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Faces are a crucial part of social interaction and they affect our visual perception.
In this thesis, I studied how the presence of a face in natural visual stimuli affects
the eye movements, and which visual features in the images best explain the scan-
paths and brain responses. A novel approach based on representational similarity
was applied to relate the brain responses to the eye tracking results.
In the experiment, the subjects were shown grayscale photographs of social oc-
casions. A part of these images were shown both upright and upside-down. The
subjects’ eye movements and magnetoencephalographic (MEG) brain responses
were measured during the experiment. MEG responses were analyzed at sen-
sor level. Representational similarity analysis (RSA) was applied in determining
whether the low-level features or the faces in the images can explain the brain
responses before the first saccade after the stimulus onset and if they can explain
the eye movements during the viewing of the images.
The presence of a face had a clear effect on the eye movements, especially when the
images were shown upright: the latency of the first saccade was 60 ms smaller, and
the scanpaths were more similar between different subjects. The map depicting
the locations of the face in the images explained the scanpaths better than did
the traditional saliency maps.
The MEG responses at around 55–130 ms after stimulus onset were best explained
by the saliency maps, reflecting the low-level visual features of the stimuli. How-
ever, at latencies 90–125 ms the MEG responses correlated also with the face
maps and, importantly, at latencies 105–140 ms the responses correlated with the
forthcoming scanpath.

Keywords: magnetoencephalography (MEG), natural scenes, face detection,
representational similarity analysis (RSA), eye movements
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Kasvot ovat tärkeä osa sosiaalista kanssakäymistä, joten ne vaikuttavat vi-
suaaliseen havainnointiin. Tässä diplomityössä tutkittiin luonnollisissa ku-
vaärsykkeissä esiintyvien kasvojen vaikutusta silmänliikkeisiin sekä sitä, mitkä
kuvan piirteet selittävät parhaiten silmänliikkeitä ja aivovasteita. Uutta
samankaltaisuuden arviointiin perustuvaa analyysimenetelmää käytettiin etsit-
täessä yhteyttä aivovasteiden ja silmänliikemittausten tulosten välillä.
Koeasetelmassa koehenkilöt katselivat harmaasävyisiä valokuvia sosiaalisista
tilanteista; osa kuvista näytettiin sekä oikein- että väärinpäin. Koehenkilöi-
den silmänliikkeet sekä aivovasteet mitattiin kokeen aikana. Aivovasteiden mit-
taamisessa käytettiin koko pään kattavaa magnetoenkefalografiaa (MEG). Vasteita
tutkittiin kanavatasolla. Samankaltaisuusanalyysiä sovellettiin selvittämään, selit-
tävätkö kuvien matalan tason piirteet tai kasvojen paikat aivovasteita ennen en-
simmäistä sakkadia tai silmänliikkeitä katselun aikana.
Kasvojen silmänliikkeisiin aiheuttamat vaikutukset olivat selkeät etenkin kuvissa,
jotka näytettiin oikeinpäin. Näissä kuvissa ensimmäisen sakkadin latenssi oli 60 ms
lyhyempi ja lisäksi silmänliikkeet muistuttivat enemmän toisiaan eri koehenkilöi-
den välillä. Kasvojen sijaintia kuvaava kartat selittivät silmänliikkeet paremmin
kuin perinteiset salienssikartat.
MEG-vasteet 55–130 ms kuvan näyttämisajankohdan jälkeen korreloivat eniten
kuvien matalan tason piirteitä kuvaavien salienssikarttojen kanssa. Latensseilla
90–125 ms MEG-vasteet korreloivat kuitenkin myös kasvokarttojen kanssa ja
aikavälillä 105–140 ms myös tulevien silmänliikkeiden kanssa.

Avainsanat: magnetoenkefalografia (MEG), luonnolliset kuvat, kasvojen havait-
seminen, samankaltaisuusanalyysi, silmänliikkeet
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1 Introduction

Faces give us essential information in everyday social interaction. By looking at

faces, individual people can be distinguished from others and it is possible to tell

whether they are in a good or bad mood. In addition, the importance of faces has

been shown in multiple brain-imaging and eye-tracking studies. First, a region in

the fusiform gyrus, the "fusiform face area", responds more strongly to the viewing

of faces than other object stimuli [1]. Second, faces attract attention although the

subjects would have been told to concentrate on something else [2, 3]. Furthermore,

there is evidence that people tend to move their gaze faster towards an image if it

depicts a face than if it does not [2]. Several eye-tracking studies have demonstrated

that, during natural scene perception, the subjects are likely to look at faces [4] and

they might have trouble looking away from a face [5].

Despite the popularity of face detection, there is still a shortage of studies which use

stimuli depicting faces as a part of a natural scene. Particularly, few magnetoen-

cephalography (MEG) studies have utilized this kind of stimuli and, moreover, there

is a lack of studies in which the relationship between the MEG responses and eye

movements in natural scenes is analyzed. Reasons for the shortage of such studies

include the challenges to analyze the responses evoked by natural scenes and the

contamination of the MEG signal by large saccades.

Several eye-tracking studies have employed saliency maps or equivalent models of

stimulus images in predicting the eye movements occuring during viewing of natural

scenes. However, comparing the brain responses with these kind of computational

models has been challenging as the correspondency between the data from the brain

and the model can not be defined straightforwardly. Representational similarity

analysis (RSA) is a relatively new method enabling these comparisons. Neverthe-

less, while several functional magnetic resonance imaging (fMRI) studies have suc-

cessfully used this method, few MEG studies have utilized RSA. Representational

similarity analysis can reveal the brain-activity patterns related to certain experi-

mental conditions better than univariate analysis methods [6], and, as MEG has a

millisecond-range temporal resolution, RSA can be advantageous in resolving the
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time course of information processing in the brain when applied in the analysis of

MEG data.

The aim of this thesis is to determine how early the brain processes the information

related to image features that affect the direction of the gaze. We presented grayscale

photographs depicting natural scenes so that the images contained different amounts

of faces, or no faces at all. A part of these images were shown both upright and

upside-down to determine how the inversion of the image affects the processing of

the image features and the gaze patterns. Both brain responses and eye movements

were measured while the subjects were freely viewing these images. The brain signals

were measured utilizing magnetoencephalography, and an eye tracker was used to

determine the timing and location towards which the subjects direct their gaze. The

MEG responses were studied at sensor level and the analysis was restricted to the

moment before the subject made a saccade so that the MEG artifacts caused by

saccades dis not affect the results.

Eye movements were analyzed separately for different image categories: images con-

taining a face, images with no face, upright images and inverted images. Addition-

ally, feature maps depicting the low-level features and the locations of the faces in

the images were constructed. Representational similarity analysis was applied to

determine which feature maps best explain the eye movements and the points in

time during which the feature maps correlate with the brain responses.

This thesis is divided into five chapters. Chapter 2 presents the background of this

thesis, the eye movements, face-specific brain responses and measurement method-

ology. Chapter 3 explains the experimental setups and methods used in the data

analysis. Chapter 4 presents the results of the experiments; Chapter 5 discusses the

main results of this thesis.
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2 Background

In this thesis, the early brain responses and eye movements during viewing of natural

scenes are studied by employing magnetoenchephalography (MEG) and eye track-

ing. Section 2.1 explains the eye movements and the eye tracking methods, and

Section 2.2 presents the origin of the MEG signal and the measurement methods.

Sections 2.3 and 2.4 discuss gaze control and face perception more in detail.

2.1 Tracking of eye movements

Various eye-tracking studies aim to discover which parts of a scene the people tend to

look at. This kind of information can be utilized in many fields of research, ranging

from marketing and usability research [7, 8, 9] to studying physiological and psycho-

logical processes. The eye-movement features, e.g., the durations and locations of

the fixations, have been widely studied in the context of reading [10]. Other research

interests include, e.g., the visual search [11, 12] and scene perception [13, 14, 15].

Furthermore, eye tracking has been utilized in revealing abnormalities in eye move-

ments and viewing patterns related to mental disorders [16, 17].

Several studies employ both eye tracking and brain imaging techinques. In MEG

studies, the electro-oculogram is often utilized to detect the eye movements as they

cause magnetic disturbances which contaminate the MEG signal [18, 19]. However,

the MEG and eye tracking data have been combined while studying, e.g., the cortical

activity preceding saccades [20, 21, 22], mental disorders [23, 24] and gaze-related

brain processing [25].

In this thesis, eye movements were tracked from subjects while viewing images that

depicted natural scenes. Attention was paid particularly to the first saccade after

the stimulus onset, but also fixations and blinks during the viewing were analyzed.

Section 2.1.1 explains the different types of eye movements and Section 2.1.2 presents

eye tracking methods.
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2.1.1 Eye movements

Eye movements are frequent as they are needed both in maintaining the sharp

vision at the focus of the gaze and in relocating the focus [10, 26]. To see a region in

detail, the fovea of the eye must be directed towards it, as it has the highest vision

acquity. The moments when the eyes are relatively stable and focused on a particular

stationary point are called fixations. Other important types of eye movements are

the saccades, smooth-pursuit movements and vergence movements. Smooth-pursuit

movements occur when eyes lock to a moving target, whereas vergence movements

are caused by a target moving towards or away from a viewer [27].

The details of a scene can only be seen during a fixation [10, 28]. Although the

eye is relatively stable at the point of fixation, it does miniature eye movements

called tremor, drift and microsaccades [29, 30]. These miniature eye movements are

essential to our vision because an image which is stabilized on the retina disappears

from the sight [26].

Saccades are rapid, ballistic eye movements which redirect the fovea from one place

to another about three times in a second [31, 32, 33]. A relationship exists between

visual attention and saccade programming [34, 35, 36], but the visual perception is

reduced during a saccade [28]. The direction and the distance, also known as the

amplitude, of the saccade are predefined. After a saccade has been initiated, it can

not be stopped and its trajectory can not be influenced [31, 32, 37]. However, it is

possible to prepare another saccade before an ongoing saccade has been terminated.

2.1.2 Eye-tracking methods

In this thesis two different systems (SMI RED500 and EyeLink 1000 Long Range

Mount) were used in eye tracking. Both of these systems are based on dark pupil eye

tracking. In the MEG experiment, also vertical and horizontal electro-oculograms

were measured.

The location of the subject’s gaze is relevant information in many studies. To

find the gaze position, one needs to be able to detect the eye movements and,
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furthermore, separate them from the head movements [38]. In both eye trackers

used in this thesis, the eye movements are detected by tracking the pupil and the

corneal reflection (CR), as two ocular features are needed to be able to compensate

for the head movements [39, 40].

The pupil is distinguished from the surrounding iris because it reflects the light

differently. The infrared (IR) light makes this phenomenon even more effective as

the pupil absorbs almost all of the IR light making it appear much darker than the

iris [41]. Thereby it is possible to locate the pupil center. The corneal reflection,

on the other hand, appears as a highlight of the eye. The brightest reflection comes

from the front surface of the cornea [41]. By measuring the location of the CR in

relation to the pupil center, the eye and head movements can be separated since

the relative location stays fixed with minor head movements and changes with eye

rotation [38].

Electro-oculography (EOG) is an eye tracking method based on measuring the elec-

trical potential from the skin around the eye [41, 42]. This potential is due to the

opposite polarities at the cornea and the retina. The corneo-retinal potential causes

a steady electrical potential which changes as the eye moves. This change in the

potential can be measured by placing a pair of electrodes at the opposite sides the

eye. The weakness of EOG is that the movements of the eyelid also influence the

electro-oculograms, and therefore the interpretation of especially the vertical eye

movements is complicated [18].

2.2 Magnetoencephalography

Magnetoencephalography (MEG) is a non-invasive brain imaging method which

measures the weak magnetic fields caused by brain activity [43]. It is a counter-

part for the electoencephalography (EEG), as EEG measures the electric potentials

caused by the same source activity. Both MEG and EEG have a temporal resolution

of millisecond time scale, which is better than in any other non-invasive neuroimag-

ing technique. In addition, the spatial resolution of MEG is better than that of EEG

as the skull and scalp do not distort the MEG signal as much as the EEG signal [44].
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2.2.1 Neural basis of MEG signals

Information processing in the brain is based on the neurons, which communicate by

sending electrical impulses to each other [43, 45]. Information is passed on from one

neuron to another at a synapse, the current arriving from the first neuron causes

a postsynaptic current in the second neuron. The postsynaptic activity creates a

primary current, which gives rise to passive ohmic currents, the volume currents,

both within the cell and in the surrounding medium.

The magnetic fields caused by the primary and volume currents are the source of the

MEG signal [43]. These currents are small, so a group of neurons must be activated

in synchrony to produce a measurable magnetic signal. Furthermore, the direction

and location of the electrical current have an impact on the MEG signal as well.

The head can be thought as a nearly spherical conductor. In an ideal sphere, only

currents that have a tangential component to the skull create a MEG signal and the

radial currents do not produce any magnetic field outside the head. Consequently the

currents in the fissures of the cortex account for the most of the MEG signals. The

MEG signal is typically considered to be formed by the synchronous postsynaptic

currents in the pyramidal cells that are located in the cerebral cortex.

2.2.2 MEG measurement

The magnitude of the magnetic fields caused by neural activity is typically 50-

500 fT [43, 46]. The earth’s geomagnetic field is multiple times stronger and even

the human heart produces a stronger magnetic field. Currently, the only way to

measure these small signals is to use the superconducting quantum interference

devices (SQUIDs). The SQUID sensors are submerged in liquid helium, which is at a

temperature of 4 K (–269 Celsius). The magnetic flux is transfered to the SQUID by

flux transformers. There are multiple kinds of flux transformers, e.g., a single loop,

magnetometer, and two oppositely wound loops, gradiometer. The gradiometers can

be either axial gradiometers, in which the loops are placed vertically one above the

other, or planar gradiometers, in which the loops are aligned in the same horizontal

plane. The planar gradiometers can be called ’near-sighted’ as they are sensitive to



7

the currents directly underneath it, whereas the magnetometers are most sensitive

to the currents a few centimeters distance from the loop.

As the magnetic fields are extremely small, it is highly important to cancel the obtru-

sive magnetic fields [43]. Therefore the MEG recordings are performed in a magnetic

shielded room, which minimizes the noise caused by electric or moving metallic ob-

jects, such as the nearby traffic and powerlines. However, it is impossible to block

all the interferences outside the shielded room, but there are ways to separate the

noise from the actual brain signal. A well-known and effective method for this is the

signal-space separation (SSS) [47, 48]. In this method, the Maxwell’s equations are

used to get rid of the interfering signals in the MEG data. The data are divided into

three subspaces: the brain signals which originate from inside the sensor helmet,

interfering signals originating from outside the helmet and noise located close to the

sensors. The subspaces are independent and the signal from outside the helmet can

be removed.

One of the greatest challenges in the MEG studies is the electromagnetic inverse

problem, which means the localization of the source currents. The inverse problem

has no unique solution; it is not possible to deduce the cerebral current distribu-

tion based on the knowledge about the magnetic field measured from outside the

head [43]. However, using physiological constraints and other information, phys-

iologically plausible solutions are obtained. In this thesis, the sites of the source

currents were not identified as the brain responses were studied only at sensor level,

and thus also no anatomical MRI scans were acquired in this study.
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2.3 Eye movements while viewing natural scenes

Section 2.3.1 presents theories regarding the gaze control and eye movements during

scene viewing. Section 2.3.2 discusses the effects that a presence of a face in a scene

has in the eye movements.

2.3.1 Gaze control

During scene perception, people direct their gaze to informative and interesting re-

gions of a scene [15, 49]. These regions are fixated more often, and the fixation

durations are longer [13, 50, 51, 52]. However, there are no unambiguous expla-

nations describing the properties which make a region interesting. For instance,

the viewing task affects the eye movements [53, 54, 55]. Two models have been

proposed to explain how the gaze control works during scene perception: top-down

knowledge-driven gaze control and bottom-up stimulus-based gaze control.

According to the top-down control of attention, the gaze is controlled by cognitive

and visual systems. Knowledge from previously seen similar scenes and short-term

memory during the current scene are utilized in eye movement control [15]. It

is known that a model including contextual information predicts human fixations

better than the models with no top-down information [56], and the consistency of a

target object within a scene affects the fixation patterns [50, 51, 52].

The bottom-up control of attention is based on the assumption that information

from local image properties directs the viewer’s attention. Uniform regions in a scene

are not considered interesting. Instead, the points of fixation have often different

spatial features, for example a higher contrast and lower correlation with surrounding

pixels [57], than the neighbouring regions [15]. Attempts have been made to explain

the points of fixation with saliency maps which topographically indicate the visual

saliency of an image. For example, in the well known saliency map model by Itti and

Koch [58, 59], visual saliency is topographically computed based on color, intensity

and orientations in the image. These low-level feature maps are combined to form

one saliency map in which the stimulus saliency has been shown to correlate with

fixation locations in complex natural scenes [60].
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2.3.2 Eye movements induced by faces

Although saliency maps based on low-level features have successfully predicted the

points of fixations in natural scenes, they can not explain the strong bias towards

faces. For example, Birmingham et al. [61] found that the saliency maps by Itti

and Koch [59] performed poorly with social scenes. On the other hand, Cerf et

al. [62] showed that adding a semantic feature channel, which includes e.g. faces

and text, to the saliency map based on color, intensity and orientation improved the

prediction of fixations.

Moreover, a face strongly attracts attention regardless of the task. Crouzet et al. [2]

reported that people tend to look at the face even though they would have been

instructed to look at something else and Gilchrist et al. [5] showed that, if a face is

present, people have difficulties looking away. Additionally, Bindemann et al. [63]

showed that an upright face as a distractor stimulus delayed the response times in

a go/no-go task more than other distractor stimuli. On the other hand, Crouzet et

al. [2] discovered that the latencies of saccades triggered by faces are shorter than

those triggered by something else, such as a vehicle.

2.4 Face-specific respones in the human brain

Faces used as visual stimuli induce fast saccades and attract attention more than

other stimuli. An interesting question therefore concerns the timing of recognizing

a stimulus representing a face as a face. Numerous MEG studies e.g. [64, 65, 66, 67]

have found face-sensitive deflections, M100 and M170, peaking around 100 ms and

170 ms after stimulus onset respectively. These responses can be caused by other

stimuli as well, but are stronger for natural face stimuli. Additionally, EEG stud-

ies have shown that visual face stimuli produce a chain of event-related potentials

(ERP), P100 and N170, at similar latencies e.g. [68]. Both functional magnetic

resoncance imaging (fMRI) and MEG studies have also located the source of the

face-specific responses to the the fusiform gyrus [64, 65], which is located in the

inferior temporal cortex [1, 69, 70].
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Some MEG studies suggest that the M100 response is related to the low-level fea-

tures [65, 67], whereas the M170 response is more sensitive to higher level percep-

tion [66, 67]. Similar results have been reported by EEG studies; by using intact

and phase-scrambled images of cars and faces as stimuli, Rossion et al. [68] con-

cluded that the face-sensitivity of P100 and N170 is driven by different features of

the stimulus. In addition, Crouzet et al. [2] argued that while in their experiment

the first saccades towards the face were triggered within 100 ms, the face during this

time had not been completely recognized as a face. Therefore, the saccades towards

the face were probably initiated due to low-level cues.

In this thesis the faces were a part of a natural scene, as opposed to the previous

studies, in which the faces have been extracted from the natural background. Addi-

tionally, the subjects were not advised to look at the faces, but to view the images

freely. After the viewing of each image the subjects had to answer a simple yes/no

-question about the image, the questions were not directly related to specific objects

in the image. The aim in this thesis was to determine how the faces, as a part of a

natural scene, affect the eye movements and brain responses and, furthermore, how

the analysis of these two can be combined.
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3 Materials and methods

This study comprised two parts. First an eye-tracking only study was conducted

to validate the stimulus set and to test the experimental setup. The second experi-

ment included MEG measurements and was conducted after the analysis of the eye

tracking results from the first experiment. This section describes the stimulus set,

the experimental setup and the stages of data analysis.

3.1 Stimulus set

The stimulus set consisted of 199 grayscale photographs depicting natural scenes.

The images had different topics, for example wedding, athletics, dinner, or work.

The images were divided into 4 categories depending on whether they contained

one face, two faces, three or more faces, or no face. All images were collected from

Wikimedia CommonsTM and they were chosen so that each topic comprised images

from all categories. Figure 1 shows example images.

3.1.1 Image preprocessing

The original images in Wikimedia CommonsTM were mainly colour images and the

dimensions of the images differed greatly. All 199 images were cropped to the size

of 1400 x 1050 pixels by using Adobe R© Photoshop R© in such a way that faces in the

original images were located diversely in all parts of the cropped images; see Ap-

pendix A for details. The images were converted to grayscale by using MATLAB R©

R2014a. In addition, the intensity values of these grayscale images were restricted

from the range 0–1 to the range 0.2–0.8 to get smoother results from the luminance

matching of all images. The matching was done with a function provided by the

SHINE toolbox [71] so that the desired mean (M ) and the desired standard devi-

ation (S ) for the matched images was computed as the average value of all means

and standard deviations of the original images. The new luminance-matched images

Inew were obtained by
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(a) Image with no face. (b) Image with a face.

(c) Image with two faces. (d) Image with three (or more) faces.

Figure 1: Example images from each image category: images with no face, one face,
two faces, and three or more faces. The fixation cross was visible during the viewing.
After each image, the subjects had to answer a simple yes/no -question about the
image, e.g. “Could you see water in the image?”

Inew =
Iorig −m

s
S +M, (1)

in which m is the mean and s is the standard deviation of the original image Iorig.

The SHINE toolbox provides also the possibility to match the luminance histograms

of the images. However, this option was not used as the original histograms differed

significantly from each other and too much noise would have been introduced to the

resulting images.
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3.2 Experimental setup

The setups were similar in both experiments. The aim of the eye-tracking-only

experiment was to validate the stimulus set and experimental setup. Based on

the results of this experiment, some minor changes were made in the setup for the

experiment including MEG recording.

3.2.1 Gaze experiment

Nineteen subjects with normal or corrected to normal vision participated in the

experiment. The subjects were from 21 to 29 years old, mean age was 24.7 years.

Twelve of the subjects were female and seven male. The experimental setup was

programmed in Python, using the Psychopy framework [72]. The eye tracker used

in the experiment was an SMI RED500. The gaze data were sampled at 500 Hz.

The eye tracker was attached to the bottom of the monitor, which was 60 cm away

from the subject. The size of the image on the screen was 41.5 cm x 30 cm, so

that viewing angle was approximately 38 degrees. During the experiment the sub-

ject’s head leaned against a chin-forehead rest. The experiment was conducted in a

dimly lit room. The 9-point calibration was done only once in the beginning of the

experiment.

During the experiment, the 199 images were shown in random order in four sets.

From each set, 10 images were randomly chosen and shown both upright and upside-

down. Thus, each set contained 60 images, except the last one, which contained 59

images. The inverted images were shown among the original images and the order

was randomized.

The images of a set were shown for either 0.5 s, 1.0 s, 1.5 s or 3.0 s. The order of the

durations was balanced across subjects. Before each image the subject was shown a

fixation cross for a time randomly chosen from between 0.8 and 1.6 s. This decreased

the effects of the subjects’ anticipation for the upcoming image. The fixation cross

was visible over the image but subjects were advised to view the image freely. After

each image the subject had to answer a simple question about the image, e.g. “Did

the image contain a boat?”. By clicking the left button of the mouse, the subject
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answered "yes", and by clicking the right button, the subject answered "no". The

question was shown for 5.0 s and during that time the subject had to answer. It

was not possible to change the answer afterwards.

3.2.2 Combined gaze and MEG experiment

Eighteen subjects with normal vision participated in the experiment. The subjects

were between 18 and 39 years old, mean age was 26.9 years. Ten of them were

male and eight female. The experiments were conducted at the MEG core of Aalto

NeuroImaging in Otaniemi with a 306-channel MEG device (Elekta NeuromagTM,

Elekta Oy, Helsinki, Finland) in a 3-layered magnetically shielded room (Imedco

AG, Hägendorf, Switzerland).

Psychopy [72] was again used in building the experimental setup. The eye tracker

used in this experiment was an SR Research EyeLink1000 Long Range Mount, with

500-Hz sampling rate. In this experiment the subject was sitting with the head

inside the MEG helmet, and therefore no chin-forehead rest was used. The eye

tracker was placed on a table in front of the subject. The monitor was 105 cm

away from the subject and the size of the images were 72 cm x 54 cm and hence

the viewing angle was approximately 38 degrees. The 9-point calibration was done

twice during the experiment, once in the beginning and second the half way through

the experiment. The room was dimly lit.

The same stimulus set was used in this experiment as in the eye tracking only part,

but some minor changes were done in the setup. Each set contained 75 images,

except for the last part which contained 74 images, 25 images were shown upright

and 25 were shown both upright and upside-down. All of the images were shown for

1.0 s and the duration of the fixation cross was randomly chosen between 1.3 and

2.1 s. The questions were answered by lifting the left finger on the response pad for

"yes" and lifting the right finger for "no".
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3.3 Data analysis

The data consisted of eye-tracking data and MEG data. Section 3.3.1 introduces

the saccade-detection algorithms used in converting the raw eye-tracking data. The

similarities of the subjects’ scanpaths were studied by employing the ScanMatch

toolbox which is presented in Section 3.3.2. Representational similarity analysis

(RSA) was applied in the MEG data analysis, see Section 3.3.4.

3.3.1 Saccade-detection algorithms

Two different eye trackers were used in this study, SMI RED500 and SR Research

EyeLink1000 Long Range Mount, Section 2.1.2 for the working principles of these

eye trackers. The raw data collected from the eye trackers were not used in the

analysis, the fixations and saccades were detected by using the algorithms provided

by the eye tracker manufacturers.

The raw data collected from the SMI RED500 eye tracker were stored in an .idf data

file. The conversion from the raw eye tracking data to the fixations, saccades and

blinks was done with IDF Event Detector 3.0.18. High-speed event detection was

used with the following parameters: 40 ◦/s as the peak velocity threshold, 22 ms as

the minimum saccade duration and 50 ms as the minimum fixation duration. The

start of the peak velocity window was at 20% of the saccade length and the end at

80% of the saccade length.

In the high-speed event detection, the saccades are extracted as primary events

from the raw data [39]. To find saccade-like events, all the velocities are computed

from the raw data. A saccade-like event is not yet necessarily a saccade; it has

to exceed a minimum saccade duration and the peak-velocity value of the saccade

must lie within a peak velocity window. Furthermore, a saccade-like event could also

be a blink. The saccade-like events were first searched by detecting the points in

which the velocity was higher than a given peak velocity threshold. Second, the first

velocity before the peak and after the peak, which are lower than a given threshold,

were searched. The distance between these two velocities was computed, to check

the duration of the saccade-like event. In a typical saccade, the velocity of the eye
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movements first rises, reaches a peak and then declines. The peak velocity must

therefore lie within a certain peak-velocity window, which starts at a given point

after the initiation of the saccade and ends at another point after the initiation of

the saccade. These points are given as percentages of the saccade length (e.g. start

is at 20% of the saccade length and the end at 80% of the saccade length). The

speed of the pupil diameter change was checked in case of the blinks. If the speed

exceeded an internal threshold, the saccade-like event was assumed to be a part of

a blink. If the saccade-like event was not a blink and fulfilled the conditions given

above, it was assumed to be a real saccade. The fixations were assumed to start

after the previous saccade or blink and end before the next saccade or blink.

As for the SR Research EyeLink1000 Long Range Mount eye tracker, the raw eye

tracking data was stored along with the information about the fixations, saccades

and blinks in an .edf data file. As opposed to the SMI RED500, the EyeLink1000 eye

tracker does the event detection by using an on-line parsing system. The velocity

and acceleration of the eye movements were used in detecting the saccades. The

.edf files were converted to ASCII format with EDF Converter 3.1.

3.3.2 Comparison of scan paths

The similarities of scan paths were analyzed by using the ScanMatch toolbox [73].

ScanMatch is based on the Needleman-Wunsch sequence alignment algorithm which

has earlier been used in comparing DNA or protein sequences. In the ScanMatch

toolbox this algorithm is used in quantitatively scoring two eye-movement sequences.

The method takes into account both the relationship between the region of interest

(ROI) and the fixation durations.

To compute the score depicting the similarity of two sequences, the image first needs

to be divided into ROIs; see Figure 2 for details. This scoring can be achieved by

dividing the image into regular bins or by using some designated areas of the image

as ROIs. A letter combination is then given to each region, as shown in Figure 2. The

fixations get tagged, in a chronological order, with the letter combination according

to their location. To take into account the fixation duration, the tag of a fixation

was repeated in the sequence proportionally to the fixation duration.
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aA aB aC aD aE aF aG

bA bB bC bD bE bF bG

cA cB cC cD cE cF cG

dA dB dC dD dE dF dG

eA eB eC eD eE eF eG

(a) The image divided into 5 x 7 regions
of interest (ROIs) with unique letter com-
binations [73].

°

°

°

°

190 ms

225 ms

205 ms

120 ms

(b) An example image with four fixations
and fixation durations. The fixation at the
time of stimulus onset is in the center of the
image.

Figure 2: The letter combinations of each region in the image are shown in (a). The
fixations shown in (b) are converted to a sequence by tagging them chronologically
with the letter combination of their location. By applying 50-ms bins the sequence
becomes: cDcDcDaFaFaFaFbFbFbFbFeFeF.

To find the best alignment, the Needleman-Wunsch sequence alignment algorithm

uses local optimal alignment of sub-sequences [73]. Optimization is accomplished

by scoring all possible alignments. The algorithm has two parts: creating a matrix

with all possible scores and finding the alignment with the highest score. In the first

part, the matrix is created by using a substitution matrix which contains information

about the relationship between ROIs. In this study, this relationship was based on

the inverse Euclidean distance between the regions, meaning that the lowest score

was given to the bins furthest apart and highest to the bins at the same location. A

threshold can be chosen to determine at which point the values of the substitution

matrix become negative. As the substitution matrix and the length of the sequences

affect the magnitude of the score, the scores need to be normalized by

sn =
sorig

max(Ms) ∗ l
, (2)

where sn is the normalized score, sorig the original score, max(Ms) the maximum

value of the substitution matrix and l the length of the longest sequence. Figure 3

shows an example of scoring two sequences. The algorithm allows gaps to be added
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Figure 3: A simple example of a substitution matrix and scoring of two sequences.
First the two sequences are aligned to give the best possible score between the se-
quences. No gap penalties were used in this example. Finally the score is normalized.

to the sequences and it is possible to set the value of a gap penalty. A negative

gap penalty encourages the alignment of distantly related regions and constricts the

insertion of gaps.

In this experiment the ROIs were created by dividing the image to 11 x 9 bins.

Thus, the letter combinations on the first line of the grid were between aA – aK

and on the last line between iA – iK. Another possibility could have been to use

the face regions in the images as ROIs but this would have caused a problem when

comparing the scan paths in the images which contained no face. Temporal binning

of 50 ms and a threshold of 3.5 was used.

3.3.3 Saliency and face maps

The visual saliency in the images was detemined by computing the Itti and Koch

saliency maps [58, 59], as well as face maps depicting the locations of the faces in

the images. The standard Itti and Koch saliency map is based on the local color,

intensity, and orientation information in the image. However, as our images were

grayscale, the computation of the maps was based on intensity and orientation.
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In the Itti & Koch model, the image regions with local spatial discontinuities are

considered to be visually salient. The discontinuities are detected by applying a

center–surround organization, which is a common structure in the receptive fields

of the retinal ganglion cells [74, 75]. This organization resembles two concentric

circles, the center (a smaller circle) and the surround (a larger circle). The receptive

fields are sensitive to differences between the visual features in the center and the

surround, e.g., a bright spot in a dark background.

To discover the spatial discountinuities, raw feature maps were first extracted from

the image, in this case the feature maps comprised the intensity and orientation

maps. This was accomplished with Gaussian pyramids, which low-pass filter and

subsample the image [76]. The original image was low-pass filtered and subsampled

to produce a new image which was decreased in size and resolution. The process was

repeated and as a result a set of images, which resembled a pyramid, was obtained.

The orientation and intensity, which are early visual features, can be extracted from

Gaussian pyramids. A Gaussian pyramid I(σ), σ ∈ [0, .., 8], is obtained from the

intensity image I, which is the I(0) in the pyramid. The center–surround operation is

implemented as the difference between two images at different levels in the Gaussian

pyramid. The images at levels c ∈ {2, 3, 4} represent the center and the images at

levels s = c + δ, δ ∈ {3, 4} represent the surrounding. The images representing the

surrounding were interpolated to the finer scale and the difference was computed by

point-by-point subtraction. This procedure resulted in six different feature maps for

intensity.

The local orientation differences between the center and surrounding were computed

by applying a Gabor filter at four orientations to the images on all different levels

in the pyramid. After the center–surround operation, 24 orientation feature maps

O(c, s, θ) were obtained, in which θ ∈ [0◦, 45◦, 90◦, 135◦].

The six intensity feature maps and 24 orientation maps were normalized to obtain

two conspicuity maps: intensity (I) and orientation (O). The maps were normalized

in such way that the strong distinguishable peaks in the maps were emphasized while

the impact of homogeneous peaks was diminished. The normalized conspicuity maps

were summed to obtain the final saliency map
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S =
1

2
(N (I) +N (O)) . (3)

The face maps were computed by marking the center of each face in the images.

Thereafter, the face maps were filtered with a Gaussian lowpass filter to create

Gaussian blobs on the center coordinates of the faces to represent the faces in the

images. The size and standard deviation of the Gaussian filter was determined by

computing the average size of all the faces in the stimulus set. The size of the faces

was computed as di =
√
hiwi, in which hi is the height and wi the width of the i:th

face [77]. In addition, a map combining both saliency and face maps was constructed

by computing the average of these two maps.

3.3.4 Representational similarity analysis (RSA)

Representational similarity analysis can reveal commonalities and dissimilarities be-

tween brain responses and computational models related to certain experimental

conditions [78]. Different experimental conditions are associated with distinct brain-

activity patterns [79]. Comparing these brain-activity patterns with behavioural

data and computational models has been challenging. RSA makes these compar-

isons possible with the help of a representational dissimilarity matrix (RDM) which

characterizes the similarities between the different brain-activity patterns, not the

activity patterns themselves.

The brain-activity patterns can be seen as the representation of the stimulus, and

the RDM depicts the distance between two representations [78]. This distance can

be defined by, e.g., 1− c, where c is correlation, between the representations associ-

ated with two different stimuli. All representations are compared pairwise, thereby

resulting in a dissimilarity matrix in which each cell represents the dissimilarity be-

tween two representations. A basic RDM is a square matrix in which the different

stimuli are in the same order both vertically and horizontally, making the matrix

symmetrical. The diagonal is zero as it depicts the dissimilarities between the same

stimuli. The representations can also be derived from a model characterizing the

stimulus. The similarities between the brain responses and the model can then be
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examined by comparing the dissimilarity matrix constructed from the model and the

RDM constructed from the brain-activity data. The representations can therefore be

compared between, e.g., different subjects, brain-activity measurement techinques

(MEG and fMRI), and brain and behavioural data.

In this thesis the dissimilarities between the brain-activity patterns related to dif-

ferent stimuli were compared by computing 1− c. The brain-activity patterns were

defined as the response measured at a certain point in time from all the MEG

channels, as the responses differed spatially slightly between subjects and no other

channel group could be unambigously chosen. Therefore the comparisons were done

separately at every point in time from, e.g., –100 ms to 400 ms with respect to

stimulus onset, see Figure 4, resulting in a three-dimensional RDM matrix (number

of images (Nimg) x number of images (Nimg) x number of time points (Nt)).

The RSA has been eariler used with MEG data by, e.g., Cichy et al. [80], who

measured fMRI and MEG responses to 92 images. The MEG data were classified

pairwise between all images at time points from 100 ms before to 1200 ms after the

stimulus onset to create a 92 x 92 decoding matrix. Two different fMRI dissimilarity

matrices were constructed by extracting the voxel values from the primary visual

cortex (V1) and inferior temporal (IT) cortex. By correlating these two RDMs with

the MEG decoding matrix, it was possible to show that the MEG signals correlated

first with V1 and later with IT activity.
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Figure 4: Schematic picture depicting the formation of the representational dissim-
ilarity matrix (RDM). Different stimuli induce different brain-activity patterns and
the dissimilarities between these patterns can be compared by e.g. 1 − c, where c
is correlation. In this example, the brain responses are measured from all different
MEG channels, and the brain-activity pattern is defined as the MEG signal in all
channels induced by a stimulus at a certain point in time (t1) with respect to stim-
ulus onset. The dissimilarity matrix is therefore three-dimensional (N of stimuli x
N of stimuli x N of time points). In this example, the stimuli are organised in the
same order both vertically and horizontally. Therefore the matrix is symmetric and
the diagonal is zero.

Instead of the fMRI data, in this thesis the RDMs were correlated at each point in

time with scanpath similarity matrices to detect resemblances between the direction

of the first saccade and the brain responses before the first saccade, Section 4.2.4

presents the results. Additionally, the RDMs were constructed by computing the dis-

tances between the brain responses induced by the upright and the inverted images.

In this case the diagonal of the RDM representsed the (dis)similarity between the

responses induced by the same image shown upright and upside-down. By compar-

ing these values with the off-diagonal values it was possible to determine the points

in time during which the same image shown upright and upside-down induced more

similar responses than two different images; see Section 4.2.3.



23

4 Results

In this chapter, the results of both Gaze experiment and Combined gaze and MEG

experiment are presented. The eye tracking data are analyzed in Section 4.1, with

the aim of finding differences in the viewing patterns between images with a face and

without a face. The results from the MEG data analysis are shown in Section 4.2.

The analysis consists of examining resemblances between the responses induced by

upright and inverted images, and correlations between the brain responses and eye

movements. Both the eye tracking and MEG data were analyzed with MATLAB R©

R2014a.

4.1 Eye-tracking results

The eye-tracking data was analyzed separately from Gaze experiment and Combined

gaze and MEG experiment. It seems that substantially the results were similar.

The eye tracking data were filtered down to saccades, fixations and blinks with

methods described in Section 3.3.1, the raw eye tracking data were not used in the

analysis. The analysis focused on comparing the gaze patterns between the different

categories: images containing a face, images not containing a face, upright images

and inverted images. The gaze patterns were studied by analyzing the the latency

and direction of the first saccade, the similarity of the scanpaths and the duration

of the fixation of the first saccade.

Both experiments included some trials in which the saccade latency was less than

80 ms or in which the subject did not have time to make any saccades during the

image. These trials, and trials in which the subject did not look at the fixation cross

at the image onset, were excluded from the analysis (10% of all trials). The saccades

with latencies less than 80 ms could be due to the subject failing to fixate on the

fixation cross properly as the amplitude of these saccades was often quite small.

The data in Gaze experiment were collected from 19 subjects. The data from dif-

ferent image durations were analyzed separately. The data in Combined gaze and

MEG experiment were collected from 18 subjects. New subjects were recruited for
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Combined gaze and MEG experiment, although one of the subjects had participated

in the piloting of Gaze experiment. In this experiment all the images were shown

for 1.0 s and therefore all data were analyzed together.

4.1.1 The latency of the first saccade was shorter for images containing

faces

A point of interest is whether the presence of a face in an image had an effect on

the latency of the first saccade after the stimulus onset. The latencies of the first

saccade were studied separately for upright and inverted images to determine if the

inversion of the image affected the latency.

In Gaze experiment, the latencies in the upright images containing a face were 63.4

± 6.9 ms shorter than in the images with no face, see the Figure 5. The trials in

which there was a face in the image, but the saccade did not land on the face, were

also included. The difference between the average latencies in images containing

a face and with no face was tested with a paired, two-sided Wilcoxon signed rank

test. At all image durations, if the image was shown upright, the latencies (mean

± SEM) were statistically significantly shorter for images containing faces than for

images with no faces: at the image duration of 0.5 s the latencies were (242.2 ± 5.6

ms vs. 300.0 ± 8.4 ms; p = 0.0001), at 1.0 s (251.3 ± 5.5 ms vs. 324.8 ± 13.5 ms;

p = 0.0003), at 1.5 s (259.4 ± 9.1 ms vs. 312.3 ± 9.7 ms; p =0.001), and at 3.0 s

(266.6 ± 5.9 ms vs. 336.6 ± 20.7 ms; p = 0.004).

The latencies of the first saccades in Gaze experiment were studied separately in

images which were shown upside down, and the difference between the average

latencies in images containing a face and with no face was tested with a two-sided

Wilcoxon rank sum test. The latencies (mean ± SEM) in the images containing a

face were distinctly shorter only in the cases in which the images were shown for

1.0 s (281.6 ± 12.8 ms vs. 335.9 ± 26.9 ms; p = 0.02) or 1.5 s (284.2 ± 9.8 ms vs.

339.5 ± 24.7 ms; p = 0.04), see the Figure 5. At image duration of 0.5 s (267.4 ± 7.6

ms vs. 287.1 ± 18.9 ms; p = 0.2) and 3.0 s (308.5 ± 12.5 ms vs. 294.6 ± 20.1 ms; p

= 0.5) the latency differences were not statistically significant. In this experiment,

only 10 images were shown both upright and upside down in all image durations.
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Figure 5: The (mean ± SEM) latencies of the first saccades across all subjects in
the upright and inverted images, Gaze experiment. The latencies were shorter for
images containing a face at all image durations if the image was shown upright.
In the inverted images, the latencies of the first saccades were not unambiguously
shorter if a face was present.

Therefore, in this case the difference between the face and no face conditions was

not as evident, but this could be due to the insufficient amount of data.

Additionally, the difference between the average saccade latencies in the upright and

inverted images was computed from the data gathered from Gaze experiment. Not

surprisingly, the latencies were larger for the inverted images. The difference (mean

± SEM) across all subjects was at image duration of 0.5 s 26.7 ± 9.8 ms, at duration

of 1.0 s 24.9 ± 10.8 ms, 1.5 s 24.2 ± 7.8 ms, and 3.0 s 21.8 ± 13.0 ms. The order

of whether the upright or inverted image was shown first did not have a significant

influence on the saccade latencies.

The difference between the saccade latencies in images containing faces and with

no faces was repeated in Combined gaze and MEG experiment, as is shown in the

Figure 6. If the image was shown upright, the first saccade was initiated 60.1 ± 4.6

ms earlier if the image contained a face. The difference between the average latencies

in images containing a face and with no face was tested with a paired, two-sided
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Figure 6: The (mean ± SEM) latencies of the first saccades across all subjects in the
upright and inverted images, Combined gaze and MEG experiment. The latencies
were shorter in images containing a face despite the orientation of the image.

Wilcoxon signed rank test. In this experiment, 100 images were shown both upright

and upside down for each subject. Possibly due to the larger amount of data, the

latency difference was statistically significant also in the inverted images. In upright

images, the latencies (mean ± SEM) in images containing faces and images with no

faces were (220.6 ± 6.9 ms vs. 280.7 ± 9.2 ms; p = 0.0002), and in inverted images

(255.9 ± 8.4 ms vs. 289.7 ± 10.1 ms; p = 0.001).

In Combined gaze and MEG experiment, the difference (mean ± SEM) between the

latencies in the upright and inverted images across all subjects was 31.4 ± 4.3 ms. If

there was a face in the image, this difference was higher (36.6 ± 4.1 ms; p = 0.0002)

than if there was not (8.1 ± 8.8 ms; p = 0.3). This can also be seen in the Figure 6,

the inversion of the image has a notable impact on the saccade latencies only if a

face was present. The latencies between upright and inverted images not containing

a face did not differ significantly from each other. The order of whether the upright

or the inverted image was shown first did not have a significant influence on the

latencies.
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4.1.2 Faces prolong the fixation duration

The fixations after the first saccade after stimulus onset were studied in order to

see whether the faces affect the fixation duration too. The ROIs defined in the

Section 4.1.3 were used in determining whether the fixation was directed to a face.

According to the data from Gaze experiment, the duration (mean ± SEM) of fixa-

tions to a face were significantly longer if the duration of the image was 1.0 s (36.6

± 4.1 ms; p = 0.002), 1.5 s (36.6 ± 4.1 ms; p = 0.01) or 3.0 s (36.6 ± 4.1 ms; p =

0.0003) than the durations of fixations to something else, see Figure 7. The differ-

ence between the average durations of fixations to a face and to a region without a

face was tested with a paired, two-sided Wilcoxon signed rank test. However, there

was no significant difference between the durations of fixation to a face and to a

region without a face if the duration of the image was 0.5 seconds. This might be

due to the short viewing time of the images. Both the upright and inverted images

were included in this analysis.

The data from Combined gaze and MEG experiment were utilized to see if there

was a difference in the fixation durations in the cases in which the image was shown

upright and upside down. In the upright images the duration (mean ± SEM) of

fixations to a face were statistically significantly longer than to a region without a

face (180.6 ± 5.3 ms vs. 167.6 ± 6.2 ms; p = 0.02), see Figure 7. However, the

difference was not statistically significant if the images were shown upside down (p

= 0.3).
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Figure 7: The (mean ± SEM) duration of the fixation after the first saccade across
all subjects. In Gaze experiment, the durations were significantly longer to a face
if the image was shown for 1.0 s, 1.5 s, or 3.0 s. In Combined gaze and MEG
experiment, the durations of fixations to a face were significantly longer if the image
was shown upright, but not if the image was shown upside-down.

4.1.3 A face in the image affects the direction of the first saccade

As numerous previous studies have shown, faces attract attention. To see whether

already the first saccade can direct the gaze towards a face, the percentage of how

often the first saccade lands on a face was studied. These percentages were computed

separately for upright and inverted images by marking the face regions in the images.

These regions were slightly bigger than the actual faces in the images in order to

take into account the saccades which clearly were directed towards a face but landed

just before the face.
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Duration of image Upright images Inverted images p-value
0.5 s 69.4% 45.6% 0.0005
1.0 s 67.2% 52.1% 0.0002
1.5 s 69.6% 53.8% 0.008
3.0 s 67.8% 56.5% 0.007

Table 1: The average percentages of how often the first saccade landed on a face
in Gaze experiment. The percentages were computed across all subjects in images
containing a face.

Duration of image Upright images Inverted images p-value
1.0 s 67.5% 51.3% 0.0002

Table 2: The average percentages of how often the first saccade landed on a face in
Combined gaze and MEG experiment. The percentages were computed across all
subjects in images containing a face.

In both experiments, the probability that the first saccade lands on a face was quite

high, as is shown in the Tables 1 and 2. In the upright images the average percentage

was almost 70%. However, if the image was shown upside down, the probability of

the saccade landing on a face was only around 50%. All differences between the

percentages were statistically significant.

Another point of interest was to determine how often the first saccade lands on

the same part of the image despite the orientation of the image, and whether the

presence of a face in the image affected this. An instance of the first saccade landing

on the same face in both cases, when the image was shown upright and upside down,

is shown in the Figure 8.
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Figure 8: An example of the first saccade landing in the same part of the image
despite the orientation of the image. The fixation in the onset of the image is shown
as black dot, the first saccade and the fixation after it are shown in red.

The saccades were determined to land on the same part of the image if the distance

between the end points of the saccades was less than 130 pixels. This distance

was computed as the distance between the corresponding regions in the images
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(see Figure 8). The size of the faces in the images varied considerably, making it

challenging to determine a suitable distance. Therefore in some cases the saccades

might have landed on the same face, yet in the analysis these are not classified as

cases in which the saccades land on the same part due to the long distance between

the end points. The distance of 130 pixels was applied as it is roughly in the same

magnitude as the size of the ROIs (127x117 pixels) used in the scanpath similarity

analysis, see Sections 3.3.2 and 4.1.4.

In Gaze experiment, the difference between the probabilities that the first saccades

landed on the same part in the image, was significantly higher in images containing

a face than in images without faces only if the duration of the image was 1.0 s

(58.1 ± 3.5% vs. 31.8 ± 9.9%; p = 0.01), see Figure 9. The difference between the

percentages in images containing a face and with no face was tested with a two-sided

Wilcoxon rank sum test. The percentages (mean ± SEM) across all subjects of the

saccades landing on the same part if a face was present were also higher if the images

were shown for 1.5 s (54.8 ± 6.6% vs. 38.8 ± 9.9%; p = 0.2) or 3.0 s (47.3 ± 4.3%

vs. 39.2 ± 10.7%; p = 0.3), but the differences were not statistically significant.

This might be due to the insufficient amount of data, as few images were shown

upside down in Gaze experiment.

Likewise, the percentages of the saccades landing on the same part of the image were

higher if the image contained a face in Combined gaze and MEG experiment. In this

case the percentages (mean ± SEM) across all subjects were computed separately for

different amount of faces, see Figure 9. The probability of the saccades landing on

the same part in the images in which there was no face (44.4± 3.2%) was statistically

significantly lower than the probabilities of the saccades landing on the same part

in images with one face (60.2 ± 3.8%; p = 0.002), and three or more faces (57.8 ±
3.6%; p = 0.01). The probability was higher also in images containing two faces (52.5

± 4.1%; p = 0.2), but the difference to images with no faces was not statistically

significant. The differences between the percentages of the saccades landing on the

same part were not statistically significant between the images containing different

amount (one, two, or three or more) faces.
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Figure 9: The (mean ± SEM) percentages of how often the first saccades landed on
the same part of the image when it was shown both upright and upside down. In
the Gaze experiment, the difference between percentages in images containing a face
and images without a face was statistically significant only at the image duration
of 1.0 s (p = 0.01). In Combined gaze and MEG experiment, the percentages were
significantly higher in images with one, and three or more faces, than in images with
no faces (p <= 0.01).

4.1.4 The similarity of scanpaths is higher between images containing a

face than between images with no face

Whether the subjects had more similar viewing patterns in images containing a face

than in images without a face, was studied by comparing the subjects’ scanpaths

in each image. The scanpaths were compared with the ScanMatch toolbox as de-

scribed in the Section 3.3.2. This toolbox compares two scanpaths at the time and

computes a score which depicts the similarity of these two scanpaths. The scores

are normalized between 0 and 1, and the higher the score, the more similar the two

scanpaths are. The images which were shown for 0.5 seconds in Gaze experiment

were excluded from this analysis.

The averaged scores from both experiments show a significant difference (p <= 0.002)
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Figure 10: The (mean ± SEM) normalized score in images with different number of
faces. In both experiments, the scanpath similarity scores were statistically signifi-
cantly higher in images containing faces than in images without faces (p <= 0.002).
The difference between scores in images with one face and two faces was also sig-
nificant in Gaze experiment (p = 0.005), but not in Combined gaze and MEG
experiment (p = 0.2).

between the similarities of the scanpaths in the images in which there is a face and

in which there is not, see Figure 10. These scores were computed for all subject

pairs in each image separately, and only the upright images were included in the

analysis. In Gaze experiment the difference between similarities in images with one

face and two faces was statistically significant as well (p = 0.005). This difference,

however, was not repeated in Combined gaze and MEG experiment.
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4.1.5 Face maps explain scanpaths better than saliency maps

To determine which features in the images affected the subjects’ viewing patterns,

the saliency and face maps were computed from the images. The saliency maps

were computed by applying the Itti & Koch model, and the computation of the face

maps was based on the locations of the faces, see Section 3.3.3. Three different maps

depicting the image features were computed: a saliency map, a face map and a map

combining both saliency and face information. The similarities of these maps were

compared with the similarities of the scanpaths by applying the representational

similiarity analysis (RSA), see Section 3.3.4.

Three representational dissimilarity matrices (RDM) of the visual saliency were

construced by computing the distance ( 1 − c, where c is correlation) between the

saliency maps, the face maps, and the combined saliency and face maps of each image

pair. A fourth RDM was constructed for each subject separately by computing 1−s,
where s is the scanpath score, between all image pairs. The scanpath scores from

Combined gaze and MEG experiment were used in the analysis. The correlation

between the scanpath score dissimilarity matrix and the RDMs of the visual saliency

was computed separately for each subject.

The average correlation between all different RDMs of visual saliency (saliency maps,

face maps and combined saliency and face maps) and the scanpath score dissimilar-

ities across all subjects differed significantly from zero (p = 0.0001), see Figure 11.

However, the correlation (mean ± SEM) between the RDMs of the face maps and of

the scanpath scores was significantly higher than the correlation between the RDMs

of the saliency maps and of the scanpath scores (0.29 ± 0.01 vs. 0.10 ± 0.008; p

= 0.0002). This suggests that the faces explain the eye movements better than the

saliency maps.
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Correlation between scanpath similarity and visual saliency

Figure 11: The average correlation between the RDMs of the visual saliency and
scanpath score dissimilarities across all subjects in Combined gaze and MEG ex-
periment. All correlations were significantly different from 0 (p = 0.0001) and all
correlations differed significantly from each other (p = 0.0002). The (mean ± SEM)
correlation between the RDMs of scanpath scores and facemaps was significantly
higher than the correlations between the scanpath scores and saliency maps, and
combined saliency and face maps.
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4.2 MEG results

The MEG data were studied at sensor level. The sensor level responses differed

notably between subjects and, furthermore, due to the complexity of the images,

the responses in different image categories (e.g. the images containing a face and

not containing a face) were not explicitly distinct. Therefore, the representational

similarity analysis (RSA) was applied in the analysis. Some single-trial responses are

represented in Section 4.2.2. The points in time during which the upright and the

inverted images induced the most similar responses are determined in Section 4.2.3

and the correlation between the MEG signal and the direction of the first saccade

is examined in Section 4.2.4.

4.2.1 Preprocessing of MEG data

The MEG data were preprocessed by using tSSS (MaxFilter) to suppress magnetic

interferences. The correlation limit was set to 0.9 and the buffer length to 16 s. The

bad channels were marked manually; the automatic detection of the bad channels

while filtering the data was not used. The MaxFiltered MEG data were baseline

corrected using the time window between 200 ms and 0 ms before the stimulus onset,

and lowpass filtered at 45 Hz.

4.2.2 Single-trial and average MEG responses

The visual response were clearly visible in the MEG signals; Figure 12 shows average

responses of one subject to images with faces measured from all gradiometers. How-

ever, the differences between the image categories could not be evidently observed

in the single trial responses. Moreover, the sensor level responses differed notably

between subjects. The responses induced by all images shown to one subject, mea-

sured from one magnetometer located in the posterior side of the MEG helmet, are

presented in Figure 13. The responses were visible from at around 50 ms after the

stimulus onset, but there was no systematic difference between the image categories.
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Figure 12: The image above represents the average responses of one subject to
images with faces measured from the gradiometers, and the images below the whole
head image represent the same subject’s responses induced by images with faces
and no faces measured from the gradiometer pair, the location of which is circled in
the whole head image. The differences between the responses induced by these two
image categories in this subject were most visible at this gradiometer pair.

The average responses induced by images with a face and with no face by two differ-

ent subjects are represented in Figure 14. For both subjects, the responses induced

by these two different image categories resembled each other, but the responses
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Figure 13: The single trial responses of one subject induced by the different image
categories. The responses were measured as the square root of the power mean from
one gradiometer pair, the location of which is shown in the image in the upper left
corner. The response was clearly visible in all the images, but no distinct difference
between the image categories could be observed.

differed substantially between the subjects. The responses were measured as the

average from seven magnetometers or gradiometer pairs placed in three different

locations, posterior left, middle and right side of the helmet, the exact location of

the gradiometers is shown in the Figure 14. The responses from gradiometer pairs

was computed as the square root of the power mean (see Equation 4).

M =

√√√√ 1

n

n∑
i=1

xi
2, n = 2 (4)
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Figure 14: The brain respones induced by images containing faces and images not
containing faces at three different locations from two subjects. The responses in
the upper row were computed as the average responses from seven magnetometers
located in the posterior left, middle and right side of the helmet. The responses in the
bottom row were computed as the average responses from seven gradiometer pairs
respectively. For both subjects, the responses induced by the two different image
categories resembled each other, but the responses differed substantially between
the subjects in both image categories.
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4.2.3 Resemblances of responses induced by upright and inverted images

The aim of this analysis was to resolve at which points in time an image shown upside

down produced more similar brain response with the same image shown upright,

than the other images shown upside down. The purpose was to reveal whether the

processing of an image is slower if it is shown upside down. The representational

similarity analysis (RSA), see Section 3.3.4, was applied in the analysis.

The (dis)similarities of the brain responses were analyzed by constructing a repre-

sentational dissimilarity matrix (RDM) containing the distances between the brain-

activity patterns related to upright and inverted images. This distance was defined

as the 1− c, where c is correlation, correlation between the brain responses induced

by the images. The dissimilarity matrices were constructed separately for each sub-

ject, in the matrices the upright images were aligned vertically and the inverted

images were aligned horizontally in the same order. Therefore the diagonal of the

RDM represented the dissimilarities in the case in which the upright and the in-

verted images were the same picture and off-diagonal the dissimilarities in the case

in which the images were different pictures. The images that were not shown both

upright and upside down were excluded from the analysis.

In order to detect if the similarity between the brain responses was visible at a

later point in time for the inverted image than for the upright image, the RDM was

constructed from brain responses at different points in time for these images. This

was accomplished by computing the dissimilarity between the brain response related

to the upright image at time tu and the brain response related to the inverted image

at time ti at all combinations of points in time (tu,ti), in which tu and ti are from

100 ms before the stimulus onset to 350 ms after the stimulus onset. The difference

between the dissimilarities in the cases in which the pictures were the same and in

which they were not, was computed by subtracting the off-diagonal values of the

RDM from the diagonal values at all these points in time. The average difference

can be seen in the Figure 15a.
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(a) The similarity of the brain re-
sponses induced by the same picture
shown upright and upside-down.

(b) The points in time during which
the similarity was statistically signifi-
cant at 5% significance level. False dis-
covery rate (FDR) correction was used
to correct for multiple comparisons.

Figure 15: The points in time during which the brain responses induced by the same
picture shown upright and upside down were more similar than the brain responses
induced by different pictures shown upright and upside down. The dissimilarity was
computed as 1 − c, where c is correlation, between the brain responses related to
the upright and inverted images. The values in this matrix are the differences of the
dissimilarities between the brain-activity patterns in the cases in which the upright
and inverted images depicted the same picture and the case in which the pictures
were different.

The same images induced a more similar response starting from at around 90 after

stimulus onset, the responses were most similar at 112 ms after the stimulus onset

for the upright images and 114 ms for the inverted images. After this point in time,

the similar response is slightly (about 5 ms) delayed for the inverted images. This

result is consistent with the single-trial responses which did not show a significant

delay in the responses induced by the upside down images either, see Figure 13.

The points in time during which the similarity was statistically significant at 5%

significance level are shown in Figure 15b, false discovery rate (FDR) was used in

correcting for multiple comparisons.
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4.2.4 Correlations between brain responses and visual features

In the eyetracking data analysis the likeness of the eye movements induced by the

images was studied by computing the similarity of the scanpaths, the results are

presented in Section 4.1.4. Additionally, three feature maps (saliency maps, face

maps and combined saliency and face maps) were computed from the images in order

to determine which features best explained the scanpaths. The results, presented in

Section 4.1.5, showed highest correlation between the scanpaths and face maps.

The aim of this analysis was to determine if the image features depicted in these

maps accounted for the MEG data, and if there was a connection between the early

brain responses and the upcoming scanpath. Representational similarity analysis

(RSA) was applied in identifying the points in time in which the brain responses

correlated with the feature maps and scanpaths, see Section 3.3.4 for a more detailed

explanation of the analysis method.

Two different representational dissimilarity matrices (RDM) were constructed for

each subject separately. The first RDM depicted the dissimilarity of the brain

reponses induced by each image pair, the dissimilarity was defined as the 1−c, where
c is correlation, between the brain responses at a specific point in time. This RDM

was first computed separately from the responses measured in the gradiometers

and in the magnetometers. The average of the RDM of gradiometer responses and

magnetometers was computed to form the final RDM of the brain responses. The

dissimilarity matrix of the brain responses was computed at all points in time from

150 ms before the stimulus onset to 350 ms after the stimulus onset, though the

correlations were studied only until the average saccade latency as after this the data

might be contaminated by the eye movements. The second RDM depicted either

the dissimilarities of one of the feature maps, or the dissimilarity of the scanpaths,

between each image pair. The dissimilarities were computed as 1 − c between the

feature maps and 1− s, where s is the scanpath score.

The highest correlation was found between the RDMs of the brain responses and

saliency maps, see Figure 16. Surprisingly, the combined saliency and face maps did

not explain the MEG data better than the original saliency maps. The correlation
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Figure 16: The correlation between the dissimilarities of the brain responses and the
dissimilarities of feature maps and scanpath scores in upright images containing a
face. The dashed lines represent the correlation across all subjects and the solid lines
represent the points in time during which the correlation was statistically significant
at 1% significance level. The black vertical line shows the average saccade latency.

between the MEG signal and traditional saliency maps was statistically significant

from 55 ms to 130 ms after the stimulus onset, the first peak was at 75 ms. The

highest peak in the correlations with the saliency maps and combined face and

saliency maps was at 105 ms after the stimulus onset. The correlation between the

RDMs of the brain responses and face maps was statistically significant from 85

ms to 125 ms, and peaked at 95 ms and 110 ms, after the stimulus onset. The

correlation with the scanpath scores was statistically significant at latencies from

105 ms to 140 ms, and it peaked last, 120 ms after the stimulus onset. Only images

with faces were included in this analysis, as it was not possible to construct face

maps from images without faces. The correlations between the RDMs of the brain

responses and scanpath similarities in the images without faces was noisy and no

significant peaks were visible, suggesting that not enough data were available in

order to complete the analysis.
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The correlations were computed also by employing the brain responses induced

by the images which were shown upside down, see Figure 17. In this case too,

the saliency maps accounted best for the MEG data. The highest peak in the

correlation between the RDMs of the brain responses and saliency maps was at

85 ms after the stimulus onset. The correlation between the brain responses and

the combined saliency and face map peaked also at 85 ms after the stimulus onset,

but the correlation between the brain responses and face maps was statistically

significant only shortly from 80 ms to 95 ms after the stimulus onset, suggesting

that the faces did not account as much for the MEG signals if the images were

shown upside down. Nevertheless, in this case the correlations were noisier than

with the upright images. Not as much data was available in this case, as only 100

images were shown upside down for each subject, which might affect the significance

of the correlations. However, it might also be that the method used in computing

the face maps was not ideal, as the saliency maps explained the MEG signal better

than the face maps in the case in which the images were shown upright, too.
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Figure 17: The correlation between the dissimilarities of the brain responses and the
dissimilarities of feature maps and scanpath scores in inverted images containing a
face. The dashed lines represent the correlation across all subjects and the solid lines
represent the points in time during which the correlation was statistically significant
at 1% significance level. The black vertical line shows the average saccade latency.

The face maps were created by computing Gaussian blobs to represent the faces. The

center of the blob was located at the midpoint of the face it was representing. The

blobs were computed by applying a Gaussian lowpass filter of size [nh, nw] and with

standard deviation σ. The size of the faces was computed as di =
√
hiwi, in which

hi is the height and wi the width of the i:th face. The average size across all faces

was davg ≈ 183 pixels and standard deviation ≈ 96 pixels and, hence, these values

(nh = 183, nw = 183 and σ = 96) were used in the Gaussian filter. However, as is

shown in Figure 18, the filter parameters affected greatly the correlation between the

MEG signal and the face maps. It seems a larger Gaussian filter might have given

a higher correlation, but on the other hand, a negative correlation was introduced

at around 70 ms after stimulus onset. Consequently, this might not have been the

ideal method in constructing the face maps.
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Figure 18: The effect of the filter parameters to the correlation between the MEG
signal and face maps. (a) The average correlation across all subjects with different
filter parameters. (b) The Gaussian blobs computed with the corresponding filters.
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5 Discussion

This thesis aimed at characterizing the brain responses and eye movements induced

by faces in natural stimuli and, furthermore, determining a method for relating

the brain responses to the eye movements. One of the main results in this thesis

was the significant difference between the latencies of the first saccade in images

containing a face and with no face. If the image was shown upright, the first saccade

was made approximately 60 ms earlier in images containing a face than in images

without a face. Even in images which were shown upside down this difference was

approximately 35 ms.

Generally the results in the eye tracking data analysis were similar in both Gaze ex-

periment and Combined gaze and MEG experiment. Some figures, e.g., the saccade

latencies and the fixation durations, differed between the experiments. This might

be because different eye tracker models were used in the experiments. In addition,

the conditions during the experiments were slightly different as in Combined gaze

and MEG experiment the subject was sitting inside the MEG helmet. Furthermore,

the duration of the images varied in Gaze experiment but not in Combined gaze and

MEG experiment.

Fast saccades towards faces have earlier been reported by Crouzet et al. [2] who used

a saccadic choice task in which the subjects had to target a face, an animal or a

vehicle. They reported a significant difference between the mean saccadic reaction

times (SRT) to faces (147 ms) and vehicles (188 ms). The fastest saccade latencies

were just 100 ms, suggesting that the saccades were initiated before the face had

completely been recognized as a face. However, in the study by Crouzet et al., the

faces were mostly a main part of the images. In this thesis it was shown that the

saccade latencies were shorter also when the faces were a smaller part of the scene.

Additionally, in the study by Crouzet et al., the subjects were advised to saccade as

quickly as possible to a target (e.g. a face or a vehicle), whereas in this study the

subjects were allowed to view the images freely and the questions the subjects had

to answer were not directly related to specific objects in the image.
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In addition to the shorter latencies in the images with faces, the faces evidently

affected the direction of the gaze. The first saccade landed on a face almost 70%

of the time in both experiments, if the face was shown upright. Additionally, the

scanpaths across all subjects were more similar and, furthermore, the first saccade

was more likely to land on the same part of the image when it was shown upside

down. In images containing two faces, the probability of the saccade landing on

the same part was not significantly higher than in images containing no faces, but

this could be due to the saccades landing on the other face when the image was

shown upright as which they landed on when the image was shown upside down.

The faces affected also the fixation durations; the average duration was longer in the

individual fixations which were directed to a face, which is consistent with previous

studies [81].

However, the effects the presence of a face has on the eye movements were not as

evident in the inverted images. The latency of the first saccade was shorter in this

case too if the image contained a face. On the other hand, the latency in the images

containing a face was significantly shorter in the upright images than in the inverted

images, and this difference was not found in images without faces. Additionally,

in the inverted images, the probability of the first saccade landing on a face was

only around 50%. Furthermore, the individual fixation durations to a face were

significantly longer than the fixation to a region without a face only if the images

were shown upright. On the other hand, the individual fixations to the faces were

longer if the image was shown upside down, similar results have earlier been reported

by, e.g., Barton et al. [82].

Three different feature maps were constructed to determine which features in the

images best explained the scanpaths and the MEG responses. The feature map de-

picting the locations of the faces in the images explained the scanpaths significantly

better than did the traditional saliency maps, or combined saliency and face maps.

However, the correlation between the traditional saliency maps and the MEG re-

sponses was significantly higher than the correlation between the MEG responses

and face maps. Furthermore, adding the face information to the saliency maps did

not increase the correlation. This result leads to the conclusion that method used
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in computing the face maps and combined face and saliency maps might not have

been ideal.

In this thesis the face maps were created by computing Gaussian blobs in the loca-

tions of the faces. The blobs were computed by applying a Gaussian filter with a

fixed filter size based on the average size of all faces in the stimulus set. In other

studies, slightly different methods have been applied in constructing the face maps.

These include constructing a binary heat-map by marking a minimally sized ROI

around each face [62], and using different sizes for the filter based on the size of each

individual face [4].

In addition, the computation of the combined face and saliency maps differed slightly

from the method used by Cerf et al. [4, 62] who treated the face maps as an additional

conspicuity map in the formation of the original saliency maps [58], therefore the

saliency maps were computed as the average of four conspicuity maps (intensity,

color, orientation and faces). In this thesis, however, the original saliency maps

were computed first and the face information was added afterwards by computing

the average of the saliency and face maps. It is possible that these methods could

have explained the MEG responses better, but on the other hand, so far they have

only been used to explain eye-tracking data, and the face map model in this thesis

did explain the scanpaths better than the traditional saliency maps.

Nevertheless, all of the feature maps correlated statistically significantly with the

MEG responses. The correlation between the MEG signal and traditional saliency

map was significant at around 55–130 ms after the stimulus onset, whereas the

correlation between the face maps was significant at 90–125 ms after the stimulus

onset, and the correlation between the scanpath scores even later, 105–130 ms after

the stimulus onset. The correlation between the traditional saliency maps returned

to zero at around 150 ms after the stimulus onset, whereas the other correlations

decreased but stayed slightly above zero. Additionally, the same image shown both

upright and upside down induced most similar response at around 110 ms after the

stimulus onset.

In summary, the MEG responses induced by the upright images correlated with the

face maps and the upcoming scanpaths, although the saliency maps depicting the low
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level information in the images explained the MEG responses better. Nevertheless,

a face map was evidently the best model in explaining the scanpaths. Although

from these data it is not possible to deduce the exact point in time at which it is

decided where in the image the gaze will be directed, it can be assumed that some

information related to this is processed at around from 105 to 130 ms after the

stimulus onset.
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A Locations of faces in the images

Figure A1: Locations of faces in images containing 1 face.

Figure A2: Locations of faces in images containing 2 faces.
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Figure A3: Locations of faces in images containing 3 or more faces.
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B The PsychoPy script

Listing 1: Experiment setup script

1 # −∗− coding : utf−8 −∗−
2 from psychopy import v i sua l , logg ing , event , core

3 from psychopy . iohub import ( EventConstants , ioHubExperimentRuntime , module_directory ,

4 getCurrentDateTimeString )

5 import os , time , p a r a l l e l , numpy , codecs , random , s e r i a l

6

7

8

9

10 de f sendTr igger ( data ) :

11

12 #output t r i g g e r s

13 port . setData ( data )

14

15 # make sure the t r i g g e r pu l s e s are at l e a s t 10 ms in durat ion ; o therw i se they might

be missed .

16 time . s l e e p ( 0 . 0 1 )

17

18 # Reset the t r i g g e r l i n e s

19 port . setData (0 )

20

21

22

23 de f sendTrackerMessage (msg) :

24

25 t r a cke r . sendMessage (msg , t ime_of f s e t=None )

26

27

28

29 c l a s s ExperimentRuntime ( ioHubExperimentRuntime ) :

30 """

31 Create an experiment us ing psychopy and the ioHub framework by extending

32 the ioHubExperimentRuntime c l a s s and implementing the run ( ) method .

33 """

34

35

36 de f run ( s e l f ,∗ args ) :

37

38

39 ### Log f i l e

40

41 # Save log to a f i l e

42 exp_time = time . s t r f t ime ( "%d%m%Y" ) + ’_’ + time . s t r f t ime ( ’%H%M’ )

43 l o gD i r e c t o ry = os . getcwd ( ) . r ep l a c e ( "\\" , "/" ) + ’ /logDat_ ’ + exp_time + ’ . l og ’
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44 logDat=logg ing . LogFi le ( l ogDi rec to ry , l e v e l=logg ing . INFO, f i l emode=’ a ’ )

45

46

47 ### Fetch images and que s t i on s

48

49 # Read que s t i on s from a text f i l e and save them to an array

50 que s t i on s = [ ]

51 quest_txt = codecs . open ( ’ que s t i on s . txt ’ , ’ r ’ , encoding=’ utf−8 ’ )

52 f o r l i n e in quest_txt :

53 que s t i on s . append ( unicode ( l i n e . s t r i p ( ) ) )

54 quest_txt . c l o s e ( )

55

56 # Image d i r e c t o r y

57 imgdir=’D:/ Users /Kaisu/ImagesLumMatch/ ’

58

59 f i l e s =[ ]

60 f o r f i l e in os . l i s t d i r ( imgdir ) :

61 # Find a l l . jpg or . png images

62 i f f i l e . lower ( ) . endswith ( " . jpg " ) or f i l e . lower ( ) . endswith ( " . png" ) :

63 # Load f i l e to the l i s t o f f i l e s

64 f i l e s . append ( f i l e )

65

66

67

68 ### Create image and ques t i on order

69

70 # Randomize the f i l e l i s t

71 random . s h u f f l e ( f i l e s )

72

73 # How many images used in one part

74 p = 50

75

76 # Loop the que s t i on s to get as many que s t i on s as the re are images in one part

77 que s t i on s_ f i na l e =[ ]

78 q i = 0

79 q = q i

80 whi le q < p+25:

81 que s t i on s_ f i na l e . append ( que s t i on s [ q i ] )

82 i f ( q i+1) == len ( que s t i on s ) :

83 q i=0

84 e l s e :

85 q i+=1

86 q+=1

87

88 # In how many par t s the experiment i s d iv ided

89 par t s = 4

90

91

92
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93 ### Devices , i n i t i a l i z a t i o n

94

95 # Short−cuts to the dev i c e s

96 g l oba l t r a cke r

97 t r a cke r=s e l f . hub . dev i c e s . t r a cke r

98 d i sp l ay=s e l f . hub . d ev i c e s . d i sp l ay

99 kb=s e l f . hub . d ev i c e s . kb

100 mouse=s e l f . hub . dev i c e s . mouse

101

102 KEYBOARD_PRESS=EventConstants .KEYBOARD_PRESS

103

104 # Hide the ’ system mouse cur so r ’ dur ing the experiment .

105 mouse . s e tSy s t emCur so rV i s i b i l i t y ( Fa l se )

106

107 # Eye t r a cke r c a l i b r a t i o n e tc

108 t r a cke r . runSetupProcedure ( )

109

110

111

112 ### Setup the Window etc .

113

114 # Create window

115 win=v i s u a l .Window( s i z e =(1400 , 1050) , pos=None , un i t s=’ pix ’ , f u l l s c r=True ,

s c r e en =1, monitor=" de f au l t " , allowGUI=False )

116

117 # Create f i x a t i o n c r o s s

118 crossImg=v i s u a l . ImageStim (win , image=os . getcwd ( )+’ \ c r o s s . png ’ , un i t s=’ pix ’ , pos

=(0.0 , 0 . 0 ) , s i z e =(50 ,50) , f l i pHo r i z=False , f l i pV e r t=False , name=f i l e , autoLog=

False )

119

120 squareImg=v i s u a l . ImageStim (win , image=os . getcwd ( )+’ \ square . png ’ , un i t s=’ pix ’ ,

pos=(−700.0 , −525.0) , s i z e =(50 ,50) , f l i pHo r i z=False , f l i pV e r t=False , name=f i l e ,

autoLog=False )

121

122 t e s t qu e s t = v i s u a l . TextStim (win , autoLog=False , un i t s=’ pix ’ , he ight =40)

123

124 t imer = core . Clock ( )

125 t imer2 = core . Clock ( )

126

127

128 f o r a in range ( par t s ) :

129

130 ### Load images f o r one part

131

132 # Make sure the images have time to be loaded

133 t iming = core . S ta t i cPe r i od ( screenHz=60)

134 # Star t a per iod o f 20 .0 s

135 t iming . s t a r t ( 2 0 . 0 )

136
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137 # Empty l i s t f o r images

138 images = [ ]

139

140 # Check that index does not go out o f range ( l e s s images in the l a s t part )

141 i f ( ( l en ( f i l e s )−(a∗p) ) < p) :

142 r = len ( f i l e s )−(a∗p)

143 e l s e :

144 r=p

145

146 # Load images used in one part

147 f o r f in range ( r ) :

148 f i l e=f i l e s [ ( f+(a∗p) ) ]

149

150 # Fl ip 25 images

151 i f f < 25 :

152 images . append ( v i s u a l . ImageStim (win , image=imgdir+f i l e , un i t s=’ pix ’ ,

pos =(0.0 , 0 . 0 ) , s i z e =(1400 , 1050) , f l i pHo r i z=False , f l i pV e r t=True , name=’FLIPPED_ ’

+ f i l e , autoLog=False ) )

153 images . append ( v i s u a l . ImageStim (win , image=imgdir+f i l e , un i t s=’ pix ’ ,

pos =(0.0 , 0 . 0 ) , s i z e =(1400 , 1050) , f l i pHo r i z=False , f l i pV e r t=False , name=f i l e ,

autoLog=False ) )

154 e l s e :

155 images . append ( v i s u a l . ImageStim (win , image=imgdir+f i l e , un i t s=’ pix ’ ,

pos =(0.0 , 0 . 0 ) , s i z e =(1400 , 1050) , f l i pHo r i z=False , f l i pV e r t=False , name=f i l e ,

autoLog=False ) )

156

157 # Randomize que s t i on s

158 random . s h u f f l e ( qu e s t i on s_ f i na l e )

159

160 # Shu f f l e images ( a l s o f l i p p ed images are randomized )

161 random . s h u f f l e ( images )

162

163 # Fin i sh 20 .0 s

164 t iming . complete ( )

165

166 #

167 t e s t qu e s t . setText ( ’ Kerro kun o l e t valmis a lo i t tamaan ’ , None )

168 t e s t qu e s t . draw ( )

169 win . f l i p ( )

170

171 # Run c a l i b r a t i o n e tc again

172 keys=event . waitKeys ( )

173 whi le ’ e ’ in keys :

174 t r a cke r . runSetupProcedure ( )

175

176 t e s t qu e s t . draw ( )

177 win . f l i p ( )

178 keys=event . waitKeys ( )

179
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180

181 # Star t Recording Eye Data

182 t r a cke r . s e tRecord ingState (True )

183

184 # Image 1 ,0 s = 60 frames

185 # Question 4 ,0 s = 240 frames

186 i_dur = 60

187 q_dur = 240

188 dur=i_dur+q_dur

189

190 f o r image , ques t i on in z ip ( images , qu e s t i on s_ f i na l e ) :

191

192

193 c_duration = random . rand int (130 ,210) # Randomize the durat ion o f

f i x a t i o n c r o s s

194

195 yes=False

196 no=False

197 answered=False

198

199 crossImg . draw ( )

200 squareImg . draw ( )

201 i f images . index ( image ) == 0 :

202 win . logOnFlip (msg= ’ Part %i s t a r t ed \n ’ %(a+1) , l e v e l=logg ing . INFO)

203 win . ca l lOnFl ip ( sendTrackerMessage , ’ Part %i s t a r t ed \n ’ %(a+1) )

204 win . ca l lOnFl ip ( sendTrigger , ( a+2) )

205 win . f l i p ( )

206 t iming . s t a r t ( c_duration /100 .0 )

207 image . draw ( )

208 t iming . complete ( )

209

210

211 f o r frameN in range ( dur+1) :

212

213 i f event . getKeys ( [ ’ e scape ’ ] ) :

214 win . c l o s e ( )

215 t r a cke r . s e tRecord ingState ( Fa l se )

216 t r a cke r . s e tConnect ionState ( Fa l se )

217 core . qu i t ( )

218

219

220 # Draw image ( and c r o s s ) and save the po int o f time o f image

s t imulus

221 i f frameN == 0 :

222 crossImg . draw ( )

223 win . logOnFlip (msg= ’IMAGE: ’ + image . name , l e v e l=logg ing . INFO)

224 win . ca l lOnFl ip ( sendTrigger , 1)

225 win . ca l lOnFl ip ( sendTrackerMessage , image . name)

226 t imer . r e s e t ( )
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227

228 e l i f frameN < i_dur :

229 image . draw ( )

230 crossImg . draw ( )

231

232 e l i f frameN == i_dur :

233 t e s t qu e s t . setText ( quest ion , None )

234 t e s t qu e s t . draw ( )

235 win . logOnFlip (msg= ’QUESTION: ’ + ques t i on . encode ( ’ a s c i i ’ ,

e r r o r s=’ r ep l a c e ’ ) , l e v e l=logg ing . INFO)

236 win . ca l lOnFl ip ( sendTrackerMessage , ’ Question : ’ + ques t i on .

encode ( ’ a s c i i ’ , e r r o r s=’ r ep l a c e ’ ) )

237 t imer2 . r e s e t ( )

238 s e r . f l u sh Input ( )

239

240 e l i f frameN == ( i_dur+1) :

241 i t ime = timer . getTime ( )

242 t e s t qu e s t . draw ( )

243 win . logOnFlip (msg= ’ Image shown : ’ + s t r ( i t ime ) , l e v e l=logg ing .

INFO)

244

245 e l i f frameN < dur :

246 i f answered :

247 i f yes :

248 t e s t qu e s t . setText ( ques t i on + (u ’ \n Vas ta s i t k y l l a ’ ) ,

None )

249 e l i f no :

250 t e s t qu e s t . setText ( ques t i on + (u ’ \n Vas ta s i t e i ’ ) , None )

251 t e s t qu e s t . draw ( )

252 x=se r . read (1 )

253 i f ( s t r ( x . encode ( ’ hex ’ ) ) == ’ 01 ’ ) and not answered :

254 answered=True

255 yes=True

256 i f ( s t r ( x . encode ( ’ hex ’ ) ) == ’ 02 ’ ) and not answered :

257 answered=True

258 no=True

259

260

261 e l s e :

262 qtime = timer2 . getTime ( )

263 win . logOnFlip (msg= ’ Question shown : ’ + s t r ( qtime ) , l e v e l=

logg ing . INFO)

264 i f yes :

265 win . logOnFlip (msg= ’Answer : YES ’ , l e v e l=logg ing . INFO)

266 e l i f no :

267 win . logOnFlip (msg= ’Answer : NO’ , l e v e l=logg ing . INFO)

268 e l s e :

269 win . logOnFlip (msg= ’Answer : SKIP ’ , l e v e l=logg ing . INFO)

270
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271 f l i p_t ime = win . f l i p ( )

272

273

274 # Stop reco rd ing eye data .

275 #

276 t r a cke r . s e tRecord ingState ( Fa l se )

277

278

279 win . c l o s e ( )

280

281

282 # Disconnect the eye t rack ing dev i c e .

283 #

284 t r a cke r . s e tConnect ionState ( Fa l se )

285

286 s e r . c l o s e ( )

287

288

289 # Meg t r i g g e r s

290 port = p a r a l l e l . P a r a l l e l ( port=0)

291 port . setData (0 )

292

293 # Se r i a l port f o r r e sponse s

294 s e r = s e r i a l . S e r i a l (0 , 115200 , t imeout=0) # open f i r s t s e r i a l port

295

296

297 ####### Launch the Experiment #######

298

299 runtime=ExperimentRuntime ( module_directory ( ExperimentRuntime . run ) , " exper iment_conf ig .

yaml" )

300 runtime . s t a r t ( )


	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Background
	Tracking of eye movements
	Eye movements
	Eye-tracking methods

	Magnetoencephalography
	Neural basis of MEG signals
	MEG measurement

	Eye movements while viewing natural scenes
	Gaze control
	Eye movements induced by faces

	Face-specific respones in the human brain

	Materials and methods
	Stimulus set
	Image preprocessing

	Experimental setup
	Gaze experiment
	Combined gaze and MEG experiment

	Data analysis
	Saccade-detection algorithms
	Comparison of scan paths
	Saliency and face maps
	Representational similarity analysis (RSA)


	Results
	Eye-tracking results
	The latency of the first saccade was shorter for images containing faces
	Faces prolong the fixation duration
	A face in the image affects the direction of the first saccade
	The similarity of scanpaths is higher between images containing a face than between images with no face
	Face maps explain scanpaths better than saliency maps

	MEG results
	Preprocessing of MEG data
	Single-trial and average MEG responses
	Resemblances of responses induced by upright and inverted images
	Correlations between brain responses and visual features


	Discussion
	References
	Locations of faces in the images
	The PsychoPy script

