisor(s) / Thesis examiner(s) D.Sc. Kari Kovasin, M.Sc. Jussi Piira 

Date 02.11.2015 Number of pages 61 (+8) Language English 

Abstract 

The aim of this thesis was to investigate the carcinogenic potential of anthraquinone (AQ) and 

verify the new proposed working mechanism of AQ in neutral sulphite pulping by using six 

different quinones with varying redox potentials. The idea behind the new working mechanism was 

to investigate whether additives with lower redox potential could be better antioxidants and thus 

more effective pulping chemicals. In addition, the much discussed AQ reaction mechanisms as well 

as the synergism of polysulfide (PS) and AQ will be covered. 

 

The cooking trials were performed in two stages. First it was examined how well the different 

quinones are reduced by the influence of sodium sulphite, and in the second stage it was 

investigated how efficient the different quinones were in neutral pulping of wood chips. The 

dissolved lignin content (DLC), molecular weight distribution (MWD) of lignin and final pH were 

determined from the filtrates. In addition, kappa number and total yield were measured from the 

cooked pulps. 

 

According to the results, there is clear evidence that AQ has the highest delignification rate of the 

trials. Although it seems that lower redox potential equals better delignification, it is not 

undoubtedly like that. In comparison to reference cooks, AQ was the only quinone which showed 

notable effect on the delignification rate. This might mean that the other additives used in the 

experiments could not work as pulping catalysts in given conditions and thus are unable to degrade 

lignin effectively. Alternative explanation could be that the reduced forms of quinones are just 

unable to degrade lignin as efficiently as anthrahydroquinone (AHQ), or simply they are not as 

stable as AHQ. 

 

Regarding the latest research, the utilization of AQ in pulping can be seen very questionable. 

However, it is still uncertain why it induces tumors in test animals, and what are harmful amounts 

to humans. Altogether based on the results of this study the understanding towards AQ is slightly 

increased, yet remaining unclear. In other words, it seems that the investigation of the working 

mechanism of AQ requires further exploration. 
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1 INTRODUCTION 

The sustainability revolution (a.k.a sustainalization) has begun, meaning 

that the global economy and nations are more willing to be in harmony with 

nature. The World’s population is still growing and societies are more 

interested of the surrounding environment they are living in. This guides the 

governments to support so-called “green technology”, in order to provide a 

better future for our offspring. (Burns 2012; Lecain 2014). 

Therefore demand for renewable products and technology is increasing all 

the time. Because of this growing demand, vast amounts of extra biomass 

have to be acquired. Thus, instead of cutting more trees and plants, industry 

must operate in a sustainable way. This moves the focus towards superior 

processes, which are able to supply higher yields, while lowering the 

environmental impacts and keeping the quality factors of the end products 

on a satisfied level. The pulping industry is constantly looking for a various 

ways to respond this growing demand of biomass, and process economics 

play a major role in the development. The governing endeavor to maximize 

pulp yields and production efficiency have led the industry to a position 

where companies are trying to assimilate the chemistry of pulping additives. 

Thus, by understanding the working mechanisms of powerful additives 

might help scientists to develop additives with desirable properties in future. 

(Kocurek et al. 1989; Hart & Rudie 2014). 

However it is difficult to investigate all the impacts pulping additives cause 

for the process and for the end products. The influence of an additive to the 

quality of the end product and to the process itself has to be studied 

carefully. It is extremely challenging to discover an additive, what meets all 

the necessary requirements. In order to reach commercial stage, the 

additive must be effective, environmentally friendly, inexpensive, easily 

available, and safe to use. Additionally qualitative factors of the end product 

cannot deteriorate as a consequence of the additive. (Blain 1993).  

Because of the prevailing conditions around the industry, effective pulping 

additives have to be examined, and their working mechanisms have to be 

wholly assimilated. This study focuses on one specific and effective pulping 

additive called anthraquinone (AQ). Due to the uncertainty around AQ, its 

potential as a possible carcinogen is studied. After this the focus moves to 

AQ’s role in polysulfide cooking and later on towards the possible working 

mechanism of AQ. The experimental part of this work deals with AQ and six 

different quinones, which have been used to determine the possible working 

mechanism behind this powerful pulping additive. 
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2 CHARACTERISTICS OF ANTHRAQUINONE 

Anthraquinones are a functionally diverse group of chemicals. However, 

there are certain subgroups that are more common than the others. 

Actually, it has been discovered that 9,10-anthraquinones are one of the 

largest group of natural quinones in the world (Thomson 1971). The most 

common type of anthraquinone used by the pulping industry is called 9,10-

dioxoanthracene, also known as 9,10-anthracenedione, anthradione, 9,10-

anthraquinone, 9,10-dihydro-9,10-dioxoanthracene or simply 

anthraquinone (AQ) (Figure 1). 

 
Figure 1. Anthraquinone (NTP, 2005).  

2.1 Chemical and physical properties 

Chemically anthraquinones are aromatic and organic anthracene 

derivatives with 9,10-dioxoanthracene skeleton (Chien et al. 2014). 

Furthermore, AQ molecule contain two ketone groups thus making it a 

diketone. The chemical formula of anthraquinone is C14H8O2 and its 

molecular weight is 208.22 g/mol. (NTP 2005; IARC 2012).  

Physically AQ is a crystalline powder with a golden yellow color. It is 

insoluble in water and acetone, slightly soluble in ether, moderately soluble 

in ethanol and totally soluble in alcohol, toluene and hot benzene. AQ’s 

boiling point is 377°C and flash point is 185°C (NTP 2005). In addition it has 

been reported that various anthraquinones have shown different degree of 

lipophilic nature (Andersson et al. 1999; Leu et al. 2008). 

2.2 Benefits of using AQ 

There are multiple reasons why anthraquinones are considered to be so 

good chemicals for different applications. In fact, both natural and synthetic 

anthraquinones have provided numerous possibilities for various promising 
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applications (Sendelbach 1989). They have been utilized as an intermediate 

in the dye and pigment manufacture, a catalyst in the isomerization of 

vegetable oils, a bird repellant on growing crops, and as an additive in the 

pulping processes. (NTP 2005; Meister 1987).   

Although bird repelling is far away from the pulping industry, there are plenty 

of reasons to utilize AQ in the pulping processes as well. Higher pulp yield, 

bottleneck elimination and chemical savings are big motives, but the 

benefits AQ may provide for the pulp mills are even greater. The benefits 

that AQ could provide in the pulp mills are listed in Figure 2. (Sturgeoff & 

Pitl 1994; Greer et al. 2004). 

 

Figure 2. Benefits of using AQ in the pulp mill (Greer et al.  2004) 
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3 CARCINOGENICITY 

Although there are many advantages for using AQ in pulping, there have 

been lots of controversy whether AQ is carcinogenic to humans or not. 

Regarding to the reports of the Federal Institute of Risk Assessment (BfR), 

the European Food Safety Authority (EFSA), and the International Agency 

for Research on Cancer (IARC), anthraquinone have been seen as a 

possible carcinogen for humans when eaten (BfR 2013). In order to support 

or oppose this claim, literature have been carefully examined.  

3.1 Background on possible carcinogenicity to humans 

In 2005, National Toxicology Program’s (NTP) report revealed that based 

on the results of two year animal experiments, anthraquinone caused 

cancer in the liver, kidneys or urinary bladder of the used test animals. 

Based on the results, test groups who received the highest dose of AQ, had 

the highest rates of tumors as well (Table 1). (NTP 2005).  

A few years after the study of NTP, National Council for Air and Stream 

Improvement (NCASI) found the potential for AQ transfer from unbleached 

linerboard to food products. According to the studies of NCASI, 

accumulated AQ residues in cellulose could transfer from pizza box into the 

pizza crust. The mean migration of AQ from the linerboard into the pizza 

crust was found to be as much as 196.1 ng, indicating 3.6 ±1.05 % of the 

total AQ contained in the linerboard. This discovery led for the supplemental 

investigations of AQ’s carcinogenic risks to humans. (Louch 2008; IARC 

2012). 

In 2012, IARC evaluated the AQ’s risks to humans, while EFSA reasoned 

opinion on the maximum residue level (MRL) for AQ. However, outcomes 

of these studies were incomplete. Regarding on the strong proof for the 

carcinogenicity of AQ in animal experiments, IARC could not prove AQ’s 

carcinogenic potential to humans. (NTP 2005; IARC 2012). Simultaneously 

EFSA decided that because of the lack of information regarding toxicology 

and metabolism of mammals, as well as uncertain analytical methods for 

defining AQ residues, it cannot recommend any verified methods for AQ 

residue measurements. EFSA was also unable to ensure whether the 

default MRL of 0.01 mg AQ per kg of food is adequate for the consumers. 

(EFSA 2012).  

Anyhow, due to alarming results based on the animal experiments, EFSA 

prompted BfR to reassess the use of AQ in the pulp intended for the food 

contact products. After reassessment, BfR decided to change its 

recommendation concerning the use of AQ, which is why the chemical is 
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now classified as a possible health hazard and thus should not be used in 

the manufacture of paper or board intended for food contact. (BfR 2013). 

Table 1. Summary of the 2-year carcinogenesis studies of AQ (NTP 2005). 
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3.2 Determination of carcinogenic potential to humans 

3.2.1 Definition of carcinogen 

The term carcinogen refers to a chemical agent or compound which cause 

or increase the probability of acquiring a cancer (UNECE 2011). There are 

different kind of carcinogens which are classified depending on their mode 

of action, such as genotoxic and nongenotoxic carcinogens. The difference 

between these two types is that genotoxic carcinogens cause DNA damage 

directly, whereas nongenotoxic carcinogens enhance development of 

tumors by influencing on signal transduction, cell proliferation or gene 

expression. (OECD 2007). According to the animal studies of Maurici et al., 

it was concluded that the most potent mutagens are found to be 

carcinogenic as well (Maurici et al. 2005). However, not all mutagens are 

carcinogens neither all carcinogens are mutagens (Zeiger et al. 1988; NTP 

2005). Additionally, substances that have carcinogenic potential to animals 

are considered carcinogenic to humans as well until there is enough 

evidence to show otherwise (UNECE 2011).  

3.2.2 Classification of carcinogens 

The IARC classifies carcinogens into a five different groups based on the 

strength of the evidence. As can be seen in Table 2: Group 1 agents are 

known human carcinogens, Group 2A agents are probable human 

carcinogens, Group 2B agents are possible human carcinogens, Group 3 

agents are non-classifiable and Group 4 agents are probably not human 

carcinogens. (IARC 2015). 

Table 2. Classif ication of human carcinogens (IARC 2015). 

 

According to the IARC’s list of classifications anthracene is classified in the 

group 3 and anthraquinone in the group 2B (Table 3). The meaning of this 

classification (2B) is that there is an inadequate evidence of AQ’s 

carcinogenic potential to humans, but at the same time, clear evidence of 

carcinogenicity in experimental animals. (IARC 2015). 
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Table 3. Anthracene and AQ classif ication (IARC 2015). 

 

The definition of the group 3 is also interesting. The term “Non-classifiable” 

should not be confused to non-carcinogenic. It only means that further 

research is needed, especially if the certain chemical is used frequently or 

if it has widespread applications in the industry. (IARC 2015). 

3.2.3 Possible explanations for carcinogenicity 

Studies of NTP and National Cancer Institute (NCI) compared the neoplastic 

findings of AQ and AQ derivatives. It was concluded that the reason for AQ’s 

carcinogenicity in test animals might be the parent ring system, whereas 

substituents determine the target organs affected and the strength of the 

carcinogenic response (NTP 2005; Doi et al. 2005). 

According to Muños and Albores, a molecule consisting two or more fused 

aromatic rings is called polycyclic aromatic hydrocarbon (PAH). The 

International Agency for Research on Cancer (IARC) has classified some of 

the PAHs as carcinogenic or probably carcinogenic, but a major part of the 

compounds are listed in the group of indefinable chemicals. Although AQ 

has two oxygen units in its structure, the anthracene skeleton of AQ is a 

known PAH and might be the reason for a carcinogenic behavior. (Muños & 

Albores 2011; IARC 2015). 

However, there are other possible explanations as well that could explain 

the carcinogenicity in test animals. One suggestion for the carcinogenic 

potential could be the impurities found in anthraquinone. It is discovered that 

AQ’s purity is approximately 99.8% and the following impurities have been 

found in the animal studies of NTP: 9-nitroanthracene (0.09%), anthracene 

(0.05%), anthrone (0.008%) and phenanthrene (0.002%) (Figure 3). (NTP 

2005).  

Although minor impurities exist, multiple mutagenicity assays of AQ’s 

contaminants have indicated that only 9-nitroanthracene has mutagenic 

potential (Brown and Brown 1976; IARC 1983; LaVoie and Rice 1988; NTP 

2005; Pitts et al. 1982; Zeiger et al. 1988; Butterworth et al. 2001). 

Butterworth et al. expressed that where anthraquinone is non-mutagenic 

compound, 9-nitroanthracene is a bacterial mutagen and is merely 

responsible for the carcinogenic results in the 2-year animal studies 

(Butterworth et al. 2001). Regardless of the encouraging evidence of 9-
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nitroanthracene mutagenicity, it has been evaluated that any 

nitroanthracene compound does not have carcinogenic potential to animals 

(NTP 2005). 

 
Figure 3. Structures of the impurit ies found in AQ (NTP 2005). 

Nonetheless, probably the most promising explanation for AQ’s 

carcinogenicity might be the carcinogenic metabolites generated in the body 

of mammals. In other words, AQ itself may not be carcinogenic, but when 

exposed on the metabolism of mammals, it transforms to harmful 

compounds which might be carcinogenic. For example, the major urinary 

metabolite of AQ, 2-hydroxyanthraquinone (Figure 4), is a bacterial 

mutagen, and considerably large amounts of it is formed in the system of 

animals. Actually when compared to 9-nitroanthracene concentration, 2-

hydroxyanthraquinone is present at several-fold higher levels. (NTP 2005).  

 
Figure 4. The chemical structure of 2-hydroxyanthraquinone (Sigma 2015). 
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4 THE SYNERGISM OF AQ AND POLYSULFIDE 

Despite of the potential carcinogenicity of anthraquinone, it has proven its 

effectiveness as a dual-purpose pulping additive. Although AQ has been 

successfully used as such in the kraft and soda processes, it works 

remarkably well together with polysulfide (PS). (Holton 1977; Blain 1993; 

Griffin et al. 1995). AQ and PS are both diagnosed as a suitable pulping 

additives because of their effectiveness, inexpensiveness and adaptability 

with the present recovery systems. (Hägglund 1946; Kocurek et al. 1989; Li 

et al. 1998). Therefore the synergistic nature of these chemicals is 

extremely interesting. 

4.1 Synergistic or not? 

According to several reports, already small additions of AQ or PS provide 

higher carbohydrate stabilization and increased pulp yield (Kleppe & 

Kringstad 1963; Kleppe & Kringstad 1964; Teder 1969; Holton & Chapman 

1977; Pekkala 1986). Additionally, it is observed that AQ and PS increase 

yield in alkaline pulping even more when used together, thus making the 

combined yield-enhancing effect of these chemicals greater than the sum 

of the yield gains they achieve separately. This phenomenon is also known 

as synergism. (Kleppe 1981; Pekkala 1986; Jiang 1995; Minja et al. 1998; 

Li et al. 1998; Sturgeoff & Bernhardt 1998; Anderson et al. 2003; Luthe & 

Berry 2005). Figure 5 shows the synergistic effect in contrast to the 

individual effects of AQ and PS in the kraft process (Li et al., 1998). 

 
Figure 5. Synergistic effect of AQ/PS pulping, where PSAQ r epresents the 

combination of PS and AQ, and KPAQ + PS represents the sum of the 

individual pulping effects of PS and AQ in the kraft process (Li et al. 1998).  
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However, there has been some skepticism towards the synergism as well. 

First of all, it has been claimed that the synergistic yield gain is variable 

which is most probably related to a challenges in the yield determination. 

Therefore it is proposed that the verification of the pulp yield requires some 

supplementary tests. (Prasad et al. 1996). Moreover, the working 

mechanism behind AQ/PS reactions is unknown, so it does not necessarily 

mean that the yield increase is inevitably the result of the synergism (Li et 

al. 1998).  

Nonetheless, it seems that there is clear evidence that advocates the 

AQ/PS synergism. The main reason for yield losses in kraft process is the 

degradation of the carbohydrate end groups. The degradation products of 

peeling reactions lead to a generation of organic acids, which further 

consume hydroxyl ions in the cooking liquor. Thus, the more carbohydrates 

are stabilized, the less organic acids are generated and the consumption of 

effective alkali (EA) is decreased. Hence the results of residual EA analysis 

illustrated in Figure 6 is analogical with the yield gain expressed in Figure 5. 

(Li et al. 1998). 

 
Figure 6. Synergistic effect of AQ/PS pulping on residual EA retention in black 

liquor (Li et al. 1998).  

4.2 Possible reasons for synergism 

Regarding to above-mentioned evidence, it seems that the synergistic effect 

between AQ and PS is a real phenomenon. The synergism of AQ and PS 

is believed to stem from the complementary activities of each chemical. Still, 

the knowledge of which are the most relevant activities concerning yield 

improvement at a given kappa number is uncertain. (Griffin et al. 1995; Li et 

al. 1998; Anderson et al. 2003).  
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4.2.1 Higher carbohydrate stabilization 

In general, addition of AQ or PS as such increase the total pulp yield in kraft 

cook, but the mechanisms causing the yield gain are more or less different. 

Where PS increases the pulp yield through intensive carbohydrate 

stabilization, addition of AQ has been diagnosed to cause both accelerated 

delignification rate and carbohydrate stabilization. (Kleppe & Kringstad 

1963; Kleppe & Kringstad 1964; Sanyer & Laundrie 1964; Teder 1969; 

Kocurek et al. 1989). Despite of the accelerated delignification rate caused 

by AQ, the preservation of carbohydrates against alkaline degradation plays 

a vital role in the pulp yield maximization (Anderson et al. 2003). At least PS 

is diagnosed to oxidize the active end groups of wood polysaccharides to 

alkali stable aldonic acid groups under low temperature (100-120°C) and 

alkaline conditions (Hägglund 1946; Kleppe & Kringstad 1963; Alfredsson 

et al. 1963; Venemark, 1964; Teder 1969; Jiang 1994; Parthasarathy et al. 

1995). This reaction mechanism is represented in Figure 7. 

 

Figure 7. Proposed carbohydrate oxidation reactions of PS and AQ, where AQ 

is anthraquinone; AHQ - * is anthrahydroquinone radical anion; AHQ -2 is 

anthrahydroquinone dianion; Sx -2  is polysulf ide dianion and Sz - *  is polysulf ide 

ion radical (Anderson et al., 2003).  

Along with Figure 7, it is suggested that both AQ and PS can act as an 

oxidizing agent, so they are able to accept electrons from an enediol either 

in one step or two one-electron steps (Anderson et al., 2003). Although AQ 

is suggested to have similar oxidative behavior as PS, its role in the 
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carbohydrate preservation is considered rather marginal. This is due to its 

low reactivity with the insoluble wood polysaccharides. (Vuorinen 1993; 

Anderson et al. 2003).  

Albeit higher carbohydrate stabilization seems to be the key element to 

increased pulp yields, it is not inevitably like that. It has been even 

suggested that polysulfide might aid AQ in the delignification by destroying 

the recalcitrant vinyl ether structures of lignin thus speeding up the cooking 

and shortening the time required, which further decrease the alkaline 

degradation of carbohydrates (Dimmel & Bovee 1993; Berthold et al. 1996; 

Berthold & Lindstrom 1997). Thus it seems that there are at least two 

possible explanations for the synergism: Either PS preserve 

polysaccharides more effectively due to presence of AQ, or maybe PS is 

able to help AQ in more effective lignin degradation. Anyhow, the 

relationship of PS and AQ is highly complex and the actions might go other 

way around as well. 

4.2.2 PS as a reducing agent for AQ 

In fact, it is suggested that PS could provide reductive conditions for AQ. 

According to this theory, the soluble PS ions should be much more effective 

reducing agents than insoluble polymeric polysaccharides. Theoretically, 

after two-electron reduction of AQ, soluble anthrahydroquinone (AHQ-2) 

would be formed which would further fragment lignin and thus oxidize itself 

to soluble anthrahydroquinone ion radical (AHQ-*). This form of AQ would 

further be reduced by PS dianion (Sx-2) back to AHQ-2, and generated PS 

ion radical (Sx-*) should oxidize carbohydrates while being reduced back to 

its PS dianion form. (Anderson et al. 2003). The proposed reaction cycle is 

visualized in Figure 8.   

 

Figure 8. Proposed redox reactions of PS & AQ, where PS ion radical (Sx-*) 

is expected to be better electron acceptor than PS dianion  (Sx-2) (Anderson 

et al. 2003).  
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To investigate whether this theory holds true, the reduction of AQ to AHQ 

was tested in specific laboratory conditions. According to the results, PS 

dianion (Sx
-2) was incapable to reduce AQ to AHQ in chosen conditions. 

Thus it seems that electron transfer between AQ and PS might not be the 

mechanism behind AQ/PS synergism. (Anderson et al. 2003). 

4.2.3 Complementary reaction conditions of AQ/PS pulping 

So, the origin of the synergistic effect might as well be resulted from the 

altered reaction conditions, which lead to a more effective polysaccharide 

preservation. Actually, the addition of AQ to a cook allows pulping 

processes to shorten time as well as decrease temperature, sulfidity and 

effective alkali (EA) consumption (Greer et al. 2004). Each of these above-

mentioned factors might have a direct or indirect impact on the PS reactions 

during cook, which could explain the synergism.  

It has already been stated that the synergism refers to a higher pulp yield, 

which is a natural consequence of increased carbohydrate retention. 

However, effective delignification of pulp requires a sufficient amount of 

alkali and temperature, but as alkali concentration or temperature gets 

higher, carbohydrate content of pulp start to decrease mainly due to polymer 

dissolution and polymer degradation. Because carbohydrate degradation 

concerns mainly on hemicelluloses in AQ/PS pulping, the synergistic yield 

gains are most likely a result of increased hemicellulose content of the 

reduced pulp. (Pekkala 1986; Kocurek et al. 1989; Jiang 1995; Luthe & 

Berry 2005). The principal hemicelluloses responsible for the major part of 

degradation are glucomannan in softwood and xylan in hardwood (Pekkala 

1986; Mao & Hartler 1994). The degradation of wood products is illustrated 

in Figure 9. 

 

Figure 9. Relative yield of wood components. Pine-Kraft pulp; [OH-] = 0.5M; 

[HS-] = 0.1M; L:W 200; 160C (Paananen et al. 2013; Paananen 2014). 
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Therefore, when EA consumption is decreased due to influence of AQ and 

PS, the easily degradable hemicellulose is protected at the same time. It is 

even suggested that the reduction in EA consumption could be the main 

reason for higher carbohydrate stabilization and synergistic yield gains. (Li 

et al. 1998; Greer et al. 2004). However, the formation of new reducing end 

groups can also be avoided by lowering the reaction temperatures (Minja et 

al. 1998). Hydrolytic splitting starts to degrade polysaccharides after 150°C, 

so when the temperature is kept under this level, more carbohydrates are 

protected (Kocurek et al. 1989). 

In addition to temperature and EA consumption, the effect of sulfidity should 

be considered in AQ/PS cook as well. In conventional kraft pulping, higher 

sulfidity has been found to increase pulp yield (Kleppe 1970). However, the 

sulfidity of orange liquor of PS cook is much lower than the sulfidity of white 

liquor of kraft cook (Paananen 2014). According to several sources the yield 

enhancing effect of AQ is greater with lower sulfidity levels (Fossum et al. 

1980; Hakanen & Teder 1997; Sturgeoff & Bernhardt 1998; Knowpulp 

2007). When lignin is removed faster due to accelerated delignification, the 

cooking time is also shorter. Shortened cooking time is a major advantage 

in pulping, because it shortens the time that wood polysaccharides are 

exposed to alkaline degradation and dissolution, which in turn protect 

polysaccharides and increase the pulp yield.   

Interestingly the yield benefit from the synergism is notably decreased when 

cooked to a lower kappa numbers (Minja et al. 1998). According to studies 

of Jiang, this phenomenon can be seen in PS cooking as well. Addition of 

PS increased the yield more in higher kappa numbers and as the 

delignification was prolonged, more hemicelluloses were degraded. (Jiang 

1994). This effect is clearly present in Figure 5.  

Altogether, there are multiple variables in the cooking process, which may 

have direct or indirect influence on lignin degradation or carbohydrate 

preservation. Therefore it is very difficult to be certain whether synergism is 

explained through any of these considered alternatives. Nonetheless it 

seems that the altered reaction conditions might provide the hidden answer 

for AQ/PS synergism.  

  



 

23 
 

5 THE WORKING MECHANISM OF AQ 

Anthraquinone (AQ) is an extremely effective pulping catalyst, and already 

small additions of this chemical inflict notable benefits for the pulp mills 

(Holton 1977; Pekkala 1982; Blain 1993; Greer et al. 2004; Hart & Rudie 

2014). Therefore a full and detailed understanding of AQ working 

mechanism would possibly lead to a better and more powerful pulping 

catalyst. However the mechanism is relatively difficult to define. In spite of 

considerable amount of research work spent for comprehending the working 

mechanism, it is still not well understood (Dimmel et al. 1985; Hart & Rudie 

2014). Although obscurity surrounds this seemingly complex mechanism of 

AQ, there have been several suggestions in the literature that might provide 

explanation for its performance.  

The purpose of this chapter is to give a general view of AQ reaction 

mechanism, investigate the reaction mechanisms that might be responsible 

for lignin fragmentation, and finally propose a new working mechanism that 

could be a reason for improved delignification.  Thus, the focus is not in the 

stabilization of carbohydrates, but rather in the promotion of the lignin 

solubilization.    

5.1 Background 

AQ’s insolubility in water as well as poor solubility in alkaline liquor has been 

most probably the major reasons for its relatively late discovery as an 

efficient pulping additive (Holton 1977; Revenga et al. 1996). In 1972, the 

study of Bach and Fiehn focused on compounds that could stabilize 

carbohydrates in alkaline pulping of wood. As a result of this research water-

soluble AQ derivative called anthraquinone-2-sulfonate (AMS) was found to 

effectively stabilize cellulose and increase yield in alkaline conditions. 

Anthraquinone itself did not seem to have notable effect on cellulose 

preservation why it was considered as a poor pulping catalyst under the 

conditions of their study. (Bach & Fiehn 1972). 

Anyhow, a few years later it was discovered that AQ is more effective 

pulping catalyst than diagnosed in the earlier studies. This was revealed 

due to AQ’s tendency to be reduced to anthrahydroquinone (AHQ) in 

suitable conditions, which would further lead to an accelerated pulping, 

increased pulping yield and decreased kappa number of the cooked pulp. 

(Holton 1977; Holton & Chapman 1977; Farrington et al. 1977). Although 

the all-embracing knowledge of the working mechanism of AQ is still 

missing, there are lots of possible mechanisms in the literature (Hart & 

Rudie 2014). 
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5.2 Redox reaction mechanisms 

As already stated, the literature is full of mechanisms that could work as an 

explanation for the performance of AQ. Redox reaction cycle is yet one of 

the most cited concept at the moment. In addition to this generally accepted 

AQ redox cycle, two well-known redox reaction mechanisms are covered: 

the single-electron transfer (SET) mechanism and the adduct mechanism. 

5.2.1 Redox cycle 

According to several studies, there are two fundamental effects that AQ 

evidently provides for pulping: accelerated delignification rate and increased 

carbohydrate preservation (Löwendahl & Samuelson 1978; Obst et al. 1979; 

Dimmel 1985; Blain 1993). These two effects are believed to derive from 

the ability of AQ to work as a pulping catalyst between wood 

polysaccharides and phenolic lignin structures. The phenomenon where 

electrons are transferred from carbohydrates to lignin through the reduction 

and oxidation reactions of AQ is called redox cycle. (Fleming et al. 1979; 

Obst et al. 1979; Lindenfors 1980; Eckert & Amos 1982; Wright & Fullerton 

1984; Dimmel 1985). The redox cycle is illustrated in Figure 10.  

 
Figure 10. AQ redox cycle in alkaline pulping of wood (Dimmel 1985). 

Redox cycle of AQ is a simple illustration of generally approved principle 

about carbohydrate preservation and accelerated delignification under the 

influence of AQ. In the beginning of this cycle, the peeling end groups of 

polysaccharides become oxidized by AQ, which is in turn reduced to 

anthrahydroquinone (AHQ) (Löwendahl & Samuelson 1978). This oxidation 

reaction is proposed to occur through the mechanism presented in Figure 

7. After this, AHQ is believed to reduce and fragment lignin. Simultaneously 

AHQ is oxidized back to its original form (AQ) and the cycle is ready for the 

next round. Although redox cycle illustrates well the catalytic behavior of 

AQ, it does not explain in detail how the carbohydrates are preserved or 
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how the delignification rate is accelerated. Thus, the complex chemistry 

behind the phenomenon cannot be seen through the redox cycle. 

In order to achieve a deeper knowledge on redox cycle, the relevant redox 

reaction mechanisms are examined. These mechanisms are single-electron 

transfer (SET) and adduct mechanism. However, before undergoing these 

reaction mechanisms, it must be understood that instead of what is 

expressed in the redox cycle earlier (Fig. 10), there are actually three 

different forms of AQ during pulping: the fully oxidized form of anthraquinone 

(AQ); the partially reduced/oxidized anthrahydroquinone radical anion 

(AHQ-*); and the fully reduced anthrahydroquinone dianion (AHQ-2) (Fig. 11) 

(Dimmel 1996). 

 
Figure 11. Three oxidation states of AQ (Dimmel 1996).  

Because of the existence of AHQ radical anion, the “traditional” way of 

expressing the redox cycle is not that informative. Therefore the more 

detailed way to express redox cycle is shown in Figure 12.  

 
Figure 12. “Updated” version of AQ redox cycle (Anderson et al. 2003). 

According to Figure 12, both AQ and AHQ radical anion are capable of 

oxidizing the reducing end groups of carbohydrates either by single-electron 

or two-electron transfers thus forming the AHQ (dianion). On the other hand, 
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AHQ is reducing lignin either by one electron or by two electrons resulting 

in lignin fragmentation. (Dimmel 1985 & 1996, Anderson et al. 2003). 

5.2.2 Adduct mechanism 

Adduct mechanism was introduced some years before SET mechanism, 

and was in fact considered as the generally accepted reaction mechanism 

for AHQ. Unlike in SET mechanism, the adduct mechanism comprises bond 

formation between AHQ and quinone methides (QMs) of lignin followed by 

lignin fragmentation. (Obst et al. 1979; Gierer et al. 1979; Dimmel 1985). 

The mechanism is illustrated below (Figure 13). 

 

Figure 13. Proposed adduct reaction mechanism (Dimmel 1985).  

In this mechanism nucleophilic additive, like AHQ, is added to lignin QM in 

order to generate an adduct (3). The mechanism proposes that C-10 carbon 

of AHQ forms a bond with the C-α carbon of the QM. The generated addition 

product is further heated up in alkaline conditions, resulting in β-aryl ether 

fragmentation, where AQ is regenerated and two phenolate ions are formed 

(4). (Fleming et al. 1978; Obst et al. 1979; Gierer et al. 1979; Landucci 1980; 

Dimmel 1985). However, one of the revealed weaknesses of this 

mechanism is the tendency of AHQ/QM adduct to be reversible (Dimmel & 

Shepard 1982).  
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5.2.3 Single-electron transfer mechanism 

SET is a mechanism that involves a transfer of a single electron between 

anthrahydroquinone and QM of lignin. Along with many studies, single 

electron is proposed to transfer from AHQ to QM of lignin thus engendering 

QM radical, which further result in β-aryl ether fragmentation. (Dimmel 1985 

& 1996; Dimmel et al. 1985). This prevalent delignification mechanism is 

shown in Figure 14. 

 
Figure 14. Proposed SET reaction mechanism, where CA = Coniferyl alcohol 

(Dimmel 1996). 
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As shown in Figure 14, the reaction scheme starts with an electron donation 

of AHQ to a QM of lignin (e). This results in QM breakage, thus forming QM 

radical anion and AHQ radical anion. QM radical anion is further fragmented 

through β-aryl ether fragmentation to a lignin ion and a coniferyl alcohol 

radical (CA*) (f). After this, CA* is reacting with another AHQ dianion to 

generate a second AHQ radical anion (g). Reaction (h) then demonstrates 

how AHQ radical anions are converted back to AHQ dianions by oxidizing 

the reducing end groups of carbohydrates to aldonic acid groups. The last 

reaction (i) reflects the sum of all the reactions. Hence, SET mechanism 

provides a possible indication how electrons might be transferred between 

carbohydrates and lignin, thus leading to carbohydrate stabilization and 

lignin fragmentation. (Dimmel 1996). 

Although each of these proposed reaction mechanisms (adduct and SET) 

could work as a functional reaction mechanism for AHQ, there have been 

more or less inconsistencies with the experimental data (Hart & Rudie 

2014). Therefore it seems that the only generally accepted phenomenon in 

the redox chemistry of AQ pulping is - redox cycle. 

5.3 The proposed new working mechanism 

So, as the redox reaction mechanisms cannot fully explain the effect of AHQ 

during pulping, there must be something else. Model compound studies 

suggest that there are at least two ways how AHQ could promote 

delignification: promotion of lignin fragmentation and prevention of lignin 

condensation (Obst et al. 1979; Gierer et al. 1979; Landucci 1980; Dimmel 

et al. 1981; Brunow & Poppius 1982; Dimmel 1985). Where the above-

mentioned redox reaction mechanisms explain the former effect, the 

proposed working mechanism in this study focuses on the latter 

phenomenon.  

5.3.1 Condensation reactions of lignin 

In order to comprehend the inhibition of lignin condensation, there must be 

a certain understanding of the condensation reactions of lignin. The 

tendency of fragmented lignin particles to react with each other lead to a 

formation of new type of bonding, resulting in condensed high molecular 

weight lignin (Sarkanen & Ludwig 1971; Casey & Bryce 1980). The 

condensed lignin clusters are further proposed to form alkali-stable linkages 

thus being more recalcitrant to solubilization than the native lignin (Gierer 

1970; Casey & Bryce 1980).  

According to Chakar & Ragauskas, the lignin nucleophiles (e.g. carbanions 

from phenolic structures) are competing with hydrogen sulfide and sodium 

hydroxide anions for quinone methide intermediates. This competitive 
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addition of nucleophiles is found to be reversible, and the outcome will 

depend on the nucleophilicity of compounds, as well as the ability of the 

addition product to undergo a rapid, irreversible reaction. (Chakar & 

Ragauskas 2004). The proposed condensation of the QM intermediates is 

exemplified in Figure 15.   

 
Figure 15. Competit ive addition of internal and external nucleophiles to QM 

intermediates, where OAr is aroxyl group and Ar is  aryl (Gierer 1970; Chakar 

& Ragauskas 2004). 

In this figure, the QM intermediate work as an acceptor and phenolate ion 

as a nucleophile. The condensation reaction is suggested to proceed via 

Michael addition, where the formation of an addition product is followed by 

a fast, irreversible proton abstraction and subsequent rearomatization. 

(Chakar & Ragauskas 2004). However, it is discovered that the QM 

intermediates are not the only type of acceptors in the cook. The study of 

Gierer and Lindberg proposes that formaldehyde is diagnosed to function 

as an acceptor as well (Gierer & Lindberg 1979). 

5.3.2 Antioxidant mechanism 

The working mechanism proposed in this study suggests that AHQ, a strong 

nucleophile and antioxidant, could inhibit the lignin coupling reactions 

formed in situ and thereby result in a smaller molecular weight of the 

dissolved lignin (Hanhikoski 2013). Although lignin itself is diagnosed as a 

natural antioxidant, there are plenty of free radicals originated from the 

fragmentation reactions of lignin (Lu et al. 1998; Dizhbite et al. 2004; Dimmel 

1996). The free radicals are found to assist oxidative coupling reactions of 
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lignin, which is undesirable in effective delignification of wood (Ralph et al. 

2004).  

Along with the work of Sies, antioxidant is any substance that prevents the 

oxidation of other substances. This is vital, because the oxidation reactions 

are capable of producing free radicals. Free radicals are further able to inflict 

chain reactions, where an unpaired electron is transferred from a compound 

to another. This effect is also known as “radicals generate radicals 

phenomenon”. Anyhow, the mission of antioxidants is to cease these chain 

reactions by neutralizing the free radicals via electron donation (Fig. 16). 

(Sies 1997). 

 

Figure 16. Antioxidant neutralizing a free radical (Defares 2015). 

Thus, antioxidants are reducing free radicals while simultaneously being 

oxidized themselves. Therefore powerful reducing agents are considered 

as great antioxidants as well. (Sies 1997). 

5.3.3 Redox potential 

Redox potential (E°) or reduction/oxidation potential, is a concept that shows 

the tendency of a chemical species to receive electrons. In redox reactions, 

there are always two half-reactions present: a reduction half-reaction and 

an oxidation half-reaction. These two reactions occur together, because 

without electron donor there would not be any electrons to receive. 

Therefore in the situation of two different species the species with a higher 

redox potential tend to be reduced by oxidizing the other. (Boyer 2002; 

McMurry & Fay 2004). 

The reason why different species have divergent redox potentials originate 

from the structures of the species. The amount of electrons orbiting the 

nucleus of an atom, as well as the distance of electrons from the nucleus 

define the tendency of that atom to attract electrons. Thus, some nuclei of 
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atoms pull electrons so strongly, that they are capable to attract additional 

electrons into their orbitals. Hence, as this attracting potential of atom gets 

higher, so does its redox potential. (Boyer 2002).  

There are multiple ways to measure redox potential by switching the 

conditions or reference electrode used. Anyhow, a common way to measure 

redox potential is to use standard conditions and a standard hydrogen 

electrode (SHE). The method is called standard reduction potential and all 

the standard potentials are measured at 1 atm, 298 K and with 1 M 

solutions. It has been generally verified that hydrogen has zero redox 

potential, so the redox potentials of other compounds are actually 

determined in relation to the potential of hydrogen. In other words, the 

reduction potential of chemical species is in fact a potential difference 

between hydrogen and measured species. This difference is measured with 

voltmeter so the electron transfer is expressed in volts (V). (McMurry & Fay 

2004). Table 4 shows the standard reduction potentials for various chemical 

species in decreasing order. 

Table 4. Standard reduction potentials for various half -reactions (McMurry & 

Fay 2004). 
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6 MATERIALS AND METHODS 

The objective of the experimental part was to study the working mechanism 

of AQ by using AQ, and six different quinones with varying redox potentials. 

The aim was to experimentally investigate whether the effective 

delignification of AQ cooks is partly based on to the antioxidant mechanism. 

The experiment included three central steps: preparation, procedure and 

analyses of the experiment.  

6.1 Preparation of the tests 

The wood chips used in the trials were Ø 3 mm sieved air-dried Finnish 

Scots pine (Pinus sylvestris L.) chips as showed in Figure 17. Selected chips 

were initially stored in the freezer at -20°C, so before using the chips in the 

experiments, they were defrosted and air-dried two weeks in the room 

temperature. After two weeks the dry matter content (DMC) of the chips was 

determined with the SCAN-CM 39:94 and they were placed into the closed 

plastic bag in order to prevent changes in the DMC. 

 

Figure 17. Air-dried pine pin chips in the plastic bag. 

In order to perform the trials, along with the homogenous wood material, the 

following chemicals were acquired: purified anhydrous sodium sulphite 

(Na2SO3) for cooking, as well as AQ and six different quinones with varying 

redox potentials for additives. Redox potentials, CAS numbers and molar 

masses of the used additives are presented in Table 5, while Figure 18 

expresses the structures of each quinone. The quinones illustrated in these 

experiments were purchased from Sigma-Aldrich and Tokyo Chemical 

Industry Co. 
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Table 5. Redox potentials (E°), CAS numbers and the molar masses of the 

additives used in the tr ials (Sigma 2015; TCI 2015; Evans et al.  1978; Conant 

& Fieser 1924). 

Additive E° (V) CAS # Molar mass (g/mol) 

Anthraquinone (AQ) 0.155 84-65-1 208.22 

AQ-2-sulfonic acid 0.187 131-08-8 310.25 

AQ-1-sulfonic acid 0.195 128-56-3 310.26 

AQ-2-carboxylic acid 0.213 117-78-2 252.22 

AQ-1,5-disulfonic acid 0.239 853-35-0 412.29 

2-hydroxy-1,4-naphthoquinone 0.360 83-72-7 174.15 

2,5-dihydroxy-1,4-benzoquinone 0.441 615-94-1 140.09 

 

 
Figure 18. Structures of the different quinones used in this study  

 (Sigma 2015; TCI 2015). 
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6.2 Cooking procedure 

The cooking procedure was performed in two stages. The first stage of the 

procedure included the demonstration of the required conditions for the 

additives, whereas the second stage focused on whether the research 

hypothesis could be possible. Instead of using white liquor, Na2SO3 was 

used as a cooking chemical due to its simpler chemistry. 

6.2.1 Stage 1: Demonstrating the reduction of additives 

In order to examine whether additives could be reduced, 25 grams of 

anhydrous sodium sulphite and 200 ml of deionized water were mixed in 

250 ml Erlenmeyer flask. After the dissolution of sodium sulphite 0.75 ml 4N 

H2SO4 was added to solution for adjusting the pH for the desirable level (pH 

8). A small addition (0.05 grams) of chosen additive was then added in the 

solution and it was mixed with the magnet stirrer and heated up to 95°C by 

Heidolph cooking plate (Figure 19).  

 

Figure 19. Heating and mixing the reaction solution.  

The reduction of the additives was monitored through color change in the 

solution. The approximate time for reaching the stabile color transition stage 

was also measured. This stage was important in order to indicate that the 

reduction of an additive takes place and that the antioxidant effect could 

work in principle. 
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6.2.2 Stage 2: Cooking wood chips with additives 

The second stage of the cooking procedure was performed in the neutral 

and reductive cooking conditions as defined in the stage 1. Additionally, air-

dried Scots pine chips were added in order to find out whether antioxidant 

effect has part in the delignification of AQ.   

First, wood chips and additive dosages were measured in six (1 litre) 

autoclaves. The cooking liquor was then prepared by mixing solid sodium 

sulphite crystals and deionized water in a big plastic carafe. The solution 

was blended with the glass stick and after dissolution, pH was adjusted to 8 

by 4N H2SO4. The exact amount of cooking liquor was measured to each 

autoclave, after they were closed and pressurized to 5 bars with nitrogen 

gas. (Figure 20). 

 

Figure 20. Six nitrogen pressured autoclaves. 

After pressurization all six autoclaves were placed to (Muru) air bath 

digester as presented in Figure 21. The cooking temperature inside the 

autoclaves was first increased from 20°C to 80°C in 30 minutes and from 

80°C to 170°C in 60 minutes after it was maintained at 120 min for first, 180 

min for second and 240 min for third batch. This kind of relatively slow 

heating procedure was necessary for cooking chemicals due to the neutral 

conditions prevailing inside the autoclaves. Adequate impregnation of wood 

chips was required in order to get homogeneous pulp and simultaneously 

to minimize amount of rejects generated during cooking.  
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Figure 21. “Muru” air bath digester.  

When cooking was completed, the autoclaves were cooled down 

approximately 15 min at the bucket full of cold water. The autoclaves were 

thereafter opened one at a time and cooking liquor was poured to a 

graduated cylinder as presented in Figure 22. 

 

Figure 22. Cooled autoclaves ( left) and poured filtrate (r ight) . 

The filtrate was then measured with Schott pH meter and poured into small 

bottles for further analyses. Bottles were filled as full as possible before 

closing in order to protect the filtrate from unwanted reactions with oxygen. 

In addition, the bottles were stored in the dark refrigerator to minimize any 

changes that temperature or light emission could cause for the samples 

before carrying out the filtrate analyses. The excess filtrates were stored in 

the freezer. 
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The dirty pulp was then moved from autoclave to a filtering bag and washed 

two times with 2.5 litre deionized water as shown in Figure 23. The washing 

was performed by dipping the dirty pulp approximately 15 minutes in the 

three litre carafe, after the pulp was rewashed (~15 min) in another carafe.  

 

Figure 23. After the first wash (left) and the second wash (r ight).  

The washing was finished by soaking the pulp overnight (~16 h) in the 10 

litre bucket with 5 litres deionized water. The soaked pulp was then treated 

with a “British” pulp-grinding machine (30 seconds at 2800 r/min) (Fig. 24).  

 

Figure 24. Soaked pulp (left) and the pulp-grinding machine (r ight).  

After grinding the defibrillated pulp was drained with a suction filter, weighed 

and stored at air proof plastic bag for further analyses. Later on the pulps 

were diagnosed as too “chip like” material, so they were further 

disintegrated by Noram disintegrator (10 000 rounds ~ 3 min) and screened 
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by “Serlachius” laboratory screener (~ 25 min), which allowed only smaller 

than 0.35 mm fibres to get through the filter. After this the pulp was dried by 

laboratory centrifuge, homogenized by hands, and placed to a closed plastic 

bags. Figure 25 shows the difference of one pulp sample before and after 

the further screening.  

 

Figure 25. Pulp before (left) and after further screening (r ight). 

The general cooking conditions and chemical charges used in the 

experiments are illustrated in Table 6. More detailed cooking parameters 

are presented in Appendix 4. 

Table 6. General cooking parameters. 

A.d. pine chips (g) 51.83 

DMC of the chips (%) 96.47 

O.d. pine chips (g) 50.00 

Na2SO3 charge (% on o.d. wood) 50 

Additive charge (% on o.d. wood) 0.1 

Initial pH 8 

Pressure (bars) 5 

L:W (L/kg o.d. wood)  4:1 

Cooking temperature (°C) 170 

Heat-up from 20°C to 80°C (min) 30 

Heat-up from 80°C to 170°C (min) 60 

- Cooking time 1 (min) 120 

- Cooking time 2 (min) 180 

- Cooking time 3 (min) 240 
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6.3 Analyses 

The main objective of the analyses was to diagnose whether research 

hypothesis holds true. In other words, was there any evidence for the 

antioxidant mechanism? Thus each pulp and filtrate sample were analyzed 

with couple fundamental analyses. The reduction of each additive was also 

examined in order to determine whether sodium sulphite could provide 

appropriate conditions for additive reduction or not. 

6.3.1 Stage 1: Reduction analysis 

Reduction of each additive was diagnosed by simply monitoring the color 

transition visually against white paper sheet, while boiling the reaction 

solution in 250 ml Erlenmeyer flask. The color of each solution was 

documented right after the addition of additive as well as after the 

stabilization of the color transition. Due to reaction conditions of this 

experiment the expected color for reduced quinone was red. The color 

differences of each additive are listed in Appendix 2. 

6.3.2 Stage 2: Pulp and filtrate analyses 

After preparation of the pulp samples, the following analyses were made for 

the pulp: pulp yield and kappa number. In addition, the reject content and 

the total yield were measured for the cooked chips. Total yield, reject 

content, and pulp yield (i.e. accept) were determined gravimetrically, 

whereas kappa number was determined according to SCAN-C 1:00.  

Analyses made for cooking liquors included the determinations of final pH 

and dissolved lignin content (DLC). Additionally the molecular weight 

distribution (MWD) of dissolved lignin was done for chosen samples. Final 

pH was simply measured from the filtrates by calibrated Schott pH 

electrode. The electrode was kept approximately 2 minutes in the cooking 

liquor to wait for the steady results.  

The amount of dissolved lignin was measured from the filtrates by 

(Shimadzu UV-2550) UV-spectrophotometer. The pH of the samples was 

neutral, so the chosen wavelength for measurements was 280 nm 

(Uprichard & Benfell 2004). Additionally, the absorptivity for dissolved 

neutral sulphite lignin was set to 16.5 L/(g*cm) (Sjöström et al. 1962). The 

DLC was quantified by using equation 1. 

 

𝐿𝑖𝑔𝑛𝑖𝑛 [
𝑔

𝐿
] =  

𝐴∗𝐷𝐹

𝑎∗𝑙
             (1) 
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Where  A   is the absorbance at 280 nm 

  DF   is the dilution factor 

  a [L/(g*cm)]  is the absorptivity 

  l [cm]   is the length of the cuvette 

The MWD of dissolved lignin was performed by size-exclusion 

chromatography (SEC). SEC analyses were carried out using a HPLC 

system (Waters Corp., Milford, MA) equipped with 8 × 3000 mm MCX 1000 

and 100 000 å columns (Polymer Standard Services, Mainz, Germany) and 

a Waters 2998 UV detector (Waters Corp., Milford, MA) set at 280 nm using 

0.1 M NaOH eluent (0.5 mL/min flow rate). For the SEC analysis, the filtrate 

samples were diluted with 0.1 M NaOH, followed by filtration through a 0.45 

μm polytetrafluoroethylene (PTFE) syringe filter. Results were calculated 

relative to polystyrenesulfonate sodium salt standard using Waters 

Empower 3 software. The MWD analyses were provided by VTT. 
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7 RESULTS AND DISCUSSION 

The objective of the experimental part was to carry out the trials and 

determine whether antioxidant mechanism of AHQ is present in the lignin 

coupling reactions. The experiments were successfully completed, so in that 

sense the goal was achieved. On the other hand, it is difficult to say for sure 

whether antioxidant effect of AHQ is present or not. The results are 

expressed in order of the internal logic of the topic. 

7.1 Stage 1: Reduction of additives 

Stage 1 was important in order to indicate that the cooking liquor is capable 

of reducing the chosen additives. Immediately after the addition of AQ into 

the reaction solution, there was no observable color transition in the mixture. 

AQ-2-sulfonic acid, AQ-1-sulfonic acid, AQ-2-carboxylic acid, and AQ-1,5-

disulfonic acid showed behavior which was similar to AQ’s. Thus each of 

the solutions of these additives were blank right after the addition of 

chemicals. However, with 2-hydroxy-1,4-naphthoquinone and 2,5-

dihydroxy-1,4-benzoquinone the color transition was extremely rapid, and 

the color changed in a few seconds. Figure 26 shows how the reduction 

(color change) took place for AQ. 

 

Figure 26. Reduction of AQ – 0 min ( left) and after 30 min (r ight) . 

As it can be seen, there are no big differences between these two pictures 

of AQ. Perhaps sodium sulphite was unable to provide conditions reducing 

enough for AQ, or maybe reduction requires more heat. However, with other 

additives the difference in colors is much more visible (Appendix 2).   

The additives were chosen for this study according to their varying redox 

potentials, but also because of their structural similarity to AQ. Thus the 

variation in reduction sensitivity of the used additives seems to be very 

interesting. In addition, it must take into account that AQ, as well as AQ-2-

carboxylic acid are both insoluble to aqueous solutions, albeit water 
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solubility of AQ-2-carboxylic acid is diagnosed to increase with higher 

temperature (Tsai 1993). Table 7 combines the information received from 

the experiments and from the literature.   

Table 7. General information and the observable results  of the quinones. 

Sample name E° (V) 
Transition 
time (min) 

Starting 
color 

Final color 
Water 

solubility 

AQ 0.155 30 blank slightly green no 

AQ-2-sulfonic acid 0.187 20 blank bright yellow yes 

AQ-1-sulfonic acid 0.195 30 blank light red yes 

AQ-2-carboxylic acid 0.213 20 blank slightly red no* 

AQ-1,5-disulfonic acid 0.239 30 blank light yellow yes 

2-hydroxy-1,4-NQ 0.360 30 orange deep red yes 

2,5-dihydroxy-1,4-BQ 0.441 30 red deep red yes 

     
( *temp. 
dependent) 

According to this table, all the additives were reduced quite differently in the 

presence of sodium sulphite. As expected, AQ and AQ-2-carboxylic acid 

showed especially small color changes due to their poor solubility to 

reaction solution. Solutions with AQ-2-sulfonic acid and AQ-1,5-disulfonic 

acid turned to yellow which was a bit strange. The explanation for this color 

change was probably a successful dissolution of the chemicals, but it might 

signify something else. 

Transition time of each chemical reflects the total time for stable color 

transitions. In the other words, 30 min transition time signifies that there 

were no observable differences in solution color after 30 minutes. However 

the maximum time used in these trials was 60 minutes so it is possible that 

there could have been some kind of color transition after 60 min exposure. 

Altogether, according to the results, 2-hydroxy-1,4-naphthoquinone and 

2,5-dihydroxy-1,4-benzoquinone are the only quinones that sodium sulphite 

could fully reduce in the used conditions (100°C, pH 8). In other words, 

these chemicals turned deep red which indicates full reduction in pH 8. 

Other quinones do not react that easily with sodium sulphite which could 

mean that the “normal” (fully oxidized) form of these additives requires 

something else in order to get reduced. From the perspective of the 

antioxidant mechanism, effective reduction of additives is essential and 

therefore the quinones with higher redox potential seem to have more 

antioxidant potential.  
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7.2 Total yield & pulp yield 

The significance of total yield to the antioxidant mechanism is rather indirect. 

High total yield could refer to a poor pulping additive or an excellent pulping 

additive depending on the pulp content and the lignin content of the cooked 

chips. Hence, total yield as such does not reveal much, but as the 

reject/accept content and lignin content are known, there is more 

information to make a rationalized decision about the significance towards 

antioxidant mechanism. Thus, to some extent, total yield reflects on the 

amount of lignin solubilized, and thereby makes it meaningful for the 

antioxidant mechanism. 

As it can be seen in Figure 27, the total yield is smallest with AQ in each 

time category. This phenomenon is explained through the capability of AQ 

to degrade wood chips faster than the other additives of this experiment. 

The supporting evidence for this argument is that the pulp yield for AQ is 

notably higher at the same time (Fig. 28). However, at this point, it cannot 

be said if the yield loss for total yield is because of lignin solubilization or 

carbohydrate solubilization.  

 
Figure 27. Total yields of cooked wood chips. 

Figure 28 expresses the precise reject/accept results for 120 min, 180 min 

and 240 min cooks. In the case of AQ, there is a clear indication of more 

complete defibration of wood chips and with remaining quinones, the wood 
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chips of AQ-2-carboxylic acid showed slightly higher accept content than 

the rest of the samples. Otherwise there are no notable differences in 

comparison to reference samples where additives were not present.  

 
Figure 28. Total yields + accept and reject contents of cooked wood chips.  

The influence of cooking time with respect to pulp yields can also be viewed 

from the figure above. As expected the pulp content increased along with 

the increased cooking time. Unexpectedly, in the case of AQ-1-sulfonic acid 

and 2,5-dihydroxy-1,4-benzoquinone the total yield increased along with 

time. This could be explained by lignin condensation reactions or otherwise 

there have been some covert losses/supplements during experiments. All 

in all, the results indicate that AQ, as well as AQ-2-carboxylic acid are the 

most effective quinones of defibrating the wood chips. This could be a signal 

of more effective solubilization of lignin. 

7.3 Kappa number 

Kappa numbers were determined from each accept sample in order to give 

an idea how much there are lignin left in the pulp. There are few things which 

have to be assimilated before comparing kappa numbers to each other. First 

of all, kappa number determinations have been done for the accept 

samples, not for the total samples. As can be seen in Figure 28, the pulp 
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yields are different and there is a difference when performing kappa number 

for reference sample (pulp yield ~12%) in contrast to AQ sample (pulp yield 

~46%). Secondly, kappa number is not unequivocally the definition for lignin 

content. There are other factors such as extractives and hexenuronic acids 

that have an influence on kappa number. 

Anyhow, kappa numbers show relatively small changes when compared to 

reference samples (Fig. 29). Although the reference, as well as AQ-2-

sulfonic acid and AQ-2-carboxylic acid samples expressed slightly strange 

results (by getting higher kappa numbers at 180 min cook), the changes are 

yet quite subtle. 

 
Figure 29. Influence of cooking time to kappa numbers.  

It is possible that small rises in kappa numbers are due to increased 

condensation of lignin, but errors could be derived from the measurements 

as well. Either from insufficient homogenization of the pulp samples or 

possibly due to the utilized standard (SCAN-C 1:00) which is intended for 

samples whose kappa numbers are between 5 and 100. Additionally, a few 

bark particles existed among the used wood chips which may have caused 

some variation in the results. However, the smaller kappa number of AQ is 

most probably a consequence from the more effective delignification, but it 

might be partly derived from the antioxidant mechanism as well.  
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7.4 Final pH of filtrate 

Although initial pH of the sodium sulphite (Na2SO3) solution was set to 8, 

there is a clear evidence that pH drops after the cooking has started. Figure 

30 illustrates that during 120 minutes pulping, pH is distinctly dropped. 

However, when the cooking time is extended, pH rises up simultaneously.  

 
Figure 30. Influence of cooking time to pH. 

The drop in pH is expected and is supposedly related to the loss of the buffer 

capacity of the solution. However, the differences in pH increase were 

interesting. It was surprising that the pH-slope for AQ is notably steeper than 

for the other quinones used in the experiments. The higher basicity of AQ 

samples might be derived from the accelerated sulfonation of the organic 

material (carbohydrate & lignin). This is extremely intriguing phenomenon 

and it could be part of the explanation why AQ is so effective pulping 

additive. From the perspective of the antioxidant mechanism it is difficult to 

draw any conclusions from the pH differences of the filtrates.  
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7.5 Dissolved lignin content 

Along with the molecular weight distribution (MWD) of dissolved lignin, the 

results of the dissolved lignin content (DLC) are probably the most essential 

for determination of the antioxidant mechanism. The reason for this is 

obviously very simple. When the lignin is dissolved, it is not condensed. 

However, it is difficult to see from the graph what is really happening. When 

the cooking is extended, more lignin might be dissolved, but simultaneously 

more lignin coupling might occur as well. Figure 31 expresses the influence 

of redox potential to dissolved lignin content.  

 
Figure 31. Influence of redox potential to dissolved lignin content.  

As shown in Figure 31, it seems that lower redox potential and longer 

cooking time gives higher DLC. Quickly viewed it is a good generalization, 

but further exploration reveals that the relationship between redox potential 

and DLC is not that straightforward. For some reason, dissolved lignin 

content drops for AQ after cooking is extended from 180 min to 240 min. 

This kind of behavior indicate that dissolved lignin radicals could have 

coupled with lignin particles thus lowering the DLC of the sample.  

One option might be that due to high DLC of 180 min AQ cook, all the AQ 

is depleted and there are no free AQ/AHQ remaining in the cook for further 
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delignification. This finding could support the idea that AQ/AHQ could create 

permanent adducts in the cook.  

Anyhow, there are two additives which have caused clearly observable 

discrepancies from the general DLC trend. These two quinones are AQ, with 

the highest DLC and 2-hydroxy-1,4-naphthoquinone, with the lowest DLC. 

The comparison of 2-hydroxy-1,4-naphthoquinone to the reference sample 

shows that the lignin condensation could be even boosted in the case of 2-

hydroxy-1,4-naphthoquinone, or on the other hand the quinone might 

alternatively protect lignin against delignification. The results of the DLCs 

are shown in Table 8.  

Table 8. Dissolved lignin contents  of different additives.  

Sample name 

Dissolved lignin content (g/L) 

Cook 1                
(120 min) 

Cook 2             
(180 min) 

Cook 3            
(240 min) 

Reference 30.8 37.6 43.8 

AQ 53 55.8 54.2 

AQ-2-sulfonic acid 32.4 36.8 43 

AQ-1-sulfonic acid 29.7 38.2 43.6 

AQ-2-carboxylic acid 35.8 41.9 44.5 

AQ-1,5-disulfonic acid 33.7 38.3 40.2 

2-hydroxy-1,4-NQ 33.4 34.8 36.7 

2,5-dihydroxy-1,4-BQ 33.1 37 39.7 

 

7.6 Molecular weight distribution of dissolved lignin 

Low molecular weight for AQ was expected in order to support the 

antioxidant mechanism. The reason for this expectation was that lignin 

which have a low molecular weight is generally in dissolved form. However, 

when the dissolved lignin content is higher, there are also more radicals to 

be neutralized. Nonetheless Figure 32 illustrates the average molecular 

weight of four carefully selected filtrate samples: Reference, AQ, AQ-2-



 

50 
 

carboxylic acid, and 2-hydroxy-1,4-naphthoquinone. Each of these samples 

were 240 min cooking samples and they were selected because they 

presented interesting results in previous measurements of this study. The 

results were acquired from VTT. 

 
Figure 32. Average molecular weights  of dissolved lignin.  

As it can be seen, the average molecular weights of dissolved lignin differ 

with different quinones. Surprisingly, dissolved lignin of AQ did not have the 

smallest average molecular weight lignin but largest which might refer to 

AHQ’s ability to solubilize greater lignin particles. According to these results, 

it appears that AQ does not have antioxidant mechanism towards dissolved 

lignin. However, it is possible that there is a certain kind of antioxidant 

mechanism present that inhibits the coupling of the bigger lignin molecules, 

but with these methods it is impossible to say whether it exists. If antioxidant 

mechanism exists for AQ, its power is most likely based on the protection of 

high molecular weight lignin polymers. Otherwise the evidence supporting 

antioxidant mechanism for AQ seems to be unlikely. Table 9 lists the results 

of the SEC analysis. The logarithmic scale of MWD is demonstrated in 

Appendix 3. 
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Table 9. The results of the molecular weight distribution of dissolved lignin. 

Sample name 
Mn 

(Daltons) 
Mw 

(Daltons) 
Mz 

(Daltons) 
MP 

(Daltons) 
Poly-

dispersity 

Reference (1) 1368 3163 11260 1247 2.31182 

Reference (2) 1373 3179 11617 1248 2.31589 

AQ (1) 1396 3541 19186 1219 2.53717 

AQ (2) 1400 3386 14037 1226 2.41787 

AQ-2-carboxylic acid (1) 1375 3239 12229 1246 2.35530 

AQ-2-carboxylic acid (2) 1377 3235 12144 1244 2.35018 

2-hydroxy-1,4-NQ (1) 1353 3198 12964 1251 2.36326 

2-hydroxy-1,4-NQ (2) 1372 3107 10611 1250 2.26532 
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8 CONCLUSIONS 

Along with the comprehensive literature review, the aim of this thesis was 

to investigate if the antioxidant mechanism of AQ is present during neutral 

sulphite pulping of wood chips.  

According to literature, it is unclear what causes the carcinogenicity of AQ. 

No reliable human data exists, so the carcinogenic potential to humans is 

still unexplained. Thus the hazardous exposure levels to humans are 

difficult to define. The synergism of PS and AQ has been proven, but the 

reasons for the effect is blurred. Nonetheless it seems that the altered 

reaction conditions might provide the hidden answer for AQ/PS synergism. 

Multiple suggestions have been made in order to understand AQ working 

mechanism, but the mechanism is still unsolved. However the reason(s) 

behind AQ’s effectiveness seems to be related to lignin degradation and not 

to retardation of lignin condensation. 

This study investigated experimentally the lignin degradation mechanism, 

and according to research hypothesis, the delignification efficiency of AQ 

could be partly explained through antioxidant mechanism. The results 

showed the potential of AQ as a powerful pulping additive, but the evidence 

supporting the antioxidant hypothesis was scarce.  

Although the antioxidant mechanism seems to have no influence on AQ 

working mechanism, it cannot be fully discarded. This work strengthened 

the idea that there is something exceptional in anthraquinone. AQ 

demonstrated the best performance of the used quinones while having the 

smallest redox potential. AQ also showed notably higher molecular weight 

for dissolved lignin, which could refer to AQ’s ability to solubilize lignin which 

molecular size is bigger. Furthermore the differences in final pH of the filtrate 

samples was an interesting finding. Increased pH of the AQ filtrates might 

originate from the more effective lignin sulfonation, which could further 

cause the accelerated delignification effect of AQ.  

Thus, further research is needed in order to understand why the results were 

as demonstrated. The future’s AQ studies should be focused on issues 

mentioned in this work. Does AQ’s effect result from the sulfonation of 

organic matter? Why AQ accelerates the sulfonation? Are there a link 

between redox potential and delignification? How does the redox potential 

of additives vary in different conditions? Does polarity have any function in 

lignin degradation? What about stability and selectivity of the quinones used 

in this study?  
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Appendix 1 

Standards and methods used in the experiments. 

Determination Method 

Chip dry matter content SCAN-CM 39:94 

Pulp dry matter content SCAN-C 3:78 

Total yield Gravimetric 

Reject Gravimetric 

Accept (pulp) Gravimetric 

Kappa number SCAN-C 1:00 

Reduction of additives Look at pages 34 & 39 and Appendix 2 

Dissolved lignin content UV-VIS Spectrophotometer 

Molecular weight distribution of lignin Size-Exclusion Chromatography (SEC) 
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Appendix 2 

Demonstration of the reduction of additives. 

 
AQ – 0 min (left side) and 30 min (right side) 

 
AQ-2-sulfonic acid – 0 min (left side) and 20 min (right side) 
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AQ-1-sulfonic acid – 0 min (left side) and 30 min (right side) 

 
AQ-2-carboxylic acid – 0 min (left side) and 20 min (right side) 

 
AQ-1,5-disulfonic acid – 0 min (left side) and 30 min (right side) 



 

66 
 

 
 

2-hydroxy-1,4-NQ – 0 min (left side) and 30 min (right side) 

 
2,5-dihydroxy-1,4-BQ – 0 min (left side) and 30 min (right side) 
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Appendix 3 

The molecular weight distribution of dissolved lignin. 

 

Where 0c is Reference, 1c is AQ, 4c is AQ-2-carboxylic acid, and 6c is 2-

hydroxy-1,4-naphthoquinone.   
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Explanations for abbreviations used in MWD of dissolved lignin: 
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Appendix 4 

Detailed cooking parameters and results. 

n 


