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Tiivistelmä	
Vesi	liittyy	olennaisesti	lukuisiin	teollisuuden	prosesseihin,	joista	öljyteollisuus	ei	veden	
osalta	poikkea.	Öljyteollisuudessa	esiintyy	vettä	erilaisissa	prosesseissa	yhtä	paljon	kuin	
hiilivetyjäkin.	 Koska	 näitä	 nesteitä	 kuljetetaan	 putkistojen	 välityksellä,	 johtaa	 veden	
suuri	määrä	ajoittain	ongelmiin.	Erityisen	ongelmallisia	ovat	veteen	liuenneet	ionit,	jot-
ka	 aiheuttavat	 sakkaantuessaan	merkittäviä	 taloudellisia	menetyksiä	 rajoittamalla	 vir-
taamaa	tuotantoputkistoissa.		
	
Tämän	työn	tarkoitus	oli	kehittää	menetelmä	yleisimpien	sakkaavien	ionien	konsentraa-
tioiden	 määrittämiseksi	 öljyteollisuuden	 tuotantovesinäytteistä.	 Sakkaavien	 ionien	
määrityksen	 avulla	 oli	 mahdollista	 arvioida	 tuotantovesien	 sakkauspotentiaalia,	 jonka	
tunteminen	on	hyödyllistä	tietoa	öljyntuotantoprosessin	ylläpitäjälle.	
	
Tässä	diplomityössä	tutkittiin	aikaerotteiseen	fluoresenssiin	(TRF)	perustuvan	analyysi-
menetelmän	mahdollisuuksia	määrittää	sakkaavien	ionien	konsentraatioita	synteettisis-
tä	 ja	 oikeista	 tuotantovesinäytteistä.	 Fluoresenssimenetelmän	 kehittämiseen	 kuului	
soveltuvien	pintakemioiden	arvioiminen	ja	valinta	varsinaista	fluoresenssimittausta	var-
ten	sekä	tilastollisen	ennustemallin	kehittäminen	eri	ionikonsentraatioiden	arvioimisek-
si.	
	
Tämän	 diplomityön	 tulokset	 osoittavat	 ionikonsentraatioiden	 mittaamisen	 näytemat-
riiseista	mahdolliseksi	 aikarajoitteiseen	 fluoresenssimittaukseen	perustuvan	 teknologi-
an	 avulla.	 Kehitettyjen	 menetelmien	 avulla	 on	 mahdollista	 luoda	 mittausjärjestelmä	
nestenäytteiden	sakkaamispotentiaalin	tunnistamiseksi.		
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Abstract 

Water	in	one	form	or	another	 is	present	within	countless	manufacturing	processes.	 In	
an	oil	extraction	process,	the	volume	of	water	is	typically	equal	to	the	produced	hydro-
carbons	 and	 can	 even	 exceed	 the	 amount	 of	 extracted	oil	 significantly.	 The	 large	 vo-
lumes	of	water,	known	as	produced	water,	inflict	problems.	These	problems	are	mainly	
related	to	dissolved	ions	that	produced	water	is	carrying.	In	oil	production	and	several	
other	 industries,	where	 pipelines	 are	 used	 to	 transport	water,	 in	 suitable	 conditions,	
ions	within	the	water	will	precipitate	and	form	scale.	Within	a	pipeline,	scale	may	ac-
cumulate	and	disturb	the	liquid	flow	through	the	pipeline.	
	
In	order	to	assess	the	scale	potential,	this	thesis	develops	a	fluorescence	based	analyti-
cal	method	for	identifying	components	that	can	induce	scale	within	produced	water.	In	
this	thesis,	the	studied	water	samples	are	called	produced	water,	which	is	an	oil	extrac-
tion	 by-product.	 This	 thesis	 examines	 the	 technique	 of	 time-resolved	 photolumines-
cence	 to	 develop	 a	 non-specific	 assay	 method	 for	 identifying	 several	 ions	 that	 may	
cause	scale	accumulation	in	production	pipelines.	The	developed	method	was	used	to	
analyse	both	synthetic	and	field	produced	water	samples.	
	
The	 results	 of	 this	 thesis	 indicate	 that	 thorough	 study	 of	 suitable	 assay	 components	
enables	 the	 possibility	 to	 create	 a	measurement	 protocol	 to	 evaluate	 ion	 concentra-
tions	 in	a	produced	water	sample.	The	quantification	of	 ion	concentrations	allows	the	
evaluation	of	 scale	potential	 in	 a	 production	pipeline.	 This	 evaluation	 can	be	used	 to	
assess	 the	need	 for	 treating	 chemical	 to	 prevent	 scale	 accumulation	within	 the	pipe-
lines.	
 
 
 
Keywords time-resolved	fluorescence,	produced	water,	liquid	fingerprint 
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1 Introduction 

1.1 Background 

	

In	oil	extraction	process	and	numerous	other	industries,	water	plays	a	significant	role.	

With	a	new	oil	well,	water	 is	present	from	the	very	beginning.	Although	crude	oil	ac-

counts	 for	 the	majority	 of	 the	 production	 volume,	 towards	 the	 end	 of	 oil	 reservoir	

lifecycle,	water-to-oil	 ratio	 normally	 increases	 considerably,	 often	 surpassing	 the	 vo-

lume	 of	 extracted	 crude	 oil.	 The	 water	 associated	 to	 the	 oil	 production	 process	 is	

known	as	produced	water.	As	a	result	of	the	large	volumes	of	produced	water,	a	prob-

lem	is	generated	by	the	produced	water	salinity,	which	leads	in	suitable	conditions	to	

scale	precipitation	and	deposit	forming	on	to	the	metal	surface	of	oil	production	pipe-

lines.	

	

To	address	the	problem	of	deposit	forming	and	resulting	liquid	flow	disturbance,	scale	

inhibitors	are	used	in	the	oil	industry.	Scale	inhibitors	are	used	to	prevent	the	precipi-

tation	 of	 common	 scales,	 thus	 avoiding	 scale	 accumulation	 and	 costly	 maintenance	

breaks.	Although	maintenance	brakes	have	high	operational	costs,	neither	is	the	use	of	

scale	inhibitors	inexpensive.	For	this	reason,	it	would	be	valuable	information	to	know	

the	volume	of	needed	scale	inhibitors.	To	assess	the	amount	of	required	scale	inhibi-

tors,	 a	 measurement	 application	 to	 detect	 the	 scale	 causing	 components	 would	 be	

useful.		

	

Within	produced	water,	scale	forms	because	ions	in	aqueous	solution	precipitate	when	

a	 certain	 concentration	equilibrium	 is	 reached.	When	 the	equilibrium	state	 is	 excee-

ded,	 the	scale	potential	 increases	and	scale	begins	 to	accumulate.	 In	order	 to	assess	

the	scale	potential,	 several	 traditional	analytical	 techniques	exist.	Despite	 the	variety	

of	 possibilities,	 generally	 they	 need	 extensive	 operator	 knowledge	 to	 maintain	 and	

calibrate	 the	 equipment,	 as	 well	 as	 interpret	 the	 results.	 In	 contrast	 to	 traditional	

techniques,	this	thesis	attempts	to	create	an	easy-to-use	measurement	procedure	by	
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using	time-resolved	fluorescence	(TRF)	in	order	to	deliver	reliable	measurement	results	

rapidly.	

	

1.2 Objectives and scope 

	

The	experimental	problem	for	this	thesis	 is	related	to	the	 inherent	presence	of	diffe-

rent	scale	causing	components	 in	produced	water.	These	components	are	capable	of	

scale	formation	in	produced	waters,	resulting	in	an	increased	scale	potential	within	oil	

production	pipelines.	 In	order	to	measure	the	scale	potential	of	produced	water,	this	

thesis	examines	a	method	of	time-resolved	fluorescence	liquid	analysis	for	detection	of	

calcium,	 barium	 and	 sulphate	 ions	 found	 in	 produced	waters.	 The	 resulting	method	

should	 enable	 the	 future	 development	 of	 a	 measurement	 application	 for	 use	 in	 oil	

production	process	control.	To	accomplish	this	objective,	the	thesis	compares	different	

sensor	chemistries	used	with	a	time-resolved	fluorescence	measurement	technique	to	

determine	 ion	 concentrations	 in	 a	 produced	 water	 matrix.	 The	 developed	 methods	

should	be	 capable	of	 evaluating	 a	 large	number	of	 possible	 surface	 chemistries.	 The	

methods	 are	 tested	 with	 a	 prediction	 model	 that	 uses	 the	 surface	 chemistries	 to	

measure	sample	ion	concentrations.		

	

A	 measurement	 procedure	 requires	 a	 reference	 or	 standard.	 With	 measurements,	

such	as	physical	quantities,	length	and	mass	can	be	measured	directly,	however,	with	

chemical	 quantities,	 they	must	be	evaluated	 indirectly.	By	 revealing	 the	 latent	 infor-

mation	with	a	measurement,	the	composition	can	be	compared	against	a	known	sam-

ple.	In	this	thesis,	the	known	sample	database	is	created	with	synthetic	samples,	and	

the	field	samples	are	afterwards	compared	against	the	synthetic	sample	measurement	

data.		

	

Although	 the	practical	 problem	of	 this	 thesis	 is	 related	 to	 an	oil	 production	process,	

the	purpose	 is	not	 to	study	oil	production	assurance.	 Instead,	 this	 thesis	 investigates	

methods	for	developing	an	ion	detection	platform	that	can	identify	and	quantify	scale	

components	from	produced	water	samples.	Thus,	it	is	not	only	restricted	to	oil	produc-



9	

	

tion	 assurance,	 but	 also	 the	 knowledge	 can	 be	 used	 in	 other	 time-resolved	 fluore-

scence	molecule	detection	applications	as	well.		

	

From	 the	 end	 application	point	 of	 view,	 the	objective	 for	 this	 thesis	was	 to	 develop	

methods	 to	 monitor	 the	 process	 flow	 and	 detect	 early	 possible	 scaling	 problems.	

Therefore,	this	thesis	serves	as	a	preliminary	study	to	examine	the	potential	of	a	pho-

toluminescence	based	measurement	method	that	would	be	able	to	detect	and	quanti-

fy	the	scaling	components	from	an	oil	field	process	stream.	
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2 Literature review 

	

This	chapter	reviews	the	literature	related	to	produced	water	and	the	current	methods	

for	analysing	produced	water	samples.		In	order	to	gain	a	comprehensive	background	

knowledge	for	 the	experimental	part	of	 this	 thesis,	 the	chapter	begins	with	an	 intro-

duction	 to	 the	sample	matrix.	The	sample	matrix,	or	produced	water,	 is	discussed	 in	

Section	2.1.	Section	2.2	describes	currently	used	ion	assay	methods	for	produced	wa-

ter	samples.	Sections	2.3	and	2.4	introduce	the	principles	of	photoluminescence	mea-

surements	used	in	the	experimental	part	of	this	thesis.	

	

2.1 Produced water composition 

	

Produced	water	 is	 a	 generic	name	 for	 the	water	 that	 is	pumped	up	 from	an	oil	well	

during	the	extraction	process.	This	water	consists	of	two	main	components:	formation	

water	 and	 floodwater.	 Formation	water	denotes	 the	water	 trapped	with	 the	oil	 in	 a	

reservoir.	Some	of	the	formation	water	has	been	within	the	reservoir	as	long	as	the	oil	

itself	while	 some	 of	 it	 has	 leaked	 from	 the	 surrounding	 soil	 into	 the	 reservoir.	 Con-

versely,	floodwater	originates	from	a	surface	water	source.	Floodwater	is	injected	from	

the	surface	into	the	reservoir	by	the	well	operator.	The	injection	is	performed	in	order	

to	 enhance	 oil	 recovery	 by	 increasing	 the	 hydrostatic	 pressure	 of	 an	 oil	 reservoir		

(Dórea	et	al.	2007,	Igunnu	&	Chen	2014,	Fakhru’l-Razi	et	al.	2009)	.		

	

Produced	water	 is	a	diverse	mixture	of	varying	constituents.	The	composition	of	pro-

duced	water	 is	 a	 result	 of	 the	 complex	 geological	 environment	 from	which	 it	 is	 gat-

hered	(Røe	Utvik	1999).	Furthermore,	produced	water	is	a	mixture	widely	varying	wa-

ter	sources	which	become	combined	with	other	soil-originating	substances	(Boitsov	et	

al.	 2004).	 In	 addition,	 it	 is	 not	 rare	 that	 several	 oil	 wells	 are	 connected	 together	

through	pipelines,	thus	producing	combination	streams	of	different	brine	sources.	

	

As	the	demand	for	oil	is	hardly	diminishing	in	the	near	future,	the	need	for	enhancing	

reservoir	yield	requires	better	monitoring	methods.	In	these	situations,	the	knowledge	
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about	 produced	water	 becomes	 increasingly	 valuable.	 From	 total	 oil	 production	 vo-

lume,	produced	water	can	exceed	hydrocarbons	in	great	extent;	moreover,	as	the	oil	

well	matures,	the	amount	of	produced	water	tends	to	increase	(Kelland	2014).	At	the	

end	of	the	well	 lifecycle,	produced	water	volume	can	increase	up	to	98%	of	the	total	

production	stream		(Ray	&	Engelhart	1992,	Røe	Utvik	1999)	.	Figure	1	illustrates	a	typi-

cal	oil	well	production	profile	regarding	the	oil	and	produced	water	yield.	With	increa-

sing	extracted	water-to-oil	ratio,	scaling	may	cause	major	process	problems.	Therefore,	

knowing	the	produced	water	composition	is	important	information	for	the	well	opera-

tor.		

	

	
Figure 1 - Typical production profile for oil and produced water (Igunnu & Chen 2014) 

	

Because	of	 the	diverse	geographical	 environments	 from	which	produced	water	 sam-

ples	 are	 collected,	 the	 composition	 varies	 from	 location	 to	 location	 and	 even	within	

the	 same	 location	 during	 a	well	 lifecycle.	 In	 addition	 to	 a	 single	 origin	 for	 produced	

water,	oil	wells	are	usually	distributed	throughout	the	whole	oil	field.	This	distribution	

creates	 additional	 	 variability	 to	 the	 produced	 water	 by	 combining	 several	 brine	

sources	within	production	pipelines	(Kelland	2014).		

	

Produced	water	composition	can	be	divided	into	four	categories:	organic	constituents,	

inorganic	constituents	naturally	present	components,	and	those	chemical	compounds	
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added	by	the	well	operator	to	ensure	process	flow		(Igunnu	&	Chen	2014)	.	The	natu-

rally	present	organic	and	inorganic	constituents	consist	of	

- dissolved	and	dispersed	oil	and	grease	
- heavy	metals	(Cd,	Cr,	Cu,	Pb,	Ni,	Ag,	Zn)	
- radionuclides	(226Ra,	228Ra)		(Veil	et	al.	2004,	Igunnu	&	Chen	2014,	Ray	&	Engel-

hart	1992)	.	
	

In	addition	to	the	naturally	present	constituents,	oil	extraction	requires	flow	assurance	

chemicals	for	purposes,	such	as	scale	forming	prevention	and	enhanced	water-oil	se-

paration		(Igunnu	&	Chen	2014)	.	These	added	chemicals	may	consist	of	the	following	

molecular	components:	

- corrosion	inhibitors	
- oxygen	scavengers	
- scale	inhibitors	
- biocides	
- emulsion	breakers	and	reverse	emulsion	breakers	
- coagulants,	flocculants,	clarifiers	
- solvents		(Veil	et	al.	2004,	Kelland	2014,	Ray	&	Engelhart	1992)	.	

	

Moreover,	oil	extraction	process	stream	may	include	waxes,	dissolved	gases	and	mic-

roorganisms	(Veil	et	al.	2004,	 Igunnu	&	Chen	2014,	Ray	&	Engelhart	1992).	Thus,	the	

chemical	composition	of	produced	water	 is	 rather	complex,	mainly	as	a	 result	of	 the	

possible	components	present	but	also	because	of	 the	varying	component	concentra-

tions.	Table	1	presents	the	variability	in	produced	water	component	concentrations	in	

several	geographical	locations.	
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Table 1 – Scale inducing ion concentrations in different geographical locations  

(Alzahrani & Mohammad 2014, Dórea et al. 2007, Igunnu et al. 2007) 

Reference  

Alzahrani & Mohammad 
2014, p.123 

Dórea et al. 2007, p. 237 Igunnu et al. 2007, p.159 

Well location Several locations North Sea Several locations 

Component 

Concentration (ppm) Concentration (ppm) Concentration (ppm) 

Min Max Min Max Min Max 

Ba2+ 0,07 468 - - 1,3 650 

SO4
2- <1 15 000 - - <2 1650 

Ca2+ <1 74 185 - - 13 25 800 

Cu2+ - - 0,001 0,001 <0,02 1,5 

Fe2+ 0,1 4770 4310 4770 <0,1 100 

Cr3+ - - - - 0,02 1,1 

Cl- <1 254 923 16 100 19 500 80 200 000 

Na+ <1 149 836 8800 9600 - - 

CO3
2- 7,3 1030 - - - - 

	

Although	 the	 produced	water	 has	 a	 high	 diversity	 of	 constituents,	 the	main	 compo-

nents	of	this	thesis	were	limited	to	those	that	cause	scale	in	a	process	equipment.	The	

main	components	for	scale	forming	in	oil	production	are	

- calcium	carbonate	
- sulphate	salts	(Ca,	Ba,	Sr,	Fe)	
- sulfide	scales	
- sodium	chloride	(Kelland	2014,	Veil	et	al.	2004).	

	

As	explained	in	this	section,	the	composition	of	produced	water	has	many	factors	that	

alter	 the	 sample	 matrix.	 A	 sample	 matrix	 in	 this	 thesis	 denotes	 for	 the	 solution	 in	

where	 the	 analyte	 (calcium,	 barium	 or	 sulphate)	 is	 delivered	 to	 the	 measurement.	

Therefore,	although	it	is	important	to	identify	the	matrix	composition,	more	important	

is	 to	 select	 sensor	 chemistries	 that	 are	mainly	 selective	 to	 the	 analyte	 entities,	 thus	

they	are	providing	information	about	the	analyte	regardless	of	the	matrix	constituent	

variability.	Sensor	chemistry	denotes	for	the	components	that	interact	with	the	sample	

analyte	in	order	to	produce	a	measurement	signal	output.	Sensor	chemistries	are	fur-

ther	discussed	in	Section	2.4.	
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2.2 Current produced water analysis methods  

	

Analytical	 techniques	 related	 to	 scale	 formation	 component	 analysis	 studied	 in	 this	

literature	review	are	mainly	based	on	inductively	coupled	plasma	(ICP),	gas	chromato-

graphy	 (GC)	 and	 atomic	 adsorption	 (AAS)	 spectroscopic	 applications.	 In	 general,	 the	

literature	related	to	scale	component	detection	is	focusing	on	the	environmental	dis-

charge	assessment	of	produced	water	(Dórea	et	al.	2007,	Røe	Utvik	1999,	Boitsov	et	al.	

2004,	 Bezerra	 et	 al.	 2007).	 Thus,	 these	 studies	 are	 discussing	 the	 topic	 of	 produced	

water	composition	in	wider	perspective.	The	main	focus	with	these	studies	is	in	hydro-

carbon	compounds	rather	than	merely	 in	scale	causing	components.	 In	the	 literature	

(Fakhru’l-Razi	et	al.	2009,	Dórea	et	al.	2007,	Røe	Utvik	1999),	the	component	analyses	

are	performed	with	the	following	measurement	techniques:	

- Gas	Chromatography	-	Mass	Spectrometry	(GC-MS)	
- Gas	Chromatography	-	Photoionization	Detector	(GC-PID)	
- Atomic	Adsorption	Spectroscopy	(AAS)	
- Flame	Atomic	Adsorption	Spectroscopy	(FAAS)	
- Inductively	Coupled	Plasma	-	Atomic	Emission	Spectroscopy	ICP-AES)	
- Inductively	Coupled	Plasma	-	Mass	Spectrometry	(ICP-MS)	
- Inductively	Coupled	Plasma	-	Optical	Emission	Spectrometry	(ICP-OES).		

	

By	studying	the	literature	related	to	the	current	methods	revealed	information	about	

the	 sample	 matrix	 as	 well	 as	 the	 techniques	 relevant	 to	 the	 industry	 for	 analysing	

components	from	produced	water	samples.	This	 literature	survey	indicated	that	pho-

toluminescence	based	methods	were	not	widely	used	for	ion	detection	from	produced	

water	 samples.	 In	 this	 perspective,	 this	 thesis	 could	 extend	 well-studied	 TRF-

techniques	(described	in	Section	2.3	and	2.4)	to	provide	a	novel	measurement	solution	

for	produced	water	analysis.	

	

As	 for	 the	 comparative	 study	 against	 the	 developed	 photoluminescence	 based	met-

hod,	according	 to	 the	 literature,	an	 ICP-OES	method	was	 found	 to	be	widely	used	 in	

the	oil	production	industry	for	determining	alkaline	earth	metal	constituents	from	pro-

duced	water	samples.	
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2.3 Time-resolved fluorescence background and measure-

ments 

	

Time-resolved	fluorescence	(TRF)	was	selected	for	the	measurement	method	because	

of	 its	 suitability	 for	 creating	 an	 easy-to-use	measurement	 platform	 that	 can	 deliver	

reliable	measurement	results	rapidly	(Hänninen	et	al.	2013).	To	achieve	the	objectives	

of	this	thesis	was	to	experimentally	determined	suitable	conditions	and	environment	

for	time-resolved	fluorescence	measurement	for	given	sample	analytes.		

	

In	 order	 to	 reveal	 information	 from	 a	 target	molecule,	 a	 pulsed	 light	 is	 used	 at	 TRF	

measurement	 to	 excite	 electrons	 from	 a	 ground	 state	 to	 an	 excited	 state.	 After	 the	

electrons	 of	 a	 sample	molecule	 have	 been	 excited,	 the	 gained	 energy	 is	 released	 in	

several	different	ways.	The	energy	is	released	either	by	dissipation	to	the	surrounding	

environment	or	with	the	following	competitive	processes:		

- fluorescence	photon	emission		
- nonradiative	dissipation	(heat)	
- energy	transfer	to	neighbouring	molecules	
- transfer	to	a	lower	excited	state	(an	excited	triple	state)	(Albani	2007)	.		

	

A	schematic	Figure	2	illustrates	the	energy	transfer	mechanisms	related	to	photolumi-

nescence.	In	this	thesis,	the	main	component	for	creating	the	photoluminescence	reac-

tion	was	a	luminescent	Europium(III)	2,2ʹ:6ʹ,2ʺ-terpyridine	derivative	chelate	(Mukkala	

et	 al.	 1993),	 which	 was	 used	 to	 extract	 time-resolved	 photoluminescence	 response	

from	a	sample.	

	



16	

	
Figure 2 - Partial energy-level diagram for photoluminescent system (Skoog 2007, p. 401) 

	

Fluorophores,	 organic	 structures	 capable	 for	 photoluminescence,	 are	 very	 diverse	

group.	For	example,	aromatic	hydrocarbons	in	produced	water	present	these	proper-

ties	(Lee	&	Neff	2011).	As	a	result	of	this	abundantly	present	ability	among	molecular	

entities,	 it	 is	difficult	 to	extract	 information	 from	a	specific	photoluminescence	spec-

trum	without	time-resolved	fluorescence.	If	time-gated	measurement	is	not	used,	the	

background	noise	will	mask	relevant	spectral	information	about	the	analyte	under	exa-

mination	 (Siivonen	 et	 al.	 2014).	 According	 to	 Yang	 &	Wang	 (2005)	 the	 background	

noise	 can	be	divided	 into	 three	 categories:	 sample	 autofluorescence,	 light	 scattering	

(Tyndall,	Rayleigh	or	Raman),	and	equipment	luminescence	properties	(created	by	cu-

vettes,	filters	or	lenses).	Therefore,	a	method	is	needed	to	separate	interference	from	

relevant	information.	

	

A	 solution	 to	 this	 problem	 is	 the	 photoluminence	 properties	 of	 lanthanides.	With	 a	

long-lived	luminescence	and	wide	excitation-emission	Stokes’	shift,	most	of	the	back-

ground	 interference	 is	 removed	by	 starting	 the	 actual	measurement	 after	 disturbing	
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fluorophores	 have	 been	 extinguished	 (Figure	 3).	 Figure	 3	 is	 presenting	 the	 time-

resolved	fluorescence	measurement	cycle,	where	the	pulsed	ultraviolet	light	is	exciting	

the	 analyte-chelate	 entities	 and	 the	 signal	 starts	 to	 decrease	 as	 a	 function	 of	 time		

(Dickson	et	al.	1995,	p.8)	.	After	a	predetermined	“delay	time”	or	“lag	time”,	most	of	

the	background	interference	has	extinguished	and	during	the	“measuring	time”	or	“in-

tegration	 time”,	 the	 photoluminescence	 emission	 signal	 is	 recorded	 with	 a	 photo-

multiplier	tube	(PMT).	Generally,	the	measurement	cycle	is	repeated	several	consecu-

tive	times,	thus	enhancing	the	signal	to	noise	ratio	(Yuan	&	Wang	.	2005,	p.560).	

	

	
Figure 3 – Pulsed measurement cycle in time-resolved fluorescence  

(Yuan & Wang 2005, p.560) 

	

As	 a	 result	 of	 time-gated	 measurement,	 dynamic	 range	 and	 sensitivity	 can	 be	 en-

hanced	significantly	 	 (Hagan	&	Zuchner	2011)	 .	Typical	excitation	and	emission	wave-

lengths	 for	 lanthanide	 complexes	 used	 in	 life-science	 assays	 are	 in	 320–360	nm	and	

615	 nm	 respectively.	 This	 however,	 is	 not	 the	 situation	 with	 plain	 lanthanide	 ions,	

since	they	have	low	quantum	yield.	In	order	to	gain	a	photoluminescence	signal	from	

lanthanides,	they	need	a	ligand	“antenna”.	In	this	process,	the	ligand	chelates	with	the	

lanthanide	 ion,	 resulting	 in	 a	 Ln-complex	 that	 absorb	electromagnetic	 radiation	with	

the	ligand	structure	and	emit	the	gained	energy	through	the	lanthanide	ion		(Dickson	

et	al.	1995,	p.6)	.		
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As	a	result	of	the	lanthanide	complex	energy	absorption,	transfer	and	release	proper-

ties,	a	large	Stokes’	shift	is	achieved.	Since	the	excitation	of	the	chelate	is	not	creating	

interference	to	the	emission	spectrum,	the	separated	Stoke’s	shift	 (Figure	4)	enables	

better	sensitivity	of	the	fluorescence	measurement	(Siivonen	et	al.	2014).	The	combi-

nation	of	 time-gated	measurement	and	 large	stokes’	shift	create	a	suitable	measure-

ment	 environment	 to	 separate	 efficiently	 relevant	 spectral	 information	 from	 back-

ground	noise	and	interference.	

	

	

	
Figure 4 - Europium [Eu3+] Stokes' shift (PerkinElmer Inc. 2015) 

	

In	TRF	measurement,	the	chelate	is	combined	with	a	sample	solution	in	order	to	create	

measurement	environment.	 In	addition	 to	 the	combination	of	 chelate	and	sample,	a	

signal	 alternating	 component	 is	 needed	 to	 create	 separation	 between	 the	 reference	

and	added	ion	sample	(Table	2).	Figure	5	 is	presenting	a	schematic	 illustration	of	the	

created	TRF	measurement	environment,	which	include	specific	and	non-specific	inter-

actions	for	producing	difference	in	the	emission	signal	between	the	reference	and	ana-

lyte	sample		(Hänninen	et	al.	2013,	Anzenbacher	et	al.	2010)	.		
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Figure 5 - A schematic illustration of the excitation-emission signal alteration environment 

	

In	Figure	5,	the	chelate	is	first	combined	with	a	sample	and	then	the	resulting	solution	

is	 combined	with	 a	 ionochromic	dye-modulator	 solution.	 In	 this	 thesis,	 a	 sensor	 ele-

ment	is	either	an	ionochromic	dye	alone	or	a	combination	of	ionochromic	dye	and	an	

ion	 binding	molecule	 (modulator).	 As	 a	 result,	 specific	 and	 non-specific	 interactions	

between	 solution	 components	produce	an	altered	 signal	output	 that	 can	be	used	 to	

detect	 specific	 ion	 from	 a	 given	 sample.	 The	 ion	 evaluation	 is	 conducted	 by	 using	

known	samples	(a	calibration	data	set)	to	interpret	the	signal	output	from	the	photo-

luminescence	emission	signal	seen	at	Figure	5.	

	
Table 2 - Example measurement results with and without dye-modulator component 

Added ion [Ca
2+

] 

concentration 

(mg/dm3) 

Chelate + Dye-modulator (B4) 

signal 

Chelate 

signal 

500 39 744 168 814 

250 54 922 165 447 

100 74 012 165 371 

50 94 157 164 043 

5 123 411 167 211 

1 145 804 163 238 

B4 = a dye-modulator sensor defined at Appendix 3 
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Table	2	present	measurement	results	 from	an	experiment	where	the	same	sample	 is	

measured	 with	 two	 different	 surface	 chemistries.	 In	 this	 experiment,	 an	 added	 ion	

sample	was	diluted	as	described	in	the	concentration	column	and	two	measurements	

were	 conducted	with	 and	without	 a	 dye-modulator.	 As	 can	 be	 seen	 from	 the	mea-

surement	results	(Table	2),	although	the	added	dye-modulator	is	quenching	the	signal	

level,	a	separation	between	the	concentrations	become	explicit,	whereas	without	dye-

modulator,	 the	output	signal	 remains	 relatively	unchanged.	The	same	behaviour	was	

reported	also	by	Siivonen	et	al.	(2014)		

	

2.4 Fluorescence fingerprint sensors 

	

In	this	thesis,	a	term	sensor	is	denoting	for	all	entities	that	produce	a	signal	response	in	

the	TRF-measurement.	Anzenbacher	et	al.	 (2010)	 	defined	a	chemical	sensor	as	a	de-

vice	that	responds	to	a	particular	analyte,	however	in	this	thesis,	the	relationship	bet-

ween	the	sensor	and	analyte	is	hardly	specific	to	a	single	analyte	entity.	A	better	desc-

ription	 is	 that	 the	 sensors	 are	 interacting	with	 the	 analyte	 ions	with	 cross-reactivity.	

Cross-reactivity	 (non-specificity)	 connotes	 for	 the	 sensitivity	 to	 other	 substances	 in	

addition	to	the	analyte	molecules	(Hänninen	et	al.	2013).	When	developing	a	photolu-

minescence	measurement	 system	based	on	 cross-reactive	 sensors,	 the	 resulting	 sys-

tem	needs	several	sensors	to	identify	the	target	analyte.	

	

The	principles	of	assay	methodologies	are	described	by	Hänninen	et	al.	(2013)	and	An-

zenbacher	et	al.	(2010),	in	where	a	certain	set	of	chemical	sensors	can	be	used	to	fin-

gerprint	desired	sample	matrices.	After	the	response	”fingerprint	patterns”	have	been	

recorded,	the	analyte	entities	can	be	identified	by	comparing	the	measurement	results	

to	 the	 fingerprint	 library	 attained	 from	 the	 known	 sample	measurements.	 The	 func-

tionality	and	response	behaviour	of	a	chemical	 sensor	 is	derived	 from	two	structural	

properties	known	as	receptor	and	transducer	moieties.	With	these	moieties,	the	sen-

sor	 is	able	 to	 interact	physically	or	chemically	with	 the	 target	analyte	and	produce	a	

modified	signal	output.	In	most	cases,	the	analyte	interaction	and	selectivity	is	related	

to	the	receptor	moiety	and	the	output	signal	response	to	the	transducer	moiety	(An-
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zenbacher	et	al.	2010).	 In	this	thesis,	the	output	signal	 is	 interpreted	as	a	photolumi-

nescence	signal	(photons	received	by	the	PMT-transducer).	

	

Although	the	produced	water	composition	can	vary	greatly,	according	to	the	literature,	

it	 is	possible	to	create	a	photoluminescence-based	measurement	method	that	would	

fulfil	 the	 requirements	 determined	 in	 the	 objectives	 and	 scope	 of	 this	 thesis.	 The	

knowledge	 built	 upon	 the	 literature	 and	with	 carefully	 selected	 surface	 chemistries,	

the	 identification	 of	 the	 scale	 causing	 components	 should	 be	 possible.	 The	 resulting	

ion	detection	method	or	water	fingerprinting	application	development	is	discussed	at	

the	following	chapters.	
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3 Experimental part I 

	

The	experimental	part	of	this	thesis	 is	divided	into	two	parts.	Experimental	part	 I	ad-

dresses	 the	 problem	how	 to	 select	 sensors	 for	 the	 detection	 of	 Ba2+,	 SO4
2-	 and	 Ca2+	

ions.	Experimental	part	II	explains	how	these	selected	sensors	can	be	used	to	analyse	

produced	water	samples.	

	

The	 experimental	 objective	 for	 this	 thesis	 is	 to	 develop	 a	 photoluminescence-based	

liquid	fingerprinting	application.	A	unique	sample	fingerprint	can	be	created	by	analy-

sing	 excitation-emission	 light	 interactions	 between	 a	 sample	 and	 surface	 chemistry.	

This	unique	sample	fingerprint	can	be	used	to	determine	analyte	entities	from	a	sam-

ple	 liquid.	 In	 this	 thesis,	 these	 analyte	 entities	 represent	 the	 different	 scale	 causing	

components	 in	 an	 oil	 production	 process.	 In	 the	 oil	 production	 process,	 apart	 from	

corrosion	and	gas	hydrates,	pipe	scaling	forms	one	of	the	most	serious	problems	in	the	

oil	production	process;	in	the	worst	case	scenario,	scale	can	accumulate	onto	the	pipe	

surface	and	halt	the	production	flow	within	24	hours	if	the	scaling	problem	is	not	ad-

dressed	accordingly	(Kelland	2014).	

	

Because	pipe	scaling	can	develop	at	such	a	rapid	pace	and	disturb	oil	production	flow,	

the	current	analytical	methods	fail	to	resolve	the	problem	promptly.	Although	current	

techniques	enable	separate	detection	of	scaling	components	in	minute	concentrations	

(ng	dm-3),	they	are	rather	laborious	(Boitsov	et	al.	2004).	In	most	cases,	samples	have	

to	be	sent	from	a	field	of	operations	to	an	off-site	laboratory,	thus	the	delay	for	mea-

surement	 results	 can	 stretch	 to	days.	 In	addition	 current	analytical	off-site	methods,	

such	as	 ICP-OES	and	GC-MS	(Røe	Utvik	1999),	need	special	expertise	to	calibrate	and	

maintain	the	measurement	equipment	as	well	as	carry	out	the	measurements.	

	

Compared	to	current	methods	the	approach	described	here	 is	completely	novel.	The	

approach	developed	in	this	thesis	is	based	on	array	of	non-specifically	interacting	sen-

sor	elements	from	which	the	measured	signals	are	analysed	by	computer-assisted	data	

analysis.	With	 traditional	methods,	 such	 as	 gravimetric	 titration,	 the	 occurring	 reac-
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tions	are	highly	specific.	The	method	described	here	is	based	on	creating	a	sample	spe-

cific	fingerprint	with	a	cross-reactive	array	of	chemistries.	Fingerprint	can	be	analysed	

by	comparing	it	against	a	library	of	known	samples.		

	

The	experimental	measurements	were	conducted	by	using	Tecan	Infinite	M1000	PRO	-	

microplate	 reader	 (Tecan	Austria	GmbH;	Grödig/Salzburg;	Austria)	and	96-well	 trans-

parent	microplate	 (C96	Maxisorp	Nunc-Immuno	Plate,	 Thermo	Fisher	 Scientific).	 The	

target	 for	 the	 time-resolved	 fluorescence	measurements	were	 to	study	 the	 response	

of	different	assay	components	and	how	they	are	producing	different	signal	response.	

Further	 studies	 and	 the	 second	 part	 of	 this	 thesis	was	 to	 use	 the	 same	methods	 to	

measure	 complex	 synthetic	 samples	 and	 evaluate	 the	 sample	 composition	 with	 the	

knowledge	acquired	from	the	synthetic	sample	measurements.	

	

3.1 Measurement protocol design 

	

The	measurement	 protocol	 design	was	 the	 very	 first	 phase	 of	 this	 thesis.	 The	mea-

surement	protocol	describes	all	the	steps	to	perform	the	experimental	measurements	

and	therefore	it	was	a	crucial	part	for	achieving	comparable	measurement	results	bet-

ween	different	samples.	In	general,	the	protocol	describes	all	of	the	needed	prepara-

tion	steps	and	the	parameters	for	the	actual	measurements.	

	

The	measurement	protocol	 can	be	divided	 into	 two	parts.	 These	parts	 are	measure-

ment	 preparation	 steps	 and	 the	 parameters	 for	 the	 actual	 TRF	 measurement.	 The	

preparations	steps	can	be	further	on	divided	into	subcategories,	such	as:	sample,	che-

late	 and	 sensor	 preparation.	 Sample	 preparation	 describes	 how	 to	 produce	 the	 syn-

thetic	brine	that	was	used	as	a	reference	sample	and	as	a	base	matrix	for	the	added	

ion	samples.	Table	3	lists	the	used	base	brine	composition.	The	brine	described	at	Ta-

ble	3	is	a	synthetic	replicate	of	produced	water	based	on	North	Sea	oil	field	produced	

water.	

	

	

	



24	

Table 3 - The composition of brine used for the reference sample and added ion sample matrix 

Reagent Molar mass (g/mol) Mass concentration (g/l) Concentration (mmol/l) 

NaCl 58,44 35,03 599,00 

CaCl2 * 2H2O 147,01 2,24 15,24 

MgCl2 * 6H2O 203,30 1,46 7,18 

KCl 74,55 0,21 2,82 

BaCl2 * 2H2O 244,26 0,13 0,53 

	

As	 the	 reference	 sample	 in	 the	measurements	had	a	brine	 composition	described	 in	

Table	3,	the	samples	with	added	ion	were	also	produced	to	the	same	reference	brine.	

This	made	it	possible	to	track	only	the	changes	caused	by	the	addition	of	specific	 ion	

into	 the	 brine	 solution.	 The	 added	 ion	 concentration	 in	 synthetic	 samples	 was	 500	

ppm.	

	

3.1.1 Microplate preparation 

	

All	 measurements	 were	 conducted	 with	 the	 Tecan	 Infinite	 M1000	 PRO	 microplate	

reader	and	96-well	transparent	microplate	(Picture	1).	Picture	1	presents	an	example	

of	plate	component	arrangement	used	for	the	preliminary	sensor	screening.	

	

	
Picture 1 - Sensor arrangement on microplate 
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The	plate	components	used	in	this	project	consisted	of:	

- ligand-lanthanide	chelate		
- sensor	(Appendix	3)	
- sample.	

	

Table	4	presents	the	component	concentrations	 in	a	single	microplate	well.	The	con-

centrations	in	Table	4	were	used	in	the	final	measurement	to	evaluate	produced	water	

samples.	All	reagents	used	in	this	thesis	were	analytical	quality	Sigma-Aldrich	products.	

Appendix	3	lists	the	different	reagents	that	were	used	to	produce	sensors	described	in	

Table	5.	Appendix	5	lists	all	reagents	used	in	this	thesis	with	a	batch/LOT	identification	

code,	CAS	number	and	Sigma-Aldrich	identification	number.		

	
Table 4 - Microplate component volumes and concentrations for a single well 

   Sensor 

 Sample Chelate Ionochromic dye Modulator 

Concentration / well 

(ppm) 

0–500 - - 10 

Concentration / well 

(molarity) 

- 0,67 nM 10 µM / 20 µM - 

Volume / well 

(µl) 

100 20 

	

The	microplate	preparation	procedure	was	conducted	in	two	steps	in	which	the	sensor	

(ionochromic	dye	and	modulator)	solution	was	first	pipetted	into	a	microplate	well	(20	

µl)	 and	 after	 this,	 the	 sample-chelate	 solution	was	 added	 to	 the	 plate	well	 (100	µl).	

Therefore,	two	solutions	were	prepared	before	mixing	all	of	the	components	together	

within	 the	 plate	well.	 These	 components	were	 the	 sample-chelate	 and	 ionochromic	

dye-modulator	solutions.	All	other	components	had	a	fixed	concentration	except	iono-

chromic	dye	component,	which	had	two	concentrations:	10	µM	and	20	µM.	

	

At	Table	5,	for	each	ionochromic	dye,	a	set	of	four	different	sensor	solutions	were	pre-

pared.	The	solutions	listed	at	the	table	were	further	diluted	in	the	plate	well	after	the	

addition	of	sample-chelate	solution.		
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Table 5 - Sensor preparation 

ID = ionochromic dye 
V2 = Sensor total volume (µl) 
A15 and A16 = modulators defined at Appendix 5 
 
Sensor	solution	1	

Component (C1) Component (C2) Dilution factor (D) 

[C1/C2] 

Needed component 

volume µl (V1) 

Plate well  

concentration 

ID 10 mM 0,06 mM 166,67 V2 / D 10 µM 

MQ Water   V2 – V1  

	
Sensor	solution	2	

Component (C1) Component (C2) Dilution factor (D) 

[C1/C2] 

Needed component 

volume µl (V1) 

Plate well  

concentration 

ID 10 mM 0,12 mM 83,33 V2 / D 20 µM 

MQ Water   V2 – V1  

	
Sensor	solution	1	+	2nd	component	

Component (C1) Component (C2) Dilution factor (D) 

[C1/C2] 

Needed compo-

nent volume µl 

(V1n) 

Plate well  

concentration 

ID 10 mM 0,06 mM 166,67 V2 / D = V11 10 µM 

Modulator 1000 ppm  
[A15 or A16]  

60 ppm 16,67 V2 / D = V12 10 ppm 

MQ Water   V2 – (V11 + V12)  

	
Sensor	solution	2	+	2nd	component	

Component (C1) Component (C2) Dilution factor (D) 

[C1/C2] 

Needed compo-

nent volume µl 

(V1n) 

Plate well  

concentration 

ID 10 mM 0,12 mM 83,33 V2 / D = V11 10 µM 

Modulator 1000 ppm  
[A15 or A16]  

60 ppm 16,67 V2 / D = V12 10 ppm 

MQ Water   V2 – (V11 + V12)  

     
 

	

3.1.2 Measurement parameters 

	

Table	6	specifies	the	parameters	for	Tecan	Infinite	M1000	PRO	time-resolved	fluores-

cence	measurement.	The	given	parameters	were	used	 to	measure	microplates	desc-

ribed	at	the	earlier	Section	3.1.1.		
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Table 6 - Tecan Infinite M1000 PRO measurement parameters 

Used settings Description 

Excitation wavelength 230–400 nm, Bandwidth 10 nm 
Emission wavelength 580–635 nm, Bandwidth 6 nm 
 
Sensor specific wavelengths presented at Appendix 3 

Bandwidth is defined as Full Width at Half Maxi-
mum intensity (FWHM) 

Flash cycles 

100 Hz, counts 60–100 
Xe-Flash lamp frequency and the number of flash 
cycles 

Mode 

Top 
Measurement conducted from above the plate 

Gain  

200-255 
The sensitivity of photo-multiplier tube (PMT) 

Z-Position 

20150 µm 
The distance of excitation lamp to the plate well 

TRF settings 

Lag time: 200 µs 
Integration time: 400 µs 

Time-resolved fluorescence settings 

	

The	values	given	at	Table	6	are	representing	a	set	of	parameters	for	the	entire	experi-

mental	part	 I.	 These	parameters	were	used	 to	analyse	 sensor	chemistries	at	prelimi-

nary	 stages.	As	 the	number	of	 sensors	were	 reduced	during	 the	experimental	part	 I,	

also	the	measurement	parameters	narrowed	down.	The	final	parameters	are	presen-

ted	 at	 Appendix	 3,	where	 each	 sensor	 has	 a	 specific	wavelength	 for	 performing	 the	

measurement.	

	

3.2 Sensor evaluation 

	

The	task	in	the	experimental	part	I	was	to	study	altogether	112	sensors	with	216	dif-

ferent	excitation-emission	wavelength	pairs.	First	of	all,	the	purpose	of	this	phase	was	

to	evaluate	and	select	sensors	that	can	separate	reference	and	added	ion	samples,	and	

secondly,	 determine	 what	 wavelengths	 are	 suitable	 for	 each	 sensor.	 Excitation-

emission	matrices	for	a	single	sensor	with	216	different	wavelengths	are	presented	at	

Picture	2.	At	Picture	2,	the	vertical	axis	column	denotes	for	the	excitation	wavelengths	

and	 horizontal	 axis	 the	 corresponding	 emission	 wavelengths.	 The	 signal	 values	 pre-

sented	 in	 the	matrix	 cells	 are	 the	measured	 signals	 in	 the	 given	 excitation-emission	

wavelength.	The	 task	was	 to	compare	each	produced	matrix	cells	 (measured	signals)	
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between	the	reference	and	added	ion	sample,	hence,	detect	the	wavelengths	that	are	

producing	a	difference	between	the	measured	signal	values.		

	

	 	
Picture 2 – Excitation-emission matrices (EEM) for reference sample and added ion sample 

	

As	 a	 result	 of	 having	 112	 sensors	with	 216	 different	 excitation-emission	wavelength	

pairs,	the	screening	array	had	24	192	individual	sensor	combinations.	In	addition,	as	a	

single	screening	array	consisted	of	a	 reference	sample	and	three	different	added	 ion	

samples,	the	number	of	 individual	data	points	 for	a	single	measurement	was	96	768,	

without	any	replicates.	Therefore,	the	assessment	of	excitation-emission	matrix	(EEM)	

data	was	not	possible	without	automation.	The	solution	for	this	problem	was	to	create	

a	data	handling	algorithm	(Appendix	1)	that	detect	relevant	information	from	the	raw	

data	and	illustrate	this	information	in	a	reduced	format.	

	

As	can	be	examined	from	Picture	2,	finding	relevant	changes	from	EEMs	is	rather	cum-

bersome	task	and	therefore	a	R-algorithm	(R	Core	Team,	2015)	was	written	to	evaluate	

the	changes	between	several	EEMs	and	presenting	the	relevant	separation	information	

in	a	graphical	 form.	Picture	3	presents	3D	surface	plots	 from	the	same	EEMs	as	pre-

sented	at	Picture	2.	From	these	surface	plots	it	is	possible	to	illustrate	the	main	prob-

lems	present	with	the	measured	raw	data.	
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Picture 3 – Excitation-emission matrix 3D surface plots 

	

In	measurement	 raw	 data,	 the	main	 problem	 is	 the	 high	 signal	 level	 peaks	 that	 are	

concealing	the	small	signal	level	changes.	This	is	problematic	because	a	small	absolute	

signal	 difference	 in	 low	 signal	 level	might	 be	 as	 significant	 as	 a	 large	 absolute	 diffe-

rence	 at	 high	 signal	 level.	 An	 example	 from	 this	 kind	 of	 excitation-emission	 area	 is	

highlighted	with	a	dashed	line	at	Picture	3.	Moreover,	problematic	is	the	signal	range	

produced	by	the	measurement	device	(Tecan	Infinite	M1000	PRO)	that	can	be	starting	

from	 negative	 values	 and	 continue	 to	 signal	maximum	photon	 counts.	 The	 negative	

values	are	produced	by	an	automatic	blank	reduction	feature	of	the	measurement	de-

vice.	

	

In	order	to	summarise	the	sensor	evaluation	phase,	the	problem	about	the	measure-

ment	data	analysis	was	mainly	related	to	the	amount	of	raw	data,	which	was	too	large	

to	be	evaluated	by	hand.	This	evaluation	would	have	been	excessively	time	consuming,	

therefore,	 it	was	 imperative	 to	design	an	automatic	data	handling	algorithm	 for	per-

forming	most	of	the	preliminary	screening	data	analysis.		

	

3.2.1 Data handling methods for preliminary sensor screening 

	

Because	 of	 the	 data	 handling	 problems	 described	 in	 the	 previous	 sections,	 a	 data-

handling	algorithm	was	produced	to	evaluate	relevant	signal	differences	and	thus	re-

duce	 the	 data	 obtained	 from	 the	 TRF	measurements.	 The	 purpose	 of	 this	 algorithm	
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was	to	produce	a	graphical	presentation	of	the	relevant	signal	differences,	where	the	

small	changes	 in	the	low	signal	 levels	were	not	concealed	by	the	high	signal	 level	va-

lues.	Appendix	1	describes	the	algorithm	in	detail	with	a	flow	chart.	

	

The	most	 important	 part	 of	 the	 algorithm	was	 the	 low-high	 signal	 level	 comparison	

method.	As	presented	at	Table	7,	the	problem	of	low	and	high	signal	differences	was	

solved	by	using	a	logarithm	transformation	function	(Equation	1).	

	
  
!" = $%& ' + 1 *.,-	

Equation 1 

	

,	where	

	

X’	is	the	logarithmic	transformed	matrix	cell	value	

x	is	the	original	matrix	cell	value.	

	

The	power	4.67	given	in	the	Equation	1	is	a	modification	factor	that	fits	the	logarithmic	

function	to	the	desired	form.	The	desired	function	form	equalized	the	low	signal	level	

changes	to	the	high	signal	 level	changes	 in	right	proportions.	Table	6	presents	an	ex-

ample	of	how	signal	separation	in	different	ranges	should	be	compared.	

	
Table 7 - Assignment of signal difference correspondence 

Reference  

sample signal 

(A) 

Added ion 

sample 

signal 

(B) 

Original signal 

remainder 

(A-B) 

Log transform 

(A) 

 
[log(A+1)^4,67] 

Log transform 

(B) 

 
[log(B+1)^4,67] 

Transformed 

signal remainder 

4 973 6 000 1 027 464 514 50 

46 077 50 000 3 923 1 380 1 430 50 

93 733 100 000 6 267 1 864 1 914 50 

772 605 800 000 27 395 4 124 4 174 50 

	

At	Table	7,	the	signal	remainders	of	a	reference	sample	and	an	added	ion	sample	are	

assessed	against	the	values	transformed	with	Equation	1.	From	Table	7,	it	can	be	seen	

that	after	the	transformation,	the	signal	 log	remainders	were	comparable.	Therefore,	

it	was	possible	to	evaluate	and	compare	reference	and	added	ion	sample	signal	diffe-

rences	throughout	the	whole	signal	range.	

	



C:!

!

!
!"#$%&'S')']0#.%"2:F"-'4$3-2"03'40%'B"#3./'1"44&%&3-&'&M./$.2"03'

!

N0'!3%G82#/0.#,!/28(*-%2.8/#%(!-5(,/#%(!1'+#,/'1!#(!Q#G52'!bJ!#335*/28/'*!/0'!3%G!/28(*)

-%2.8/#%(! ,524'! O*%3#1! 3#('R! 8(1! 0%U! /0'! %2#G#(83!.8/2#W! ,'33! 4835'*! 82'! /28(*-%2.'1!

#(/%! 3%G82#/0.#,! 4835'*@! N0'*'! /28(*-%2.'1! 2'.8#(1'2! 4835'*! ,8(! Y'! ,%.+82'1!

/02%5G0! /0'!*#G(83! 28(G'@! V(!811#/#%(! /%! /0'! /28(*-%2.8/#%(! -5(,/#%(! OFX58/#%(!:RJ!Q#)

G52'!b!+2'*'(/*!8!-5(,/#%(!,524'!U#/0%5/!8!+%U'2!.%1#-#,8/#%(!-8,/%2@!S*!,8(!Y'!*''(!

-2%.! /0#*! ,524'J! /0'! -5(,/#%(!.%1#-#,8/#%(! -8,/%2! #*! (''1'1! /%! -#/! /0'! /28(*-%2.8/#%(!

-5(,/#%(!#(/%!8!-%2.!/08/!#*!8Y3'!/%!,%.+82'!*#G(83!1#--'2'(,'*!#(!8!.'8(#(G-53!.8//'2@!

T#/0%5/!/0'!.%1#-#,8/#%(!-8,/%2J!/0'!,524'!U%531!+38/'85J!/05*!+2%15,#(G!8(!%++%*#/'!

*#/58/#%(! ,%.+82'1! /%! /0'! #(#/#83! +2%Y3'.k! /0'! 3%U! *#G(83! 3'4'3! 4835'*!U%531! ,%(,'83!

/0'!0#G0!*#G(83!3'4'3!*'+828/#%(!4835'*@!

!

Q#G52'!b!+2'*'(/*!/0'!83G%2#/0.!/28(*-%2.8/#%(!*+8,'J!U0'2'!/0'!W)8W#*!#335*/28/'*!/0'!

%2#G#(83! *#G(83! 4835'*! 8(1! /0'! I)8W#*! /0'! /28(*-%2.'1! 3%G82#/0.#,! 4835'*@! S*! ,8(! Y'!

*''(J!/0'!*#G(83!4835'*!3'**!/08(!CAAA!U'2'!%.#//'1!#(!%21'2!/%!2'.%4'!Y#8*!-2%.!/0'!

#(*/25.'(/!(%#*'@!N0'2'-%2'J!/0'!83G%2#/0.!U8*!5*#(G!%(3I!2'3'48(/!4835'*!#(!/28(*-%2)

.8/#%(!+2%,'**@!

!

V(!%21'2!/%!8**'**!/0'!811'1!#%(!*8.+3'!1#--'2'(/#83!8G8#(*/!/0'!2'-'2'(,'!*8.+3'J!8!P)

83G%2#/0.!U8*!5*'1! /%!+2%15,'!8(! #335*/28/#%(!%-! /0'!1#--'2'(/#83! 2'*+%(*'*@! N0'! -#(83!



32	

illustration	is	presented	later	in	this	section;	Figure	7	is	explaining	the	rationale	behind	

the	differential	plots	presented	later	at	Figure	8.	

	

	
Figure 7 – Visual sensor evaluation of signal differences between three different ions 

	

In	Figure	7,	arbitrary	signal	values	are	used	to	explain	how	a	signal	difference	between	

a	reference	sample	(A)	and	an	analyte	sample	(B)	is	created.	The	resulting	signal	diffe-

rence	circle	 (C)	describes	how	well	a	 certain	 sensor	chemistry	 is	 separating	 the	 refe-

rence	 and	 analyte	 sample.	 At	 Figure	 7,	 the	 signal	 separation	 (C)	 is	 the	 remainder	 of	

values	A	 and	B.	 In	 addition	 to	 the	 smallest	 separation	 circle	 (blue),	 related	 to	 signal	

difference	for	SO4
2-,	several	circles	can	be	examined	at	the	same	time.	In	Figure	7,	the	

green	 circle	 is	 depicting	 the	 separation	 for	 barium	 and	 red	 circle	 calcium.	With	 this	

visual	 presentation,	 it	was	 possible	 to	 evaluate	 sensor	 responses	 for	 each	 ion.	 Even	

without	the	exact	numerical	values	given	in	Figure	7,	conclusions	can	be	made	about	

the	sensor	 functionality	and	behaviour.	The	use	of	 this	method	enabled	 the	simulta-

neous	examination	of	each	sensor	response	to	various	analytes.	
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Figure 8 - R-algorithm difference plot for a modulator 

	

The	sensor	evaluation	method	is	illustrated	in	Figure	8,	where	each	excitation-emission	

wavelength	is	connected	to	the	separation	of	reference	and	added	ion	for	a	single	sen-

sor.	By	using	the	given	figure,	it	was	possible	to	evaluate	how	well	a	sensor	was	sepa-

rating	reference	and	added	 ion	samples,	as	well	as	determine	 in	what	wavelength	a-

rea.	The	comparison	of	the	figures	for	different	sensors	enabled	the	determination	of	

sensors	 that	 were	 sensitive	 to	 the	 analyte	 entities.	 Therefore,	 this	method	was	 the	

main	tool	for	reducing	the	data	from	the	preliminary	sensor	screening	and	assess	the	

most	suitable	sensors	for	further	studies.	

	

In	 addition	 to	 the	 illustration	 seen	at	 Figure	8,	 the	 sensors	 that	 seemed	 to	have	 the	

best	separation	between	the	reference	and	added	ion	samples	were	confirmed	by	the	

examination	of	raw	signal	data.	With	performing	the	measurement	several	consecutive	

times,	the	final	sensors	were	determined	for	experimental	part	II.	

	

3.2.2 Synthetic sample measurements 

	

In	 the	 preliminary	 sensor	 screening	 phase	 of	 the	 experimental	 part	 I	 (Section	 3.2.1)	

simple	 analyte	 samples	were	measured	 that	 contained	 only	 one	 added	 ion	 (barium,	



34	

calcium	or	sulphate).	By	using	the	algorithm	difference	plot,	it	was	possible	to	rule	out	

sensors	that	were	not	providing	relevant	information	about	the	measured	samples.	

	

The	next	phase	of	the	experimental	part	I	was	to	continue	the	assessment	with	com-

plex	samples.	Complex	samples	in	this	project	were	a	combination	of	the	given	ions	of	

barium,	calcium	and	sulphate.	All	of	the	sensors	found	suitable	with	the	simple	analyte	

samples	were	again	analysed	with	a	set	of	complex	samples.	After	the	complex	sam-

ples	were	analysed,	a	set	of	best	sensors	for	detecting	given	ions	were	determined.	As	

a	result	of	this	data	mining	and	analysis	 in	experimental	part	I,	the	amount	of	sensor	

elements	was	reduced	from	24	192	to	885	most	suitable.	A	sensor	in	this	context	de-

notes	for	the	combination	of	a	sensor	chemistry	and	specific	excitation-emission	wave-

length.	

	

4 Experimental part II 

	

In	experimental	part	II,	the	885	most	suitable	sensors	were	used	to	develop	a	predic-

tive	model	that	could	be	used	to	analyse	time-resolved	fluorescence	signal	responses	

from	 produced	 water	 samples.	 During	 experimental	 part	 II,	 the	 number	 of	 suitable	

sensors	were	further	reduced	into	16	best	sensors	with	the	highest	explanatory	power.	

	

The	 experimental	 part	 II	 is	 presented	with	 three	 sections.	 The	 following	 Section	 4.1	

addresses	 the	 preliminary	 configuration	 challenges	 before	 constructing	 the	 actual	

Generalized	Linear	Model	(GLM).	Section	4.2	handles	the	background	and	implementa-

tion	of	the	predictive	model	that	was	used	in	this	thesis	project	to	determine	ion	con-

centrations	from	four	different	produced	water	samples.	Section	4.3	presents	the	ac-

tual	measurement	procedure	 for	 performing	 analytical	 ion	 concentration	determina-

tion	from	the	given	produced	water	samples.		
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4.1 Prediction model configuration 

	

At	the	beginning	of	the	experimental	part	II,	the	number	of	possible	sensors	were	re-

duced	into	885.	At	this	phase,	it	was	clear	that	all	of	these	sensors	had	a	response	dif-

ferential	 between	 the	 reference	 and	 analyte	 sample,	 although	 the	 actual	 response	

magnitude	had	not	 been	 yet	 determined.	 Therefore,	 all	 sensor	 responses	were	 ana-

lysed	with	 correlation	 coefficients,	 response	 plots	 and	 signal	 range	 evaluation.	 Both	

Pearson	and	Spearman	correlation	coefficients	were	used	to	describe	the	signal	con-

centration	 responses.	 This	 analysis	 phase	 was	 mainly	 conducted	 by	 hand.	 Going	

through	the	data	by	hand	ensured	that	the	final	sensor	evaluation	was	made	reliably	

and	 the	 selected	 sensors	 had	 divergent	 response	 to	 different	 ions.	 The	 response	 or	

sensitivity	was	not	fully	specific	towards	single	ion.	This	behaviour	is	discussed	later	in	

this	chapter	and	the	results	are	presented	at	Section	5.1.	

	

4.2 Prediction model preparation 

	

A	prediction	model	 in	this	thesis	framework	was	a	mathematical	model	that	used	 in-

dependent	variables	to	explain	a	continuous	variable	under	examination.	A	generalized	

linear	model	(GLM)	was	found	to	be	the	most	suitable	method.	The	GLM	was	created	

and	performed	with	RStudio	version	0.99.473	(R	Core	Team,	2015).		

	

As	 the	name	 implies,	GLM	 is	based	on	the	classical	 linear	model	wherein	 the	depen-

dent	variable	behaviour	can	be	predicted	as	a	function	of	independent	variables.	How-

ever,	although	the	predictive	power	of	linear	models	are	found	suitable	in	many	situa-

tions,	 there	are	 some	disadvantages.	These	disadvantages	 include	 the	assumption	of	

dependent	variable	continuity,	approximate	normal	distribution	and	the	variance	ho-

moscedasticity	 (Dunteman	 &	 Ho	 2006).	 	 With	 generalized	 linear	 models,	 these	 dis-

advantages	 are	 disregarded	 and	 the	 behaviour	 can	 be	 modelled	 without	 the	 res-

trictions	listed	above.	GLMs	have	three	governing	components,	which	are	described	by	

Hox	(2010)	as:	
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1. predicted	variable	error	distribution	with	a	mean	µ	and	variance	σ2		
• usually	formulated	as	y	~	N(µ,	σ2)	

2. a	linear	additive	regression	equation	that	produces	a	latent	predictor	η	of	the	
outcome	variable	

• η	=	β0 + β1X1 + β2X2 + … + βnXn	
3. a	link	function	that	combines	the	expected	values	to	the	predicted	

• identity	function	η	=	µ.	
	

Therefore,	the	Generalized	Linear	Model	function	can	be	simplified	to	following	equa-

tion:	

	

.%/01/23425%/	~ 81/9%3	1$1:1/2;

<

;=>

+ 	ε	 Equation 2 

	

,	where	 the	 ion	 concentration	 (response	 variable)	 is	 predicted	 as	 the	 sum	of	 sensor	

element	 responses	 (explanatory	 variables)	 and	an	error	 factor.	 The	error	 factor	 con-

tains	both	 systematic	 and	 random	error	elements,	which	were	determined	 from	 the	

measurement	dataset.	

	

In	Equation	2,	the	concentrations	are	predicted	individually	for	each	ion.	Because	sen-

sors	were	differently	 responsive	 to	 ions,	 the	 resulting	GLM	consisted	of	 sensors	 that	

had	different	explanatory	power	over	each	 ion.	Hence,	 some	 redundant	 information	

was	present	in	the	GLM.		

	

The	construction	of	a	prediction	model	with	both	synthetic	and	produced	water	sam-

ples	had	 two	 separate	 stages.	 First,	 a	 calibration	or	 “teaching”	data	 set	was	used	 to	

create	the	GLM	and	then	the	created	GLM	was	used	to	predict	concentrations	for	a-

nother	data	set.	With	produced	water	samples,	the	calibration	data	and	produced	wa-

ter	measurement	data	was	separated	into	two	data	files.	However,	this	was	not	nee-

ded	for	 the	 first	GLM,	because	 it	was	only	using	the	synthetic	sample	 information	to	

test	 the	 functionality	 of	 the	 GLM.	 The	 GLM	 functionality	 testing	 was	 conducted	 to	

identify	the	response	of	the	GLM	predictions	to	different	ion	concentration	ratios	and	

to	 analyse	 the	 accuracy	 of	 the	 measurement	 results	 against	 the	 ICP-OES	 measure-

ments.	In	this	GLM,	the	raw	measurement	data	was	randomly	divided	with	an	R-script	
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into	two	parts:	GLM	training	data	set	(70%	of	the	full	data	set)	and	the	prediction	data	

set	(the	remaining	30%).	Appendix	4	presents	the	used	R	code	and	parameters.	

	

After	 the	 functionality	 of	 the	GLM	was	 tested	with	 synthetic	 samples,	 the	GLM	was	

used	for	the	produced	water	samples.	Similar	to	synthetic	data	GLM,	the	final	predic-

tion	model	for	real	samples	had	two	separate	input	data	files,	however,	the	difference	

was	that	predicted	(produced	water	measurement)	data	set	had	no	information	about	

the	sample	concentrations.	

	

4.3 Produced water sample measurements 

	

The	measurements	conducted	upon	the	real	produced	water	samples	were	the	main	

target	of	this	thesis	project.	Therefore,	 it	was	 imperative	to	have	a	reliable	compara-

tive	data	to	verify	the	functionality	of	the	time-resolved	fluorescence	assay.	The	com-

parative	experiments	were	performed	with	ICP-OES	at	the	Department	of	Chemistry	in	

Aalto	 university.	 A	 set	 of	 four	 different	 produced	 water	 samples	 were	 provided	 by	

Aqsens	Oy.	These	samples	were	analysed	with	both	 ICP-OES	and	the	developed	TRF-

assay.		

	

Because	 in	 the	 GLM	 functionality	 testing	 phase	 the	measurement	 range	 was	 set	 to	

100–500	ppm,	the	real	produced	water	samples	had	to	be	diluted	to	the	same	range.	

The	produced	water	 sample	 concentrations	 for	 calcium	were	3140;	 2840;	 4120;	 282	

ppm	for	produced	water	samples	PW1–PW4	respectively	(Table	8).	This	meant	that	the	

produced	water	 samples	PW1–PW3,	were	diluted	 to	a	 series	between	100–500	ppm	

and	the	produced	water	sample	PW4	was	diluted	between	100–282	ppm	range.	
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5 Results and discussion 

	

The	results	of	this	thesis	can	be	summarized	with	three	topics:		data	screening	process	

for	analysing	a	 large	number	of	possible	sensors,	 the	methods	to	select	suitable	sen-

sors	for	the	prediction	model,	and	the	final	method	(prediction	model)	and	its	perfor-

mance.	 The	 following	 sections	 present	 the	 results	 gained	 during	 this	 thesis	 and	 dis-

cusses	the	meaning	against	the	topics	listed	above.	

	

5.1 Sensor selection for prediction model 

	

Figure	 9	 presents	 an	 example	 of	 two	 sensors	 that	 are	 responding	 differently	 to	 the	

varying	ion	concentrations.	As	the	signal	is	changing	as	a	function	of	concentration,	the	

sensors	presented	at	Figure	9	were	suitable	for	prediction	model.	All	sensors	that	did	

not	have	strong	response	to	the	varying	concentration	were	omitted	by	the	examina-

tion	of	response	plots	and	correlation	coefficients.	As	a	result	of	this	phase,	16	modu-

lators	were	selected	to	the	prediction	model.	
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Figure 9 - A sensor signal response against varying ion calcium concentration 

	

After	the	evaluation	phase	presented	at	Figure	9	was	complete,	the	remaining	16	sen-

sors	were	found	to	be	suitable	explanatory	variables	for	the	GLM.	Table	8	presents	the	

response	of	final	16	sensors	to	each,	where	the	normalized	slope	(sensitivity)	of	a	sen-

sor	illustrates	the	explanatory	power	for	a	specific	ion.	Equation	3a	and	3b	explain	how	

the	slope	values	presented	at	Table	8	were	calculated.	
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4;@< =
(' − ')(D − D)

(' − ')E
	

	
Equation 3a	

,	where	the	slope	of	the	regression	line	(a)	is	calculated	from	the	signal	means	(x)	and	

the	corresponding	concentration	means	(y).		
 

/%3:4$5F1G	5%/	91/9525H52D;@< =
(4;@< − min(4LMM	;@<N))

(max 4LMM	;@<N − min(4LMM	;@<N))
	

	
Equation 3b 

,	where	the	slope	regression	line	coefficients	(a)	are	normalized	against	the	slope	lines	

for	each	ion.	 

	

A	slope	value	of	zero	denotes	that	the	sensor	has	low	separation	for	different	concen-

trations.	The	slope	values	are	normalized	for	each	sensor	separately,	thus	it	is	possible	

to	determine	which	sensors	are	responsive	to	what	ion.		

	
Table 8 - Normalized slopes for 16 sensors used in the ion assay 

Ion / 

Sensor 

no. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Ca2+ 0 0,6 1 0,3 1 0,1 1 1 1 0,9 0,2 0 1 0,5 0,2 1 

Ba2+ 0,8 1,0 0 1 0 0 0,3 0 0 1 0 1 0,4 0 1 0 

SO4
2- 1,0 0 0 0 0 1 0 0,6 0,8 0 1 0,3 0 1 0 0 

 

 Sensor sensitive to ion 

	

From	Table	8,	it	can	be	seen	how	the	GLM	uses	the	measurement	information	to	con-

struct	the	prediction	model.	Each	sensor	is	always	sensitive	either	to	one	or	two	ions.	

Combining	 this	 response	 information	 produced	 by	 different	 sensors,	 the	 prediction	

model	was	able	to	assess	the	concentration	for	a	given	analyte.	

	

5.2 ICP-OES measurements for synthetic and produced water 

samples 

	

In	 this	 thesis,	 ICP-OES	 technique	was	 selected	 for	 alkaline	earth	metal	 content	mea-

surements	(calcium	and	barium)	from	a	set	of	synthetic	and	produced	water	samples.	
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The	 ICP-OES	 results	provided	 the	 comparative	 information	against	 the	measurement	

method	developed	in	this	thesis.	

	

Table	 9	 presents	 the	 results	 from	 the	 ICP-OES	 measurement	 for	 the	 alkaline	 earth	

metal	components	(calcium	and	barium).	In	addition	to	real	produced	water	samples,	a	

set	of	synthetic	samples	were	measured	to	analyse	the	calibration	data	accuracy.	The	

calibration	data	was	used	to	“teach”	GLM	to	predict	the	different	concentrations	from	

a	produced	water	sample.	
 
Table 9 – A set of samples tested with ICP-OES and the corresponding results 

Sample ID 
Target sample composition 

(mg/dm-3) 
ICP-OES results 

(mg/dm-3) 
Calcium Barium Sulphate Calcium Barium Sulphate 

Synthetic samples 

Sample 1 500 500 0 553 565 nd 
Sample 2 50 50 0 56 56 nd 
Sample 3 5 5 0 10 5 nd 
Sample 4 500 0 500 662 < 1 nd 
Sample 5 50 0 50 55 < 1 nd 
Sample 6 300 50 0 340 49 nd 
Sample 7 300 0 50 343 < 1 nd 
Sample 8 100 400 0 103 452 nd 
Sample 9 50 0 300 53 < 1 nd 
Sample 10 50 300 0 48 323 nd 
Sample 11 350 0 200 378 < 1 nd 
Real produced water samples 

Sample 12 unknown 282 < 1 nd 
Sample 13 unknown 3140 < 1 nd 
Sample 14 unknown 2840 < 1 nd 
Sample 15 unknown 4120 < 1 nd 
nd = not defined     

	

As	 a	 result	 of	 the	 ICP-OES	measurements,	 calcium	 and	 barium	 concentrations	 were	

determined.	The	results	presented	at	Table	9	indicate	that	barium	was	not	present	in	

the	real	produced	water	samples.	Therefore,	the	develop	TRF-assay	was	only	used	for	

calcium	determination	from	produced	water	samples.	

	

5.3 Synthetic sample prediction model results 

	

The	final	synthetic	sample	measurement	results	are	presented	at	Figure	10.	The	figure	

lists	prediction	model	results	for	calcium,	barium	and	sulphate	separately.	In	addition	

to	the	comparative	data	between	the	predictions	and	the	actual	concentrations,	a	re-

covery	 trendlines	 are	 presented	 at	 the	 graphs.	 The	 recovery	 trendlines	 describe	 the	

20%	deviation	from	the	actual	concentrations.	
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As	for	the	results,	it	can	be	seen	from	Figure	10	that	all	three	synthetic	sample	predic-

tions	 had	 good	 accuracy.	 Therefore,	 it	 seems	 that	 the	GLM	was	 able	 to	 separate	 all	

three	ions	from	a	synthetic	sample	in	the	given	range	of	100–500	ppm.	Although	some	

prediction	variation	was	present,	a	positive	aspect	was	that	the	results	were	gained	by	

using	the	same	assay	set-up	for	all	 ions.	The	same	assay	set-up	in	this	context	meant	

that	the	selected	16	sensors	and	GLM	remained	unchanged	in	all	of	the	ion	determina-

tion	measurements.	

	

Therefore,	 the	experiments	with	 the	 synthetic	 samples	provided	a	 suitable	model	 to	

predict	the	concentrations	from	a	known	sample	matrix.	With	this	test,	the	GLM	per-

formance	was	found	to	provide	reasonable	accurate	results	and	thus,	it	should	be	able	

to	predict	the	concentrations	from	a	set	of	real	samples.	The	results	from	a	produced	

water	measurements	are	presented	at	Section	5.4.	
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GLM Calcium prediction (synthetic samples) 

	

GLM Barium prediction (synthetic samples) 

	

GLM Sulphate prediction (synthetic samples) 

	

	
Figure 10 - GLM results from synthetic sample measurements 
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As	 described	 earlier,	 the	 GLM	 used	 in	 synthetic	 sample	measurements	 consisted	 of	

complex	synthetic	samples	that	had	a	varying	concentrations	of	all	three	ions	(calcium,	

barium	and	sulphate).	The	aim	was	to	asses	the	level	of	distortion	when	a	high	analyte	

to	second	ion	ratio	was	present.	Significant	variation	was	not	found	from	these	predic-

tion	models.	Table	10	presents	the	predicted	data	points	(30%	of	the	full	data	set)	and	

the	related	disruptive	ion	concentrations	for	these	samples.	

	
Table 10 - GLM results and the actual values for each ion present in the sample matrix 

Synthetic sample GLM results, Calcium 

Predicted Ca
2+

 [mg/dm-3] Actual Ca
2+

 [mg/dm-3] Actual Ba
2+

 [mg/dm-3] Actual SO4

2-

 [mg/dm-3] 

418 500 0 0 

451 450 150 0 

326 350 460 0 

250 250 0 250 

236 225 0 75 

247 225 75 0 

207 200 0 100 

184 175 230 0 

57 113 0 38 

75 100 0 100 

97 100 400 0 

Synthetic sample GLM results, Barium 

Predicted Ba
2+

 [mg/dm-3] Actual Ba
2+

 [mg/dm-3] Actual Ca
2+

 [mg/dm-3] Actual SO4

2-

 [mg/dm-3] 

469 500 0 0 

386 500 100 0 

290 250 0 0 

312 250 250 0 

191 200 400 0 

138 150 450 0 

105 115 88 0 

Synthetic sample GLM results, Sulphate 

Predicted SO4

2-

 [mg/dm-3] Actual SO4

2-

 [mg/dm-3] Actual Ca
2+

 [mg/dm-3] Actual Ba
2+

 [mg/dm-3] 

481 500 0 0 

386 350 460 0 

251 250 50 0 

138 150 85 0 

153 150 450 0 

56 100 0 0 
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As	can	be	seen	from	the	results	in	Table	10,	the	added	ions	were	not	significantly	af-

fecting	the	predicted	values.	However,	especially	for	barium	and	sulphate,	the	number	

of	 observations	 was	 low	 and	 therefore,	 larger	 experiments	 should	 be	 conducted	 to	

confirm	 the	 findings.	 Despite	 this,	 the	 main	 conclusion	 about	 the	 synthetic	 sample	

prediction	test	was	that	the	GLM	model	is	indeed	sensitive	to	analytes	of	interest	and	

the	developed	model	should	be	able	to	predict	ion	concentrations	from	real	produced	

water	samples.	

	

5.4 Produced water prediction model results 

	

For	produced	water	sample	measurements,	a	calibration	data	set	was	extracted	from	

Section	5.2	measurements.	This	synthetic	data	provided	a	training	data	set	for	the	real	

produced	water	samples	discussed	in	this	section.	

	

For	 this	 measurement,	 four	 different	 produced	 water	 samples	 were	 collected	 from	

Aqsens	 Oy	 sample	 storage.	 For	 all	 of	 these	 samples,	 an	 ICP-OES	measurement	 was	

conducted	to	determine	the	calcium	and	barium	concentrations.	Table	9,	presents	the	

ICP-OES	results	for	all	samples;	synthetic	and	produced	water.	According	to	the	results	

obtained	with	ICP-OES,	it	was	decided	that	calcium	determination	would	provide	most	

information	about	the	prediction	model	performance.	The	performance	was	evaluated	

from	the	results	presented	at	Figure	11.	The	figure	presents	the	prediction	model	re-

sults	for	all	of	the	measured	produced	waters.	For	PW1,	PW2	and	PW3,	the	prediction	

results	met	the	concentration	determined	with	ICP-OES	fairly	well,	however	with	PW4,	

the	predicted	concentrations	were	much	higher	than	the	actual	concentration	deter-

mined	with	the	ICP-OES.		
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PW1 

	

 
PW2 

 
	

PW3 

 

PW4 

Actual concentration (ppm) 

282 
282 
250 
250 
225 
225 
150 
150 
100 
100 

Predicted concentration (ppm) 

1561 
1657 
1488 
1481 
1474 
1579 
1097 
1073 
645 
722 

 

Figure 11 - GLM prediction results for produced water samples 

	

As	can	be	seen	from	Figure	11,	with	produced	water	samples	PW1,	PW2	and	PW3,	the	

performance	 of	 the	 GLM	 seemed	 to	 be	 decent	 only	with	 concentrations	 above	 300	

ppm.	 Identical	behaviour	was	examined	when	GLM	was	using	 the	 range	between	0–

500	ppm.	The	result	 indicated	that	the	GLM	had	difficulties	to	predict	concentrations	

below	100	ppm.	This	problem	is	mainly	due	to	the	sensor	cross-reactivity,	which	pro-

duces	high	variability	to	the	measured	signals	in	the	low	concentration	levels.	This	was	

the	 same	 even	 with	 synthetic	 samples,	 thus	 the	 produced	 water	 predictive	 model	

measurement	range	was	set	to	100–500	ppm.	
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Table 11 - GLM prediction and ICP-OES result comparison table for PW1 

Actual Ca
2+

 

[mg/dm-3] 
Predicted Ca

2+

 

[mg/dm-3] 
Dilution 

factor 

GLM Ca
2+ 

prediction 

[R31G5025%/ ∗ T5$. U402%3] 
[mg/dm-3] 

ICP-OES Ca
2+

 result 

[mg/dm-3] 

500 560 6,28 3517 3140 

500 480 6,28 3014  

400 393 7,85 3085  

400 285 7,85 2237  

350 218 8,97 1955  

350 175 8,97 1570  

300 280 10,47 2932  

300 314 10,47 3288  

200 168 15,70 2638  

200 8 15,70 126  

100 -215 31,40 -6751  

100 -258 31,40 -8101  

	

Table	11	presents	the	dilution	series	for	the	PW1	and	the	corresponding	predicted	va-

lues.	As	can	be	seen	from	Table	11,	when	the	diluted	values	are	transformed	back	to	

the	 original	 concentrations	 by	 using	 the	 dilution	 factors,	 the	 measured	 results	 for	

higher	 concentrations	 of	 400–500	 ppm	 are	 predicting	 the	 concentration	 of	 calcium	

with	reasonable	accuracy.	As	for	the	lower	concentrations	this	is	not	the	case	and	the	

prediction	 model	 seems	 to	 misinterpret	 concentrations	 under	 400	 ppm	 range.	 This	

conclusion	might	also	explain	the	PW4	results.	The	PW4s	predicted	concentrations	are	

much	 higher	 than	 the	 actual	 concentrations.	 The	 highest	 sample	 concentration	 for	

PW4	was	282	ppm;	thus	was	is	less	than	the	suitable	performance	limit	of	400	ppm.	

	

5.5 Method performance 

	

The	 method	 performance	 had	 two	 aspects:	 sensor	 validation	 performance	 and	 the	

predictive	model	 performance.	 The	 sensor	 validation	was	 the	 starting	 point	 for	 this	

thesis	and	it	defined	the	needed	components	and	parameters	to	detect	different	ions.	

Therefore,	 the	 sensor	 validation	 and	 selection	was	determining	 the	performance	 for	

the	prediction	model.	Without	proper	sensors,	the	functionality	of	the	predictive	mo-

del	would	have	been	decreased.	
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According	to	the	results	of	this	thesis,	by	using	the	developed	sensor	validation	met-

hod,	 suitable	sensors	were	 found.	This	conclusion	 is	 supported	by	 the	 results	 in	Sec-

tions	5.3	 and	5.4,	where	both	 synthetic	 and	produced	water	 sample	 results	 are	uni-

form	with	the	ICP-OES	results.		

	

However,	although	suitable	sensors	were	found	for	the	prediction	model,	it	is	possible	

that	during	the	sensor	evaluation	process	some	of	the	sensors	with	high	explanatory	

power	were	omitted	accidently.	However,	albeit	few	suitable	sensors	would	have	been	

omitted,	 the	model	performance	was	not	 significantly	 reduced,	because	 several	 sen-

sors	are	needed	to	perform	the	measurement.	Therefore,	omitting	a	single	 response	

entity	will	not	affect	the	prediction	model	performance	in	a	significant	way.		

	

As	 for	 the	 results	 from	predictive	model,	 it	 can	be	 said	 that	 the	model	was	working	

reasonably	well	with	three	produced	water	samples	(PW1;	PW2;	PW3).	However,	PW4	

shows	similar	behaviour,	but	the	predicted	concentrations	are	much	higher	than	actual	

concentrations.	This	behaviour	might	be	due	to	the	low	original	concentration	of	PW4	

(282	ppm),	which	was	lower	than	the	method	performance.	In	addition	to	the	low	cal-

cium	concentration	of	PW4,	the	dilution	may	have	affected	the	results.	All	of	the	other	

samples	were	diluted,	whereas	PW4	had	no	dilution.	Therefore,	a	likely	explanation	is	

the	sample	matrix	impurities	inflicted	interference	to	the	measurement	signal.	

	

Nevertheless,	the	predictive	model	results	suggest	that	it	is	possible	to	answer	the	ex-

perimental	question	set	at	the	beginning	of	this	thesis.	The	experimental	problem	for	

this	 thesis	 was	 the	 detection	 of	 scale	 causing	 components	 form	 a	 produced	 water	

sample	matrix.	Although,	as	described	by	the	literature	review	of	this	thesis,	the	pro-

duced	water	 composition	 is	 a	highly	 variable	 sample	matrix,	 the	performance	of	 the	

predictive	model	can	be	considered	as	a	success.	However,	much	development	could	

be	conducted	to	enhance	the	performance	and	repeatability	of	the	ion	concentration	

determination	method.	In	addition	to	repeatability,	the	prediction	model	performance	

should	be	also	studied	further	on	to	concentrations	below	100	ppm.	
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To	achieve	better	performance	a	throughout	knowledge	about	the	interactions	related	

to	the	sensors	should	be	studied.	This	work	would	enhance	the	predictive	power	of	the	

GLM	and	therefore	improve	the	reliable	measurement	range	and	sensitivity.	

	

5.6 Scale potential assessment 

	

In	addition	to	the	analysis	of	the	gained	results,	 it	was	also	 important	to	address	the	

question	 of	 possible	 end	 application.	 An	 end	 application	 is	 already	 described	 in	 the	

introduction	part	of	this	thesis.	The	application	should	provide	a	solution	to	detect	and	

analyse	scale	causing	components	from	a	produced	water	samples,	in	order	to	provide	

information	from	an	oil	production	process	stream.	However,	the	knowledge	about	ion	

concentrations	alone	is	not	enough.	As	the	method	is	presenting	the	results	in	ion	con-

centrations	(ppm),	it	is	more	useful	to	combine	the	information	about	the	component	

concentrations	 into	 scale	 potential	 assessment.	 Therefore,	 graphs	 at	Appendix	 2	 are	

presenting	the	relationship	of	the	given	scale	causing	components	and	the	severity	of	

scaling	as	an	accumulation	of	scale	per	cubic	meter	of	water.	As	it	is	clear,	one	ion	does	

not	pose	a	scale	problem.	Problems	arise	when	ions	form	ionic	bonds	with	low	solubili-

ty	components.	 In	Appendix	2,	especially	harmful	 scale	 is	 the	Barite	scale	 that	 forms	

precipitates	in	rather	low	concentrations.	Calcium	sulphate	precipitates	in	higher	com-

ponents	 concentrations,	 however,	with	 combined	 to	 other	 precipitates	 it	may	 cause	

high	risk	of	scale	accumulation.	

	

As	 stated,	 the	 information	 about	 the	 specific	 concentrations	 in	 the	 produced	water	

stream	is	valuable	information,	although	the	topic	has	to	be	put	into	a	wider	perspec-

tive.	 This	means	 that,	 although	 it	 is	 possible	 to	develop	a	 fast	 and	easy-to-use	mea-

surement	 application,	 the	 method	 is	 a	 complementary	 measurement	 for	 providing	

information	about	the	oil	production	process.	Therefore,	the	information	can	be	used	

as	a	supporting	material,	for	example,	scale	inhibitor	program	design	or	to	assess	the	

scale	potential	 in	general	 level.	The	method	developed	during	this	 thesis	 is	therefore	

more	of	a	surveillance	method	and	the	actual	control	has	to	be	decided	as	an	ensem-

ble	of	measurement	and	follow-up	procedures.	 	
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6 Conclusions 

	

This	 thesis	 explains	 in	 three	 phases	 how	 time-resolved	 fluorescence	method	 can	 be	

used	to	identify	several	different	ion	species	from	a	liquid	sample.	These	three	phases	

included	methods	to	evaluate	large	number	of	different	sensor	chemistries,	a	protocol	

to	 use	 small	 number	 of	 sensor	 chemistries	 for	 creating	 differential	 responses	 from	

samples	and	a	system	to	interpret	these	measured	responses.	The	results	of	this	thesis	

indicated	that	if	carefully	selected	sensors	were	mixed	with	a	chelate-sample	solution,	

it	was	possible	 to	 create	 a	predictive	model	 that	was	able	 to	 convert	 the	 signal	 res-

ponses	 into	 an	 estimation	 of	 sample	 ion	 concentration.	 This	 thesis	 presented	 the	

methodology	to	perform	the	sensor	analysis	through	data	handling	methods	and	how	

to	use	the	selected	sensors	to	predict	analyte	concentrations	from	a	produced	water	

sample.	

	

As	the	ion	concentration	determination	was	possible	with	the	method	developed,	this	

information	 could	 be	 used,	 for	 example,	 supporting	material	 for	 scale	 inhibitor	 pro-

gram	or	scale	potential	assessment	in	a	general	level.	The	results	suggest	that	the	de-

veloped	methods	 could	 be	 used	 as	 a	 complementary	measurement	 to	 evaluate	 the	

risks	related	to	different	aqueous	components	within	an	oil	extraction	process.	

	

Although	 it	was	 shown	 that	with	 the	method	developed	 it	 is	 possible	determine	 ion	

concentrations	 from	 a	 sample	matrix,	 much	 improvement	 can	 be	 achieved	 through	

further	 studies.	One	 aspect	 could	 be	 the	 sensitivity	 of	 the	measurement	 system.	 By	

studying	 the	 interactions	 between	 a	 sensor	 and	 sample,	 as	 well	 as	 optimising	 the	

measurement	environment	and	parameters,	it	should	be	possible	to	enhance	the	sen-

sitivity	of	the	measurement	system.	The	increased	sensitivity	would	provide	more	ac-

curate	measurement	 results	 and	may	 extend	 the	measurement	 range	 to	 concentra-

tions	below	100	ppm.	
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Appendix 1. Data handling algorithm flow chart 
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Appendix 2. Calculated theoretical precipitation equilibrium and 

estimated precipitation accumulation for Barite and Calcium 

sulphate 

	

	

	
(Zumdahl,	Zumdahl	2000)	
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Appendix 3. Sensor composition and identification table 

 

 Sensor   

Sensor 

ID 

Ionochromic 

dye 

 Modulator Excitation  

wavelength (nm) 

Emission  

wavelength (nm) 

B1 A13 + A15 250 620 

B2 A13 + A15 270 600 

B3 A13 + A15 300 615 

B4 A13 + A15 310 590 

B5 A13 + A15 310 615 

B6 A13 + A15 310 620 

B7 A4 + A16 300 615 

B8 A4 + A16 310 615 

B9 A4 + A16 340 615 

B10 A6 + A15 320 600 

B11 A6 + A15 330 615 

B12 A2  - 310 615 

B13 A2  - 330 595 

B14 A2  - 330 625 

B15 A2  - 340 615 

B16 A2  - 340 620 
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Appendix 4. R code and parameters for Generalized Linear 

Model 

 

####################### DATA IMPORT ############################# 
train_ca <- read.csv(("train_data.csv"), header=T) 
predict_ca <- read.csv(("predict_data_PW1.csv"), header=T) 
 
 
####################### BUILD GLM ############################### 
conc.glm <- glm(formula=Ca~., data=train_ca, family="gaussian") 
 
 
####################### PREDICTION START ######################## 
 
######### Random data partition for synthetic sample measurements 
#sample_ids <- nrow(predict_ca) 
#sub <- sample(sample_ids, floor(sample_ids) * 0.70) 
#teach_ids <- predict_ca[sub,] 
#test_ids <- predict_ca[-sub,] 
 
######### Prediction results 
# Results table column 1 
results <- as.data.frame(round(predict.glm(conc.glm, predict_ca),digits = 0)) 
# Results table column 2, actual concentrations 
results[,2] <- predict_ca$Ca 
# Results table column 3, Recovery (variation from actual concentration) 
results[,3] <- round(((results[,1]/results[,2])),digits=2) 
 
######### Observation concentrations 
Observations <- predict_ca[,1] 
 
######### 20 percent deviation plot 
pos <- cbind(Observations,(0.2*results[,2]+results[,2])) 
neg <- cbind(Observations,(results[,2]-(0.2*results[,2]))) 
 
######### Plot 
plot(Observations, results[,1], pch=19, type="p", ylab="Predicted (ppm)", 
xlab="Actual (ppm)", ylim = c(0,600), xlim = c(100,500)) 
par(new=TRUE) 
plot(Observations, predict_ca[,1], main="PW1",pch=4,type="p", ylab="", 
xlab="", lwd="1", ylim = c(0,600), xlim = c(100,500)) 
par(new=TRUE) 
plot(Observations, pos[,2],col="red", type="l", ylab="", xlab="", lwd="1", 
ylim = c(0,600), xlim = c(100,500)) 
par(new=TRUE) 
plot(Observations, neg[,2],col="red", type="l", ylab="", xlab="", lwd="1", 
ylim = c(0,600), xlim = c(100,500)) 
 
legend(110, 600, pch=c(4,19), col=c("black", "black"), 
c("Actual","Prediction"), bty="o", cex=.8) 
 
####################### PREDICTION END ########################### 
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Call: 
glm(formula = Ca ~ ., family = "gaussian", data = train_ca) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-135.312   -30.376     1.495    38.420   119.267   
 
Coefficients: 

Estimate Std. Error t value  Pr(>|t|)     
(Intercept) 2.673e+03 2.053e+02 13.024   < 2e-16 *** 
B1   -1.851e-03 1.384e-03 -1.338 0.188068     
B2  2.001e-03 2.633e-03  0.760 0.451355     
B3  3.669e-04 6.683e-04   0.549  0.585809     
B7 -6.472e-04 3.569e-04 -1.813  0.076744 .   
B4 1.619e-03 2.549e-03   0.635  0.528634     
B5 -1.035e-03 7.049e-04 -1.468  0.149343     
B8 -1.328e-04 3.719e-04 -0.357  0.722766     
B12 -3.246e-04 3.922e-04 -0.828  0.412492     
B6 1.665e-04 4.041e-04   0.412  0.682285     
B10 6.242e-03 2.663e-03   2.344  0.023767 *   
B13 -5.384e-05  1.208e-03 -0.045  0.964640     
B11 -3.939e-03  1.437e-03 -2.741  0.008881 **  
B14 -9.912e-04  1.463e-03 -0.677  0.501786     
B9 4.253e-04 6.988e-04   0.609  0.545970     
B15 -1.767e-03  4.841e-04 -3.649  0.000707 *** 
B16 -2.018e-03  9.050e-04 -2.230  0.031034 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
(Dispersion parameter for gaussian family taken to be 3619.518) 
 
    Null deviance: 1080994  on 59  degrees of freedom 
Residual deviance:  155639  on 43  degrees of freedom 
AIC: 677.93 
 
Number of Fisher Scoring iterations: 2 
 

	




