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Cloud storage services like Dropbox, Google Drive and OneDrive are increasingly
popular. They allow users to synchronize and access data from multiple devices.

However, privacy of cloud data is a concern. Encrypting data on client-side before
uploading it to cloud storage is an effective way to ensure data privacy. To allow
data access from multiple devices, current solutions derive the encryption keys
solely from user-chosen passwords which result in low entropy keys.

In this thesis, we present OmniShare, the first scheme to allow client-side encryp-
tion with high-entropy keys combined with an intuitive key distribution mecha-
nism enabling data access from multiple devices. It uses a combination of out-of-
band channels and cloud storage as a communication channel to ensure minimal
and consistent user actions during key distribution. Furthermore, OmniShare al-
lows the possibility of reducing communication overhead for updating encrypted
data. OmniShare is freely available on popular platforms.
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Chapter 1

Introduction

1.1 Motivation

Over the last few years, cloud computing has become more and more pop-
ular. It brings revolutionary innovation with regards to cost, resource man-
agement and utilization. Cloud computing offers nearly unlimited resources,
highly reliable on-demand services with minimal infrastructure and opera-
tional cost. For these reasons, we now see the wide use of cloud computing
in organizations as well as by end users.

As a part of cloud computing, cloud storage services are becoming more
and more popular. These services provide users a way to store their data
on central servers instead of their local storage. Cloud storage brings many
advantages — They allow users to synchronize and access their data files
from multiple client devices. Additionally, they allow multiple clients to
collaborate on a single file.

At the same time, there is a privacy concern for data stored remotely on
cloud storage. While using cloud storage services, users have to trust the
service providers for security and privacy of their data. Anyone with access,
legitimate or otherwise, to the storage providers’ servers will be able to read
or modify data without being noticed. Mainstream services like Dropbox
[3], OneDrive [8] or Google Drive [5] may encrypt users’ data on server side
so there is no way for users to know when and how their data is protected.
There is also a possibility that these services get compromised or deliberately
give away users’ data to unauthorized third parties. Client-side encryption is
an effective way of preserving users’ data privacy. By encrypting users’ data
locally before uploading to cloud storage, privacy concern about data stored
remotely on the cloud can be minimized.

Over the last decade, a wide range of personal cloud storage services,
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CHAPTER 1. INTRODUCTION 10

including the ones which offer client-side encryption, have emerged. Ser-
vices such as Wuala [18] or SpiderOak [14] attract millions of users by these
features. However, they are incompatible with other popular services, like
Dropbox which offer much more storage capacity and features such as collab-
oration with other users or deep integration with multiple operating systems.
Other solutions such as Boxcryptor [1] or Viivo [17] allow users to easily create
encrypted files and synchronize seamlessly via Drobox, OneDrive or Google
Drive. They provide applications for multiple platforms which offer strong
client-side encryption. Users download the applications, install them and reg-
ister for accounts using credentials such as usernames and user-passwords.
These applications uses the user-passwords as secret inputs for their encryp-
tion scheme. As a result, the privacy of users’ data can be guaranteed as
long as the password is safe.

Using passwords to encrypt data is extremely common nowadays due to
its simplicity. It is an easy way for people to access their encrypted data
on cloud storage from any device of their choice. However, people might
pick low-entropy passwords. They might reuse or even write them down
somewhere. One solution for this problem is to replace passwords with strong
cryptographic keys. Nonetheless, this approach brings inconvenience to users
since they have to carry the keys and exchange them manually among devices
in order to access their encrypted data from multiple devices.

From the service providers’ point of view, client-side encryption causes
another problem. The purpose of encryption is to produce a randomized out-
put, even when the inputs are fully or partly identical. Therefore, whenever
there is a change in a file, for example, when a user edits a file, the updated
file needs to be re-encrypted and re-uploaded. Similarly, two identical files
will be uploaded twice since their encryption are totally different. This also
causes problems for clients — Clients have to download and re-synchronize
updated files again across all of their devices. Such problems consume huge
amount of network bandwidth, download/upload time and server’s storage
capacity.

To our knowledge, there has been no single complete solution that offers
client-side encryption with secure, easy-to-use key distribution mechanism,
works seamlessly with existing cloud storage services, and consumes minimal
network bandwidth as well as storage capacity.

1.2 Structure of the thesis

The rest of this thesis is divided into eight chapters. Chapter 2 describes
relevant background knowledge. Chapter 3 presents problem statement and
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requirements of the thesis. Chapter 4 and chapter 5 present the design and
implementation of our solution respectively. In chapter 6, we conducted
a thorough analysis of security, performance and usability of the solution.
Chapter 7 presents various existing client side encrypted cloud storage prod-
ucts. Finally, Chapter 8 provides a summary of the thesis and suggests
potential future work.



Chapter 2

Background

This chapter presents different topics and concepts that set the background
for our thesis.

2.1 Cloud storage

Basically, cloud storage systems are networks of data centers which use cloud
computing technology and provide interfaces for storing data [24]. They also
provide applications to interact with store data. Cloud storage services allow
users to access their stored data from anywhere at any time over the Internet.
They also enable users to share data with others. OneDrive, Dropbox and
Google Drive are among the most popular cloud storage providers available
today.

However, one major problem of cloud storage services is data security
and privacy. By uploading (sensitive) information to cloud storage, users
have to trust the storage providers for protecting their data. Nonetheless,
cloud providers can peek into data or transfer data to other parties in certain
circumstances (subpoena for example). Cloud servers can also get compro-
mised 1, resulting in exposure of users’ sensitive data. It also can be the
consequence of poor security design, e.g. before September 2013, Google did
not encrypt data while moving among data centers 2.

1http://en.wikipedia.org/wiki/2014_celebrity_photo_hack
2http://www.washingtonpost.com/business/technology/

google-encrypts-data-amid-backlash-against-nsa-spying/2013/09/06/
9acc3c20-1722-11e3-a2ec-b47e45e6f8ef_story.html
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2.2 Client-side encryption

There are different mechanisms that can be implemented to enhance security
of data stored on cloud storage. Companies can rely on building private/hy-
brid cloud architecture where data are stored entirely/partially in their lo-
cal infrastructure hence greatly enhancing security. However, this approach
is too expensive for small/medium organizations and especially for normal
users.

A more common approach is to encrypt data locally in client devices
(client-side encryption) before uploading to the cloud storage. The cloud
storage is used to store, synchronize and distribute the encrypted data across
multiple devices. The encryption keys are only distributed to devices which
users intend to access data from. Those devices form a domain of devices
which users authorize to access their encrypted data. This way, users retain
control over their encrypted data and make sure that no one except the key
holders (i.e. devices in the domain) can access the encrypted data.

There are numerous applications providing client-side encryption such as
BoxCryptor [1], SpiderOak [14] or TrueCrypt [16]. They share similar core
functions (encrypt/decrypt using keys derived from users’ password) but are
very different on architecture and user experience. Chapter 7 provides a more
detailed look on those client-side encryption solutions.

2.3 Message authentication code

A message authentication code (MAC) is a short value used to ensure in-
tegrity and authenticity of a message. One way to construct a MAC value is
to use a cryptographic hash function.

In cryptography, a cryptographic hash function is an one-way function
which takes an arbitrary length message as an input and produce a fixed
length output called hash [55]. Hash function maps the message input to the
output in a way that all outputs are equiprobable and random. Constructing
a hash from a given message is easy while it is extremely difficult to recon-
struct the input from a given hash. For this reason, hash function is used
as a way to ensure integrity of the input message. SHA-2 [52] is one of the
most widely used set of cryptographic hash function.

A MAC algorithm, which is constructed using cryptographic hash func-
tion is also called a keyed hash function. A keyed hash function takes two
different inputs, a message and a secret key to produce a fixed length output.
It is practically impossible to produce the same MAC given the algorithm
and the input message without knowing the secret key.



CHAPTER 2. BACKGROUND 14

2.4 Encryption scheme

In [38], Goldreich stated that an encryption scheme is a protocol that allow
two parties to securely communicate over an insecure channel. The com-
munication channel can be tapped by an adversary. An encryption scheme
consists two algorithms. The sender uses an encryption algorithm to trans-
form the secret message, which is called the plaintext, to a ciphertext which
does not leak any information about the plaintext and sends the ciphertext
to the receiver. The receiver applies a decryption algorithm to the ciphertext
to recover the original plaintext. In order for this scheme to be secure, the re-
ceiver must know an input to the decryption algorithm called the decryption
key that is unavailable to the adversary. On the other hand, the sender must
provide the encryption algorithm with an auxiliary input parameter, called
the encryption key, that relates to the decryption key. There are two types
of encryption schemes: symmetric key encryption and public-key encryption.

2.4.1 Symmetric key encryption

In symmetric key encryption, the encryption key and the decryption key are
the same. For this reason, the adversary must not learn about the encryption
key. Consequently, there is a problem of how two parties (sender and receiver)
can agree on a same secret key over an insecure communication channel. This
is called the key distribution problem. There are many widely used symmetric
encryption algorithms such as AES [29] and 3DES [19].

Symmetric-key encryption can either use stream cipher or block cipher.
A stream cipher is an algorithm which encrypts one bit of the plaintext at
a time with a corresponding bit of the key to get one bit of the ciphertext.
Meanwhile, block cipher takes a specific number (block size) of bits of the
plaintext and encrypts them as a single unit. To do so, a block cipher en-
cryption algorithm splits the plaintext into multiple blocks and encrypts each
block using a block cipher mode of operation, e.g. CFB, CBC, GCM [44].

Authenticated encryption

Authenticated Encryption (AE) is a block cipher mode of operation which
provides confidentiality, integrity and authenticity of the data. The encryp-
tion function using AE mode takes a plaintext message, a secret key and
optionally a plaintext header. The corresponding output includes a cipher-
text and a MAC. The optional plaintext header is not encrypted but is used
to produce the MAC value. On the other hand, the decryption function
takes the ciphertext, the secret key and the header as inputs to produce
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the plaintext output. ISO/IEC 19772:2009 [44] suggests the use of authen-
ticated encryption mode such as Galois/Counter Mode (GCM) or Counter
with CBC-MAC (CCM).

2.4.2 Public-key encryption

In public-key encryption scheme, also known as asymmetric encryption, the
encryption key does not need to be secret. Therefore, the encryption key
can be called public key while the decryption key is called private key. These
two keys form an asymmetric key pair. Asymmetric encryption is much more
computationally intensive than symmetric key encryption scheme. RSA [58]
is among the most widely used asymmetric encryption schemes.

2.4.3 Hybrid encryption

While public-key encryption scheme has an advantage that the sender and
the receiver do not need to share a common secret, it involves heavy com-
putation in comparison to symmetric key encryption scheme. Hybrid en-
cryption scheme combines the advantage of public-key encryption and the
efficiency of symmetric key encryption. In a hybrid encryption scheme, there
are two components: key encapsulation scheme and data encapsulation. A
key encapsulation scheme is a public-key encryption scheme which is used
to encrypt/decrypt a short symmetric key. Meanwhile, a data encapsulation
scheme is a symmetric key encryption scheme which is used to encrypt a long
input message. The key encapsulation scheme protects the key used in data
encapsulation scheme.

There are many standards that suggest how to use encryption (public
and hybrid) schemes correctly in practice. One of the most widely used stan-
dards is the PKCS standards family. In particular, PKCS#1 [45] provides
recommendations for implementing RSA algorithm. PKCS#1 suggests the
use of optimal asymmetric encryption padding (OAEP) to enhance the se-
curity of RSA encryption. PKCS#5 [48] suggests the use of key derivation
functions from passwords such as PBKDF2. PKCS#7 [47] defines various
padding schemes for the data encapsulation scheme.

Plain RSA is a deterministic encryption algorithm. That means encrypt-
ing two identical plaintexts with the same key yields the same ciphertext. As
a result, adversaries can launch chosen plaintext attacks by encrypting some
plaintexts with the same public key to check if the results are equal to a
ciphertext. To avoid this attack, a padding scheme that randomizes the mes-
sage before encrypting is necessary. Standard padding schemes like OAEP
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securely pad the plaintext inputs in such a way that the ciphertext outputs
are always different. That makes RSA encryptions semantically secure [21].

2.5 Key establishment

When two parties communicate with each other over an insecure channel,
they need a mechanism to establish trust among themselves. The process of
establishing trust between communicating devices which do not have any pre-
shared secret is called secure device association. The first step is to introduce
these two devices to each other. Next, they run a key establishment protocol
to agree on a shared secret that can be used to secure the communication
channel [60].

As mentioned above, when two parties communicate using symmetric key
encryption scheme, the secret key needs to be distributed between them. Key
establishment is an effective way to establish a secure communication channel
for key distribution.

Suomalainen et. al. [60] mentioned three approaches for key establish-
ment: key transport, key agreement and key extraction. Key transport is
when one device transfers the key directly to the other device with the help
of a secure out-of-band (OOB) channel. Key agreement is when commu-
nicating devices agree on a cryptographic key by running a key agreement
protocol. Key extraction measures environment specific parameters such as
radio signal or noise to extract shared secret. In the scope of this thesis, we
only consider key transport and key agreement methods.

2.5.1 Authenticated key agreement

Suomalainen et. al. [60] give a classification of different key agreement proto-
cols. Key agreement can be either unauthenticated or authenticated. Unau-
thenticated key agreement is vulnerable to man-in-the-middle (MitM) at-
tacks where an adversary intercepts communication messages between two
parties and trick them to agree on an adversary-controlled key. An example
of an unauthenticated key agreement protocol is the Diffie-Hellman (DH) key
exchange protocol [30].

On the other hand, authenticated key agreement provides communica-
tion parties with assurance that they know each other’s true identities [31].
In particular, authenticated key agreement protocols bind the agreed cryp-
tographic keys to data that can be used to authenticate the client such as
pre-shared secret, passwords or public/private keypair. In practice, there are
three ways of performing authenticated key agreement [60] as listed below:
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1. Authentication by exchanging key commitments: In this method,
the communicating devices authenticate each others’ public keys via an
auxiliary channel which is hard to spoof without being detected.

2. Authentication by short integrity checksum: Each device com-
putes a short checksum based on knowledge exchanged during the key
agreement protocol. The checksum is also known as the Short Au-
thenticated String (SAS). The final check can be performed by asking
users to visually compare the checksums. A state-of-the-art protocol
in this category is the Manual Authentication IV (MANA IV) protocol
proposed by Laur and Nyberg in [50].

3. Authentication by (short) shared secret: the pre-shared secret
passcode such as user password or an one-time-password can be used
to authenticate the key. There are different ways of generating the
passcode, e.g. requiring users to enter the passcode into one or both
devices. Another example is to transfer the passcode via secret aux-
iliary channels or derive the passcode from the shared environment.
State-of-the-art protocols for this method are the Manual Authentica-
tion III (MANA III) [37] and password-authenticated key exchange.

2.5.2 Password-authenticated key exchange

Password-authenticated key exchange (PAKE) is a family of authenticated
key agreement protocols using shared secrets. The scheme allows two par-
ties to establish a shared key using only the knowledge of a secret password.
Especially, this secret password does not need to be a high-entropy pass-
word. There are two types of PAKE, balanced PAKE and augmented PAKE.
Balanced PAKE requires both parties to have the same plaintext version
of the password, e.g. the Encrypted Key Exchange (EKE) introduced by
Bellovin et. al. [22]. On the other hand, augmented PAKE only requires the
plaintext password on one party. The other party, instead, only stores the
cryptographic hash of the password calculated with a salt, e.g. Augmented
Encrypted Key Exchange (A-EKE) [23] and Secure Remote Password pro-
tocol [65].

Secure remote password protocol

The Secure Remote Password (SRP) protocol is an augmented PAKE intro-
duced by Thomas Wu in [65]. In comparison with other augmented PAKE
protocol (e.g. A-EKE), SRP has better performance and fewer message
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rounds. The current version of SRP is SRP-6a which is specified in RFC
5054 [61]. The SRP protocol is described as follows.

All computations are performed in a finite field GF (N) where N is a
large prime number and g is a generator in GF (N). H is a hash function.
k is a multiplier parameter where k = H(N, g). a, b are secret ephemeral
values. At first, the client registers with the server with client identity I and
password P . The server generates a random salt value s and stores these
following information in a tuple.

< I, s, x = H(s, P ), v = gx >

During authentication, client initiates the SRP protocol with the server
as depicted in figure 2.1. We denote A as the client and B as the server, the
SRP protocol runs as follows.

Client (A) Server (B)

I, α = ga
I,α−−−−−−−−−−→ (lookup s,v)
β,s←−−−−−−−−−− β = kv + gb

↓ ↓
u = H(α, β′) u′ = H(α′, β)

σ = (β′ − kgx)(a+ux) σ′ = (α′vu
′
)b

Kses = H(σ) K ′
ses = H(σ′)

M1 = H(α, β′, Kses)
M1−−−−−−−−−−→ verify(M1, α′, β,K ′

ses)

verify(M2, α,M1, Kses)
M2←−−−−−−−−−− M2 = H(α′,M1, K ′

ses)

Figure 2.1: The secure remote password protocol

1. A generates a secret ephemeral value a and calculates its public value
α = ga. A then sends α to B along with its identity I.

2. First, B looks up the tuple with key I to find corresponding values s
and v. B then chooses a secret ephemeral b. After that, B generates
its own public value β = kv + gb. B sends β and s back to A.

3. Both devices compute the common value σ and the hash value Kses

of σ which A and B use as the shared session key. Now, they pro-
ceed to confirm the session key to complete the protocol. A generates
confirmation message M1 = H(α, β,Kses) and sends to B .
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4. Since B has access to α, β and Kses, it verifies the received M1. After
verification, B sends the final confirmation valueM2 = H(α,M1, Kses),
to A.

5. A verifies M2 with α, β and Kses. The successful verification of M2
indicates that the session key Kses is authenticated. Kses is used to
secure further communication between A and B .

2.5.3 Out-of-band channel

A common approach to associate two devices is to form an out-of-band chan-
nel (OOB) between them, which can be physically authenticated by users in
close proximity. The aim of OOB is to exchange information that can be used
to authenticate the key establishment protocol messages exchanged over an
insecure channel. There are various association models which involve the
use of OOB channels such as Compare & Confirm, Copy [62] or Scan Bar-
code [46](Scan). In practice, there is hardly any model that fits in every
scenario since they often depend on device hardware capabilities or user’s
environment. In the scope of this thesis, we only consider two OOB channels
that have the least security failures: Copy and Scan.

2.5.3.1 Quick Response Code

Quick Response Code (QR code) is a method of representing data in a form
of a two-dimensional matrix barcode. Unlike a standard barcode, a QR code
can store more bits of information in a single compact image. Furthermore,
users can easily scan a QR code with their smartphone camera to read the
embedded information. It is also readable from any direction. In key estab-
lishment context, scanning a QR code is an effective OOB channel for key
transport due to its increasing popularity nowadays. Figure 2.2 illustrates
an example of QR code.

2.5.3.2 Copy

In this method, a device displays a short, memorable passcode which users
type into the other device. The passcode can be treated as an ephemeral
shared-secret between two devices. Thus, it allows us to run various key
agreement protocols which are based on short shared-secret (SSS) as de-
scribed in section 2.5.1. Uzun et. al. [62] mentioned that Copy channel is
inherently resistant to fatal errors and is the most preferred personal choice
as the OOB channel that users want to use on their devices.
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Figure 2.2: An example QR code

2.6 Analysing security protocols

After designing and implementing security protocols, it is mandatory to anal-
yse them in a systematic way to ensure it’s security. First, an adversary model
is specified. Then protocol designers state various security properties that
the protocols must satisfy and finally, the protocols are analysed to check if
their security properties hold.

2.6.1 Dolev-Yao adversary model

Improperly designed security protocols are vulnerable not only to “passive”
eavesdroppers, but also to “active” adversaries who can impersonate legit-
imate users, modify or replay messages. It is important to explicitly state
the capabilities of adversaries so that we can analyse the protocols correctly.
A formal specification of the capabilities of the adversary is introduced by
Danny Dolev and Andrew C. Yao in their work on the security of public key
protocols [32]. The Dolev-Yao adversaries are capable of the following:

1. The attacker can read, modify and send any message in the network.

2. The attacker is also a legitimate network user. He can initiate a con-
versation with any other user in the network.

3. The attacker can act as a receiver or sender of any conversation with
any user in the network.

2.6.2 Security property

To design and analyse key establishment protocols, Menezes et. al. [55] sug-
gest the use of security properties. For each protocol, we need to state which
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of these properties it satisfies. We can consider various security properties
for a key establishment protocol between two entities A and B as defined in
[27].

• Implicit key authentication from A to B — Assurance for B that
no parties other than A may gain access to the established secret key.
This property does not require A to actually possess the key. For this
reason, it is specified as “implicit”.

• Key confirmation from A to B — Assurance for B that A is in
possession of the correct key.

• Explicit key authentication from A to B — is security property
that implies both implicit key authentication and key confirmation from
A to B hold. In this case, it assures B that A is the only other entity
that is in possession of the correct secret established key.

• Entity authentication of A to B — Assurance of the identity of A
to B that A has actually participated in the key establishment protocol
with B.

• Perfect forward secrecy — compromising a long-term secret key of
an entity does not compromise the keys established in previous sessions.

2.6.3 Scyther tool

Menezes et. al. [55] suggest different approaches for analysing security proto-
cols such as complexity-theoretic analysis or formal method. Formal method
analysis uses logics of authentication and various other methods which com-
bines algebraic and state-transition techniques to prove the correctness and
security of the protocols. In the scope of this thesis, we look at the tool-
supported formal method which is a formal method analysis using software
tools. In particular, we use Scyther [26], an automatic tool for verifying,
falsifying and analyzing security protocols. The tool uses protocol descrip-
tion as input then outputs a summary report along with graphs for each
attack on the protocol. The protocol description is written in spdl language
[20]. Scyther then allows user to perform different functionalities as described
below.

Verification of claims: While describing the security protocol using
spdl, users can specify different security properties in the protocol using
claim events. For example, given an agent Alice in role X, Alice can claim
that a nonce α it generated is confidential (secrecy). The correctness of this
claim will be assessed by the tool.
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Automatic claims: If there is no specific claim in the protocol de-
scription, Scyther can automatically generate claims and evaluate them. As
described above, these claims are security properties of the protocol. This
functionality allows Scyther to quickly generate an overview of the whole
protocol.

Characterization: Scyther generates and models all traceable paths of
protocol execution based on the protocol description. Users can analyse those
paths manually to gain insight of the protocol.

2.6.3.1 Role script

Listing 2.1: Scyther minimal protocol description

1 function f;

2 protocol ExampleProtocol(I,R) {
3 role I {
4 fresh N: Nonce;

5 send_1(I, R, f(N));

6 };
7 role R {
8 var N;

9 recv_1(I, R, f(N));

10 };
11 };

Role scripts are specification of the protocol written in spdl by users.
Listing 2.1 depicts a sample role script. A protocol description contains a
finite number of roles e.g. role I and R are protocol participants. Scyther
then executes the roles multiple times separately in a finite number of runs.
Roles consist of sequences of send, receive and claim events. Events have
term parameters which are constructed using role names, function names
(e.g. f), variables (e.g. N) and constants. Generally, it can be understood
as two roles are sending messages to each other via pairs of send/receive
events.

2.6.3.2 Claim

Claim events are used to model the intended security properties of the pro-
tocol. There are several pre-defined type of claim that we will use in our
modeling; they are all defined in Cas Cremers’s PhD thesis about the Scyther
tool [25].
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• Secret: A role can claim that a parameter is secret. Secrecy implies
that the information in the parameter is not revealed to an adversary,
even though the underlying protocol communicates over an untrusted
network.

• Alive: Aliveness means that whenever I completes a run with R, then
R has been running the protocol previously. In fact, R can run the
protocol with other malicious party instead of I. R can also run the
protocol even before I runs. As a consequence, aliveness can only
guarantee the entity authentication property of the protocol.

• Nisynch: Non-injective synchronisation is a property for a protocol and
a claim event. Synchronisation means that in every successful execution
of a protocol, all role players exactly follow their roles defined in the
description, i.e. exchange the expected messages, variables in intended
sequences.

• Niagree: Agreement is a weaker form of synchronization. Originally
from [53], given I is in agreement with R implies that I and R are
alive and they agree on all data variables. Nisynch is stronger than
Niagree since it ensures the sequence of operations inside the protocol.
Agreement is also equivalent to key confirmation security property.

• Reachable: Scyther will check whether this claim can be reached at all.
The claim is true if there exists a trace of the protocol where the claim
can be reached. It is used to check if there is any obvious error in the
protocol specification.

2.6.3.3 Approximating equality

In Scyther, “two terms are equal if and only if they are syntactically equiv-
alent”3. However, there are common cryptographic constructions that are
equal but require to be modeled differently. An example is the following
exponential equation:

gab(mod N) = gba(mod N) (2.1)

Such equation can be modeled in Scyther by introducing a function g with
input parameters a and b. However, g(a, b) is obviously not syntactically
equivalent to g(b, a), thus the model cannot be prove correctly.

3https://github.com/cascremers/scyther/raw/master/gui/
scyther-manual.pdf

https://github.com/cascremers/scyther/raw/master/gui/scyther-manual.pdf
https://github.com/cascremers/scyther/raw/master/gui/scyther-manual.pdf
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Scyther introduces the approximating equational theory to work around
this problem. The idea is that we can provide the adversary an ability to
learn both the equivalent classes if he knows one of them. If we model the
adversary that knows g(a, b), we can allow him to learn g(b, a) and vice versa.
Basically, we can model this behavior in Scyther role script using a helper
protocol denoted by prefix @ as follows:

Listing 2.2: Diffie-Hellman helper protocol

1 hashfunction g;

2 protocol @DH(X) {
3 role X {
4 var a,b: Ticket;

5 recv_!1(X,X,g(a,b));

6 send_!2(X,X,g(b,a));

7 };
8 };

In Listing 2.2, the helper protocol @DH allows agent X to receive g(a, b)
from anywhere. X then has the ability to produce g(b, a) and send to itself.
As a result, X learns both values in the Diffie-Hellman equivalent term.

2.7 Deduplication

Deduplication is a method of identifying multiple copies of data and storing
only a single copy of identical data. During the deduplication processes,
unique chunks of data such as files or block of bytes are analyzed to identify
duplication. In case of data duplication, only one instance of the data is
stored/transferred hence it greatly improves storage utilization and transfer
time/bandwidth. Initially, deduplication was introduced to reduce multiple
copies of files during backups [56]. Nowadays, data deduplication is a critical
part of any storage services since it reduces the total cost of ownership [43]
and user experience.

As mentioned above, encryption is a secure method to protect data in
cloud storage. However, a semantically secure encryption scheme encrypts
plaintext messages to generate different ciphertext even when the encryp-
tion key and plaintext are same. Thus, the cloud storage cannot benefit
from deduplication scheme. In 2012, Douceur [33] introduced the concept of
Convergent Encryption where the encryption key is derived from a file itself.
Convergent encryption is simply encrypting a file using symmetric encryption
scheme with a key which is the cryptographic hash of the plaintext file. Using
convergent encryption, encrypting identical files produce the same ciphertext
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thus enabling deduplication. However, convergent encryption is not seman-
tically secure as it suffers from chosen-plaintext attacks. There have been
efforts to improve the security of convergent encryption [63]. Nevertheless,
they stop at limiting the scope of the attack, not preventing it.

2.8 Data differencing

Data differencing is the process of computing the invertible differences be-
tween two sources of data namely “source” and “target”. The computed
value is called the “delta” [49]. In a situation where differences are small,
such as modifying a few bytes on a large file, the delta is also very small in
comparison with the original source or target. Thus, it is more efficient to
transmit or store the delta rather than the whole big file. A standard for-
mat for storing a delta is VCDIFF [49]. The format is compact, portable,
generic and efficient.

Delta encoding is a method to generate delta. It involves two algorithms,
encoding and decoding. The encoding algorithm takes the source as an in-
put and the target to generate delta as an output. On the other hand, the
decoding algorithm uses the source and the delta to reproduce the target.
open-vcdiff [10] is a tool developed by Google, which follows VCDIFF stan-
dard to provide delta encoding.
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Problem Statement

3.1 Problem description

Client-side encryption is an effective way of preserving security and pri-
vacy for users’ data in cloud storage. However, enabling access to users’
encrypted storage from multiple client devices requires an efficient key dis-
tribution mechanism. State-of-the art solutions rely on users’ passwords to
derive and distribute the keys across client devices. However, this is not a
competent solution since it is hard for users to generate and remember good
passwords.

An effective client-side encryption solution designed for the cloud storage
should exhibit the following features.

• Automatically encrypt files before uploading to cloud storage.

• Securely distribute the keys across users’ domain of devices.

• Work seamlessly with existing cloud storage services.

• Offer well balanced security and usability by providing consistent and
intuitive user interactions without sacrificing security.

• Reduce the cost of network bandwidth and storage capacity for en-
crypted storage.

3.2 Requirements

In order to design such a solution, we define the adversary model and identify
different system requirements as explained in the following subsections.

26
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3.2.1 Adversary Model

The adversary model is as follows. Authorized devices in users’ domain
of devices access plaintext files on encrypted cloud storage. We assume the
devices themselves are trustworthy. The adversary has Dolev-Yao capabilities
over the cloud storage. That means the adversary has full access to users’
cloud storages. They can read, create and modify files on users’ storage
without being noticed. We do not attempt to protect against denial-of-service
attacks, e.g. by deleting files in the cloud storage. We also assume that the
adversary cannot listen/observer or tamper with the local communication
among legitimate devices and users.

3.2.2 Security requirements

S1. Strong client generated keys: The system should use strong keys
generated locally on the client device.

S2. Authenticated file encryption: The system should encrypt files
at client side before uploading to cloud storage using authenticated
encryption.

S3. Plaintext access from multiple devices: All authorized devices
should be able to download files from the cloud storage and decrypt
them to access plaintext files.

S3.1 Secure key distribution: The system should offer a key dis-
tribution mechanism for transferring the keys across authorized
devices. Key distribution protocols must be operational and se-
cure. In particular, the protocols should satisfy security properties
defined in 2.6.2.

S3.2 Avoiding third-party servers: The system should not depend
on any third-party server except the cloud storage provider to
store and distribute the keys.

3.2.3 Usability requirements

U1. Consistent user experience: The system should exhibit consistent
user experience (instructions, workflow) across different platforms.

U2. Intuitive user interface: The system should have the following char-
acteristics.
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U2.1 Familiar user experience: The system should provide a familiar
user experience with other related products so that we can avoid
the problem of the user not knowing what to do and the overhead
of explanation.

U2.2 Clear instruction: Instructions given by the system should be
clear and simple. We want to avoid technical terms that are un-
familiar to normal users.

U3. Minimum interaction: The system should automatically handle most
of the processes and decisions. We want to minimize user involvement
in configuring the system. As a result, the system is more convenient
to use and resilient to users’ mistakes.

3.2.4 Additional system requirements

A1. Multiple platforms

A1.1. Multiple device types: The system should work on multiple
device types. In particular, it should work on both desktop and
mobile devices. It should also works with devices which have
different hardware features such as camera or NFC.

A1.2. Multiple cloud storage: The system should work with multiple
popular cloud storage providers such as Dropbox, Google Drive or
OneDrive.

A3. Extensibility and maintainability: The system should be modular-
ized into loosely-coupled components and well-documented. This way,
it is easy to re-use, maintain and add new features to the system.

A4. Reducing network overhead: File updates should minimize network
communication overhead of the cloud storage service.
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Approach

This chapter introduces and explains the design decision of our client-side
encryption solution for cloud storage.

4.1 High level architecture

We present OmniShare as our solution that is designed based on requirements
defined in section 3.2. OmniShare is the first scheme to allow client-side en-
cryption with high entropy keys for cloud storage combined with an intuitive
key distribution mechanism enabling data access from multiple client devices.

Dropbox, OneDrive, etc, provide client-side applications that run on client
devices and allow users to operate on their storage. Since we want Om-
niShare to work with multiple cloud storage (requirement A1.2), we design
OmniShare as a software client working on top of existing cloud storage.
Basically, OmniShare introduces an intermediate layer providing data en-
cryption/decryption between user data and cloud storage client. OmniShare
takes users’ data, encrypts them and feeds them to the cloud storage client
application as input. Figure 4.1 describes a high level architect of OmniShare
which consists of four components: OmniShare domain, key hierarchy, key
distribution, and synchronization.

4.2 OmniShare domain

We present the concept of OmniShare domain which creates a container in a
user’s cloud storage that allows user to store his encrypted data and a domain
of devices that he authorized. OmniShare protects users’ data by encrypting
them with standard encryption algorithm and storing ciphertext files inside
the domain container. Since the container is entirely on the users’ cloud

29
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Figure 4.1: OmniShare components

storage, it is accessible from all devices of the domain owners as long as they
are authenticated to the cloud service provider. However, only authorized
devices that belong to the user’s domain of devices can decrypt ciphertext
files inside the container to gain access to the plaintext files. We also call
this container an encrypted storage.

Users provide access permission to their plaintext files by authorizing
devices that they wish to access the encrypted storage from. To do this,
we introduce the authorization process where users authorize their personal
devices. Figure 4.2 depicts an OmniShare domain and its components. We
call a user device that is authorized into the domain as an authorized device.
Whereas the new device is the one that the user wants to introduce to the
domain and allow access to plaintext files. As in the picture, the new device
is outside of the users’ domain of devices, thus cannot access the plaintext
files.

When a user initiates OmniShare from a device, it creates a new Om-
niShare domain. The domain creation process involves (i) creating the con-
tainer which is a directory called OmniShare directory in users’ cloud storage,
(ii) creating a domain specific symmetric Root key, (iii) creating a domain de-
scriptor file called .OmniShare inside OmniShare directory to maintain a list
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Figure 4.2: OmniShare domain

of authorized devices for that domain. After that, OmniShare automatically
adds the device as the authorized device in the domain descriptor file.

4.3 Key hierarchy

For each user’s authorized device, OmniShare generates an asymmetric key
pair (Device Keys) which consists Device Private Key and Device Public
Key. Device Private Key is stored and protected using platform specific
mechanism.

When a file is first created, OmniShare generates a new File Key to
encrypt the file. OmniShare also generates a new Directory Key for each
directory inside the OmniShare container. OmniShare maintains a key hi-
erarchy where key at each level encrypts the key at the level below starting
from RK. It uses a lock-box data structure to limit Root Key access only to
users’ authorized devices. Root Key is encrypted separately with the Device
Public Key of each authorized device.

Figure 4.3 depicts an example of a key hierarchy that belongs to an Om-
niShare domain including the lock-box data structure that limits Root Key
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Figure 4.3: OmniShare key hierarchy example.

(RK) access to only device A. RK is encrypted using PKA and stored in
the domain descriptor file. The key hierarchy corresponds to the directory
structure inside OmniShare directory. In particular, we use RK to encrypt
Directory Key Kd1 of directory d1. Kd1 is used to encrypt Directory Key
Kd2 of the next level directory d2. Then, Kd2 is used to encrypt File Key
Kf which, in turn, is used to encrypt plaintext file f . The encryption of Kf
is stored along with the encrypted file f while encrypted Kd1 and Kd2 are
stored in their corresponding directories.

OmniShare key hierarchy offers several benefits. First, it minimizes the
number of keys that need to be distributed. In particular, we only need to
distribute Root Key securely among authorized devices so that these devices
can decrypt other encrypted keys and ciphertext files. Secondly, since we
use different File Keys and Directory Keys, it is easy to implement share
features. For example, to share files or directories with other users’ devices,
we can simply give these devices the corresponding File Keys or Directory
Keys. Finally, the key hierarchy minimizes the impact when a specific File
Key is compromised, in this case, other keys remain secure.
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4.4 Key distribution

As we introduced before, device authorization is when users authorize their
personal devices for accessing plaintext files inside OmniShare domain. To
do this, on a new device, OmniShare presents users with an interface to select
one of their previously authorized devices from their domains. After that,
OmniShare runs an automatic capability discovery process to establish an
OOB channel between the new device and the selected authorized device.
Then, it runs a key distribution protocol depending on the OOB channel.

4.4.1 Cloud storage communication channel

Running a key distribution protocol between two devices which do not have
pre-shared secret requires a communication channel. An approach to estab-
lish such channel is to use auxiliary bi-directional channels such as NFC or
bluetooth. However, these auxiliary channels are not available on all devices.
For this reason, we decided to use the cloud storage itself as a communication
channel for our key distribution protocol. Basically, two devices exchange
messages by uploading/downloading files containing the messages to/from
the cloud storage.

The advantage of cloud storage communication channel is that it is avail-
able for all devices (requirement A1.1) since it only requires internet connec-
tion. It is also can be fully-automated since devices can upload and download
files automatically without requiring users’ involvement. Thus, it ensures the
minimum interaction requirement U3. However, since adversaries can access
the cloud storage, this communication channel is insecure. Therefore, we still
need an OOB channel to authenticate information exchanged via the cloud
storage communication channel.

4.4.2 Automatic capability discovery

OmniShare supports two types of OOB channels, i.e. Copy and Scan chan-
nels. These channels rely on device auxiliary hardware features that can
be used as input/output interfaces called device capabilities. In particular,
for Copy channel, one device needs a monitor to display the passcode while
the other device needs a keyboard for users to type the passcode in. On the
other hand, for Scan channel, a QR code is displayed on one device’s monitor
whereas the other device scans the QR code using its camera.

Table 4.1 lists capabilities that OmniShare uses, their usages and prior-
ities. Input means that the feature can be used for receiving information.
Output indicates that the feature is used for sending information. Priority
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is a value starting with 1 as the highest priority that we hard-coded so that
the application can sort and choose the highest priority capability. However,
these values can be re-defined at will.

Feature Usage Default priority
Camera Input 1
Monitor Output 1
Keyboard Input 2

Table 4.1: Device capabilities used in OmniShare

As shown in table 4.1, Monitor is the only output capability since we
assume that all devices have monitors. On the other hand, we choose Camera
as the first priority input capability and Keyboard is the secondary one. The
first reason is that we want to experiment with different OOB channels.
If keyboard has higher priority than camera, the Copy channel will always
be prioritized over the Scan channel since we assume that all devices have
keyboards. The second reason is that our key distribution protocol using
Scan channel is much faster than the one using Copy channel. Details about
the measurement are presented in chapter 6. If a device does not have any
camera, it’s priority for keyboard is set to 1.

OmniShare stores a list of capabilities for each authorized device in Om-
niShare domain in the domain descriptor file. For a new device, at first, it
downloads the list of capabilities of the authorized device that users select.
The new device then chooses an OOB channel by running a matching algo-
rithm with inputs are capabilities list of both devices. After that, the new
device sends it’s capability list to the selected authorized device by uploading
the list to the cloud storage. The selected device runs the same matching
algorithm with the same inputs as the new device. Thus, they select the
same OOB channel. This process is called the automatic capability discovery
process.

Currently, we implement a simple matching algorithm which only depends
on the input capability of the authorized device. In particular, if the highest
priority input capability of the authorized device is camera, the algorithm
returns Scan channel. Otherwise, the algorithm returns Copy channel. How-
ever, this algorithm can be generalized in the future to adapt with different
capabilities and OOB channels.

We then developed two key distribution methods — key distribution via
QR code for Scan OOB channel and key distribution using SRP for Copy
OOB channel. The two protocols communicate using cloud storage commu-
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Figure 4.4: Key distribution using QR code

nication channel.

4.4.3 Key distribution via QR code

Our key distribution via QR code protocol is depicted in Figure 4.4. We
denote the new device as A and the selected authorized device as B. The
protocol runs as follows.

1. First, A sends its public key PKA to B.

2. Since the cloud communication channel is insecure, B needs to verify
PKA. To do this, A displays a QR code consisting of the cryptographic
hash value H of PKA and a random session key Kses. B requires the
user to scan the QR code. B can then verify PKA using H. B must
abort the process if the verification fails.

3. After verifying PKA, B encrypts RK with PKA to get M1 and sends
back to A via the cloud storage communication channel. Here, A also
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need to verify the authenticity of M1. Therefore, B also appends M1
with an HMAC value M2 of message M1 using Kses as the key. B
informs the user that the new device (A) has been authorized.

4. In the final step, A verifies the M2 with Kses to ensure the integrity
and authenticity of M1. After that, A can decrypt M1 with its Device
Private Key (SKA) to obtain RK. Finally, A informs users that the
key exchange process is completed. A can start using RK to access
encrypted data on the storage.

In this protocol, we use H and M2 to authenticate PKA and M1 re-
spectively. Without H, the protocol is vulnerable to MitM attack where
adversary C can replace PKA with its public key PKC so that B is tricked
to send RK to C. Similarly, C can send M1′ = Enc(PKA, Kfake) to A. In
the later case, device A is tricked to use Kfake as its Root Key. Thus, it
allows users to encrypt and upload files using the key which is available to
the adversaries.

4.4.4 Key distribution using SRP

In this key distribution protocol, we use the Copy OOB channel where users
enter a short share secret, which is displayed on one device’s monitor, to
another device using a keyboard. Popular authenticated key establishment
by short shared secret methods are MANA III and PAKE protocol family.

[60] describes a variant of the MANA III protocol which is used in Wi-
Fi Protected Setup (WPS). The protocol splits the short shared secret into
k pieces. Both devices repeatedly prove their knowledge of each piece by
exchanging commitment values. The probability of a successful attack from
a adversary is inversely proportional to the length of the shared secret and k.
However, the protocol uses too many rounds of message exchange, i.e. 4 ∗ k.
Thus, it is not suitable for our cloud storage communication channel.

On the other hand, PAKE protocols are better in terms of minimizing
message exchange rounds. Figure 4.5 depicts key distribution between two
devices using PAKE on an abstract level. The protocol runs as follows:

1. A generates a short passcode P and displays to the user. The user also
is required to enter passcode P from A.

2. A and B run PAKE protocol to derive session key Kses.

3. B uses authenticated encryption to encrypt RK with key Kses to get
M and sends to A. A then decrypt M with Kses to get RK. We use
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Figure 4.5: Key distribution using PAKE

authenticated encryption in this case to ensure both confidentiality and
integrity of RK.

Among PAKE protocols, we choose SRP protocol which not only has best
performance in comparison to other augmented PAKE protocols but has been
widely deployed in mainstream systems such as OpenSSL 1 or GnuTLS 2.
Specifically, we use SRP version 6a [64]. Figure 4.6 depicts key distribution
between two devices using SRP. In our SRP set-up, the new device (A) plays
the role of the client while the selected authorized device (B) is the server.

In section 2.5.2, B generates and stores the salt value s after A’s registra-
tion. In our SRP set-up, the password is generated and entered manually by
users on both devices hence there is no need for the registration step. Thus,
B generates s on-the-fly and sends to A. Additionally, we also concatenate
the final message M with the final message M2 of the original SRP and send
them together to A. As a result, we save one round of communication.

1https://www.openssl.org/
2http://www.gnutls.org/manual/html_node/Authentication-using-SRP.

html

https://www.openssl.org/
http://www.gnutls.org/manual/html_node/Authentication-using-SRP.html
http://www.gnutls.org/manual/html_node/Authentication-using-SRP.html
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Figure 4.6: Key distribution using SRP

4.5 Synchronization

Existing cloud storage solutions automatically take care of data synchroniza-
tion among their client devices. OmniShare introduces an intermediate layer
providing data encryption/decryption between user data and cloud storage
client. It is important to ensure a reliable synchronization between Om-
niShare and the cloud storage clients without requiring any change from
the cloud providers. Here, we designed two approaches to synchronization
between unencrypted data and encrypted data.



CHAPTER 4. APPROACH 39

4.5.1 The interceptor pattern

A straightforward solution for synchronization between user data and cloud
storage clients is to intercept and modify interactions (e.g. creation, modifi-
cation, deletion of files and directories) between users and the cloud storage
clients. Some cloud providers provide APIs to interact with their clients or
servers 3. Using these APIs, we can intercept and encrypt files before upload-
ing to the cloud storage. Similarly, we can decrypt files after downloading
ciphertext from cloud storage servers. This solution is easy to implement
since most of the operations are provided by the storage APIs. It makes the
encrypt/decrypt process become transparent to the rest of the system; thus,
other features such as versioning, conflict handling can be left to the storage
client to handle.

However, it is not practical for situations where there are many interac-
tions between users and their data in a short period of time. In these sit-
uations, data need to be re-encrypted/decrypted frequently. That increases
network traffic and resource consumption, hence user experience may reduce.
It also increases dependency of the system to a specific cloud storage’s APIs.

4.5.2 The periodic synchronization pattern

Another approach to synchronization between users’ data and cloud storage
clients is to provide a local plaintext directory on a user’s device. The idea
is to periodically encrypt user data in this plaintext directory and put en-
crypted data into a ciphertext directory. The ciphertext directory will be used
as inputs for the cloud storage clients to synchronize with the OmniShare con-
tainer. This approach eliminates the scalability issue with frequent updates
on files in comparison with the previously described approach. However, it
introduces more complexity. As a result, it is error-prone and much more
complicated to implement. We call this approach as periodic synchronization
pattern.

Assume that each user device has access to a consistent clock. In the
periodic synchronization pattern, a simple version control system records
changes in both plaintext and ciphertext directory with regards to the time
that those changes happen. We use a meta-data database for this purpose.
The database has maps of simple (key, value) tuples where key is the relative
path to the file/directory inside a directory (plaintext or ciphertext) and value
which is the last modification time (LMT) of that file. LMT is the last time
that file is written to. For example, a plaintext file f inside a sub-directory
d of the plaintext directory created at time x is stored in PlaintextMap as

3https://www.dropbox.com/developers/core

https://www.dropbox.com/developers/core
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< /d/f, x >. Meanwhile, its encrypted counterpart f.os in the ciphertext
directory created at time y is stored in CiphertextMap as < /d/f.os, y >.

There are two phases in periodic synchronization pattern. The first phase
is upload where changes from plaintext directory are applied to ciphertext
directory. The second phase is download phase where changes are applied in
the reverse order.

In upload phase, first we run DetectPlaintextChanges algorithm to de-
tect all changes in plaintext directory. Algorithm 1 describes DetectPlain-
textChanges algorithm. Basically, we loop through all files in the plaintext
directory. For each file, we get its LMT C1. If there is no equivalent Cipher-
textFile (same relative path) in the ciphertext directory, we can conclude the
PlaintextFile is a new file. Therefore, we put it into NewFileList. If there is
a CiphertextFile in the ciphertext directory, we get LMT value C from the
PlaintextMap in database using the path of PlaintextFile as the key. Now,
there are three options. If C is NULL or C is bigger than C1 (i.e. the
current file is older than the file in database), there must be problem with
the database. Therefore, we return an error as corrupted database. C < C1
indicates that the plaintext file has been modified. Thus, it is added to the
ModifiedFileList. Otherwise, if C and C1 are equal, the plaintext file does not
change. We add unchanged files to a SynchronizedFileList. After the loop,
we check all files in the PlaintextMap. If there is a file that is not in any list
that we just constructed, it indicates the file is deleted so we can add the file
to the DeletedFileList. The return value of the algorithm is a list combined
by NewFileList, ModifiedFileList, DeletedFileList and SynchronizedFileList.

After running DetectPlaintextChanges, we also need to run DetectCipher-
Changes which is basically the same algorithm but for ciphertext directory.
The result is a list consists of new, modified, deleted and synchronized cipher-
text files.

After detecting changes, we run the UploadSync algorithm to apply the
changes from plaintext directory to ciphertext directory. Algorithm 2 de-
scribes the synchronization process for new files and deleted files. We loop
through the list of new file from DetectPlaintextChanges result, encrypt and
store them in the ciphertext directory. For deleted plaintext files, we can
simply remove the corresponding CiphertextFile.

Algorithm 3 describes how we synchronize modified files from plaintext
directory to ciphertext directory. Basically, for each PlaintextFile in L1,
we find the corresponding CiphertextFile in ciphertext directory. L2 is the
result of DetectCipherChanges. If L2 does not contain CiphertextFile, there
is problem with the meta-data database since in DetectPlaintextChanges,
we make sure that CiphertextFile exist. Otherwise, we check the status of
CiphertextFile. If the status is synchronized (i.e. CiphertextFile belongs to
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Algorithm 1 Detect changes in plaintext directory

1: procedure DetectPlaintextChanges
2: for each File PlaintextF ile in PlaintextDirectory do
3: Time C1 = GetLMT(PlaintextF ile);
4: File CiphertextF ile = GetCiphertextFile(PlaintextF ile);
5: if CiphertextF ile NOT exist then
6: NewFileList.Add(PlaintextF ile);
7: else
8: Time C = PlaintextMap.GetValue(PlaintextF ile.Path);
9: if C == NULL then

10: Error(corrupted DB);
11: end if
12: if C < C1 then
13: ModifiedF ileList.Add(PlaintextF ile);
14: else
15: if C > C1 then
16: Error(corrupted DB);
17: else
18: SynchronizedF ileList.Add(PlaintextF ile);
19: end if
20: end if
21: end if
22: end for
23: File[] DBList = PlaintextMap.GetAllKeys();
24: for each File f in DBList do
25: if f NOT in NewFileList
26: && f NOT in ModifiedF ileList
27: && f NOT in SynchronizedF ileList then
28: DeletedF ileList.Add(f);
29: end if
30: end for
31: Result = Join(SynchronizedF ileList, NewFileList,
32: DeletedF ileList, ModifiedF ileList);
33: Return Result
34: end procedure

SynchronizedFileList), we can safely encrypt PlaintextFile and store in the
ciphertext directory. On the other hand, if the status is new or modified,
there is a conflict between the change in PlaintextFile and in CiphertextFile.
In the scope of this thesis, we do not address problems such as corrupted DB
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Algorithm 2 Synchronize new and deleted plaintext files

1: procedure UploadSync
2: L1 = DetectPlaintextChanges();
3: L2 = DetectCipherChanges();
4:

5: for each PlaintextF ile in L1.NewFileList do
6: Encrypt(PlaintextF ile);
7: end for
8:

9: for each PlaintextF ile in L1.DeletedF ileList do
10: CiphertextF ile = GetCiphertextFile(PlaintextF ile);
11: if CiphertextF ile exist then
12: Delete(CiphertextF ile);
13: end if
14: end for
15: ...
16: end procedure

or conflict. However, our algorithms detect those problems and report to the
main system runtime. As a result, we can tackle those problems in our future
work.

After running upload phase OmniShare executes the download phase.
Basically, we run DetectCipherChanges and DetectPlaintextChanges first.
Then, we run DownloadSync algorithm which is similar to UploadSync but
for ciphertext files.

In summary, cloud storage client application synchronizes encrypted files
in the cloud while OmniShare with meta-data database ensures the consis-
tency between plaintext files and ciphertext files using the periodic synchro-
nization pattern.

4.5.3 Incremental synchronization

As pointed out before, deduplication is an important feature of cloud stor-
age service. However, conventional encryption defeats the whole purpose of
deduplication. Even if two data units are slightly different, encryption makes
the outputs completely different. Figure 4.7 describes this situation. Let δP
is the difference between two version of a file. If there is just a small change
to the original file, δP is equal to the size of the change, which is considerably
smaller than the size of the original file size. Nonetheless, after encryption,
the two outputs are totally different, the difference between those two files
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Algorithm 3 Synchronize modified files

1: procedure UploadSync
2: L1 = DetectPlaintextChanges();
3: L2 = DetectCipherChanges();
4:

5: ... . synchronize new file
6: ... . synchronize deleted file
7: for each PlaintextF ile in L1.ModifiedF ileList do
8: CiphertextF ile = GetCiphertextFile(PlaintextF ile);
9: if L2.exist(CiphertextF ile) then

10: if CiphertextF ile.status == synchronized then
11: Encrypt(PlaintextF ile);
12: end if
13: if CiphertextF ile.status == new then
14: Report(conflict);
15: end if
16: if CiphertextF ile.status == modified then
17: Report(conflict);
18: end if
19: else
20: Report(corrupted DB)
21: end if
22: end for
23: end procedure

are approximately the same as the file size. As a result, even thought cloud
storage services might implement deduplication, they still need to upload the
whole file again every time there is a change to the original file.

To tackle this problem, we propose a simple solution, called incremental
synchronization. In short, we extract the binary difference between two ver-
sions of a file to construct Diff file. Diff file is then encrypted and stored
separately from the original file. With this approach we can save consid-
erable amount of network bandwidth used for uploading/downloading files
considering the size of an encrypted diff file are much less than that of an
original file (Requirement A3).
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Figure 4.7: Encryption does not keep the update difference.

Figure 4.8: OmniShare incremental synchronization for deduplication



Chapter 5

Implementation

This chapter describes the implementation details of OmniShare on two dif-
ferent platforms: Android and Windows.

5.1 Features

As in any software development project, we define user stories [54] that are
built around the list of requirements described in section 3.2. Each user
story explains a descriptive insight of the feature that we need to implement
in order to fulfil the requirements. User stories define how actors interact
with the system and why they do so. The purpose of writing user stories is
to simplify the high level requirements into concrete, small features that can
be developed independently during development phase.

There are two actors, User and Application. By application, we mean
the OmniShare application itself. Features used by the application work
automatically without requiring interactions from users.

Each user story has 3 parts:

1. Story name: a short name for each user story.

2. Formal description: each user story is written using a common tem-
plate:
As a {type of actor},
I want {to perform some task}
so that I can {achieve some goal/benefit/value}.

3. Informal explanation: verbal explanation of each story using infor-
mal, less-technical words.

The list of user stories is written below:

45
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Story 1: Linking OmniShare to Dropbox

As a user, I want to link my OmniShare application to my Dropbox
account so that I can use Dropbox as my encrypted storage.
In order to use Dropbox as storage, users need to provide their Dropbox
credentials to OmniShare. After that, OmniShare can operate (download or
upload files) on Dropbox on behalf of users.

Story 2: Upload encrypted file

As a user, I want to encrypt files using OmniShare then upload
them to Dropbox so that nobody can access my files without my
permission.
OmniShare encrypts all files before uploading to users’ Dropbox cloud stor-
age. This story addresses requirement S2.

Story 3: Access plaintext file

As a user, I want to download my ciphertext files from my en-
crypted storage on Dropbox and decrypt them so that I can access
their plaintext content.
OmniShare downloads ciphertext files from Dropbox then decrypts them lo-
cally so that users can access the plaintext content. This story matches
requirement S3.

Story 4: Unlink from OmniShare

As a user, I want to unlink OmniShare on a device from Dropbox
so that the device can no longer access plaintext files protected by
OmniShare domain.
By unlinking the device from OmniShare, the application deletes the local
Device Keys. As a result, the device is unable to decrypt the Root Key to
decrypt ciphertext files in the container. The application also removes its
entry from the domain descriptor file.

Story 5: Request for authorization

As a user, I want to request for authorization from a new device to
OmniShare domain so that I can access plaintext files in OmniShare
domain from the new device. OmniShare allows user to select a suitable
device from the list of previously authorized devices. After that, the new
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device sends a request called admission to the chosen authorized device and
initiates a key distribution protocol. This story is a part of requirement S3.1.

Story 6: Authorize a new device

As a user, I want to authorize a new device from an authorized
device in OmniShare domain so that I can access plaintext files in
OmniShare domain from the new device.
After receiving request admission request from a new device, the selected
authorized device runs in the authorization process. As a result, the new
device receives Root Key and is added to the domain descriptor file as an
authorized device. This story is a part of requirement S3.1.

Story 7: Create directory structure

As a user, I want to create directories in my OmniShare domain
so that I can put my files inside the new directories
Users can create directory structure inside their OmniShare container. For
each newly created directory, OmniShare creates a Directory Key and stores
it inside the directory.

Story 8: Check authorization status

As an application, I want to check if I have access to plaintext files
inside OmniShare container or not, so that I can request for au-
thorization
After logging into Dropbox account, OmniShare can detect if the current
device can access the plaintext files on OmniShare container by checking the
content of the domain descriptor file. If it does not have the accessibility,
OmniShare informs users to start the authorization process. On the other
hand, if the device already has access rights, users can start downloading/u-
ploading files to the encrypted storage. This story is a part of requirement
S3.1.

Story 9: Get device list

As a user, I want to read the list of authorized devices in my
OmniShare domain so that I can choose one to authorize my new
device
A new device needs to know about authorized devices listed in the domain
descriptor file. It also learns device information such as device name, device
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public key, capabilities and device identity. This story is a part of requirement
S3.1.

Story 10: Detect authorization request

As an application, I want to automatically detect new device au-
thorization request sent to me so that I can start the authorization
process
To reduce the number of interactions from users, OmniShare automatically
detects authorization requests from a new device. When the new device
sends a request to an authorized device, the authorized device needs to react
automatically without requiring any interaction from the user. This story is
a part of requirement S3.1 and U3

Story 11: Establish OOB channel

As an application, I want to automatically establish an OOB chan-
nel between a new device and an authorized device so that I can
determine which key distribution protocol to use
OmniShare compares lists of device capabilities from the new device and the
select authorized device to select a suitable pair of capabilities for establish-
ing OOB channel. This story addresses a part of requirement S3.1, and
U3

5.1.1 User story analysis

Based on OmniShare requirements and our high level design, we have divided
the system into eleven specific user stories. First, users link OmniShare to
their Dropbox storage (story 1) on their devices. Users can upload cipher-
text files (story 2), read plaintext files (story 3) as well as create directory
structures inside OmniShare container (story 7) on that device. When users
want to use another device, they need to identify their list of authorized de-
vices (story 9). Then, users can request for authorization(story 5) and
accept that request from the selected authorized device (story 6). The au-
thorization process is fully automated with the help of story 8, story 10
and story 11. Finally, users can unlink an authorized device to remove it
from their OmniShare domain when they do not want to use that device any
more (story 4). These stories combine into a fully functional client-side en-
cryption application for cloud storage (Dropbox). We developed and tested
them independently on both Windows and Android (Requirement A1.1).
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5.2 Software design specification

When users access OmniShare from a device for the very first time, the
application creates a Device Key pair. It also creates an Authentication Key

5.2.1 Device Key pair

OmniShare Device Keys are 2048-bit RSA key pair. OmniShare stores private
part of the key pair securely using platform specific secure storage mecha-
nism, whereas Device public key is listed in the domain descriptor file. In
particular, to store the Device private key, we use Android Keystore [40] in
Android and Next Generation Cryptography API (CNG) [57] in the Windows
implementation.

5.2.2 Authentication key

In each device, OmniShare generates a random 128-bit authentication key
to use as the key for HMAC-SHA256 calculation. Authentication key is
generated at the same time as Device Key pair. Similar to Device Key pair
OmniShare stores authentication key using platform specific secures storage
mechanism.

5.2.3 Domain descriptor file

The domain descriptor file is called .OmniShare. OmniShare creates the file
and stores it inside the container. The .OmniShare file contains a JSON ar-
ray. Each array element contains devices specific information: identity, name,
public key, capabilities and encrypted Root Key. We encrypt the Root Key
with Device Public Key using RSA with Optimal Asymmetric Encryp-
tion Padding scheme (OAEP). Each array element is integrity-protected
by a HMAC-SHA256 value using the corresponding Authentication Key
of the device. The structure of .OmniShare is described in Listing 5.1 while
Table 5.1 defines JSON data for each array element.

Listing 5.1: .OmniShare file JSON structure

1 [

2 {
3 "Entry":{
4 "DeviceId":"",

5 "DeviceName":"",

6 "PublicKey":"",
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7 "RootKey":"",

8 "Capabilites":[

9 {"Name":"",
10 "Priority":"",

11 "Direction":""

12 },
13 ...

14 ]

15 },
16 "Hmac":""

17 };
18 ...

19 ]

Entry Information for each device in the domain
DeviceId Unique identify for each device
DeviceName Name of the device
PublicKey Public Key of the device
RootKey Encrypted RK using Device Key
Capabilites Device’s hardware capabilities, Capabilities is a JSON

array
Name Name of the capability: NFC, CAMERA, KEYBOARD

or MONITOR
Priority priority preference of the capability
Direction direction of data exchange: IN or OUT
Hmac HMAC value of Entry object

Table 5.1: .OmniShare JSON data definition

5.2.4 Key hierarchy

In OmniShare key hierarchy, all keys are 128-bit AES keys. Unlike Root key,
OmniShare encrypt all other keys using 128-bit AES in Galois/Counter
Mode (GCM) with 96-bit (12 bytes) Initialization Vector and 128-
bit (16 bytes) MAC length. Encrypted keys are stored as follows: 12
bytes Initialization Vector, 16 bytes ciphertext and 16 bytes MAC. The for-
mat of an encrypted key is depicted in figure 5.1.

When a new directory is created, OmniShare generates a new Directory
Key and encrypts it following the key hierarchy structure. Encrypted Di-
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Figure 5.1: Format of an encrypted key

rectory Key is stored in a file named .envelope.omnishare inside the newly
created directory. When a file f is created, OmniShare encrypts f with a
new File Key Kf . Kf is then encrypted using the Directory Key stored in
.envelope.omnishare file of the directory under which the file is stored. Fi-
nally, OmniShare prepends this encrypted File Key to the encrypted file. The
format of an encrypted file is depicted in figure 5.2. We also use AES-GCM
to encrypt f .

Figure 5.2: Format of an encrypted file

5.2.5 Device authorization work flow

To minimized users’ interaction during authorization, we automated most of
the authorization steps. In particular, OmniShare only requires users’ actions
in selecting the authorized device and transferring messages over the OOB
channel. The rest of the authorization steps execute over the cloud storage
communication channel (section 4.4.1).
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5.2.5.1 Message structure

The message structure is described in listing 5.2. Each message is a file
with a random Universally Unique Identifier (UUID) [51] as the filename.
The file’s content is a JSON object where Body is the message payload,
Hmac is an optional keyed hash value of the body to protect its integrity
and AnswerF ileName is the name of the file that the sender is expecting as
a response. Similar to the file name, AnswerF ileName field is also a UUID.

Listing 5.2: Common message JSON structure

1 {
2 "Body": "",

3 "Hmac": "",

4 "AnswerFileName": ""

5 }

5.2.5.2 Expected Polling

When a new device sends the first admission message to an authorized device,
we need a mechanism to convey that the selected authorized device needs to
response to the request. In particular, the new device uploads files to the
cloud storage while the other device has to know that these files are available
on the cloud storage to download.

Dropbox has a notification API on Android to allow application to sub-
scribe to a specific Dropbox directory so that whenever there is any new
files in the folder, the application can be notified. However, this feature is
unavailable on other platforms. We also assume that this feature is not avail-
able on all cloud storages. In Windows, there is FileSystemWatcher 1 class
which listens to the file system change notifications and raises events when
a directory, or file in a directory, changes. However, as we experimented
with FileSystemWatcher, the class is highly unreliable. FileSystemWatcher
either creates too many events at once or occasionally omits some events. We
suspect that there is an internal queue inside FileSystemWatcher that holds
all events at a time. Therefore, FileSystemWatcher omits some events when
the queue is full. When users modify files using specific application such as
Microsoft Word 2, the application writes multiple chunks of byte at a time
sequentially. Thus, FileSystemWatcher raises multiple events at once.

1https://msdn.microsoft.com/en-us/library/system.io.
filesystemwatcher

2https://www.microsoft.com/en-us/download/office.aspx

https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher
https://www.microsoft.com/en-us/download/office.aspx
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Figure 5.3: Expected polling pattern

For those reasons, we do not rely on notifications neither from the cloud
storage API nor operating system. Instead, devices need to frequently poll
the cloud storage server to check if there is any message for them to download.
However, we cannot expect devices to keep polling the cloud storage server
continuously, which may induce communication overhead. We designed “Ex-
pected Polling” (EP) as an interactive communication mechanism in cloud
storage. Figure 5.3 depicts the mechanism for EP. There are two devices
A and B where A want to communicate with B. We have a background
process in B which frequently poll the cloud server for files with filename
starting with B’. This process runs every 10 seconds so it does not cause
communication overhead. The 10 second interval is also called initial polling
interval

Consider the following scenario: A sends message 1 to B, B replies with
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message 2. After receiving message 2, A sends message 3 to B as the last
message. The EP pattern starts by A creating the first message as a file with
filename B A Time where Time is the current timestamp. The AnswerFile-
Name field in message 1 is a random UUID value (UUID1) which A expects
as a response file.

Since B actively polls the cloud storage server for files with filename
starting with B’s identity every 10 seconds, B can recognize message 1 from
A. B then constructs message 2 with filename UUID1 and add a new UUID
2 as AnswerFileName. B then uploads the file to the cloud storage.

After uploading the first message, A expects that B will reply with a file
named UUID1 as specified. As a result, we can greatly reduce the polling
interval from Device A to a expected polling interval value such as 5 seconds.
Finally, A creates the last message (message 3). Because A does not expect
any other reply message, AnswerFileName field can be set to NULL. A places
message 3 into a file named UUID2 as specified in message 2 and uploads to
the cloud storage.

Similarly, B expects a reply message from A with the name UUID2. B
also polls cloud server every 5 seconds for the UUID2 answer. When B
receive message 3, it notices that there should not be any further answer in
the protocol since the AnswerFileName is NULL, B terminates EP process.

In case messages are lost or corrupted, we use a time-out value of 2 min-
utes for each expected polling sequence. In short, EP is our communication
mechanism designed specifically for the cloud storage communication chan-
nel. The mechanism starts with a slightly long interval for the first message,
then aggressively reduces the interval for other expected messages. Currently,
we choose 10 seconds as the initial polling interval so that it is not too long
for devices to recognize the admission message. It is also not too short to
cause heavy computational overhead for the device. For expected polling in-
terval, we choose 5 second window since we estimate that is the reasonable
time for a device to upload a small message file (several bytes) to the cloud
storage. However, these numbers can be changed depending on the network
condition. A better approach would be combining EP and notification from
the cloud storage API or operating system if they are available. This way,
we can minimize the interval time between each poll.

We applied EP to our key distribution protocols. In both protocols,
after the user selects an authorized device B, the new device A creates an
Admission Message with file name B A Time. This file is called admission
file. The admission file also follows the common message structure. The body
element contains information such as device identification, name, public key
and capabilities. There is also an Extra field as a placeholder for any extra
information.
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Listing 5.3: Admission message JSON structure

1 {
2 "Body": {
3 "DeviceId":"",

4 "DeviceName":"",

5 "PublicKey":"",

6 "Capabilities":[...],

7 "Extra":""

8 },
9 "Hmac": "",

10 "AnswerFileName": ""

11 }

OmniShare then store the file in a directory called .Admission then up-
load to the cloud storage. As we performed expected polling, the rest of the
process happens automatically with very short delay between each message.
The rest of the protocol runs as described in section 4.4.3 and 4.4.4.

5.2.6 OmniShare Android

5.2.6.1 Environments

We developed OmniShare Android using Eclipse Standard version 4.4 (Luna)
with Android Development Toolkit extension 3.5.1 plug-in. The application
was tested on multiple Android devices with different OS versions, hardware
capabilities and screen sizes. In particular, we tested on Samsung Galaxy
S3/S4/S5, HTC One M7 and Google Nexus 4. We also tested the application
in a Google Nexus 7 for the case where the device does not have a back camera
to scan QR code.

According to Android dashboards [39] provided by Google, Android ver-
sions 4.1 (Jelly Bean) and up occupy nearly 90 percent of the Android plat-
form versions market share. For that reason, we built and tested OmniShare
using Android SDK version 16 for Jelly Bean. We also tested the application
on Android 4.4 (KitKat) and 5.0 (Lollipop).

5.2.6.2 Dependencies

We use these following open source libraries in our implementation: Dropbox
sync SDK [35], greenrobot’s EventBus [42], gson [41], ZXing [66] and Spongy
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Castle [59]. An Android device also needs to have the Dropbox application 3

installed before using OmniShare.
We use Spongy Castle cryptographic library instead of the default library

provided by Android. The Android operating system uses a customized
version of the Bouncy Castle cryptographic API [15]. However, the bundled
API is not up-to-date with the latest version of Bouncy Castle library 4. For
that reason, we decided to use Spongy Castle, which is a repackage of Bouncy
Castle API for Android.

5.2.6.3 High level architecture

Figure 5.4: Software architecture of OmniShare on Android

OmniShare software architecture for Android is depicted in figure 5.4.
The two core modules are Task Manager and OmniShare Protocol . Om-
niShare Protocol contains logical methods to handle key hierarchy an autho-
rization in OmniShare. These methods are independent of the cloud storage
API. OmniShare Protocol calls methods from other components, namely ZX-
ing , SpongyCastle and Capabilitiy Manager .

We use SpongyCastle for all cryptographic algorithms. Specifically, we
used hash function, Symmetric/Asymmetric cryptographic API, Key gen-
eration function, random generator and SRP protocol from SpongyCastle.

3https://play.google.com/store/apps/details?id=com.dropbox.
android&hl=en

4http://code.google.com/p/android/issues/detail?id=3280

https://play.google.com/store/apps/details?id=com.dropbox.android&hl=en
https://play.google.com/store/apps/details?id=com.dropbox.android&hl=en
http://code.google.com/p/android/issues/detail?id=3280
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Capabilitiy Manager includes methods to detect device hardware capabil-
ities and corresponding OOB channels. In case of QR code channel, we
use ZXing to generate QR code. For scanning QR code, we make a call
to “com.google.zxing.client.android.SCAN” intent of ZXing application. In
case ZXing application is not available on the device, users will be redirected
to Google Play to download ZXing application before scanning QR code.

Task Manager is a collection of classes that extend Android’s Async-
Task 5. These classes provide asynchronous operations, which are directly
invoked from the user interface. The module acts as a bridge among user
interactions, OmniShare Protocol and Dropbox API. It invokes OmniShare
Protocol to handle logical operations. Interactions with Dropbox such as
upload, download or create directory are provided by Dropbox Sync SDK
for Android. To interact with the user interface, particularly Android Frag-
ments, we use publish/subscribe architecture provided by EventBus. After
finishing a task, Task Manager broadcasts an event to the main EventBus.
All Android fragments which subscribe to that EventBus will be notified.

5.2.7 OmniShare Windows

5.2.7.1 Environments

We developed OmniShare for Windows using Microsoft Visual Studio 2013.
The Windows application is tested on Windows 7, Windows 8.1 and the
recent newly released Windows 10. We support both x86 and x64 Windows
architecture. We tested primarily on Microsoft Surface Pro and Lenovo Yoga.
We target .NET framework version is 3.5 which is pre-installed on Windows 7.
For later versions of Windows where .NET 3.5 is not bundled by default, users
can download the re-distribution packages through our installation wizard.

5.2.7.2 Dependencies

OmniShare for Windows depends on the following third party libraries: Mi-
crosoft Synchronization Framework 2.1 (MSF), Log4net 2.0.3, WPF NotifyI-
con 1.0.5, Extended WPF Toolkit 2.3, ZXing.NET 0.14.0.1, Newtonsoft.Json
6.0.3, Open-VCDiff and Bouncy Castle C Sharp 1.7.

MSF is a synchronization platform provided by Microsoft. In our case,
we use MSF for periodically synchronization between the plaintext directory
and the ciphertext directory. The use of MSF helps us to avoid complexity in
implementing periodic synchronization from the scratch. It is also possible

5http://developer.android.com/reference/android/os/AsyncTask.html

http://developer.android.com/reference/android/os/AsyncTask.html
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later to extend OmniShare to work with other data sources such as databases
instead of only files and directories at the moment.

Various utility libraries are used throughout the project. Log4net is used
for logging events. WPF NotifyIcon and Extended WPF Toolkit are used
for advanced user interface features such as taskbar icon notification. We use
Json.NET for serializing and deserializing JSON data structure.

Similar to OmniShare for Android, we generate QR code using ZXing
library and Bouncy Castle for cryptographic operations.

5.2.7.3 High level software architecture

Figure 5.5: Software architecture of OmniShare on Windows

OmniShare software architecture for Windows is depicted in figure 5.4.
Similar to OmniShare for Android, the core component is OmniShare Proto-
col which handles key management in OmniShare and is independent of the
cloud storage API. Capabilitiy Manager discovers device hardware capabili-
ties and matches the capability sets.
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The user interface is implemented using Windows Presentation Founda-
tion (WPF). Since the .NET framework already provides event handling as
well as asynchronous mechanism, we do not have to rely on external inter-
faces like EventBus or AsyncTask as in Android. Instead, WPF controllers
call directly to OmniShare Protocol .

As explained in 4.5.2, OmniShare on Windows uses periodic synchro-
nization pattern to synchronize user files with Dropbox directory. In fact, we
develop periodic synchronization based on Microsoft Synchronization Frame-
work (MSF) [9]. MSF is a synchronization platform that enables developers
to synchronize between various data storage types via different protocols
and network channels. MSF enables developers to build a synchronization
ecosystem by concentrating only on the sync logic.

Figure 5.6: Microsoft Synchronization Framework core components [6]

Figure 5.6 shows core components of MSF and how they interact with
each other. There are three basic building blocks: Data Source, Metadata
and Sync Provider. Data Source is the container holding data that needs
to be synchronized. In OmniShare context, Data Source is the plaintext
directory and the ciphertext directory. However, there is no limit to the type
of Data Source, it can also be a database or Web Service. Another building
block is Metadata which contains information about the stored data in Data
Source. Metadata can be stored in a file, database or inside the data itself.
Sync Provider contains synchronization logic and policy. Based on Metadata,
the Sync provider detects the changes in Data Source and passes it to the
MSF runtime. The runtime takes care of exchanging that information in a
Sync Session to other Sync Provider. After both Providers know what the
changes are in Data Source, they can run their own logic to deal with those
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changes.
FileSyncProvider is a built-in provider component for synchronizing files.

FileSyncProvider detects changes that are made to the subscribed file or
folders based on one of these attributes: last time modification, file hash
(optional), file size, file/folder name (case-sensitive) and file attributes. It
also guarantees the consistency of the synchronization process. We use
FileSyncProvider as the provider for our plaintext directory.

We develop a custom Sync Provider called OmniSyncProvider, that be-
haves similar to the FileSyncProvider in detecting file changes from the
encrypted folder and works seamlessly with the built-in FileSyncProvider.
FileSyncProvider subscribes to the plaintext directory while OmniSyncProvider
subscribes to the ciphertext directory.

5.2.7.4 Incremental synchronization

We developed a proof-of-concept on Windows to demonstrate the incremen-
tal synchronization approach. Figure 5.7 depicts our implementation. We
extend OmniSyncProvider to be OmniDeltaSyncProvider. Apart from the
plaintext directory and the encrypted OmniShare directory on the cloud stor-
age, we have two more directories in the user’s device called cache directory
and delta directory. Basically, the cache directory is a replicate of the plain-
text directory. Whenever users modify a file f1 in the plaintext directory
to get f2, OmniDeltaSyncProvider executes open-vcdiff encoding algorithm
with f1 as the source and f2 as the target to get f.delta2.

OmniDeltaSyncProvider then encrypts f.delta2 and stores on the cloud
storage directory as f.delta2.os. After that, OmniDeltaSyncProvider updates
the cache directory by replacing f1 with f2. All information about delta,
cache and plaintext files along with their encrypted counterparts on the cloud
storage are stored in the metadata database.

However, there are several issues with OmniDeltaSyncProvider. First,
storage size of the user’s device is doubled due to cache files. Secondly, due to
time constraint, we can only implement OmniDeltaSyncProvider as a proof-
of-concept. Our implementation is not robust, i.e. the provider often crashes
when there are many file modifications at once. Thirdly, In order to extract
the delta, open-vcdiff has to read both f1 and f2 at the same time into the
device memory. Thus, it is inefficient to work with large files. For those
reasons, even though we might reduce the network communication overhead
by only uploading delta files, our current implementation is error-prone and
introduces significant local storage as well as computation overhead.
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Figure 5.7: Incremental synchronization implementation



Chapter 6

Evaluation

6.1 Security evaluation

6.1.1 File encryption and key hierarchy

OmniShare uses standard cryptographic libraries for all cryptographic oper-
ations. We use authenticated encryption (AES-GCM) to encrypt files and
keys in the key hierarchy. Therefore, OmniShare assures the confidentiality
as well as the integrity of files on cloud storage (requirement S2).

Security of the Root Key is crucial to protect key in the key hierarchy.
We encrypt the Root Key for each authorized device with its device public
key. Therefore, only the authorized device can access the device private key,
decrypt the Root Key and subsequently, decrypt keys in the key hierarchy.
All keys in OmniShare are strong client-generated keys (requirement S1).
OmniShare stores the key hierarchy on the cloud storage and distributes the
keys using key distribution protocols which make use of the cloud storage
communication channel and secrecy OOB channels. Therefore, OmniShare
does not rely on any third-party server (requirement S3.2).

6.1.2 Device authorization

OmniShare protects users’ data in cloud storage using a key hierarchy start-
ing with Root Key (RK). S3.1 requires that our key distribution protocols
are secure. Thus, our key distribution mechanism must protect the secrecy
and integrity of RK. The primary goal of our key distribution mechanism can
be informally stated as follow. After key distribution, the selected authorized
device believes that it hands over the key to the legitimate new device. On
the other hand, the new device receiving the key believes that it receives the
correct key from the user-selected authorized device. Formally, let A be the

62
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new device and B be the selected authorized device. We consider the Mu-
tual Implicit Root Key authentication security property (section 2.6.2) which
provides assurance for B that A is the only other device that can possibly
receive RK. Similarly, in the case of A, the property ensures the origin of the
received RK so that A cannot be tricked to use a compromised RK.

In key distribution using QR code, we achieve implicit key authentication
using data origin authentication technique: A’s public key is authenticated
using its cryptographic hash transferred to B via the secure OOB channel.
Thus, RK is protected by an authenticated public key that can only be
decrypted by the intended participant in the protocol. Subsequently, B’s
data origin is guaranteed through the use of message authentication code
based on the randomly generated session key.

In key distribution protocol using SRP, the session key is generated using
a widely recognized authenticated key establishment protocol SRP. Similar
to key distribution protocol using QR code, the established share session key
protects the origin of RK.

In both protocols, we exclude key confirmation for RK. Firstly it is impor-
tant for A to assure the origin of RK and B to not reveal RK to adversaries.
However, it is not necessary for B to confirm that if A has received RK or
not. Instead, A will display the result directly to users. Secondly, RK con-
firmation requires another round of message exchange. Thus, introducing
RK confirmation from A to B increases the protocol execution time which
has a direct impact to the overall user experience. For those reasons, we
avoid key confirmation and explicit key authentication for the RK. [55] also
suggests considering Forward secrecy property when one of the long-term
Device Key or RK is compromised. However, in the scope of this thesis,
we assume that user devices are trusted so we can exclude Forward se-
crecy property. We also do not address other security issues. For example:
errors such as deadlocks or weakness in the cryptographic algorithm itself.
Instead, we assume that cryptographic algorithm implementation we used
from BouncyCastle are correct.

6.1.2.1 Formal verification of key distribution via QR code

As explained in section 2.6, we use Scyther to formally prove our designed
protocols. Listing 6.1 describes the key distribution via QR code protocol
model. Global hash function H and asymmetric key pair pk2, sk2 are de-
clared first. Scyther has predefined public key infrastructure (PKI). More
specifically, each agent X has access to a long-term private key sk(X) and a
public key pk(X) which is already shared among all agents. Similarly, pre-
defined symmetric key infrastructure where k(X, Y ) denotes the long term
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symmetric key shared between agent X and Y . However, in our protocol,
there is no pre-established PKI. Thus, we defined an additional asymmet-
ric key pair in order to model the key distribution process. pk2 is a public
constant function that takes an agent identity as parameter. pk2(X) then
denotes the public key of agent X. sk2 is declared as secret function which
also take an agent identity as its parameters. The output is the secret value
sk2(X) serving as the long-term secret key known only by agent X. pk2
maps to sk2 via inversekeys key word that allows value encrypted using
pk2(X) to be decrypted using sk2(X).

Listing 6.1: Key distribution via QR code role script for Scyther

1 hashfunction H;

2 const pk2: Function;

3 secret sk2: Function;

4 inversekeys (pk2,sk2);

5

6 protocol QRP(A,B)

7 {
8 role A{
9 fresh sessionKey: Nonce;

10 var rootKey: Nonce;

11 var MAC: Ticket;

12 fresh A1: Nonce; //Nonce to correct Scyther

behaviour of interpreting asymmetric key

13

14 send_1(A,B, pk2(A1));

15 send_2(A,B,{sessionKey, H(pk2(A1))}k(A,B));
16 macro m = {rootKey}pk(A);
17 recv_3(B,A, (m, MAC));

18 match(MAC, H(m, sessionKey));

19 }
20

21 role B{
22 var hash: Ticket;

23 var sessionKey: Nonce;

24 fresh rootKey: Nonce;

25 var A1: Nonce;

26

27 recv_1(A,B,pk2(A1));

28 recv_2(A,B,{sessionKey, hash}k(A,B));
29 match(hash, H(pk2(A1)));
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30

31 macro m = {rootKey}pk(A);
32 send_3(B,A, (m, H(m, sessionKey)));

33 }
34 }

Since we declare our own asymmetric key pair, we can encrypt different
terms using the following syntax {term}pk2(X). The syntax denotes that
the term value is encrypted using our defined public key of agent X. Thus,
theoretically, only agent X who possess secret key sk2(X) can decrypt the
term. However, Scyther interprets the syntax as symmetric encryption in-
stead of asymmetric encryption as we modelled. In other words, Scyther
allows any agents use pk2(X) to decrypt the term, even though pk2 is a
public key.

To solve this problem, we apply a work around, suggested by Cas Cre-
mers, the author of Scyther, that forces Scyther to interpret our syntax as
asymmetric encryption using a fresh nonce A1. This way, pk2(A1) is inter-
preted correctly as a public key from role A.

In order to model OOB communication, we use the Scyther’s predefined
symmetric key system. The following syntax, {term}k(A,B), indicates the
term value is symmetrically encrypted using the mutual secret symmetric
key between A and B. As we assume attackers cannot sniff or tamper with
the OOB channel; we model the QR code scanning process as sending the
QR code data encrypted using k(A,B). Thus, only A or B can decrypt the
QR code data.

After receiving pk2(A1) and the hash, B runs a match event to verify the
public key. At this point, A and B have completed the public key distribution
step from A to B. Therefore, we can use the keys in the pre-established PKI
in the last step of the protocol.

Listing 6.2: claim events of the key distribution via QR code protocol

1 ...

2 protocol QRP(A,B)

3 {
4 role A{
5 ...

6 claim_a1(A,Secret,sk2(A1));

7 claim_a5(A,Secret,sessionKey);

8 claim_a6(A,Secret,rootKey);

9 claim_a8(A,Nisynch);

10 claim_a10(A,Reachable);
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11 }
12

13 role b{
14 ...

15 claim_b1(B,Secret,sessionKey);

16 claim_b2(B,Secret,rootKey);

17 claim_b4(B,Nisynch);

18 claim_b6(B,Reachable);

19 }
20 }

Listing 6.2 captures the claims we made for the formal verification of
key distribution using QR code. We want to make sure that sessionKey
and rootKey remains secret during the protocol. Besides that, Nisynch and
Reachable claims are also added to complete the security proof of the proto-
col. The complete role script for key distribution protocol using QR code is
listed in Appendix A.1.

6.1.2.2 Formal verification of key distribution using SRP

In our key distribution using SRP protocol, there are many modular expo-
nentiation operations involved. As we mentioned, Scyther requires helper
functions in order to model these operations correctly. We introduced three
support protocols in Listing 6.3, 6.4 and 6.5.

A. Modular exponential helper protocol

Listing 6.3: Helper protocol to simulate modular exponential equivalent

1 hashfunction g1, g2, H;

2 function f, plus;

3

4 protocol @exponentiation(BE, BM1, AM2)

5 {
6 role BE{
7 // Simulate (g^a)^b = (g^b)^a

8 var a,b: Ticket;

9 recv_!1(BE,BE,g2(g1(a),b));

10 send_!2(BE,BE,g2(g1(b),a));

11 }
12 ...
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The first support protocol is a modular exponentiation equality to simu-
late

gab = gba (6.1)

in a finite field GF (N). Let g1(x) denotes gx and g2(x, y) denotes xy. Since
gab can be written as (ga)b, equation 6.1 is equivalent to:

g2(g1(a), b) = g2(g1(b), a)

B. M1 equality helper protocol

Listing 6.4: Helper protocol to simulate M1 and M1’ equivalent

1 ...

2 role BM1{
3 // Simulate M1 equality

4 var alpha, beta, a,b,x: Ticket;

5 recv_!3(BM1, BM1, H(alpha,beta, H(f(g2(g1(b),a

), g2(g1(b),x)))));

6 send_!4(BM1, BM1, H(alpha,beta, H(f(g2(g1(a),b

), g2(g1(x),b)))));

7 }
8 ...

The second support protocol is to model equality ofM1 andM1′ messages
of the protocol. In particular, we want to model

H(α, β,Kses) = H(α, β,K ′
ses) (6.2)

Kses is the hash of σ which is defined as

σ = (β − kgx)a+ux = gba.gbux

While K ′
ses is the hash of σ′ which is defined as

σ′ = (α.vu
′
)b = gab.gxu

′b

Since u and u′ are both equal to H(α, β), they are syntactically equal. We can
remove them from the approximating equality helper protocol. Let f(a, b)
denotes the multiplication of a and b. Thus, the helper protocol for M1 needs
to provide approximating equality of the following equation:

H(α, β,H(f(g2(g1(b), a), g2(g1(b), x)))

= H(α, β,H(f(g2(g1(a), b), g2(g1(x), b)))

C. M2 equality helper protocol
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Listing 6.5: Helper protocol to simulate M2 and M2’ equivalent

1 ...

2 role AM2

3 {
4 // Simulate M2 equality

5 var alpha, beta, a, b, x, RK: Ticket;

6 macro keyA = f(g2(g1(b),a), g2(g1(b),x));

7 macro keyB = f(g2(g1(a),b), g2(g1(x),b));

8 macro M1A = H(alpha, beta, H(keyA));

9 macro M1B = H(alpha, beta, H(keyB));

10 macro M2A = H(alpha, M1A, keyA);

11 macro M2B = H(alpha, M1B, keyB);

12 recv_!5(AM2,AM2,{RK}keyB, M2B);

13 send_!6(AM2,AM2,{RK}keyA, M2A);

14 }
15 }

This helper protocol is used to model M2 and M2′. Basically, we want
to model the following equation:

H(α,M1′, K ′
ses) = H(α,M1, Kses)

As we already modeled M1, M1′, Kses and K ′
ses in M1 equality helper proto-

col, it is straightforward to re-use the modeled values in this helper protocol.

D. Main protocol

Listing 6.6: Key distribution using SRP role script for Scyther

1 hashfunction g1, g2, H;

2 function f, plus;

3

4 protocol SRP(A,B)

5 {
6 role A{
7 fresh P, a: Nonce;

8 var s, beta, v, RK: Ticket;

9 macro x = H(s,P);

10 macro key = f(g2(beta,a), g2(beta,x));

11 macro M1 = H(g1(a), plus(beta, v), H(key));

12 macro M2 = H(g1(a), M1, key);

13

14 send_1(A,B, g1(a));
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15 send_2(A,B,{P}k(A,B));
16 recv_3(B,A,plus(beta,v),s);

17

18 match(v, g1(x));

19 send_!4(A,B, M1); // Sending out M1

20 recv_!5(B,A, {RK}key,M2);
21 }
22

23 role B{
24 fresh b, s, RK: Nonce;

25 var alpha, s, P;

26 macro x = H(s,P);

27 macro key = f(g2(alpha,b), g2(g1(x),b));

28 macro M1 = H(alpha, plus(g1(b), g1(x)), H(key)

);

29 macro M2 = H(alpha, M1, key);

30

31 recv_1(A,B, alpha);

32 recv_2(A,B,{P}k(A,B));
33 send_3(B,A, plus(g1(b),g1(x)), s);

34 recv_!4(A,B, M1);

35 send_!5(B,A, {RK}key, M2);

36 }
37 }

Listing 6.6 shows the role script that we used to model our key dis-
tribution using SRP. The script uses the same syntax as described in fig-
ure 4.6 except that we use key to denote Kses since Scyther does not al-
low underscore. In message 4, A sends out M1 which is a macro defined
by H(g1(a), plus(beta, v), H(key)). When B receives M1, B triggers the
M1 equality helper protocol. As a result, it also receives M1′ which is
H(alpha, plus(g1(b), g1(x)), H(key)). Message 5 follows the same procedure
except that it triggers M2 equality helper protocol.

Listing 6.7: claim events of the key distribution using SRP protocol

1

2 protocol SRP(A,B)

3 {
4 role A{
5 ...

6 claim_a1(A, Reachable);
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7 claim_a2(A, Secret, a);

8 claim_a3(A, Secret, P);

9 claim_a4(A, Secret, key);

10 claim_a5(A, Secret, RK);

11 claim_a6(A, Nisynch);

12 }
13

14 role B{
15 ...

16 claim_b1(B, Reachable);

17 claim_b2(B, Secret, b);

18 claim_b3(B, Secret, P);

19 claim_b4(B, Secret, key);

20 claim_b5(B, Secret, RK);

21 claim_b6(B, Nisynch);

22 }
23 }

Listing 6.7 captures the claims we made for the formal verification of
key distribution using SRP. Basically, we want to make sure that all SRP
secret values, namely a, b, P , key as well as the RK remain secret during
the protocol. Besides that, Nisynch and Reachable claims are also added to
complete the security proof of the protocol. The complete role script for key
distribution protocol using QR code is listed in Appendix A.2.

6.1.2.3 Result of formal verification

Figure 6.1 and 6.2 shows Scyther results after verifying our modelled pro-
tocols. All claims are successfully passed. In particular, we proved that
Root Key is secret, only known by A and B after running both protocols.
Nisynch claim also ensures that B to A ran the protocols in a correct mes-
sage sequence and exchanged the intended variables. For these reasons, both
key distribution protocols ensure mutual implicit Root Key authentication.
We conclude that our key distribution protocol is secure (Requirement S3.1).

6.2 Performance evaluation

We performed performance evaluation for OmniShare on two aspects. The
execution time of key distribution protocols and cryptographic operations.
Measurements are performed on a Samsung Galaxy S6 running Android 5.1
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Figure 6.1: Scyther result of verifying key distribution via QR code protocol

Figure 6.2: Scyther result of verifying key distribution using SRP protocol
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with Quad-core 1.5 GHz Cortex-A53 & Quad-core 2.1 GHz Cortex-A57 and
a Microsoft Surface Pro running Windows 10, core i5 1.7 GHZ.

6.2.1 Key distribution protocols

Table 6.1: Key distribution protocol execution time (seconds) with Dropbox

Key distribution protocol Average time (seconds)

Using QR code

Windows - Android 16.31 (± 2.37)
Android - Android 21.66 (± 1.10)
Overall 19.72 (± 3.20)
Using SRP

Windows - Android 39.77 (± 4.08)
Android - Windows 36.68 (± 9.21)
Windows - Windows 45.10 (± 5.71)
Android - Android 41.01 (± 3.94)
Overall 40.72 (± 6.03)

Table 6.2.1 shows execution time for our key distribution protocols. For
example: Windows - Android means that the new device is a desktop running
Windows and the authorized device is an Android phone. It includes message
generation and exchange time via cloud storage but does not include time for
user interaction over OOB channels. For expected polling, we use 10 seconds
for initial polling interval and 5 seconds for expected polling interval.

Generally, key distribution protocol using QR code is twice as fast as using
SRP due to fewer message exchange rounds. In particular, key distribution
via QR code has two message rounds while key distribution using SRP has
four rounds.

We also measured the execution time while reducing the expected polling
interval time to 1 second. However, the total execution time does not change
much in comparison with the 5 second, i.e. 22.43 ± 2.05 for key distribution
protocol using QR code in Android - Android setup. Therefore, further
performance evaluation is needed in order to improve the execution time of
key distribution protocols.
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6.2.2 Cryptographic operations

Table 6.2: Cryptographic operations time

Operation Average time (milliseconds)

Windows

2048-bit RSA keygen 93.0 (± 34.5)
RSA encryption (16 bytes RK) <1
RSA decryption (16 bytes RK) 13.0 (± 1.4)
File encryption (1MB) 277.0 (± 19.5)
File decryption (1MB) 265.5 (± 14.3)
Android

2048-bit RSA keygen 395.6 (± 184)
RSA encryption (16 bytes RK) 15.2 (± 3.96)
RSA decryption (16 bytes RK) 31.4 (± 2.79)
File encryption (1MB) 211.6 (± 16.27)
File decryption (1MB) 235 (± 4.47)

Table 6.2.2 shows execution time for each cryptographic operation in Om-
niShare for both Android and Windows. We evaluate time for generating
device RSA key pair, encryption/decryption time using RSA for 128-bit root
key and symmetric encryption/decryption of 1 MB file using AES-GCM.
Other operations such as generating AES 128-bit key or encrypting File Keys
using AES are relatively fast on both platforms (less than 1 millisecond).

6.3 Usability evaluation

In OmniShare, we ensure that all messages that are displayed to users are
consistent on both platforms (U1). For example, figure 6.3 shows identical
user instructions on both platforms.

OmniShare optimizes user experience by minimizing user interactions
during device authorization (U3). Figure 6.4 depicts work-flow for autho-
rizing a new device from a user perspective. To authorize a new device,
OmniShare only requires two actions from users which are selecting a pre-
viously authorized device and transferring information over OOB channel.
This work-flow is consistent on all platforms (U1). Both OOB channels are
widely used and have least security failures according to Kainda et. al. [46]
(U2.1).
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Figure 6.3: OmniShare consistent instructions between platforms

Figure 6.4: Work flow for device authorization from user perspective

We also designed OmniShare to behave similar to other cloud storage
clients and client-side encryption utilities. On Windows, OmniShare is dis-
played as a small icon in users’ taskbars (similar to Dropbox, OneDrive). Sim-
ilar to Viivo, we automatically synchronizes a plaintext directory in users’
machines to a ciphertext directory on the cloud storage. On Android, we
present a file browser where users can browse directories in their encrypted
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storages as well as download/upload files which is similar to BoxCryptor.
These features are used commonly on other products that users are familiar
with (U2.1).

Figure 6.5: OmniShare sample dialog pop-ups

Finally, OmniShare present users with clear and simple instructions (U2.2).
Most of OmniShare instructions are related to the authorization process.
Figure 6.5 shows examples of pop-up dialogs that give instructions to users.
Instructions are given as a sequence of pop-up dialogs. This feature guides
users through a series of yes/no questions to simplify the authorization pro-
cess.

6.4 System evaluation

We developed OmniShare on two widely used platforms, i.e. Windows 7 and
Android 4.2. The application also works with devices which have different
hardware capabilities, i.e. camera, monitor, keyboard (Requirement A1.1).
The application currently only works on top of Dropbox. However, it is feasi-
ble to extend the application to work with other cloud storages, e.g. Google
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Drive or OneDrive, since they have interfaces for third-party development
(Requirement A1.2).

We designed and implemented OmniShare using loosely software modules
where each module is designed and tested independently of other modules.
We also use popular third-party framework such as MSF or EventBus to
organize the structure of the code. For this reason, the application is easy to
extend and maintain (Requirement A2).

6.5 Summary

Table 6.3 summarizes our evaluation result of OmniShare. It shows the pre-
defined requirements of the system and the corresponding section where we
evaluate the requirements.

Requirement Section
S1. Strong client generated keys section 6.1.1
S2. Authenticated file encryption section 6.1.1
S3.1. Secure key distribution section 6.1.2.3
S3.2. Avoiding third-party servers section 6.1.1
U1. Consistent user experience section 6.3
U2.1. Familiar user experience section 6.3
U2.2. Clear instruction section 6.3
U3. Minimum interaction section 6.3
A1.1. Multiple device types section 6.4
A1.2. Multiple cloud storage section 6.4
A2. Extensibility and maintainability section 6.4
A3. Reducing network overhead section 5.2.7.4

Table 6.3: Summary of evaluation
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Related work

In this chapter, we take a closer look at some popular client-side encryption
products and services. In particular, we investigate on how they encrypt
users’ data, what is their security mechanism as well as their drawbacks and
potential risks while using them.

7.1 Product selections

Our study does not aim at providing comprehensive knowledge about existing
cloud secure storage products or rating them. Instead, we choose a few
popular products to analyze their approaches towards securing users’ data.
There are two categories for selections: (i) cloud storage service which offers
client-side encryption and (ii) client utilities providing client-side encryption
for other cloud storage. In particular, in category (i), we choose SpiderOak,
Wuala and Mega. Meanwhile, in category (ii), there are Viivo, Boxcryptor,
Sookasa, TrueCrypt, EncFS and PanBox.

Our methods for analyzing these products include: install and use the
products, read their technical reports [24] or gather information from frequent-
to-ask (FAQ) sections of the product manuals or support forums.

7.2 Cloud storage services offering client-side

encryption

7.2.1 SpiderOak

SpiderOak [14] is an American-based cloud storage service. SpiderOak pro-
vides client applications on multiple platforms such as Windows, Mac, Linux,

77
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Android and iOS. The client applications encrypt both file content and meta-
data (i.e. file name, size or created date) using keys derived from users’
passwords.

To use SpiderOak client application, users must create a password. The
application then uses a key derivation function to generate a strong crypto-
graphic key from the password called the master key. Files are encrypted
with cryptographically strong keys called file keys. Master key is used to
encrypt file keys. The encrypted file keys are stored along with the cipher-
text files on SpiderOak servers. Meanwhile, the actual password is not stored
anywhere. For this reason, as long as the password is safe, plaintext files are
secure.

SpiderOak uses standard cryptographic algorithms to ensure confidential-
ity, authenticity and integrity of users’ data. In particular, they use AES in
CFB mode with 256-bit key length for encryption, HMAC-SHA256 for in-
tegrity protection. To derive keys from passwords, SpiderOak uses PBKDF2
with SHA256, minimum 16384 rounds and 32 bytes of salt.

SpiderOak enables deduplication within user domain [36]. Basically, if
users upload the same file, the client application notices and provides the
same encryption key that was previously used. Thus, the ciphertext is the
same.

However, there are some problems we experienced while testing Spi-
derOak. First, the client application does not have any policy for creating
password. That means password such as “12345” can be freely used. Second,
since password is not stored on the server, it is impossible to recover data
if users forget their passwords. Finally, SpiderOak allows users to login to
their web application via web browsers using passwords and download plain-
text files. During this process, encrypted files are decrypted temporarily on
SpiderOak server thus raising our concern about the claimed “security and
privacy” argument of the service.

7.2.2 Wuala

Wuala [18] is a European-based cloud storage service. Wuala uses PBKDF2
for deriving master keys from users’ passwords as well as AES for encrypting
files and meta-data. Unlike SpiderOak, Wuala uses convergent encryption to
enable deduplication. As mentioned in section 2.7, convergent encryption is
not semantically secure.

Wuala shares similar problems with SpiderOak. Wuala allows users to
create “weak” password. They cannot restore data when users forget pass-
words. They also allow users to decrypt and download plaintext files from
the server.
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7.2.3 Mega

Mega [7] is a New Zealand based cloud storage service. Mega has the same se-
curity mechanism as SpiderOak. However, Mega does not provide client-side
application. Instead, all encryption and decryption operations are performed
locally using JavaScript on users’ web browsers.

7.3 Client utilities providing encryption for

cloud storage

While SpiderOak, Wuala and Mega are cloud service providers which offer
client-side encryption to their clients. There are products acting as client
utilities that encrypt client’s data before uploading to other cloud services.

7.3.1 Boxcryptor

Boxcryptor [1] is a client-side encryption utility that works with a wide range
of cloud storages: Dropbox, Google Drive, OneDrive, etc. Boxcryptor also
supports Web Distributed Authoring and Versioning (WebDAV) [28]. Web-
DAV is a standard for collaborative authoring on the web. The standard
contains a set of extension to the HTTP protocol that allows clients to cre-
ate, modify or move files and meta-data (e.g. authors, modification date) on
servers. Basically, Boxcryptor can work with any cloud storage service which
uses WebDAV such as ownCloud [11]. Boxcryptor is available on multiple
platforms such as Windows, Mac, Linux, Android and iOS.

Users first install both Boxcryptor and cloud storage client applications.
Users then choose the cloud service they want Boxcryptor to work with. After
that, Boxcryptor client application automatically takes care of encrypting
files before passing the files to the cloud storage client application to upload.

Similar to other products that we mentioned so far, Boxcryptor uses
standard cryptographic algorithms such as AES, PBKDF2 and HMAC-SHA
512. However, Boxcryptor hosts a central server for key management only,
not for storing the ciphertext data. Specifically, the central server stores
encrypted symmetric key, asymmetric private key and hash of the password
hash. Users authenticate to the key server by sending the combination of
their email addresses and password hashes. The key server is also used for
sharing files, managing groups as well as synchronizing user information and
encrypted keys across devices. Boxcryptor can be used without the key server
in a local mode. In this mode, user information and encrypted keys are stored
in key files. However, in this mode, users cannot share files and directories
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with other users. They also have to manually transfer the key files to other
devices if they want to use Boxcryptor on multiple devices.

7.3.2 Viivo

Viivo [17] is another client utility which provides the same functionality as
BoxCryptor. Viivo has a central server for key management. They use
standard encryption algorithms and work seamlessly with different cloud
service providers. On desktops, Viivo creates “Lockers” which are directories
that contain ciphertext files. Lockers can be synchronized automatically with
directories containing plaintext. As a result, users can put these lockers to
their favourite cloud storage.

There is one notable feature that Viivo supports that is not available
to any other mentioned products. Viivo allows password recovery in some
cases. Normally, it is impossible to recover users’ data without knowing the
password since password is not stored on the central server. However, when
using the Viivo client application, there is a way to reset the users’ password.
Firstly, users need to start the reset password process from a desktop device
that users have logged in before. In fact, Viivo keeps track of users’ devices
that use Viivo applications. From there, users can choose “Forgot Password”
option in the client application. A box will pop up and users have to enter
their email addresses that they used when creating Viivo account. Secondly,
Viivo sends an email with a temporary passcode to the users. Finally, users
can use the temporary passcode to log into the Viivo client. However, users
cannot decrypt the ciphertext files that were encrypted with the previous
password any more.

7.3.3 Sookasa

Sookasa [13] is an American based company provides client encryption utili-
ties similar to BoxCryptor and Viivo. The product uses standard encryption
techniques as well as supports multiple operating systems. It works only with
Dropbox and Google Drive so far.

Sookasa applies a different approach to client-side encryption. They offer
encryption service which is compliant with HIPAA 1 standard in healthcare
and FERPA 2 standard in education. This allows schools and hospitals in
the US to use popular cloud storage services like Dropbox to store their data
without worrying about any standards.

1https://www.sookasa.com/resources/hipaa-compliance-checklist/
2https://www.sookasa.com/resources/ferpa-compliance/

https://www.sookasa.com/resources/hipaa-compliance-checklist/
https://www.sookasa.com/resources/ferpa-compliance/
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Sookasa server manages user credentials, policies and key management.
Encrypted files and encrypted file keys are stored separately on the cloud
storage. However, Sookasa server stores the master key. As a result, files can
be decrypted without user permission as long as the intruders have access to
both Sookasa server and user’s cloud storage.

7.3.4 EncFS

EncFS [4] is a free cryptographic file system. In the EncFS file system,
there are two directories: enc/ which contains ciphertext files and clear/
containing plaintext files. These two directories are synchronized automati-
cally. When using EncFS with cloud storage services, users can mount enc/
to cloud directories in client machines. All user interactions with clear/ will
be reflected to enc/ vice versa. Users can mount EncFS directories using a
master password. Anyone who has the password can mount and decrypt files
inside the enc/ directory.

Similar to Boxcryptor, Viivo and OmniShare, EncFS synchronize files in-
side plaintext directory in the local users’ devices and ciphertext directory in
the cloud storage. Files are encrypted and decrypted separately. Therefore,
this approach can also be called directory-based approach.

Overall, EncFS is a simple tool offering data encryption based on users’
passwords. There is no mechanism for file sharing, deduplication or resetting
passwords. Furthermore, EncFS is not up to date with modern cryptographic
practices 3.

7.3.5 TrueCrypt

TrueCrypt [16] is another client-side encryption utilities based on users’ pass-
words. However, different from EncFS, TrueCrypt is a container-based en-
cryption. In container-based encryption, users first create a fixed container of
a fixed size. Users can mount the container into the operating system using
user password. The container then appears as a virtual drive in the users’
machine. Files inside the container are automatically encrypted. Therefore,
users can mount TrueCrypt container to a mount point on the cloud stor-
age directory. Physically, the container appears as a file with the container
size. The cloud storage application automatically synchronizes this file across
users’ devices.

However, with the container-based approach, every change to a file inside
the container reflects to change of the whole encrypted container. As a result,

3https://defuse.ca/audits/encfs.htm

https://defuse.ca/audits/encfs.htm
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even though TrueCrypt offers better security by hiding the file structure
inside the container, it has a serious synchronization problem when using
with cloud services. Particularly, the whole TrueCrypt container has to be
re-uploaded to the cloud and re-downloaded to other devices every time there
are changes in the plaintext files.

7.3.6 PanBox

PanBox [12] is a new client-side encryption tool for cloud storage developed
by Sirrix, Germany. PanBox creates a mount point where users can put
their sensitive files and directories inside. The mount point is placed in the
cloud service directory on client machines as a directory. User files within
the mounted volume are automatically encrypted and decrypted. However,
PanBox chooses a decentralized approach to implement key distribution so
there is no need for a central key server like Boxcryptor.

PanBox keys are generated using a dedicated device key and a password.
When users want to share files between two devices, they need to pair those
devices. There are three options: Bluetooth, WLAN or files.

• Bluetooth: Given a pair of master-slave devices, both devices have
to be paired manually first via Bluetooth. After pairing, the master
device generates a QR code and the slave device scans it to trigger the
key exchange process. The actual key exchange is via Bluetooth.

• WLAN: Users need to specify a network interface that they want
PanBox to work on. Similar to Bluetooth, the slave device scans a QR
code and the key exchange happens if the two devices are on the same
network.

• Files: Users can export key files from the master and manually transfer
to the slave.

PanBox works with Dropbox, Google Drive and all cloud storage services
with WebDav interface. The application is available on Windows, Linux,
MacOS and Android. Unfortunately, PanBox Android application is only
available in Germany. The product manuals are also only available in Ger-
man. Therefore, we could not analyse the solution in more detail. However,
there are a few critical problems that we experienced while testing the solu-
tion.

First, the application does not work on Windows 8.1, version 64 bit.
PanBox keeps reporting errors on our machine when we try to encrypt files.
Panbox depends on a third party library called Dokan [2] which is a user
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mode file system library for Windows. Dokan allows the application to create
a virtual drive on Windows as well as intercepts all user interactions on the
drive. However, the open source Dokan project is no longer maintained since
2011, thus it might not be compatible with new versions of Windows. Even
though PanBox provides their own version of Dokan, the program does not
work on our test machine.

Secondly, PanBox user experience is not intuitive. In fact, even after
several tries, we could not make the application work at all. The product
manual is lengthy and not available on English. PanBox user interface is also
confusing.

7.4 Summary

Table 7.1 compares client-side encryption products that we have described so
far. From end-users’ perspective, in order to use cloud storage services such
as SpiderOak, Wuala, or Mega, they have to purchase storage capacity and
move sensitive data to these provider’s data server. Therefore, they cannot
use mainstream storage options like Dropbox, OneDrive or Google Drive.

On the other hand, Boxcryptor, Viivo or Sookasa provide client-side en-
cryption utilities for popular cloud storage services. They have their own key
servers for managing and distributing keys across users’ devices while using
cloud storage services’ data servers for storing actual data. Nevertheless,
these solutions still rely on third-party key servers.

EncFS and TrueCrypt are also client-side encryption utilities for other
cloud storage services. They do not use third-party key servers like Boxcryp-
tor. However, while EncFS is outdated with modern cryptographic practices,
TrueCrypt uses container-based approach which causes serious synchroniza-
tion problem for the cloud service.

One common factor of those described approaches is that they encrypt
users’ data using keys derived from user passwords. Password based keys
can be easily re-generated on any device of the choice by simply typing in
the same password. Thus, it is simple and easy to use. Even though the
use of password stretching algorithms such as PBKDF2 helps increasing re-
sistance to passive attackers, there are many problems with password based
approach. Users might choose very simple passwords, i.e, ”12345”. High
entropy passwords are difficult to remember so they easily forget, write them
down or reuse frequently.

Overall, PanBox seems to be the solution that overcomes all those de-
scribed challenges. It is a free client encryption utility, it does not require
third-party server for any purpose and, most importantly, it does not rely on
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user password. However, we found that the product is not functioning, its
user interface is confusing and is unavailable world-wide.
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Data
server

Key
server

Encryption Easy to
use

Desktop Mobile Web

SpiderOak X X password X X X X

Wuala X X password X X X X

Mega X X password X X

Boxcryptor X password X X X

Viivo X password X X X

Sookasa X password X X X

EncFS password X X

TrueCrypt password X X

PanBox strong key X X

OmniShare strong key X X X

Table 7.1: Comparison of client-side encryption products
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Conclusions

Cloud storage service is growing rapidly over the past few years. Dropbox was
launched in 2008, currently it has more than 400 million users. These users
contribute to 1.2 billion files synchronization every day and hundred thousand
shared files every hour [34]. Cloud storage brings significant advantages such
as the ability for multiple users to collaborate on one document or on-demand
access to files from multiple device.

At the same time, data privacy has been a major concern in cloud storage
since users have to trust the cloud service providers for security and privacy of
their data. We address these problems by developing OmniShare as a generic
mechanism to construct authorized domain of devices. OmniShare protects
the confidentiality and integrity of users’ cloud storage by providing authen-
ticated encryption at the client-side using high-entropy keys. Unlike other
similar services, it does not depend on any third-party server for key distribu-
tion. OmniShare uses a combination of OOB channel and the cloud storage
to minimize user interaction during authorization process. OmniShare also
has consistent user experience on all platforms.

On the other hand, OmniShare can be enhanced in future. For example,
currently it lacks a mechanism to handle conflicts when a user modify the
same files from multiple devices simultaneously. A simple solution would
be to let the user choose the version that he wants to keep while discards
others. OmniShare currently works only with Dropbox, one of the most
popular cloud storage services today. However adding support for multiple
cloud storage is straightforward provided that the cloud storage offers inter-
faces for third-party applications authorized by the users. Finally, although
incremental synchronization is a promising approach to enhance OmniShare
performance, a more thorough analysis and design of incremental synchro-
nization is required.

OmniShare will have other applications beyond secure cloud storage. For

86
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example, suppose an on-line banking application uses trusted hardware on
mobile devices to protect user credentials for on-line banking access. To allow
the credentials to be used from multiple devices belonging to the same user,
the application could allow the user to define an authorized domain of devices
using OmniShare and protect the banking credentials using the domain root
key.
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Appendix A

Scyther role script

A.1 Role script for key distribution using QR

code

1 hashfunction H;

2 /*

3 * Scyther assumes that all agents have access to

all built -in public keys.

4 * We need to define custom keys for modeling key

distribution

5 * as well as a temporary nonce variable for use

with the keys.

6 */

7 const pk2: Function; //A public key, this is

different from Pk(A)

8 secret sk2: Function;

9 inversekeys (pk2,sk2);

10

11 protocol QRP(A,B)

12 {
13 role A{
14 fresh sessionKey: Nonce; // random session key

15 var rootKey: Nonce;

16 var MAC: Ticket;

17 fresh A1: Nonce; // unused nonce to correct

asymmetric behaviour

18 send_1(A,B, pk2(A1));

19

93



APPENDIX A. SCYTHER ROLE SCRIPT 94

20 // simulation of OOB channel communcation using

Scyther default symmetric key

21 send_2(A,B,{sessionKey, H(pk2(A1))}k(A,B));
22

23 macro m = {rootKey}pk(A);
24 recv_3(B,A, (m, MAC));

25

26 //Do a MAC integrity check

27 match(MAC, H(m, sessionKey));

28

29 claim_a1(A,Secret,sk2(A1));

30 claim_a5(A,Secret,sessionKey);

31 claim_a6(A,Secret,rootKey);

32 claim_a7(A, Alive);

33 claim_a8(A, Nisynch);

34 claim_a9(A, Niagree);

35 claim_a10(A, Reachable);

36 }
37

38 role B{
39 var hash: Ticket;

40 var sessionKey: Nonce;

41 fresh rootKey: Nonce;

42 var A1: Nonce; // unused nonce to correct

asymmetric behaviour

43

44 recv_1(A,B,pk2(A1));

45

46 // receive OOB channel message

47 recv_2(A,B,{sessionKey, hash}k(A,B));
48

49 //OOB message verfication

50 match(hash, H(pk2(A1)));

51

52 //Send back the encrypted rootkey and a HMAC

for integrity protection.

53 macro m = {rootKey}pk(A);
54 send_3(B,A, (m, H(m, sessionKey)));

55

56 claim_b1(B,Secret,sessionKey);

57 claim_b2(B,Secret,rootKey);
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58 claim_b3(B,Alive);

59 claim_b4(B,Nisynch);

60 claim_b5(B, Niagree );

61 claim_b6(B, Reachable);

62 }
63 }

A.2 Role script for key distribution using SRP

1 hashfunction g1, g2, H;

2 function f, plus;

3

4 /*

5 * Support protocol for approximating equality.

6 * In this case, is DH exponentiation and the

construct of session key

7 */

8 protocol @exponentiation(BE, BM1, AM2)

9 {
10 role BE{
11 // Simulate (g^a)^b = (g^b)^a

12 var a,b: Ticket;

13 recv_!1(BE,BE,g2(g1(a),b));

14 send_!2(BE,BE,g2(g1(b),a));

15 }
16

17 role BM1{
18 // Simulate M1 equality

19 var alpha, beta, a,b,x: Ticket;

20 recv_!3(BM1, BM1, H(alpha,beta, H(f(g2(g1(b),a

), g2(g1(b),x)))));

21 send_!4(BM1, BM1, H(alpha,beta, H(f(g2(g1(a),b

), g2(g1(x),b)))));

22 }
23

24 role AM2

25 {
26 // Simulate M2 equality

27 var alpha, beta, a, b, x, RK: Ticket;
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28 macro keyA = f(g2(g1(b),a), g2(g1(b),x));

29 macro keyB = f(g2(g1(a),b), g2(g1(x),b));

30 macro M1A = H(alpha, beta, H(keyA));

31 macro M1B = H(alpha, beta, H(keyB));

32 macro M2A = H(alpha, M1A, keyA);

33 macro M2B = H(alpha, M1B, keyB);

34 recv_!5(AM2,AM2,{RK}keyB, M2B);

35 send_!6(AM2,AM2,{RK}keyA, M2A);

36 }
37 }
38

39 protocol SRP(A,B)

40 {
41 role A{
42 fresh s, P, a: Nonce;

43 var beta, v, RK: Ticket;

44 macro x = H(s,P);

45 macro key = f(g2(beta,a), g2(beta,x));

46 macro M1 = H(g1(a), plus(beta, v), H(key));

47 macro M2 = H(g1(a), M1, key);

48

49 send_1(A,B, g1(a), s);

50 send_2(A,B,{P}k(A,B));
51 recv_3(B,A,plus(beta,v));

52

53 match(v, g1(x));

54 send_!4(A,B, M1); // Sending out M1

55 recv_!5(B,A, {RK}key,M2); // Receiving M2, not

from role B but from the helper protocol

56 claim_a1(A, Reachable);

57 claim_a2(A, Secret, a);

58 claim_a3(A, Secret, P);

59 claim_a4(A, Secret, key);

60 claim_a5(A, Secret, RK);

61 claim_a6(A, Nisynch);

62 claim_a7(A, Niagree);

63 }
64

65 role B{
66 fresh b, RK: Nonce;

67 var alpha, s, P;
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68 macro x = H(s,P);

69 macro key = f(g2(alpha,b), g2(g1(x),b));

70 macro M1 = H(alpha, plus(g1(b), g1(x)), H(key)

);

71 macro M2 = H(alpha, M1, key);

72

73 recv_1(A,B, alpha, s);

74 recv_2(A,B,{P}k(A,B));
75 send_3(B,A, plus(g1(b),g1(x)));

76 recv_!4(A,B, M1); // Receiving M1, not from

role A but from the helper protocol

77 send_!5(B,A, {RK}key, M2); // Sending out M2

78

79 claim_b1(B, Reachable);

80 claim_b2(B, Secret, b);

81 claim_b3(B, Secret, P);

82 claim_b4(B, Secret, key);

83 claim_b5(B, Secret, RK);

84 claim_b6(B, Nisynch);

85 claim_b7(B, Niagree);

86

87 }
88 }
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