
Aalto University

School of Science

Master’s Degree Programme in Security and Mobile Computing

Tien Thanh Bui

Analysis of Topology Poisoning Attacks
in Software-Defined Networking

Master’s Thesis
Espoo, June 30, 2015

Supervisors: Professor Tuomas Aura, Aalto University
Professor Markus Hidell, KTH Royal Institute of Technology

Advisor: Markku Antikainen M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80717895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Security and Mobile Computing

ABSTRACT OF
MASTER’S THESIS

Author: Tien Thanh Bui

Title:
Analysis of Topology Poisoning Attacks in Software-Defined Networking

Date: June 30, 2015 Pages: 79

Major: Data Communication Software Code: T-110

Supervisors: Professor Tuomas Aura
Professor Markus Hidell

Advisor: Markku Antikainen M.Sc. (Tech.)

Software-defined networking (SDN) is an emerging architecture with a great po-
tential to foster the development of modern networks. By separating the control
plane from the network devices and centralizing it at a software-based controller,
SDN provides network-wide visibility and flexible programmability to network
administrators. However, the security aspects of SDN are not yet fully under-
stood. For example, while SDN is resistant to some topology poisoning attacks in
which the attacker misleads the routing algorithm about the network structure,
similar attacks by compromised hosts and switches are still known to be possible.

The goal of this thesis is to thoroughly analyze the topology poisoning attacks
initiated by compromised switches and to identify whether they are a threat to
SDN. We identify three base cases of the topology poisoning attack, in which the
attack that requires a single compromised switch is a new variant of topology
poisoning. We develop proof-of-concept implementations for these attacks in
emulated networks based on OpenFlow, the most popular framework for SDN.
We also evaluate the attacks in simulated networks by measuring how much
additional traffic the attacker can divert to the compromised switches. A wide
range of network topologies and routing algorithms are used in the simulations.

The simulation results show that the discovered attacks are severe in many cases.
Furthermore, the seriousness of the attacks increases according to the number of
tunnels that the attacker can fabricate and also depends on the distance between
the tunnel endpoints. The simulations indicate that network design can help to
mitigate the attacks by, for example, shortening the paths between switches in the
network, randomizing regular network structure, or increasing the load-balancing
capability of the routing strategy.

Keywords: Software-defined networking, OpenFlow, Topology poisoning
attack

Language: English

2

Aalto-universitetet
Högskolan för teknikvetenskaper
Examensprogram för datateknik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Tien Thanh Bui

Arbetets namn:
Analys av Topologiförgiftningsattacker i Mjukvarudefinierade Nätverk

Datum: Den 30 Juni 2015 Sidantal: 79

Huvudämne: Datakommunikationsprogram Kod: T-110

Övervakare: Professor Tuomas Aura
Professor Markus Hidell

Handledare: Diplomingenjör Markku Antikainen

Mjukvarudefinierade nätverk (eng. Software-defined networking) är en
framväxande arkitektur med stor potential att styra utvecklingen av moderna
nätverk. Genom att separera kontrollplanet fr̊an nätverksenheter och centralisera
det till en mjukvarubaserad styrenhet, kan SDN ge nätverksadministratörer en
översikt över nätverket samt flexibla möjligheter att programmera nätverket.
Likväl är datasäkerheten i SDN inte ännu fullständigt först̊add. Även om SDN
kan motst̊a vissa topologiförgiftningsattacker, i vilka attackeraren vilseleder
routingalgoritmen ang̊aende nätverksstrukturen, s̊a är man medveten om att
liknande attacker utförda av äventyrade värddatorer och switchar är möjliga.

Målet med detta diplomarbete är att grundligt analysera topolo-
giförgiftningsattacker initierade av äventyrade switchar och att identifiera om de
är ett hot mot SDN. Vi identifierar tre basfall av topologiförgiftningsattacker,
där attacken som kräver en enskild äventyrad switch är en ny variant av topo-
logiförgiftning. Vi utvecklar en konceptuell implementation för dessa attacker i
emulerade nätverk baserade p̊a OpenFlow, det populäraste ramverket för SDN.
Vi evaluerar ocks̊a attacker i simulerade nätverk genom att mäta mängden av
extra trafik som attackeraren kan styra om till äventyrade switchar. Ett brett
utbud av nätverkstopologier och routingalgoritmer används i simuleringarna.

Resultaten fr̊an simuleringarna visar att de upptäckta attackerna i många fall är
allvarliga. Vidare ökar attackernas gravhet i relation till antalet tunnlar som attac-
keraren kan fabricera och beror även p̊a avst̊andet mellan tunnlarnas ändpunkter.
Simuleringarna indikerar att nätverksdesign kan bidra till att motverka attacker,
till exempel genom att förkorta avst̊andet mellan switcharna i nätverket, göra en
regelbunden nätverksstruktur mer slumpmässig eller förbättra routingstrategins
förmåga att balansera last.

Nyckelord: Mjukvarudefinierade Nätverk, SDN, OpenFlow, Topolo-
giförgiftningsattack

Spr̊ak: Engelska

3

Acknowledgements

First and foremost, I am thankful to my supervisor, Tuomas Aura. I deeply
appreciate the time he has spent on discussing my topic and on guiding my
work. His mentorship has been invaluable not only for this thesis, but it is
also a great inspiration for my future work.

I am grateful to my instructor, Markku Antikainen, for all the time,
advice, and feedback he gave me.

I would also like to thank my supervisor, Markus Hidell, for co-supervising
this thesis and providing me remote support.

Last but not least, I would like to express my deepest gratitude to my
friends and my family, who sincerely supported me throughout my master
study.

Espoo, June 30, 2015

Tien Thanh Bui

4

Abbreviations and Acronyms

BC Benign Controller
BGP Border Gateway Protocol
BPDU Bridge Protocol Data Unit
CDPI Control Data Plane Interface
ForCES Forwarding and Control Element Separation
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
LLDP Link Layer Discovery Protocol
LSA Link State Advertisement
MC Malicious Controller
NBI Northbound Interface
OFDP OpenFlow Discovery Protocol
OLSR Optimized Link State Routing
OSPF Open Shortest Path First
QoS Quality of Service
RIP Routing Information Protocol
SDN Software-Defined Networking
STP Spanning Tree Protocol
TCAM Ternary Content-Addressable Memory

5

Contents

Abbreviations and Acronyms 5

1 Introduction 8

2 Background and Related work 11
2.1 Software-defined networking 11
2.2 OpenFlow . 13

2.2.1 Control channel . 13
2.2.2 Data plane . 15
2.2.3 Control plane . 17

2.3 SDN security . 20
2.3.1 Attacks from the controller system 20
2.3.2 Attacks from SDN applications 20
2.3.3 Attacks from hosts . 21
2.3.4 Attacks from switches 22

2.4 Topology poisoning in traditional networks 23

3 Topology Poisoning Attacks 25
3.1 Threat model . 25
3.2 Attacker hierarchy . 26
3.3 Attack scenarios . 26

3.3.1 Two-switch tunnel attack 27
3.3.2 Extended two-switch tunnel attack 28
3.3.3 Single-switch tunnel attack 29

4 Attack Implementation 31
4.1 Emulation environment . 31
4.2 Malicious controller . 32

4.2.1 Switch state spoofing 32
4.2.2 Packet processing . 33

4.3 Emulation details . 34

6

4.3.1 Two-switch tunnel attack 34
4.3.2 Extended two-switch tunnel attack 35
4.3.3 Single-switch tunnel attack 36

5 Attack Evaluation Methods 38
5.1 Routing algorithms . 38

5.1.1 Hop-count routing . 39
5.1.2 Fully-deterministic routing 40
5.1.3 Load-balance routing 41

5.2 Network topologies . 41
5.2.1 Mesh topologies . 42
5.2.2 Tree topologies . 45

5.3 Simulation method . 47

6 Results 50
6.1 Impact of the routing algorithm 50
6.2 Impact of the network topology 51
6.3 Impact of the location of the compromised switches 52
6.4 Finding relay node . 60

7 Discussion 63
7.1 Summary of the simulation results 63
7.2 Significance of the results . 64
7.3 Detection and prevention of the attacks 65
7.4 Evaluation of the methodology 66
7.5 Error sources and open problems 66

8 Conclusion 69

A Simulation results 76

7

Chapter 1

Introduction

The growth in the volume of data exchanged, stored, and processed in data
centers as well as the trend of deploying applications and services on the cloud
are driving the demand for a new networking paradigm which is more flexible
and automatically responsive than the traditional ones. Software-Defined
Networking (SDN) [29] is an emerging architecture with a great potential to
foster the development of modern networks. The architecture separates the
control plane from the network devices and centralizes it at a software-based
controller. With this architecture, SDN provides network-wide visibility and
flexible programmability to network administrators, allowing them to design
and control the network with their own applications and responding quickly
to changing business needs.

However, SDN also comes with new security concerns. Attacks can be
initiated from malicious management applications, controller, or from com-
promised network entities, namely hosts and switches. On the other hand, by
centralizing the control plane, SDN also offers a considerable simplification to
the way we integrate security mechanisms into networks. Some approaches
to SDN security have been proposed. Most of them focus on security analysis
of SDN applications [11, 37, 41] or real time verification of network policies
[21, 26, 27, 38]. However, there has been lots of attention to the vulnerabili-
ties inside SDN controllers which can be exploited by compromised hosts or
switches to affect the network [7, 15, 30], if not many solutions.

Among the key innovations provided by SDN controllers, the network
topology service is one of the most crucial ones. The service manages up-to-
date topological information and provides the information for the manage-
ment applications, such as packet routing and mobility tracking. Therefore,
if this fundamental service does not work properly, all dependent applications
will be affected, potentially causing security problems.

Topology poisoning is not a new concept. In traditional networks, an

8

CHAPTER 1. INTRODUCTION 9

attacker can issue false routing advertisements, usually from compromised
routers, to manipulate how other routers view the network topology [33].
SDN is known to be resistant to some topology poisoning attacks. The
reason is that, in SDN, each network device usually updates its state to the
controller via a secure channel, which makes it difficult for a compromised
entity to spoof the routing information about the other devices. However,
it has been discovered that the network topology service of SDN controllers
can still be poisoned by either compromised hosts [22] or switches [7, 15]. By
poisoning the service, an attacker can, for example, inject bogus links into the
network so that some traffic will get diverted away from its intended route
and pass through compromised entities instead. After that, the attacker
can not only eavesdrop on the traffic but also facilitate man-in-the-middle
or impersonation attacks. Some work has been done to address this kind
of attacks [15, 22], but none of them provides a thorough solution to the
attacks, especially the ones initiated by compromised switches.

Research problem: Our goal is to thoroughly analyze the topology poi-
soning attacks initiated by compromised switches to identify whether they are
threats to SDN. We aim to achieve the following:

1. Identify existing and possibly new attacks to poison the network topol-
ogy from compromised switches.

2. Provide proof-of-concept for all attacks that we discover.

3. Evaluate the significance of each attack in different types of networks.

4. Analyze the impact of network design on the seriousness of the attacks.

Research methods: We first theoretically analyze the specification of
OpenFlow [32], the most popular framework for SDNs, to find loopholes in
its network topology service and then attempt to discover possible ways to
poison the service. Subsequently, we implement the attacks in an emulated
network environment to prove that they actually work. Finally, for each
attack, we conduct simulations on different kinds of networks and quantita-
tively measure the significance of the attack in terms of the number of traffic
flows it can compromise. Various network topologies and routing algorithms
are deployed in the simulations. Note that even though OpenFlow is the
main focus of this work, our findings are not specific to OpenFlow. The
same results are achievable in other SDN frameworks.

Impact and sustainable development: Topology poisoning is a rela-
tively new kind of attacks in SDN, and, to the best of our knowledge, our work
is the first study that focuses on such attacks. By identifying and evaluating

CHAPTER 1. INTRODUCTION 10

a potential threat in SDN, we believe that this research can foster its develop-
ment. Once SDN has become mature and been widely deployed, it will, with
no doubt, greatly contribute to the global sustainable development. Specif-
ically, it helps to reduce the cost needed to initialize and operate networks.
By separating the control plane from network devices, there is no need for in-
telligent devices in the network, which reduces the appliance expenses. SDN
devices are also not required to perform computationally expensive tasks,
thereby resulting in substantial energy savings. Furthermore, our research
brings ethical impacts to the society since it brings light to a security threat
that may be exploited by criminals or may lead to the invasion of privacy.
We hope that through this research the community can see the significance
of the threat and spend a reasonable amount of effort to mitigate it.

Structure of the thesis: The rest of this thesis is structured as follows.
Chapter 2 presents an overview of SDN and the OpenFlow framework as
well as a literature review of major SDN security problems. Chapter 3 de-
scribes our threat model and all the network poisoning attacks that we have
discovered. Thereafter, we test and illustrate the attacks with emulation in
chapter 4. Chapter 5 presents the simulations which we have conducted to
evaluate the seriousness of the attacks. Chapter 6 presents the simulation
results and our analysis on the results. Chapter 7 summarizes our findings
and discusses the implications of the findings to network design and SDN
deployment. Finally, chapter 8 provides a summary of this thesis.

Chapter 2

Background and Related work

In this chapter, we give an overview of SDN and the fundamentals of the
OpenFlow protocol with focus on what is relevant to the context of this work.
We also describe major security challenges existing in SDN and what has
been done to mitigate these problems, including topology poisoning attacks
in SDN and traditional networks.

2.1 Software-defined networking

Software-defined networking [29] is an emerging networking architecture which
is manageable, adaptable, and cost-effective, making it ideal for changing
business requirements. Its principal idea is to decouple the control plane
and the data plane of networking devices. Therefore, the control plane is no
longer managed by distributed protocols, like OSPF [34] and BGP [39], but
by a logically centralized software controller instead. As a result, network
administrators can dynamically shape the traffic in the network from a sin-
gle place without reconfiguring individual devices. Moreover, the controller
has information about the whole network, including the network topology
and the state of network resources (e.g. links and switches), hence giving
the administrators more flexibility in applying routing policies compared to
in legacy networks. For example, the controller can dynamically adjust the
routing to avoid congested links or provide different routing algorithms to
different types of traffic.

Figure 2.1 presents a high-level overview of the SDN architecture, which
comprises the application, control and infrastructure tiers. The SDN applica-
tions exist in the application tier. They make their internal decisions by us-
ing the abstracted view of the network provided by the controller and specify
their network requirements towards the controller via the northbound inter-

11

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Figure 2.1: An overview of the Software-Defined Networking architecture

faces (NBI). Some examples of SDN applications are network monitors, load
balancers, and intrusion detection systems (IDS). In the control tier, besides
providing relevant information up to SDN applications, the SDN controller
translates the network requirements to configuration commands and sends
them to the physical network. Even though the SDN controller is defined as a
single logically centralized entity, it can be physically distributed to increase
computing power. NOX [20], POX1, Floodlight2, OpenDayLight3, and Mae-
stro [19] are some popular open source controllers at the time of writing. The
infrastructure tier includes all of the SDN network devices and cabling for the
network. Instead of routers and switches, all SDN network devices are called
switches, although they forward packets based on both layer-2 and layer-3
headers. The SDN switches exchange control messages with the controller
via the southbound interfaces, or control data plane interfaces (CDPI), using

1http://www.noxrepo.org/pox/about-pox/
2http://www.projectfloodlight.org/floodlight/
3http://www.opendaylight.org/

CHAPTER 2. BACKGROUND AND RELATED WORK 13

standardized protocols [28]. Some examples of the southbound protocols are
Forwarding and Control Element Separation (ForCES) [17, 48], SoftRouter
[31], and OpenFlow [32]. Among these, OpenFlow is the leading candidate,
and Open vSwitch4 is one of the most popular switch implementation of
OpenFlow.

2.2 OpenFlow

OpenFlow is the most common southbound protocol for the interaction be-
tween the switches and controllers, which reside in the infrastructure tier and
control tier respectively. The architecture of OpenFlow comprises three main
components [10]: the data plane, which is composed of OpenFlow switches,
the control plane, which consists of one or more OpenFlow controllers, and the
control channel, which connects the data plane and the control plane. The
OpenFlow controller manages the data plane by using the control channel
to install flow entries to the flow tables in the switches so that the switches
can forward data packets according to these entries. In this way, the SDN
applications can freely alter the flow tables of switches to apply new routing
rules or security models to the network.

This section gives an overview of the three components as described in
the OpenFlow protocol specification version 1.0 [1], which we use in this
research. Also, this section describes some actual processes that we observe
in practice and is not described in the specification. Note that our work is
not specific to this version of OpenFlow. The same results can be obtained
with other OpenFlow versions or southbound protocols.

2.2.1 Control channel

An OpenFlow switch has to initiate a control channel to the controller be-
fore it can exchange any messages with the controller. The connection for
the control channel could use plain TCP or be encrypted with TLS. When
the switch has successfully established the connection, both endpoints send
an OFPT HELLO message to the other to negotiate the protocol version,
which will consequently be used to configure the channel. If the recipients
agree on the protocol version, then the process advances. Otherwise, the re-
cipients must reply with an OFPT ERROR indicating the failure. After the
switch and the controller have configured the channel successfully, OpenFlow
messages can be exchanged over the channel.

4http://openvswitch.org/

CHAPTER 2. BACKGROUND AND RELATED WORK 14

Figure 2.2: Control channel setup process

There are two types of control channel: out-of-band and in-band [7], il-
lustrated in Figure 2.3. Out-of-band control transmits control traffic via a
dedicated network, which can be either physical or logical. In the former
case, the OpenFlow switches are directly connected to the controller or to a
traditional network that connects to the controller while, in the latter case,
the control channel is only logically separate from the data plane, e.g. in
a VLAN. Although out-of-band control ensures the security and high avail-
ability of the control traffic, it is not always feasible, especially in wireless
networks. On the other hand, in-band control uses the same network for both
control traffic and data traffic. Apparently, this approach can be deployed
more easily but has more security concerns compared to the out-of-band
approach.

Figure 2.3: In-band vs Out-of-band control

CHAPTER 2. BACKGROUND AND RELATED WORK 15

2.2.2 Data plane

The data plane operates in the infrastructure tier and comprises OpenFlow
switches. Its main responsibilities are data forwarding and collecting data
statistics. This section will describe how an OpenFlow switch bootstraps its
data plane and how the data forwarding process works.

Bootstrapping process

Upon the control channel establishment, the controller and the OpenFlow
switch must exchange a set of messages in order for the controller to identify
and configure the switch. The process is not described in the OpenFlow spec-
ification since it is implementation-specific. In this section, we present the
process as we observed while using the Floodlight controller 1.05 and Open
vSwitch 2.3.16. The process consists of four steps: handshake, switch config-
uration, switch’s description collection, and controller-role configuration, as
shown in Figure 2.4. Details of each step are as follows.

Figure 2.4: Bootstrapping process of the data plane

5http://www.projectfloodlight.org/download/
6http://openvswitch.org/pipermail/announce/2014-December/000071.html

CHAPTER 2. BACKGROUND AND RELATED WORK 16

First, the controller initiates a handshake with the switch in order to
identify the switch’s features. It sends an OFPT FEATURES REQUEST
message to the switch via the control channel, and the switch consequently
responds with an OFPT FEATURES REPLY message containing its basic
features, such as the datapath identifier (i.e., a 64-bit number identifying
the OpenFlow instance on the switch), the number of ports, and the MAC
address of each port.

After the handshake, the controller configures some parameters in the
switch with the OFPT SET CONFIG message, forces the switch to apply
the configuration with the OFPT BARRIER REQUEST message, and then
verifies that the switch has actually applied the configuration by querying
its configuration with the OFPT GET CONFIG REQUEST message. All
of these messages are placed in a single packet and sent to the switch.
When the switch receives the messages, it applies the specified configura-
tion and subsequently responds with an OFPT BARRIER REPLY and an
OFPT GET CONFIG REPLY message containing its new configuration.

In the next step, the controller queries the description of the switch with
an OFPT STATS REQUEST message. The message includes a type field
which tells what kind of statistics that the controller wants to query. It
is set to the OFPST DESC constant in this case. The switch replies with
an OFPT STAT REPLY containing its manufacturer description, hardware
description, software description, serial number, and a human readable de-
scription of its datapath.

Finally, the controller configures its role on the switch by encapsulating
the role in an OFPT VENDOR message and then sending it to the switch.
The role can be equal, master, or slave. The controller with the equal-role or
master-role has full permission to the switch. The difference between these
roles is that at most one controller with the master-role is allowed while there
can be multiple controllers with the equal-role. The controller with the slave-
role only has read-only access to the switch. Upon receive the message, the
switch confirms the role by replying with another OFPT VENDOR message
containing the specified role. Note that since the OpenFlow protocol version
1.0 does not support controller roles, this is not a standard way but an
extension defined solely for Open vSwitch to configure the controller role.

Forwarding

An OpenFlow switch is a simple forwarding device that processes incoming
data packets based on its flow table. The flow table contains a set of flow
entries, each of which includes match fields, priority, counters, instructions,
timeouts, cookie, and flags, illustrated in Figure 2.5. The match fields de-

CHAPTER 2. BACKGROUND AND RELATED WORK 17

scribe with which packets this entry is associated. They include the ingress
port and some specific header fields of packets, such as IP address and MAC
address. The priority helps the switch to choose which entry should be exe-
cuted when multiple entries match a packet. The entry with higher priority
is preferred. The counters are used for calculating statistics about flows.
The instructions specify how packets matching the entry are processed. Two
example instructions are forwarding the packets to a specific port, and drop-
ping the packets. The timeouts consist of two values: an idle timeout and a
hard timeout. The hard timeout is triggered at the flow entry’s arrival time,
while the idle timeout is triggered when the flow is inactive. The expiry of
either of these timers causes the flow entry to be removed. The cookie is
an opaque data value chosen by the controller, indicating which flow entries
are affected by flow statistics, flow modification and flow removal requests.
The flags specify how the flow entry are managed; for example, the OF-
PFF SEND FLOW REM causes the switch to notify the controller when
the flow entry is removed.

Figure 2.5: Components of a flow entry [1]

When the switch receives an incoming data packet, it first checks whether
the packet matches any installed flow entries. If the switch discovers any
matching entries, it will select the entry with the highest priority and exe-
cute instructions contained in the entry. Otherwise, as the default action, the
switch will send an OFPT PACKET IN message to the controller to request
for a rule or a specific action to be applied to the packet. The controller sub-
sequently issues either an OFPT FLOW MOD or an OFPT PACKET OUT
message containing the instructions on how the switch should process the
data packet. The main difference between these messages is that the former
instructs the switch to keep the information encapsulated in the message as
a flow entry in the flow table so that the switch is able to process similar
upcoming data packets without querying the controller repeatedly, while the
latter is for one-time packet processing only. These two scenarios are depicted
in Figure 2.6.

2.2.3 Control plane

The control plane is responsible for managing the data plane. It consists
of one or more software controllers which communicate with the data plane

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Figure 2.6: Processing a data packet without a matching flow entry

via the control channel. In addition to its role in the bootstrapping process
and controlling the forwarding tables, it continuously gathers information
from the data plane and provides information to the services and apps in
the application tier about the network operations. In this section, we discuss
two special tasks of the control plane: link discovery and network statistics
monitoring.

Link discovery process

Link discovery is an important process for topology-dependent services, such
as network routing. Typically, the OpenFlow controller uses the OpenFlow
Discovery Protocol (OFDP), which leverages the Link Layer Discovery Pro-
tocol (LLDP) packet [4], to dynamically detect direct links between adjacent
OpenFlow switches.

Figure 2.7 illustrates the link discovery process between two switches
in an OpenFlow network. To begin with, the controller sends to switch 1
an OFPT PACKET OUT message which contains a LLDP packet and an
instruction on which port the switch should forward it. Upon receiving the
message, switch 1 extracts the LLDP packet and forwards it to the specified
port. Subsequently, switch 2 receives the LLDP packet, and then, because
it does not know how to process the packet, it encapsulates the packet in an
OFPT PACKET IN message along with the ingress port identifier and sends
the message to the controller. When the controller receives the message, it

CHAPTER 2. BACKGROUND AND RELATED WORK 19

can identify a unidirectional link between the two switches. The discovery
process in the opposite direction operates similarly. As stated in [22], all
popular open-source OpenFlow controllers at the moment use the procedure
described above for link discovery.

It is important to point out here that if a switch somehow receives an
LLDP packet containing information about another switch to which it is not
directly connected, it still sends the packet to the controller, thus resulting
in a false link in the network view of the controller.

Figure 2.7: Switch-to-switch link discovery in OpenFlow networks

Network statistics monitoring

An OpenFlow switch calculates statistics of the data packets that it has
processed and provides the information to the controller upon request. In
OpenFlow version 1.0, the statistics consists of flow statistics, table statistics,
port statistics, and queue statistics. The flow statistics contain information
about each of the existing flows in the switch, including the duration that
the flow has been alive and the number of data packets and bytes matched
the flow. The table statistics hold information about each flow table in the
switch, including the maximum number of flow entries that it supports, the
number of active flow entries, and the number of packets that have been
looked up in or hit the table. The port statistics consist of information about
each physical port of the switch, including the number of received packets
and bytes, the number of transmitted packets and bytes, and the number of
dropped packets. The queue statistics contain the queue status on each port,
including the number of transmitted packets and bytes and the number of
packets dropped due to overruns. In the latest OpenFlow version (version
1.5) [2], the switch can also provide other types of statistics and meters to

CHAPTER 2. BACKGROUND AND RELATED WORK 20

support network monitoring, such as group statistics, action bucket statistics,
and per-flow meter. With all of these statistics, the controller is aware of the
traffic status of each switch and link and can adjust the routing policies
accordingly.

2.3 SDN security

Software-defined networking comes with significant advantages over the legacy
networking, but, like most new technologies, it also comes with new security
threats. This section describes potential security problems that arise from
different parts of the SDN architecture and the work that has been done to
mitigate the problems.

2.3.1 Attacks from the controller system

Attacks on the controller would have the most severe impact on SDNs because
they could affect the entire network. Such attacks could be initiated from
the system hosting the controller by exploiting some software vulnerabilities
in the system, like the Shellshock [3] or the GHOST vulnerability [24]. Such
vulnerabilities might enable the attacker to run arbitrary code or even gain
administrator access to the system. Therefore, if no security settings are
configured to protect the controller in such cases, the controller would be
under the control of the attacker.

As no software is entirely free from bugs, a way to mitigate risks is to
update and patch software [36]. Another mitigation strategy is to provide a
separate security domain to the controller with techniques such as sandboxing
and virtualization. These techniques might help to isolate the controller when
attacks happen on the host system.

2.3.2 Attacks from SDN applications

As described in section 2.1, the controller provides interfaces for SDN ap-
plications to manage the network. However, the lack of trust between the
controller and SDN applications is a security concern since malicious SDN
applications could issue any unwanted commands to the network through the
northbound interfaces.

In order to prevent such problems, Kreutz et al. [30] propose that the
trust between the controller and SDN applications should be established
using dynamic trust models [47]. Another mitigation solution, introduced
in [37], is to build a security-enforcement kernel that can constrain which

CHAPTER 2. BACKGROUND AND RELATED WORK 21

commands and requests an application can issue. However, establishing de-
fending policies that prevent all malicious application behaviors is still not
easy.

2.3.3 Attacks from hosts

In enterprise cloud networks, it is feasible for an attacker to acquire a large
number of hosts, which can be used to perform various kinds of attacks.
Two major attacks that malicious hosts can perform are denial-of-service
and network topology poisoning. This section will describe these attacks in
detail.

Denial-of-Service

The Denial-of-Service (DoS) attack in SDN involves overwhelming the net-
work’s resources so that the routing in the network does not work properly.
It can be done by flooding packets to the controller or overflowing the flow ta-
bles of switches. These are referred to as control plane resource consumption
attack and data plane resource consumption attack, respectively [40]. Both
types of attacks can be done by flooding the network with a large number
of forged packets with all fields set to random values. These packets would
trigger the switches to send a large number of requests to the controller for
new flow rules, thus consuming the control channel bandwidth and the con-
troller CPU resources. As a result, the controller would respond slowly to
legitimate requests. At the same time, the switches would also suffer from
traffic congestion because the packets could quickly exhaust the memory for
flow table storage in the switches [25].

There is some research about how the DoS attacks can be mitigated. OF-
GUARD [46] detects the attack by monitoring the rate of packet-in messages
from the data plane. When the rate is above a certain threshold, it starts
filtering all packets with a data plane cache before letting the switches send
the packets to the controller. AVANT-GUARD [42] extends the OpenFlow
data plane to mitigate DoS attacks. It drops all TCP connections which
do not complete the handshake or provide the evidence of actual traffic,
i.e. data packets. Kandoi et al. [25] discuss how the network configurations,
consisting of timeout values and control plane bandwidth, could be optimized
to mitigate the DoS attacks.

CHAPTER 2. BACKGROUND AND RELATED WORK 22

Topology poisoning

Hong and Xu et al. [22] propose two ways to poison the network topology
in OpenFlow networks: host location hijacking and link fabrication. To the
best of our knowledge, it is the only paper that discusses such attacks at the
moment.

In the host location hijacking attack, an attacker impersonates some tar-
get hosts in order to receive the traffic destined to them. The attack is
performed by exploiting the Host Tracking Service (HTS), which uses in-
formation in the OFPT PACKET IN messages to detect if a new host has
joined the network or if an existed host has relocated. The attacker can send
spoofed OFPT PACKET IN messages with the information of the target
hosts to the controller in order to make the controller think that the target
hosts have been moved to the attacker’s location. Two defense strategies
to this kind of attacks were proposed: cryptographically authenticating the
location of the hosts whenever they relocate, and verifying conditions of a
host migration, consisting of the port-down signal and the unreachability of
the host in the previous location.

In the link fabrication attack, the attacker attempts to create bogus links
in the network by manipulating the propagation of LLDP packets in the link
discovery process. The attacker can either generate fake LLDP packets and
send them to target switches or relay genuine LLDP packets received from
one target switch to another. In both cases, the controller would think that
a link exists between those switches even though it does not. As a result, all
traffic that is routed through the imaginary link will go through the malicious
hosts, thereby letting the attacker eavesdrop on the traffic. The solutions
proposed to this type of attacks are adding an extra authenticator to LLDP
packets so that they cannot be forged and ignoring all LLDP packets coming
from a host.

2.3.4 Attacks from switches

Compromised switches not only have the same capabilities as the malicious
hosts, but they are also capable of performing more dynamic and severe at-
tacks. First, a compromised switch can be used for traffic eavesdropping [7].
Both data and control traffic passing through the compromised switch can be
replicated and sent to the attacker for further processing. Furthermore, the
attacker can interfere with the control traffic passing through the compro-
mised switches to perform man-in-mhe-middle attacks [8]. By doing so, the
attacker can act as the controller to some target switches. The attacker can
also spoof control messages to the controller on behalf of the target switches

CHAPTER 2. BACKGROUND AND RELATED WORK 23

to prevent the controller from detecting the attack. TLS can help to prevent
these attacks by providing confidentiality for the control traffic and mutual
authentication between the controllers and switches.

The topology poisoning attack — the main focus of this work — is also ini-
tiated from compromised switches. This kind of attacks has not been studied
extensively in the context of SDN. It is first introduced in [7]. Its principle
is similar to that of the link fabrication attack caused by malicious hosts:
compromised switches send arbitrary LLDP packets to fabricate bogus links
in the network. However, compared with the attack originating from hosts,
this can be performed in a larger scale. The reason is that a switch is usu-
ally connected to more neighbors than a host is. Therefore, a compromised
switch can deceive more targets, thus potentially increasing the number of
bogus links in the network. It is also more difficult to detect this kind of
attacks since it causes less suspicious behavior in the network. For example,
it does not require the participation of a host in its manipulation of the link
discovery process, hence the solutions in section 2.3.3 for the link fabrication
attack are ineffective. Another solution provided by SPHINX [15] is to build
and continuously update flow graphs for each traffic flow observed in the
network in order to detect anomalies in the network topology. However, the
anomaly-detection approach does not cover all possible attack scenarios and
can also be circumvented by spoofing additional traffic between compromised
switches.

2.4 Topology poisoning in traditional networks

Topology poisoning is not a new concept in traditional networks. It has
received a fair share of attention in the research community because of its
potential impact. As long as an attacker is able to issue false routing adver-
tisements, usually from compromised routers, it can manipulate how other
routers view the network topology [33].

In networks that use distance vector routing protocols like RIP, a router
periodically sends link updates to its neighbors. Each update includes a
destination identifier and the cost to the destination. When a router receives
an update, it re-calculates its distance to the destination using the distributed
Bellman-Ford algorithm [9]. The problem is that a router cannot verify the
link updates. Therefore, a compromised router can claim it has the least-cost
path to a particular address, thus causing it to receive some or all traffic to
that address. This kind of attack is referred to as the black hole attack [45].

The same idea can be applied in networks that use link-state routing
protocols. A popular link-state protocol in wired network is OSPF, in which

CHAPTER 2. BACKGROUND AND RELATED WORK 24

each router advertises its links to neighboring routers and networks. These
advertisements are called Link State Advertisements (LSA). A compromised
router in OSPF networks can either falsify its own LSA [45] or send out false
LSAs on behalf of other routers [23]. The result of both cases is that traffic
destined to the target addresses will be attracted to the compromised routers.
This way the attacker can eavesdrop on the traffic, route it through a longer
path, or completely drop it. Besides wired networks, link-state protocols in
mobile wireless networks also have to deal with similar security problems.
For example, in the Optimized Link State Routing (OLSR) protocol, each
node injects topological information into the network by generating HELLO
(or TC) messages, which can also be falsified [13].

Manipulating the STP protocol in local-area networks might also divert
traffic to compromised switches. This attack is called STP mangling [35]. In
the attack, an attacker falsifies BPDUs with the smallest bridge ID in order
to cause a compromised switch to become the root of the network’s spanning
tree. Once it succeeds, the compromised switch becomes the focal point of
the network and sees most of the traffic on the network.

Chapter 3

Topology Poisoning Attacks

This thesis focuses on the topology poisoning attacks caused by compromised
switches. The idea of poisoning the network topology is not entirely new in
SDN. As described in chapter 2, the topology poisoning attacks can be initi-
ated from either compromised hosts or switches, but those originating from
switches are potentially more severe and difficult to be detected. Also, they
are more interesting because they have not been studied widely. However,
the large number of possible attack scenarios makes the security analysis
challenging. To tackle this, instead of analyzing all possible attack cases, we
focus on the most atomic ones, which can be combined to represent more
complex attacks.

This chapter starts by defining our threat model. Thereafter, we de-
scribe in detail the three attack cases that we consider in our analysis: two-
switch tunnel, extended two-switch tunnel, and single-switch tunnel. The
two-switch tunnel attack has been presented in the literature [7, 15], but the
other attacks have not.

3.1 Threat model

We consider a multi-homed software-defined network with the following as-
sumptions:

1. The network uses OpenFlow as the southbound protocol.

2. The attacker has compromised one or more OpenFlow switches.

3. Non-compromised switches operate correctly and according to the be-
nign controller’s instructions.

25

CHAPTER 3. TOPOLOGY POISONING ATTACKS 26

4. The control channel is properly protected with TLS protocol, meaning
that it provides confidentiality for the control traffic as well as mutual
authentication between the controller and switches.

3.2 Attacker hierarchy

Two levels of attackers exist in our threat model. The attacker of the first
level has access to the control interface of the compromised switches. Thus,
it is able to modify the flow tables of the switches (i.e., add, remove, and
modify flow entries in the flow tables) and even reconfigure the switches to
communicate with a malicious controller rather than the benign one. How-
ever, accessing sensitive information in the compromised switches’ firmware,
such as the private key used with TLS, is out of the attacker’s capabilities.
Without the ability to extract the TLS key, the attacker is unable to com-
municate with the benign controller on behalf of the compromised switches,
which makes it easier to detect the attack.

On the other hand, the attacker of the second level has full access to the
compromised switches. It means that, besides the ability to issue commands
to the switches via their control interface it can extract all kinds of informa-
tion from the switches, including the TLS key pair. As a result, the attacker
can spoof control traffic to the benign controller in order to, for example,
make it think that the compromised switches are still working as expected.
In brief, the attackers of both levels can implement the same attacks, but
the attacker who has full access to the compromised switches can conceal its
attacks better.

3.3 Attack scenarios

With the assumptions described above, we present three different attack
scenarios: two-switch tunnel, extended two-switch tunnel, and single-switch
tunnel. Even though their requirements and goals are different, they are all
based on the same principle, which is to manipulate the propagation of the
LLDP packets to fabricate non-existing links in the networks. We refer to
these imaginary links as tunnels. The next sections describe these attack
scenarios in detail, including the prerequisites, goals, and attack method.

CHAPTER 3. TOPOLOGY POISONING ATTACKS 27

3.3.1 Two-switch tunnel attack

Prerequisites: Two non-adjacent switches and a third node are under the
control of the attacker. The third node can be either a host or a switch.

Goal: To lead the controller to believe that the compromised switches are
directly connected.

Method: First, each compromised switch needs to fool the controller into
thinking that it has one more port in use than it actually has. The fake
active port will be used for the virtual link between the two switches. In
order to create a fake port, the attacker can add spoofed port information to
the OFPT FEATURES REPLY message during the bootstrapping process
(see section 2.2.2). After that, whenever one of the compromised switches
receives an LLDP packet that is for the fake port, it forwards the packet to the
other switch via the third node (Figure 3.1). The other switch consequently
encapsulates the LLDP packet into an OFPT PACKET IN message and then
sends it to the controller. As a result, the controller thinks that there is a
link between these switches.

Figure 3.1: Illustration of the two-switch tunnel attack

We refer to the third node as the relay node. The use of relay nodes
was proposed in [22]. Without the relay node, the switches would not be
able to send any packet to each other after the tunnel has been established.
The reason for this is that when one of the switches wants to send a packet
to the other, it has to forward the packet to a non-compromised adjacent
switch first. This switch possibly sends the packet back to the sender since
the controller thinks that the shortest route is through the virtual link.

In practice, the packet relay process from a compromised switch is not as
simple as changing the destination address of the packets and sending them
to the relay node and then from the relay node to the other compromised
switch. This is because by doing so it is difficult for the compromised switches
to restore the original source and destination addresses of the packets. One
way to make relaying packets more feasible is to reconfigure the compromised

CHAPTER 3. TOPOLOGY POISONING ATTACKS 28

switches to communicate with a malicious controller rather than the benign
one. The relay node can act as the malicious controller or the medium to
forward control traffic between the malicious controller and the compromised
switches. In either case, the compromised switches can send any packets to
each other through their control channel to the malicious controller.

3.3.2 Extended two-switch tunnel attack

Prerequisites: As above, two non-adjacent switches and a relay node are
under the control of the attacker. The relay node can be either a host or a
switch.

Goal: To lead the controller to believe that the compromised switches are
directly connected and so are their neighbors.

Method: The tunnel between the two compromised switches can be fab-
ricated using the method of the two-switch tunnel attack described in the
previous section. In order to fool the controller to think that there are links
connecting the neighbors of the two compromised switches, the attacker can
configure each compromised switch to forward the LLDP packets that it re-
ceives from one neighbor to one of the other switch’s neighbors via the relay
node. By doing so, if each compromised switch has n neighbors, apart from
the tunnel connecting the compromised switches, the attacker can create at
most (n − 1) additional tunnels. The attacker cannot create n additional
tunnels because it has to keep one neighbor of each compromised switch out
of the attack so that it still can forward traffic between the compromised
switches and the relay node.

In fact, it is also possible to create tunnels from each compromised switch to
the neighbors of the other compromised switch. However, we do not consider
such tunnels since less distance can be reduced with such tunnels than with
the tunnels connecting the neighbors of the compromised switches.

CHAPTER 3. TOPOLOGY POISONING ATTACKS 29

Figure 3.2: Illustration of the extended two-switch tunnel attack

Figure 3.2 illustrates an example of this attack scenario. S1 and S2 are
the two compromised switches, S1 is adjacent to S11 and S12, and S2 is
adjacent to S21 and S22. By relaying LLDP packets between S11 and S21,
the attacker can cause the controller to think these switches are directly con-
nected. However, since the attacker cannot manipulate the number of ports
of the non-compromised switches, it has to sacrifice the real links between
the compromised switches and their neighbors that are used for the attack.
Therefore, in the example, if the attacker has established a tunnel between
S11 and S21, it has to logically remove the links S1−S11 and S2−S21 from
the controller’s view. This can be done by S1 dropping all LLDP packets
that the controller instructs it to send to S11 and S2 dropping all LLDP
packets that the controller instructs it to send to S21. The attacker can also
apply a similar process to fabricate a tunnel between S12 and S22, between
S12 and S21, or between S11 and S22.

3.3.3 Single-switch tunnel attack

Prerequisites: A switch is under control of the attacker.

Goal: To lead the controller to believe that the neighbors of the compromised
switch are directly connected to each other.

Method: The attacker needs to configure the compromised switch to forward
the LLDP packets received from one port to another port instead of sending
the packets to the controller. If the compromised switch directly connects
to n switches, the attacker can fabricate a maximum of bn

2
c tunnels between

these switches.

CHAPTER 3. TOPOLOGY POISONING ATTACKS 30

Figure 3.3: Illustration of the single-switch tunnel attack

For example, in Figure 3.3, S1 is the compromised switch, and S11, S12,
S13, S14 are its neighboring switches. By forwarding the LLDP packets
received from S11 to S12, the attack can cause the controller to think that
there is a link connecting these switches. However, for the same reason
as described in the extended two-switch tunnel attack, the attacker has to
sacrifice the links S1 − S11 and S1 − S12 for the attack. Tunnels can also
be created between other switch pairs, such as S13 and S14.

Chapter 4

Attack Implementation

In chapter 3, we discussed three topology poisoning attack scenarios: two-
switch tunnel, extended two-switch tunnel, and single-switch tunnel. In order
to demonstrate the feasibility of the attacks, we implement them in an emu-
lated SDN network environment. This chapter first describes the emulation
methods, including the tools that were used. Thereafter, we present our con-
troller implementation that we used to control the compromised switches.
The last section of the chapter describes the detail of the emulations for each
attack.

4.1 Emulation environment

Table 4.1 summarizes the software and methods used in the emulations.
We created the emulated networks with Mininet 2.2.0 1 — a widely used
emulation tool for software-defined networks. Mininet leverages lightweight
virtualization to make a single system look like a complete network, in which
the hosts run in separate network namespaces with their own network in-
terfaces and addresses while the switches usually work in the same network
namespace as the underlying system.

In-band control was configured in the emulated network. This was chosen
because it provides more general results than out-of-band control. If the
attacks work with in-band control, they also work with out-of-band control.
However, in Mininet, the switch implementation does not work well with in-
band control. Therefore, instead of using the Mininet switches, we deployed
Mininet hosts and run Open vSwitch 2.3.12 on them so that they acted as
real OpenFlow switches. OpenFlow 1.0 was selected for the control channel

1http://mininet.org/blog/2014/12/09/announcing-mininet-2-2-0/
2http://openvswitch.org/pipermail/announce/2014-December/000071.html

31

CHAPTER 4. ATTACK IMPLEMENTATION 32

Network emulator Mininet 2.2.0
Switch software Open vSwitch 2.3.1
Benign controller Floodlight 1.0
Malicious controller POX
Routing algorithm Shortest-path routing
Control communication In-band
Southbound protocol OpenFlow version 1.0

Table 4.1: Summary of the emulation setup

since it is widely supported by various controller implementations. We did
not enable TLS in the control channel as TLS does not affect the attacks.
It would have made the emulations unnecessarily complicated and made it
difficult for us to monitor the packet routing.

There are two kinds of switches in the network: benign and compromised.
The switches of each kind connect to a different controller. The benign
switches are controlled by the benign controller (BC), for which we used
Floodlight 1.0 3 with its default settings. The benign controller routes data
packets in the network using the shortest-path routing algorithm [16] and
uses the link discovery process as described in section 2.2.3 to discover the
network topology. It also provides northbound web interfaces4, which we
used to query information about the benign controller’s view of the network
topology. On the other hand, the compromised switches are controlled by
the malicious controller (MC), which was implemented with POX5. This
controller acts as the attacker in the network.

4.2 Malicious controller

The malicious controller has two main tasks: spoofing the state of the com-
promised switches to the benign controller and processing routing requests
from the compromised switches. This section explains how we implemented
these tasks.

4.2.1 Switch state spoofing

The malicious controller has to send spoofed traffic to the benign controller
on behalf of the compromised switches in order to make it think that the

3http://www.projectfloodlight.org/download/
4https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Floodlight+REST+API
5http://www.noxrepo.org/pox/about-pox/

CHAPTER 4. ATTACK IMPLEMENTATION 33

switches still work as expected. The spoofing process for each compromised
switch is done as follows. The malicious controller first establishes a control
channel to the listening port of the benign controller (i.e., port 6653) via the
compromised switch. In order to do so, it installs two forwarding rules on
the compromised switch:

• Towards the benign controller: for any packet that is destined to
port 6653 on the switch, the switch replaces the source and destination
addresses of the packet with its own address and the benign controller’s
address, respectively, and then sends the modified packet to the benign
controller.

• From the benign controller: for any packet that is received from
port 6653 of the benign controller and is destined to the switch’s ad-
dress, the switch replaces the source and destination addresses of the
packet with its own address and the malicious controller’s address, re-
spectively, and sends the modified packet to the malicious controller.

With these rules, the malicious controller only needs to establish a con-
nection to the port 6653 of the compromised switch, and the switch then
forwards the connection to the benign controller as if it were the connec-
tion endpoint. Once this control channel has been established, the malicious
controller spoofs the bootstrapping process (see section 2.2.2) to the benign
controller with the real information of the compromised switch. However, for
the two-switch tunnel and extended two-switch tunnel attacks, additional in-
formation of the fake active port is added for the tunnel endpoints. When
the bootstrapping process is done, the benign controller believes that the
compromised switch is under its control.

4.2.2 Packet processing

When a compromised switch receives a packet that it does not know how
to forward, it requests the malicious controller for routing instructions. The
malicious controller processes this request as illustrated in Figure 4.1. Since
the malicious controller has no information about the network topology, it
has to query the benign controller about how to process the request. Hence,
it forwards the request to the benign controller through the control channel
that goes through the compromised switch, as explained above. The benign
controller consequently processes the request and sends instructions back. If
the instructions are to forward the packet to the fake port, the malicious
controller will forward the packet to the other compromised switch via its
control channel. Otherwise, it will send the instructions to the compromised

CHAPTER 4. ATTACK IMPLEMENTATION 34

Figure 4.1: Processing a routing request by the malicious controller

switch. As a result, the compromised switch will receive normal instructions
from the benign controller, except for the traffic that is routed through the
tunnel and for the control channel. The malicious controller acts as the relay
node, as described in section 3.3.1.

4.3 Emulation details

For each attack presented in chapter 3, we conducted a separate emulation to
demonstrate it and to test its feasibility. To observe the effect of the attacks,
we ran each emulation for two situations: normal and attack. In the normal
situation, all switches operate normally under the control of the benign con-
troller. On the other hand, in the attack situation, the compromised switches
are controlled by the malicious controller while the other switches still work
normally. The next sections describe how the emulations work.

4.3.1 Two-switch tunnel attack

Figure 4.2 shows the emulated network for the two-switch tunnel attack.
S1, S2, S6, S7, and S8 are the normal switches, S3 and S5 are the tunnel
endpoints, S4 is the relay node, and h1 and h2 are the hosts.

Under the normal situation, all switches were controlled by the benign
controller, which ran on the host connected to S1. There are two paths of
equal length between h1 and h2: [S1− S6− S7− S8− S2] and [S1− S3−

CHAPTER 4. ATTACK IMPLEMENTATION 35

S4 − S5 − S2]. Therefore, when h1 pinged h2, the ICMP requests went
through the former route, while the ICMP replies went through the latter
route, resulting in 50% of the data packets going through the compromised
switches.

Under the attack situation, we ran the malicious controller on the host
connected to S4 and configured it to be the controller of S4. We also con-
figured S4 to be the controller of S3 and S5. S4 was configured to forward
control traffic between the malicious controller and the tunnel endpoints. We
set the controller of S3 and S5 to be S4 and not the malicious controller so
that the malicious controller can be at any location in the network.

Subsequently, we triggered the malicious controller to start the spoofing
process described in section 4.2.1 for each compromised switch and then apply
the method presented in section 3.3.1 to create a tunnel between S3 and S5.
When this had been done, we pinged from h1 to h2 again. This time, all
ICMP packets went through the compromised switches. The reason for this
is that the tunnel had shortened the path that go through the compromised
switches.

Figure 4.2: Emulated network for the two-switch tunnel attack

4.3.2 Extended two-switch tunnel attack

Figure 4.3 illustrates the emulated network for the extended two-switch tun-
nel attack. S1, S2, and S6 are the normal switches, S3 and S5 are the tunnel
endpoints, S4 is the relay node, and h1 and h2 are the hosts.

Under the normal situation, all switches were controlled by the benign
controller, which ran on the host connected to S1. There are two paths

CHAPTER 4. ATTACK IMPLEMENTATION 36

between h1 and h2: [S1 − S3 − S4 − S5 − S2] and [S1 − S6 − S2], which
have length of 4 and 2, respectively. Therefore, when h1 pinged h2, all ICMP
packets went through the latter path, meaning that no traffic went through
the compromised switches.

Under the attack situation, we first configured the malicious controller
and the compromised nodes as described in section 4.3.1 to create the tunnel
between S3 and S5. At this moment, the ICMP traffic still did not go
through the path that contains the compromised switches since the length
of the path was reduced to 3, which was still greater than that of the other
path. We then applied the method illustrated in section 3.3.2 to create the
tunnel between S1 and S2. When this had been done, the benign controller
thought that there was a direct link between S1 and S2. As a result, when
h1 pinged h2 again, all ICMP packets were routed through this tunnel, which
was actually the path containing the compromised switches.

Figure 4.3: Emulated network for the extended two-switch tunnel attack

4.3.3 Single-switch tunnel attack

Figure 4.4 shows the emulated network for the single-switch tunnel attack.
S1, S2, and S4 are the normal switches, S3 is the compromised switch, and
h1 and h2 are the hosts.

Under the normal situation, all switches were controlled by the benign
controller, which ran on the host connected to S1. There are two paths of
equal length between h1 and h2: [S1−S4−S2] and [S1−S3−S2]. Therefore,
when h1 pinged h2, the ICMP requests went through the former, while the
ICMP replies went through the latter, meaning that 50% of the data packets
went through the compromised switch.

CHAPTER 4. ATTACK IMPLEMENTATION 37

Figure 4.4: Emulated network for the single-switch tunnel attack

Under the attack situation, we ran the malicious controller on the host
connected to S3 and then configured it to be the controller of S3. We imple-
mented the malicious controller so that it forwarded all LLDP packets that
S3 received from S1 to S2 and vice versa, resulting in a tunnel between S1
and S2. When this had been done, we pinged from h1 to h2 again. We
observed that all ICMP packets were routed through the tunnel and were
routed via the compromised switch S3.

Chapter 5

Attack Evaluation Methods

SDN will be deployed in many different types of networks, and the software
implementation of routing algorithms in the controller means that a wide
variety of routing algorithms may be used. In this thesis, the goal is to
analyze topology spoofing attacks on a general level. Thus, rather than
picking one specific network and routing algorithm, we assess the threats
against a wide variety of network topologies and routing strategies. By doing
so, the results will be more general and also teach us about resilient network
design.

To assess the threat caused by the discovered attacks, we performed the
attacks on large simulated networks and measured how much additional traf-
fic they can divert to compromised switches. The more traffic the compro-
mised switches can attract, the more severe the attacks are. In the simu-
lations, we used three different shortest-path routing algorithms, which are
hop-count, fully-deterministic, and load-balance. Seven types of topologies
were chosen for the simulations, which are grid, 2D torus, 3D torus, hyper-
cube, triangulated planar, fat tree, and k-ary tree. These routing algorithms
and topologies are explained in sections 5.1 and 5.2, respectively. Section 5.3
describes how we ran each simulation. The simulation results are shown in
the next chapter.

5.1 Routing algorithms

Data center networks provide environments for increasingly sophisticated
applications and services. Each of them comes with different demands on
the underlying network. For example, delay-sensitive services, such as web
servers, require low communication latency, while big data applications, such
as MapReduce, prioritize high throughput and congestion avoidance.

38

CHAPTER 5. ATTACK EVALUATION METHODS 39

In the simulations, we implemented three shortest-path routing algo-
rithms: hop-count, fully-deterministic, and load-balance. The first two algo-
rithms are for latency-sensitive applications and services while the third one
is for ones that do not require low latency but consume a great amount of
bandwidth. They leverage the Dijkstra algorithm [16] to perform the path
search and use the criteria presented in Table 5.1 to prioritize paths. The
next sections describe the routing policies in detail.

Main criterion Secondary criterion
Hop-count Smallest number of hops Limiting flow-table

size
Fully-deterministic Smallest number of hops Deterministic routing
Load-balance Optimal bandwidth Minimum latency

Table 5.1: Criteria used in the routing algorithms

5.1.1 Hop-count routing

The hop-count routing primarily minimizes the number of hops in the path
between the source and the destination. For paths with the same number of
hops, the maximum number of entries in the flow tables of the switches along
each path acts as the tie breaker. The reason why we choose this tie-breaking
rule is that latency-sensitive data flows are usually small in size, e.g. HTTP
requests to a web server. As a result, they will quickly fill up the flow tables,
thus exhausting the switch’s TCAM memory. The tie breaker helps to avoid
the problem to some extent.

In order to simulate the flow tables in the switches, we keep track of the
flows that are currently passing through each switch. The flows are removed
from all switches along their route when they finish.

Figure 5.1: An example of how the hop-count routing works

CHAPTER 5. ATTACK EVALUATION METHODS 40

An example of how the routing works is in Figure 5.1. Switch 1 and switch
6 are the source and the destination, respectively. The number of entries in
the flow table of each switch is shown on top of it. There are three shortest
paths with the same number of hops between the source and the destination:
[1− 2− 3− 6], [1− 2− 5− 6], and [1− 4− 5− 6]. The maximum numbers of
flow entries in the switches along the paths are 2, 3, and 4, respectively. The
routing algorithm chooses the path [1− 2− 3− 6] because, among the three
paths, it has the lowest maximum number of flows entries in the switches.

5.1.2 Fully-deterministic routing

The routing algorithm explained above is non-deterministic in the sense that
the route for a new flow depends on the other flows in the network and,
thus, cannot be predicted. Non-deterministic routing is not always desirable,
especially for Quality of Service (QoS). Our fully-deterministic routing is to
deal with this problem. It forwards data packets on a pre-determined shortest
path between the source and destination. This is done as follows. We first
generate a weight for each link in the network. The weight is generated
uniformly randomly from [1, 1 + ε] so that ε is small enough for the total
weight of any path to be always less than the path’s length plus 1. Therefore,
the decimals of the link weight act as the tie breaker between paths with equal
hop counts.

Figure 5.2: An example of how the fully-deterministic routing works

Figure 5.2 illustrates an example of this routing method. Data is sent
from switch 1 to switch 6. The weight of each link is shown on top of them.
Among the three paths between the source and the destination, the routing
would select the path [1− 2− 5− 6] because it has the smallest total weight.
The way in which the tie breaker works is not important here. The important
fact is that, for the same source-destination pair, the same route will always
be chosen.

CHAPTER 5. ATTACK EVALUATION METHODS 41

5.1.3 Load-balance routing

The load-balance routing algorithm uses the number of data flows that are
passing each link as the primary cost for routing through that link. By min-
imizing their sum, the algorithm favors the paths with the greatest amount
of free bandwidth. To calculate the total number of data flows on each path,
we keep track of the data flows that are currently passing through each link.
The flows are removed from all links along their route when they finish. For
the paths with the same total number of data flows, the algorithm uses the
length of the paths as the tie breaker. This tie breaker is calculated in the
same way as in the hop-count routing.

Figure 5.3: An example of how the load-balance routing works

Figure 5.3 illustrates an example of the load-balance routing method.
The source and the destination are nodes 1 and 6, respectively. The number
of data flows that are currently passing through each link is shown on top of
them. It is obvious that the path containing the minimum total number of
flows is [1− 4− 5− 6]. Therefore, it would be selected for routing the flow.

5.2 Network topologies

We considered five mesh topologies, which are grid, 2D torus, 3D torus, hy-
percube, and triangulated planar graph, and two tree topologies, which are fat
tree, and k-ary tree. The first four mesh topologies have been widely used for
various high-performance computing applications [12, 18, 43, 44]. The trian-
gulated planar topology can illustrate, for example, a wireless mesh network
where each node represents a wireless station and each link represents a con-
nection between two adjacent stations. The fat tree topology is popular in
data centers because of its high fault tolerance and good performance. The
k-ary tree topology is a simple topology that can be deployed in small-scale
networks, such as a university campus network. The next sections present
an overview of these topologies and how we used them in the simulations.
The information is summarized in Table 5.2.

CHAPTER 5. ATTACK EVALUATION METHODS 42

Topology Number of nodes Communication
endpoints

Grid 729 (27× 27) Any switches
2D torus 729 (27× 27) Any switches
3D torus 729 (9× 9× 9) Any switches
Hypercube 512 (9-dimension) Any switches
Triangulated planar 729 Any switches
K-ary tree 512 (binary tree of height 8) Root and leaf

switches
Fat tree 720 (24 pods) Core and edge

switches

Table 5.2: Summary of the topologies used in the simulations

5.2.1 Mesh topologies

Grid

Grid is a 2-dimensional topology in which each node is connected to at most
two immediate neighbors along each dimension (Figure 5.4a). The properties
of an n× n grid topology are shown in Table 5.3.

In the simulations, we used an 27× 27 grid topology with 729 nodes. All
switches were considered to have hosts connected to them, and an arbitrary
switch was chosen as the gateway to external networks (i.e., the Internet).

Number of nodes n2

Node degree ≤ 4
Length of the shortest path between nodes ≤ 2 · (n− 1)

Table 5.3: Properties of an n× n grid topology

2D torus

2D torus is basically the grid topology with wraparound connections at the
edges (Figure 5.4b). An n × n 2D torus has the properties as shown in
Figure 5.4.

In the simulations, we used a 2D torus topology of size 27 × 27. All
switches were considered to have hosts connected to them, and an arbitrary
switch was chosen as the gateway to external networks (i.e., the Internet).

CHAPTER 5. ATTACK EVALUATION METHODS 43

Number of nodes n2

Node degree 4
Length of the shortest path between nodes ≤ 2 · bn

2
c

Table 5.4: Properties of an n× n 2D torus topology

Figure 5.4: Examples of grid, 2D torus, and 3D torus topologies

3D torus

3D torus is a 3-dimensional topology type in which each node is connected to
two neighbors along each of the three dimensions (Figure 5.4c). The nodes at
the edges have wraparound connections to the opposite edges. The properties
of an n× n× n 3D torus are shown in Table 5.5.

In the simulations, a 3D torus topology of size 9×9×9 was deployed. All
switches were considered to have hosts connected to them, and an arbitrary
switch was chosen as the gateway to external networks (i.e., the Internet).

Number of nodes n3

Node degree 6
Length of the shortest path between nodes ≤ 3 · bn

2
c

Table 5.5: Properties of an n× n× n 3D torus topology

Hypercube

Hypercube is an n-dimensional topology that is constructed by creating two
identical (n − 1)-dimensional hypercubes and then adding a link from each
node in the first hypercube to the corresponding node in the second one. For

CHAPTER 5. ATTACK EVALUATION METHODS 44

example, a line connecting two nodes is an 1-dimensional hypercube, a square
with four nodes is an 2-dimensional hypercube, and a cube with eight nodes
is an 3-dimensional hypercube, illustrated in Figure 5.5. The properties of
an n-dimensional hypercube are described in Table 5.6.

An 9-dimension hypercube topology was used in the simulations. All
switches were considered to have hosts connected to them, and an arbitrary
switch was chosen as the gateway to external networks (i.e., the Internet).

Number of nodes 2n

Node degree n
Length of the shortest path between nodes ≤ n

Table 5.6: Properties of an n-dimensional hypercube topology

Figure 5.5: Examples of 1D, 2D, and 3D hypercube

Triangulated planar

Triangulated planar topology represents a Delaunay triangulation [14] of a
set of points in a plane, in which no point is inside the circumcircle of any tri-
angle in the triangulation. Since we do not consider the switches’ geographic
location in the simulation, we generated the topology as a mesh topology
with each node randomly connecting to 6-8 other nodes, except for the edge
nodes. An example of the topology is shown in Figure 5.6. The properties
of a triangulated planar topology with n nodes are described in Table 5.7.

In the simulations, a triangulated planar topology with 729 nodes was
generated. All switches were considered to have hosts connected to them,
and an arbitrary switch was chosen as the gateway to external networks (i.e.,
the Internet).

CHAPTER 5. ATTACK EVALUATION METHODS 45

Number of nodes n
Node degree < 8
Length of the shortest path between nodes arbitrary

Table 5.7: Properties of a triangulated planar topology with n nodes

Figure 5.6: An example of the triangulated planar topology

5.2.2 Tree topologies

Fat tree

A fat tree topology [5] typically has three layers: core, aggregation, and edge.
The switches in the aggregation and edge layer are divided into k pods. Each
pod contains k switches, half of which belong to each layer. Each edge switch

connects to all aggregation switches in the same pod. There are (k
2
)
2

core
switches. Each core switch has one port connected to each of the k pods. The
ith port of a core switch is connected to an aggregation switch of the pod i
so that each aggregation switch is connected to exactly k

2
core switches. The

properties of a fat tree with k pods are presented in Table 5.8. Figure 5.7
shows an example of a fat tree topology with 4 pods.

We deployed a fat tree with 24 pods in the simulations. Hosts were
considered to connect only to the edge switches of the tree. All core switches
of the tree acted as the gateways of the network.

Number of nodes 1.25 · k2
Node degree k
Length of the shortest path between nodes ≤ 4

Table 5.8: Properties of a fat tree topology with k pods

CHAPTER 5. ATTACK EVALUATION METHODS 46

Figure 5.7: Example a three-level fat tree topology with four pods

K-ary tree

K-ary tree is a rooted tree in which each node has no more than k children.
When k = 2, it becomes a binary tree. A k-ary tree is said to have height
h if the distance from its root to its furthest leaf is h. A perfect k-ary tree
is a k-ary tree where all leaf nodes are at the same depth and each node has
either 0 or k children. A perfect k-ary tree with height h has the properties
shown in Table 5.9. Figure 5.8 illustrates an example of a perfect 3-ary tree
with height 2.

In the simulations, we used a binary tree with height 8. While real net-
works rarely have binary-tree topology, binary was chosen for the simulation
because it emphasizes the tree-like qualities of the network e.g. in compari-
son to the fat tree, which is much shallower. Hosts were connected only to
the leaf nodes of the tree. The root node of the tree acted as the gateway to
external networks.

Number of nodes b(kh+1 − 1)/(k − 1)c
Node degree k + 1
Length of the shortest path between nodes ≤ 2 · h

Table 5.9: Properties of a perfect k-ary tree with height h

CHAPTER 5. ATTACK EVALUATION METHODS 47

Figure 5.8: Example a 3-ary tree with height 2

5.3 Simulation method

For each simulation, we chose one of the network topologies described above
with a specific routing method and measured the number of data flows that
passed through the compromised switches in each of the following scenarios:

1. Single-switch baseline: one switch is compromised and the attacker
does not conduct any topology poisoning attack.

2. Single-switch tunnel attack: one switch is compromised and the
attacker conducts the single-switch tunnel attack. The tunnels be-
tween the compromised switch’s neighbors were created differently in
each topology. For the hypercube, triangulated planar and k-ary tree
topologies, the tunnels were fabricated randomly among the neighbors
of the compromised switch. For the grid, 2D torus and 3D torus topolo-
gies, we chose the endpoints of each tunnel to be the switches that are
on the same dimension. For example, in the grid topology shown in
Figure 5.9, where S5 is the compromised switch, the tunnels would
be created between S4 and S6 and between S2 and S8. Such tunnels
would attract more traffic flows than the diagonal tunnels like S2-S4,
because the switches in more directions can take advantages of them.
Regarding the fat tree topology, if the compromised switch was in the
aggregation layer, the tunnels were created between the core switches
and the edge switches rather than between the switches of the same
core layer or of the same edge layer. This is because the core and edge
switches are on the edges of the topology, which makes the tunnels con-
necting these switches less effective. If the compromised switch was in
the core layer or in the edge layer, the tunnels were created randomly
among the switch’s neighbors.

CHAPTER 5. ATTACK EVALUATION METHODS 48

Figure 5.9: Example of how tunnels are created with the single-switch tunnel
attack in a grid topology

3. Two-switch baseline: two switches are compromised and the attacker
does not conduct any topology poisoning attack.

4. Two-switch tunnel attack: two switches are compromised and the
attacker conducts the two-switch tunnel attack. We simulated the tun-
nel between the compromised switches by adding a link between them.

5. Extended two-switch tunnel attack: two switches are compro-
mised and the attacker conducts the extended two-switch tunnel attack.
The tunnels were simulated by randomly adding direct links between
the neighbors of the two compromised switches so that the total dis-
tance between the tunnel endpoints is maximum. The links between
the compromised switches and the neighbors that were used for the
attack were also removed from the network.

The first and the third scenario provided the baseline results to evaluate
the significance of the attacks. In the last two scenarios, in order to make
the simulations simple, we assumed that the relay node exists somewhere in
the network but did not consider it when calculating the number of compro-
mised flows. Each simulation was repeated 100 times with the compromised
switches randomly selected.

Simulation duration 10s
Total number of data flows 50 000
Flow duration <1s

Table 5.10: Summary of how traffic was generated in the simulations

The duration of each simulation is 10 seconds. During this interval, we
randomly generated a set of 50 000 data flows, each of which contained the
following information: the source, destination, starting time, and duration.
The source and the destination were randomly selected among the switches

CHAPTER 5. ATTACK EVALUATION METHODS 49

which were either gateways or were directly connected to hosts. The start-
ing time was uniformly randomly chosen within the simulation time. The
duration was also uniformly randomly chosen but always less than 1 second.
These information are summarized in Table 5.10.

Chapter 6

Results

This chapter presents our observations about the simulations. We noticed
that the mesh topologies with similar characteristics produce similar results.
Therefore, to make this chapter easier to follow, besides the two tree topolo-
gies, we only demonstrate our observations with the results obtained from
two representative mesh topologies, which are the 3D torus and triangulated
planar topologies. The 3D torus represents the mesh topologies in which
all switches are equal (i.e. 2D torus, 3D torus, and hypercube), while the
triangulated planar topology illustrates the mesh topologies in which there
are center and edges (i.e. grid and triangulated planar). The results of the
other topologies can be found in Appendix A.

Figures 6.2, 6.3, 6.4 and 6.5 depict the CDF of the percentage of com-
promised flows in the 3D torus, triangulated planar, fat tree and k-ary tree
respectively. These figures show that the attacks in many cases are much
more serious compared to the baselines. However, the number of compro-
mised flows vary significantly in each case. The next sections analyze the
factors that bring this variation to the attacks, which are the routing algo-
rithms, network topology, and location of the compromised switches.

6.1 Impact of the routing algorithm

It can be seen from Figures 6.2-6.5 that the more load-balancing the routing
algorithm is, the less harmful the topology poisoning attacks are. Among the
routing methods used in the simulations, the load-balance routing has the
most load-balancing capability. The figures show that this routing algorithm
is the least favorable one to the attacker. This can be explained by the fact
that the tunnels are able to divert more traffic to the compromised switches
by shortening the path between switches, but this routing distributes the

50

CHAPTER 6. RESULTS 51

traffic over the entire network instead of prioritizing the paths with smallest
number of hops. However, the load-balance routing can only limit the effect
of the extended two-switch tunnel attack to some extent. This is because,
by fabricating multiple tunnels, the attack increases the apparent bandwidth
between the compromised switches, which increases the share of traffic routed
through them.

The figures also demonstrate that, the fully-deterministic routing often
diverts more traffic to the attacker than the hop-count routing. The reason
for this is that the hop-count routing balances switch load to some extent
since its tie breaker rule chooses the path that minimizes the maximum
number of flows passing through switches. On the other hand, the fully-
deterministic routing always uses the same path between the same endpoints,
and, thus, provides no load balancing.

6.2 Impact of the network topology

An observation about the impact of the topologies is that the effect of the
attacks is significant on the mesh topologies, but it is not so big on the tree
topologies. This observation can be explained as follows.

In the k-ary tree topology, there is only one route between any pair of
switches. Thus, the tunnels do not affect whether a data flow passes through
the compromised switch or not in most cases. It can be seen from Figure 6.5
that the single-switch tunnel attack and the extended two-switch tunnel at-
tack even divert slightly fewer data flows to the attacker than there are in
baseline cases. The reason is that the tunnels are not only unable to divert
more data flows to the attacker but they also block some data flows go-
ing through the compromised switches. This is because the attacker has to
sacrifice for the tunnels some legitimate links connecting the compromised
switches and their neighbors. For example, in Figure 6.1 where S2 is the
compromised switch, after creating the tunnel between S1 and S3, the con-
nection between S3 and S4 no longer exists.

Figure 6.1: An example of how the tunnel is created with the single-switch
tunnel attack in a k-ary tree

CHAPTER 6. RESULTS 52

The fat tree topology, on the contrary, provides multiple paths between
switches. However, the tree is so shallow that the length of the longest path
in the tree is only 4. As a result, the number of switch pairs whose distance
from each other the tunnels can shorten is not big.

The second observation about the impact of the topologies is that an
arbitrary network structure (i.e. in the triangulated planar topology) is more
resistant to the single-switch tunnel attack than a regular one (i.e. in the grid,
2D torus, 3D torus and hypercube topologies). For example, Figures 6.2 and
6.3 illustrate that the single-switch tunnel attack can divert a large amount
of additional traffic to the compromised switch in the 3D torus, but it is not
so effective in the triangulated planar topology. This can be explained by
the fact that the regular network structure usually provides more shortest
paths between switches than the arbitrary network structure. Therefore, the
tunnels are likely to affect the shortest paths between more pairs of switches
in the regular network structure.

6.3 Impact of the location of the compro-

mised switches

The location of the compromised switches is more important to the attacker
in the topologies where there are center and edges (i.e. grid, triangulated
planar, and k-ary tree topologies) than in the topologies where all nodes are
equal (i.e. 2D torus, 3D torus, and hypercube topologies). This observation
is true especially when the routing method does not prioritize some switches
over the others, like in the fully-deterministic routing. The switches near the
center of the grid or triangulated planar topology, or the switches close to the
root of the k-ary tree topology, are likely to get more traffic than the other
switches. This is demonstrated most clearly in the scenarios where there is
only one compromised switch and in the two-switch baseline scenario. For
example, as can be seen in Figures 6.2 and 6.3, the CDFs of the percentage
of compromised flows in these scenarios in the 3D torus topology are mostly
uniform, while those in the triangulated planar topology vary remarkably
depending on where the compromised nodes were placed.

Regarding the two-switch tunnel and the extended two-switch tunnel at-
tacks, the attacks divert more traffic to the compromised switches when the
tunnel endpoints are more distant from each other, especially when the rout-
ing strategy prioritizes the paths with the smallest number of hops. This is
because the longer the distance between the two compromised switches is,
the more the tunnels can shorten the paths through them. Consequently,

CHAPTER 6. RESULTS 53

more pairs of switches the tunnel can bring closer, meaning that more data
flows get compromised. Figure 6.6 and 6.7 depict the relation between the
distance of the two compromised switches and the average increase in the
number of compromised flows caused by the two attacks in the 3D torus
and triangulated planar topologies, respectively. As shown in the figures,
the percentage of compromised flows increases with the distance between the
compromised switches. However, when the load-balance routing algorithm
is deployed in the 3D torus topology, the increase is appreciable only if the
extended two-switch tunnel attack is conducted.

CHAPTER 6. RESULTS 54

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(a) Hop-count routing

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(b) Fully-deterministic routing

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(c) Load-balance routing

Figure 6.2: CDF of the percentage of compromised flows in the 3D torus
topology with different routing algorithms

CHAPTER 6. RESULTS 55

Percentage of compromised flows
0 10 20 30 40

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30 40

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(a) Hop-count routing

Percentage of compromised flows
0 10 20 30 40

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30 40

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(b) Fully-deterministic routing

Percentage of compromised flows
0 10 20 30 40

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30 40

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(c) Load-balance routing

Figure 6.3: CDF of the percentage of compromised flows in the triangulated
planar topology with different routing algorithms

CHAPTER 6. RESULTS 56

Percentage of compromised flows
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(a) Hop-count routing

Percentage of compromised flows
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(b) Fully-deterministic routing

Percentage of compromised flows
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(c) Load-balance routing

Figure 6.4: CDF of the percentage of compromised flows in the fat tree
topology with different routing algorithms

CHAPTER 6. RESULTS 57

Percentage of compromised flows
0 20 40 60 80

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 20 40 60 80

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(a) Hop-count routing

Percentage of compromised flows
0 20 40 60 80

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 20 40 60 80

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(b) Fully-deterministic routing

Percentage of compromised flows
0 20 40 60 80

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 20 40 60 80

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(c) Load-balance routing

Figure 6.5: CDF of the percentage of compromised flows in the k-ary tree
topology with different routing algorithms

CHAPTER 6. RESULTS 58

(a) Hop-count routing

(b) Fully-deterministic routing

(c) Load-balance routing

Figure 6.6: Relation between the distance between two compromised switches
and the average increase in the number of compromised flows caused by the
two-switch tunnel and the extended two-switch tunnel attacks in the 3D torus
topology with different routing algorithms

CHAPTER 6. RESULTS 59

(a) Hop-count routing

(b) Fully-deterministic routing

(c) Load-balance routing

Figure 6.7: Relation between the distance between two compromised switches
and the average increase in the number of compromised flows caused by
the two-switch tunnel and the extended two-switch tunnel attacks in the
triangulated planar topology with different routing algorithms

CHAPTER 6. RESULTS 60

6.4 Finding relay node

It can be seen from Figures 6.2-6.5 that the two-switch tunnel and extended
two-switch tunnel attacks divert the largest amount of traffic to the compro-
mised switches, especially in the mesh topologies. However, finding a relay
node that can relay traffic between the compromised switches is crucial for
these attacks to succeed. Therefore, our desire is to discover whether the
attacks are always feasible in the mesh topologies by examining how many
switches in the network can act as the relay node for the attacks. For this
purpose, we simulated the five mesh topologies and counted the number of
switches from which the route to neither compromised switch goes through
a tunnel. Such switches can relay traffic between the compromised switches.
The fully-deterministic routing was chosen for the simulations because, out
of the three routing algorithms, it provides the most benefit to the attacker.
Each simulation was repeated ten times with different link weights. The av-
erage number of potential relay nodes for each topology was the final result
of the simulation.

The simulations demonstrate that when the compromised switches are
distant from each other, the number of switches that can act as the relay node
considerably decreases. Figure 6.8 demonstrates this conclusion by showing
the relation between the average percentage of potential relay nodes and the
distance between the two compromised switches in the five mesh topologies.

Figure 6.8 also shows that, among the pairs of switches with the same dis-
tance, the number of relay nodes varies remarkably. This variation is caused
by the position of the compromised switches. Figures 6.9 and 6.10 illustrate
such variation in the grid and triangulated planar topology, respectively. The
red nodes represent the compromised switches, while the green nodes rep-
resents the switches that can relay traffic between the red nodes. In both
figures, the number of relay nodes in the example on the left is considerably
less than that in the example on the right even though the distances between
the compromised switches are the same.

CHAPTER 6. RESULTS 61

(a) Grid (b) Triangulated planar

(c) 3D torus (d) 2D torus

(e) Hypercube

Figure 6.8: Average percentage of potential relay nodes vs the distance be-
tween the two compromised switches in the mesh topologies with the fully-
deterministic routing

CHAPTER 6. RESULTS 62

Figure 6.9: Two examples of possible relay nodes in the grid topology with
the fully-deterministic routing

Figure 6.10: Two examples of relay nodes in the triangulated planar topology
with the fully-deterministic routing

Chapter 7

Discussion

This chapter first summarizes the results obtained from the simulations. The
significance of the results is then evaluated to see whether the topology poi-
soning attack is serious in SDN. Subsequently, we present some possible ways
to detect and prevent the attack. After that, we discuss the advantages and
the limitation of the methodology that we used in this research and how we
can make it better. In the last section, we present some error sources and
open problems in the simulations.

7.1 Summary of the simulation results

In the previous chapters, we presented the three topology poisoning attacks
that are initiated from compromised switches and evaluated them in large
simulated networks. The simulation results show that the attacks in many
cases can divert a large amount of additional traffic to the compromised
switches. For example, it can be seen from Figures 6.2 and 6.6 that, in a
3D torus topology with 729 switches, the extended two-switch tunnel attack
can increase the number of compromised flows by as much as 600% com-
pared to the baseline, and the percentage of data flows that the attacker can
compromise with only two switches can be as high as 24%.

However, the effect of the attacks varies significantly according to the
network topology, location of the compromised switches, and routing strat-
egy. The attacks prove to be more serious in mesh topologies than in tree
topologies. Furthermore, if the topologies have a boundary and edges, like
the grid, planar and tree topologies, the impact of the attacks can depend
considerably on the location of the compromised switches. Specifically, the
switches near the center of the grid or planar topologies, or the switches that
are close to the root of the tree topologies, are likely to get more traffic than

63

CHAPTER 7. DISCUSSION 64

the other switches.
In addition, if there are two compromised switches, then the more distant

the compromised switches are from each other, the more traffic the attacker
can attract. Nevertheless, the number of possible relay nodes, which the at-
tacker needs to implement tunnels, decreases when the compromised switches
are more distant from each other, thus making the attacks less likely to suc-
ceed.

The routing also has a big impact on how severe the attacks can be.
The amount of traffic that can be diverted to the compromised switches
is lower when the routing algorithm used in the network has more load-
balancing capability. In fact, among the three routing algorithms used in
the simulations, the load-balance routing provides the most limitation to the
attacks, followed by the hop-count routing and then the fully-deterministic
routing. However, the extended two-switch tunnel attack, which proved to
be the most severe attack in most cases, is quite resistant to the mitigating
effects of load balancing.

7.2 Significance of the results

As explained above, the discovered topology poisoning attacks can cause
serious problems in SDN. Furthermore, the attacks are not specific to the
OpenFlow protocol used in the simulations. Similar attacks are feasible in
other types of SDN networks. The reason is that they are based on the
exploitation of one of the major innovations of SDN — the network-wide
view in the controller. Unless the network topology is fixed in the controller,
any SDN controller needs to build the view of the entire network by running
some link discovery protocol. The protocol would involve sending out dis-
covery packets around the network. Therefore, an attacker would somehow
find a way to manipulate the propagation of such packets to perform topol-
ogy poisoning attacks. For example, the networks that use ForCES [17, 48]
or SoftRouter [31], two other southbound protocols for SDN, run a similar
protocol as the OpenFlow discovery protocol to discover the links between
their forwarding elements (FE) [6]. Instead of sending the LLDP packets,
they send the Hello/Probe messages between the FEs to discover links. This
protocol would enable an attacker to perform the same topology poisoning
attacks as in the OpenFlow networks.

In addition, our simulations were done on a high level of abstraction be-
cause the simulations were independent from how the attacker fabricates the
tunnels. We assumed that the attacker had already created the tunnels and
quantitatively measured the number of data flows passing the compromised

CHAPTER 7. DISCUSSION 65

switches accordingly. This means that the simulation results do not depend
on a specific link discovery mechanism.

7.3 Detection and prevention of the attacks

It is difficult to detect the discovered attacks, especially the single-switch
tunnel attack. One obvious way to detect bogus links is that, for each
pair of adjacent switches that the controller detects, the controller sends
an OFPT PACKET OUT message with an unpredictable data packet inside
to one of the switches and observes how the data packet is forwarded. At
the same time, the controller also disallows all other switches in the network
to forward any packet besides the data packet. If the controller does not re-
ceive the data packet back, it knows that the link connecting these switches
is a malicious fabrication. This solution, however, is clearly not so practical
because the controller has to disable forwarding in the other switches for a
period of time. It is also unable to detect the single-switch tunnel attack
since no additional switches are required to create the tunnels in that attack.

Another solution is to observe end-to-end delay when an LLDP packet is
forwarded on each link. The relay process between two compromised switches
might add noticeable latency to the packet forwarding, especially when the
compromised switches are distant from each other. The limitation of this
solution is that it is hard to monitor the forwarding time accurately, especially
when in-band control is used. Moreover, this solution is still not effective
against the single-switch tunnel attack.

An observation that can help to detect the attacks is that the attacker
has to sacrifice legitimate links from the compromised switches for creating
the tunnels. Therefore, if the attacker uses too many neighbors of the com-
promised switches to perform the attacks and the controller is aware of the
lower bound of the switches’ degree (i.e. the number of connected ports) in
the network, the attacks can be detected. This solution works against all
of the discovered attacks, but it requires the controller to know about the
minimum number of neighbors for each switch. Furthermore, if the attacker
knows this minimum, it can adjust the attack strategy accordingly so that
the attacks cannot be detected.

In order to prevent the attack, one possible way is to use Trusted Execu-
tion Environment (TEE) to protect the TLS private key of the switches. By
doing so, the attacker cannot extract the key from the compromised switches
and, thus, cannot spoof connection to the benign controller on behalf of them.
The TEE could also be used to implement other trusted functionalities on
the switches.

CHAPTER 7. DISCUSSION 66

7.4 Evaluation of the methodology

In this thesis, the threat caused by the discovered attacks were empirically as-
sessed with simulations on different kinds of networks. The advantage of this
methodology is that it enables us to evaluate the attacks on arbitrary net-
work topologies and routing algorithms. However, the tremendous amount
of time that a simulation takes and the high variety of possible positions of
the compromised switches in a big network allow us to evaluate the attacks
in only a limited number of cases. Furthermore, we cannot demonstrate the
reliability of the simulation results with this methodology.

Another methodology we could use is to analytically evaluate the attacks
with a mathematical model. The number of compromised data flows can
be calculated given the routing strategy and topology information of the
network, such as the size of the network and node degree. Although the
analytical results are more reliable, it is difficult to evaluate the attacks in
complicated networks with this methodology.

Therefore, in the future, we could extend the simulations to evaluate more
complex cases of the topology poisoning attack, such as when there are more
than two compromised switches. Also, we could conduct analytical analysis
on the discovered attacks. By doing so we could verify some of the results
that we have already had by comparing them with analytical results in the
same environment.

7.5 Error sources and open problems

We have to acknowledge that there are error sources in the simulations. We
may have overestimated the effect of the extended two-switch tunnel attack.
This is because we did not consider the relay node in the simulations and
used all neighbors of the compromised switches for the attack. Thus, we
created one tunnel more than what the attacker can on physical switches.
However, the difference between the simulation results and what the attacker
can actually achieve with the attack should not be significant. Figure 7.1
shows the CDFs of the percentage of compromised flows in the 3D torus
topology when all neighbors of the compromised switches are used in the
extended two-switch tunnel attack and when one random neighbor of each
compromised switch is not used in the attack, respectively. It can be seen
from the figure that the difference between these two cases is small.

CHAPTER 7. DISCUSSION 67

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

All neighbors
One less neighbor

(a) Hop-count routing

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

All neighbors
One less neighbor

(b) Fully-deterministic routing

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

All neighbors
One less neighbor

(c) Load-balance routing

Figure 7.1: CDF of the percentage of compromised flows in the 3D torus
topology when all neighbors of the compromised switches are used in the
extended two-switch tunnel attack vs that when one random neighbor of
each switch is not used in the attack

Furthermore, our analysis of the simulation results, which is presented in
the previous chapter, does not explain some observations. First, the load-
balance routing algorithm did not bring the least amount of traffic to the
compromised switches in the triangulated planar and k-ary tree topologies.
It can be seen in Figure 6.3 that, in the triangulated planar topology, the
extended-two switch tunnel attack has the most significant effect when the
load-balance routing is used. The reason for this is likely to be that a large
number of switches in the topology are on the edges or near the edges. These
switches receive only a small portion of the data flows in the network if the
routing strategy favors the paths with the least number of hops. The load-
balance routing, however, does not prioritize the hop count but the links with

CHAPTER 7. DISCUSSION 68

more available bandwidth. Furthermore, the tunnels increase the apparent
bandwidth between the compromised switches. Thus, data flows from larger
parts of the network will be attracted by the apparent additional bandwidth
of the tunnel.

Also, it can be seen from Figure 6.5 that, in the k-ary tree topology, the
load-balance routing diverts the most considerable amount of traffic to the
attacker, especially in the two-switch tunnel attack. The reason could be as
follows. The tunnel created by the attack adds a second path between some
switches. The path might not be the shortest one between the switches,
so the other routing algorithms might not consider it. However, the load-
balance routing strategy distributes traffic over the entire network, making
it more likely that the tunnel is selected for routing.

Regarding the hypercube topology, Figure 6.8 shows that the number
of possible relay nodes when the distance between the two compromised
switches is even is not as high as their number when the distance is odd.
There is also no variation in the number of possible relay nodes when the
distance is even. Further investigation is needed for us to explain this ob-
servation, and to confirm the explanations given to the other phenomena
above.

Chapter 8

Conclusion

Network-wide view of the network at a central controller is one of the major
innovations of SDN, but it can be poisoned easily. An attacker can manip-
ulate the link discovery service of the SDN controller to fabricate imaginary
tunnels in the network. Even though this kind of attacks has been addressed
in some previous work, none of them provides a thorough solution to or
even analysis of the attacks, especially the ones initiated by compromised
switches. In this research, we analyzed topology poisoning attacks caused by
the compromised switches against SDN and demonstrated that the attacks
are serious in many cases.

We first studied the topology poisoning attacks presented in the literature.
It is possible to fabricate an imaginary tunnel between two compromised
switches [7, 15] (i.e. the two-switch tunnel attack). In this thesis, we note
that a variant of this attack, the extended two-switch tunnel, can help the
attacker to create multiple tunnels with only two compromised switches. The
number of possible tunnels increases with the number of neighbors of the
compromised switches. We also discovered that it is possible to conduct the
topology poisoning attack with just one compromised switch. Tunnels can
be created between the neighbors of the compromised switch. All of these
attacks were shown to be feasible in an emulated network environment that
used Mininet for the emulation and OpenFlow as the southbound protocol.

We also evaluated the significance of the attacks in large simulated net-
works. As our goal is to assess the attacks on a general level, we simulated
the attacks on a wide range of network topologies and with different rout-
ing strategies. The network topologies that were used in the simulations
consist of five mesh topologies, which are 2D torus, 3D torus, grid, hyper-
cube, and triangulated planar, and two tree topologies, which are fat tree
and k-ary tree. These topologies were chosen because they either have been
widely used in practice or have special characteristics that aid the analysis.

69

CHAPTER 8. CONCLUSION 70

We deployed three different shortest-path routing algorithms in the simula-
tions: hop-count, fully-deterministic and load-balance routing. Each of them
represents a class of routing algorithms with specific characteristics.

The simulation results show that the topology poisoning attacks in many
cases can divert considerable additional traffic to the compromised switches.
Furthermore, the seriousness of the attacks increases according to the number
of tunnels that the attacker can fabricate and the distance between the tunnel
endpoints. The results also bring insights about how network design and
routing policies can help to mitigate the attacks. Specifically, shortening
the paths between switches in the network, randomizing regular network
structure, or increasing load-balancing capability of the routing strategy can
assist in limiting the effects of the attacks.

Bibliography

[1] OpenFlow switch specification. Version 1.0. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.0.0.pdf. [Accessed
09 April 2015].

[2] OpenFlow switch specification. Version 1.5.0. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf.
[Accessed 09 April 2015].

[3] The Shellshock vulnerability. https://access.redhat.com/security/

cve/CVE-2014-6271. [Accessed 02 June 2015].

[4] IEEE standard for local and metropolitan area networks– station and
media access control connectivity discovery. IEEE Std 802.1AB-2009
(Revision of IEEE Std 802.1AB-2005) (Sept 2009), 1–204.

[5] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, com-
modity data center nverifetwork architecture. ACM SIGCOMM Com-
puter Communication Review 38, 4 (2008), 63–74.

[6] Ansari, F., and Halpern, J. M. ForCES intra-NE topology discov-
ery. IETF Draft, draft-ansariforces-discovery-01.txt (2004).

[7] Antikainen, M., Aura, T., and Särelä, M. Spook in your net-
work: Attacking an SDN with a compromised OpenFlow switch. In
Secure IT Systems. Springer, 2014, pp. 229–244.

[8] Benton, K., Camp, L. J., and Small, C. OpenFlow vulnerability
assessment. In Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking (2013), ACM, pp. 151–152.

[9] Bertsekas, D. P., Gallager, R. G., and Humblet, P. Data
networks, vol. 2. Prentice-Hall International New Jersey, 1992.

71

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://access.redhat.com/security/cve/CVE-2014-6271
https://access.redhat.com/security/cve/CVE-2014-6271

BIBLIOGRAPHY 72

[10] Braun, W., and Menth, M. Software-defined networking using
OpenFlow: Protocols, applications and architectural design choices. Fu-
ture Internet 6, 2 (2014), 302–336.

[11] Canini, M., Venzano, D., Peresini, P., Kostic, D., Rexford,
J., et al. A NICE way to test OpenFlow applications. In NSDI (2012),
vol. 12, pp. 127–140.

[12] Choo, H., Yoo, S.-M., and Youn, H. Y. Processor scheduling and
allocation for 3d torus multicomputer systems. Parallel and Distributed
Systems, IEEE Transactions on 11, 5 (2000), 475–484.

[13] Clausen, T., and Jacquet, P. Optimized link state routing protocol
(OLSR). RFC 3626, 2003.

[14] Delaunay, B. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk 7, 793-800 (1934), 1–2.

[15] Dhawan, M., Poddar, R., Mahajan, K., and Mann, V. Sphinx:
Detecting security attacks in software-defined networks. In Proceedings
of the 2015 Network and Distributed System Security (NDSS) Sympo-
sium (2015), USENIX.

[16] Dijkstra, E. W. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[17] Doria, A., Salim, J. H., Haas, R., Khosravi, H., Wang, W.,
Dong, L., Gopal, R., and Halpern, J. Forwarding and control
element separation (ForCES) protocol specification. RFC 5810, 2010.

[18] Duncan, R. A survey of parallel computer architectures. Computer
23, 2 (1990), 5–16.

[19] EugeneNg, Z. A. C. T. Maestro: Balancing fairness, latency and
throughput in the OpenFlow control plane. Tech. rep., Rice University,
2011.

[20] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M.,
McKeown, N., and Shenker, S. NOX: towards an operating system
for networks. ACM SIGCOMM Computer Communication Review 38,
3 (2008), 105–110.

[21] Guha, A., Reitblatt, M., and Foster, N. Machine-verified net-
work controllers. In ACM SIGPLAN Notices (2013), vol. 48, ACM,
pp. 483–494.

BIBLIOGRAPHY 73

[22] Hong, S., Xu, L., Wang, H., and Gu, G. Poisoning network visi-
bility in software-defined networks: New attacks and countermeasures.
In Proceedings of the 2015 Network and Distributed System Security
(NDSS) Symposium (2015), USENIX.

[23] Jou, Y., Gong, F., Sargor, C., Wu, X., Wu, S., Chang, H.,
and Wang, F.-y. Design and implementation of a scalable intru-
sion detection system for the protection of network infrastructure. In
DARPA Information Survivability Conference and Exposition (2000),
vol. 2, IEEE, pp. 69–83.

[24] Kandek, W. The GHOST nulnerability. https://

community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/

27/the-ghost-vulnerability. [Accessed 02 June 2015].

[25] Kandoi, R., and Antikainen, M. Denial-of-service attacks in Open-
Flow SDN networks. In Workshop on Security for Emerging Distributed
Network Technologies (DISSECT) (2015), IEEE/IFIP.

[26] Kazemian, P., Chan, M., Zeng, H., Varghese, G., McKeown,
N., and Whyte, S. Real time network policy checking using header
space analysis. In NSDI (2013), USENIX, pp. 99–111.

[27] Khurshid, A., Zhou, W., Caesar, M., and Godfrey, P. Veri-
flow: verifying network-wide invariants in real time. ACM SIGCOMM
Computer Communication Review 42, 4 (2012), 467–472.

[28] Klöti, R., Kotronis, V., and Smith, P. OpenFlow: A secu-
rity analysis. Proceedings of Workshop on Secure Network Protocols
(NPSec). IEEE (2013).

[29] Koponen, T., Casado, M., Gude, N., Stribling, J.,
Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y., Inoue,
H., Hama, T., et al. Onix: A distributed control platform for large-
scale production networks. In OSDI (2010), vol. 10, USENIX, pp. 1–6.

[30] Kreutz, D., Ramos, F., and Verissimo, P. Towards secure and
dependable software-defined networks. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking
(2013), ACM, pp. 55–60.

[31] Lakshman, T., Nandagopal, T., Ramjee, R., Sabnani, K., and
Woo, T. The SoftRouter architecture. In Proceedings of ACM SIG-
COMM Workshop on Hot Topics in Networking (2004), vol. 2004.

https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability
https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability
https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability

BIBLIOGRAPHY 74

[32] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., Shenker, S., and Turner, J.
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review 38, 2 (2008), 69–74.

[33] Mizrak, A. T., Cheng, Y.-C., Marzullo, K., and Savage, S.
Fatih: Detecting and isolating malicious routers. In Dependable Systems
and Networks, 2005. DSN 2005. Proceedings. International Conference
on (2005), IEEE, pp. 538–547.

[34] Moy, J. OSPF version 2. RFC 2328, 1997.

[35] Ornaghi, A., and Valleri, M. Man in the middle attacks. In
Blackhat Conference Europe (2003).

[36] Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S.,
Bachrach, J., Carbin, M., Pacheco, C., Sherwood, F.,
Sidiroglou, S., Sullivan, G., et al. Automatically patching er-
rors in deployed software. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles (2009), ACM, pp. 87–102.

[37] Porras, P., Cheung, S., Fong, M., Skinner, K., and Yeg-
neswaran, V. Securing the software-defined network control layer.
In Proceedings of the 2015 Network and Distributed System Security
(NDSS) Symposium (2015), USENIX.

[38] Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M.,
and Gu, G. A security enforcement kernel for OpenFlow networks.
In Proceedings of the first workshop on Hot topics in software defined
networks (2012), ACM, pp. 121–126.

[39] Rekhter, Y., and Li, T. A border gateway protocol 4 (BGP-4). RFC
4271, 1995.

[40] Shin, S., and Gu, G. Attacking software-defined networks: A first fea-
sibility study. In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking (2013), ACM, pp. 165–166.

[41] Shin, S., Porras, P. A., Yegneswaran, V., Fong, M. W., Gu,
G., and Tyson, M. FRESCO: Modular composable security services
for software-defined networks. In Proceedings of the 2013 Network and
Distributed System Security (NDSS) Symposium (2013), USENIX.

BIBLIOGRAPHY 75

[42] Shin, S., Yegneswaran, V., Porras, P., and Gu, G. Avant-
guard: Scalable and vigilant switch flow management in software-defined
networks. In Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security (2013), ACM, pp. 413–424.

[43] Shu, R., and Du, D. H. Improved hypercube topology for multipro-
cessor computer systems, 1992. US Patent 5,170,482.

[44] Torresen, J., Mori, S.-i., Nakashima, H., Tomita, S., and
Landsverk, O. Parallel back propagation training algorithm for mimd
computer with 2d–torus network. In Proceedings of 3rd Parallel Com-
puting Workshop (PCW94) (1994).

[45] Wang, F., Vetter, B., and Wu, S. F. Secure routing protocols:
Theory and practice. Tech. rep., North Carolina State University, 1997.

[46] Wang, H., Xu, L., and Gu, G. OF-GUARD: A DoS attack preven-
tion extension in software-defined networks.

[47] Yan, Z., and Prehofer, C. Autonomic trust management for a
component-based software system. Dependable and Secure Computing,
IEEE Transactions on 8, 6 (2011), 810–823.

[48] Yang, L., Dantu, R., Anderson, T., and Gopal, R. Forwarding
and control element separation (ForCES) framework. RFC 3746, 2004.

Appendix A

Simulation results

Figures A.1, A.2 and A.3 illustrate the CDF of the percentage of compromised
flows that we obtained from the grid, 2D torus and hypercube topologies,
respectively.

76

APPENDIX A. SIMULATION RESULTS 77

Percentage of compromised flows
0 10 20 30 40 50

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30 40 50

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(a) Switch-optimized shortest path routing

Percentage of compromised flows
0 10 20 30 40 50

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30 40 50

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(b) Deterministic shortest path routing

Percentage of compromised flows
0 10 20 30 40 50

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30 40 50

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(c) Load-balancing routing

Figure A.1: CDF of the percentage of compromised flows in the grid topology
with different routing algorithms

APPENDIX A. SIMULATION RESULTS 78

Percentage of compromised flows
0 10 20 30

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(a) Switch-optimized shortest path routing

Percentage of compromised flows
0 10 20 30

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(b) Deterministic shortest path routing

Percentage of compromised flows
0 10 20 30

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 10 20 30

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(c) Load-balancing routing

Figure A.2: CDF of the percentage of compromised flows in the 2D torus
topology with different routing algorithms

APPENDIX A. SIMULATION RESULTS 79

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(a) Switch-optimized shortest path routing

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(b) Deterministic shortest path routing

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Single-switch baseline
Single-switch tunnel

Percentage of compromised flows
0 5 10 15 20 25

C
D

F

0

0.2

0.4

0.6

0.8

1

Two-switch baseline
Two-switch tunnel
Extended two-switch tunnels

(c) Load-balancing routing

Figure A.3: CDF of the percentage of compromised flows in the hypercube
topology with different routing algorithms

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background and Related work
	2.1 Software-defined networking
	2.2 OpenFlow
	2.2.1 Control channel
	2.2.2 Data plane
	2.2.3 Control plane

	2.3 SDN security
	2.3.1 Attacks from the controller system
	2.3.2 Attacks from SDN applications
	2.3.3 Attacks from hosts
	2.3.4 Attacks from switches

	2.4 Topology poisoning in traditional networks

	3 Topology Poisoning Attacks
	3.1 Threat model
	3.2 Attacker hierarchy
	3.3 Attack scenarios
	3.3.1 Two-switch tunnel attack
	3.3.2 Extended two-switch tunnel attack
	3.3.3 Single-switch tunnel attack

	4 Attack Implementation
	4.1 Emulation environment
	4.2 Malicious controller
	4.2.1 Switch state spoofing
	4.2.2 Packet processing

	4.3 Emulation details
	4.3.1 Two-switch tunnel attack
	4.3.2 Extended two-switch tunnel attack
	4.3.3 Single-switch tunnel attack

	5 Attack Evaluation Methods
	5.1 Routing algorithms
	5.1.1 Hop-count routing
	5.1.2 Fully-deterministic routing
	5.1.3 Load-balance routing

	5.2 Network topologies
	5.2.1 Mesh topologies
	5.2.2 Tree topologies

	5.3 Simulation method

	6 Results
	6.1 Impact of the routing algorithm
	6.2 Impact of the network topology
	6.3 Impact of the location of the compromised switches
	6.4 Finding relay node

	7 Discussion
	7.1 Summary of the simulation results
	7.2 Significance of the results
	7.3 Detection and prevention of the attacks
	7.4 Evaluation of the methodology
	7.5 Error sources and open problems

	8 Conclusion
	A Simulation results

