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Software-Defined Networking (SDN) proposes a new network architecture in
which the control plane and forwarding plane are decoupled. SDN can improve
network efficiency and ease of management through the centralization of the con-
trol and policy decisions. However, SDN deployments are currently limited to
data-center and experimental environments. This thesis surveys the deployment
of SDN from the perspective of a telecommunication network operator. We dis-
cuss the strategies which enable the operator to migrate to a network in which
both SDN and legacy devices interoperate. As a synthesis of existing technologies
and protocols, we formulate an automated process for the bootstrapping of newly
deployed forwarding devices. Furthermore, we review solutions for programming
the forwarding devices and for performing topology discovery. The functional
correctness of the proposed bootstrapping process is evaluated in an emulated
environment.
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ACL Access Control List
API Application Programming Interface
ARP Address Resolution Protocol
AS Autonomous System
BGP Border Gateway Protocol
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NFV Network Functions Virtualization
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NMS Network Management System
NOC Network Operations Ceneter
OID Object Identifier
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OS Operating System
PCC Path Computation Client
PCE Path Computation Element
PCEP Path Computation Element Communication Protocol
PE Provider Edge
PKI Public Key Infrastructure
PKIX Public Key Infrastructure X.509
PON Passive Optical Network
PSK Pre-shared key
RA Registration Authority
SCEP Simple Certificate Enrollment Protocol
SDN Software-Defined Networking
SNMP Simple Network Management Protocol
SSH Secure Shell
SSL Secure Sockets Layer
STP Spanning Tree Protocol
TCP Transmission Control Protocol
TED Traffic Engineering Database
TFTP Trivial File Transfer Protocol
TLS Transport Layer Security
TLV Type-Length-Value
URL Uniform Resource Locator
USB Universal Serial Bus
VLAN Virtual Local Area Network
XML Extensible Markup Language
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Chapter 1

Introduction

Software-defined Networking (SDN) is an emerging networking paradigm
with a great potential to foster innovation through programmable networks.
SDN networks are characterized by the separation of the control and data
planes wherein a logically centralized controller performs routing decisions
on behalf of forwarding elements. SDN has gained a lot of attention from
network operators, equipment vendors and over-the-top application service
providers. However, current deployments are limited to data-center and ex-
perimental university environments [62]. This thesis focuses on the deploy-
ment of SDN in telecommunication networks.

1.1 Problem statement

SDN offers operators many benefits such as centralized control, improved
network efficiency and lower operational costs. However, telecommunication
networks are complex in nature. They consist of heterogeneous legacy devices
and support several different technologies. There is a demand for strong se-
curity as devices often communicate over insecure networks. Also, advanced
administration and management support is required to operate the networks.
Operators need to account for all these complexities before deploying SDN.

In this thesis, we answer the question “What are the considerations for
deploying software-defined networks in telecommunication networks?”. We
investigate the migration path of the network technologies, protocols and
deployment process to an SDN-enabled network both from a theoretical and
an engineering perspective.

11
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1.2 Motivation

The work carried out in this thesis is motivated by the following factors:

• SDN requires programmable forwarding hardware. However, to pro-
tect their current investments, operators may be reluctant to replace
all legacy network equipment at once [111]. It seems appropriate to
investigate incremental SDN deployment in which SDN-enabled and
legacy nodes need to interoperate. The goal of such a strategy is to al-
low realizing SDN’s benefits as soon as the first new nodes are powered
up.

• Network nodes are often placed in untrusted environments. However,
security is often ignored due to complexity of the process of provisioning
security material, or simply due to operational expenses [22]. In an
SDN network, security associations are required between a controller
and forwarding devices. It is worth investigating automatic certificate
installation as it would be valuable in easing the deployment of security
mechanisms.

• Communication between the SDN controller and forwarding devices
occurs over so-called southbound protocols. With several southbound
protocols available (e.g. OpenFlow, PCEP, NETCONF), it is worth
studying the applicability and benefits of these protocols.

• Discovering the physical network topology is crucial in SDN networks
as this knowledge is required to make routing decisions. It is important
to study how such topology information can be obtained and if existing
protocols can be used to achieve this.

1.3 Contribution

This thesis provides a comprehensive survey of key aspects for deploying SDN
in telecommunication networks. First, we examine different strategies with
which network operators can deploy the new SDN hardware equipment in
their networks. We contrast clean-slate and incremental deployment strate-
gies. Second, we investigate bringing up the newly installed devices. We
present the engineering process and the associated infrastructure needed to
perform this task. We also discuss how digital certificates can be installed
in an automated manner through the use of a public key infrastructure and
pre-installed device certificates. Third, we analyze different southbound pro-
tocols and investigate the applicability of these protocols to different parts of
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the network. Finally, we discuss how existing protocols can be used to con-
struct the network topology in a network comprising of both SDN and legacy
devices. In addition to the literature survey, we provide a proof-of-concept
implementation which demonstrates an automated process to bootstrap an
SDN device and provision security material.

1.4 Research methodology

This thesis presents an engineering approach to the problem of SDN de-
ployment. It builds upon existing protocols and technologies described in
technical standards and research literature. We study a large number of
protocols and solutions and design our solution using a subset of these. We
then evaluate the validity of the proposed process through a proof-of-concept
implementation and by testing it in an emulated network environment. This
demonstrates how the presented approach enables SDN nodes and networks
to be brought up and configured in an automated manner.

The approach used in this thesis can be classified as experimental com-
puter science and is typical of computer networks and systems research.
Experimental computer science aims at demonstrating and evaluating the
feasibility of solutions to a problem [48, 56] through construction of proto-
type systems [44]. Our approach also resembles that of constructive research
where the aim is solve a domain specific problem or to create knowledge about
how the problem can be solved [43]. Additionally, our prototype implemen-
tation methodology can further be classified as emulation as we “build a set
of synthetic experimental conditions for executing a real application” [61].

1.5 Sustainable development aspects

Telecommunication networks represent a significant portion of the global
ICT power consumption [116]. Fig. 1.1 shows the increasing trend of power
consumption in different parts of operator networks.

There is a growing need to design new network paradigms that enable
the same ICT functionality while consuming lower amounts of energy in the
future [110]. SDN can contribute significantly in achieving this goal. By
moving control-plane decisions to a centralized location, forwarding devices
no longer require the intelligence to perform computation tasks. Also, it is
expected that SDN will allow improved utilization of the network resources.
These factors will help decrease energy consumption of the network devices.

Furthermore, this thesis advocates for the incremental deployment of
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Figure 1.1: Energy consumption of operator’s network [70]

SDN. With this approach, legacy hardware can be fully utilized till end of its
effective lifetime. This method is in line with the green principle – reduce,
reuse, recycle.

SDN also has far-reaching impact on economic sustainability of network
operators. By moving functionality from hardware to software, SDN will
accelerate service creation and reduce time to market. With this potential for
new innovation, SDN will enable the creation of new business. Additionally,
this thesis presents a method for the automated bootstrapping of SDN devices
in the network. This will allow network operators to reduce their operational
expenses, which leads to competitive advantages and cost savings to the
service customers.

1.6 Structure of the thesis

The rest of the thesis is organized as follows: Chapter 2 provides the neces-
sary background information to understand the work carried out in the thesis.
It describes the network technologies and protocols used in the thesis. Chap-
ter 3 contains our survey of the SDN deployment solutions. We provide the
engineering process of deploying new network devices and also discuss how
the devices can be configured for packet forwarding in an automatic manner.
Chapter 4 provides details on the implementation of our prototype for the au-
tomatic integration of an SDN switch into the network. This demonstrates
the functional correctness of our proposed approach. Chapter 5 discusses
considerations for meeting carrier-grade requirements and presents network
management tasks that can benefit from SDN. We also highlight lessons
learned from the thesis and provide a direction for future work. Lastly, chap-
ter 6 summarizes the thesis and provides concluding remarks.



Chapter 2

Background on network technolo-
gies

This chapter provides the required background information considered im-
portant to understand the work presented in this thesis. The thesis covers a
broad range of issues related to the deployment of SDN in operator networks.
This large scope is reflected by the diverse nature of the topics covered in
this chapter. First we present the concept of software-defined networking and
discuss how SDN differs from legacy networks. Then we discuss the architec-
ture and network segments of a telecommunication network. Subsequently,
we review Public Key Infrastructure (PKI) and describe the PKI model used
in the thesis. We then examine various protocols the SDN controllers and
forwarding devices use to communicate with each other. Lastly, we discuss
protocols that enable gathering network topology information.

2.1 Introduction to SDN

Software-defined networking is a new paradigm which revolutionizes net-
work architecture through the introduction of a software-controlled, pro-
grammable forwarding plane. Traditional networking devices are typically
autonomous in nature. Each device hosts its own operating system, runs
distributed control-plane protocols and builds a local network state. The op-
erating system, which is often proprietary, consults the local network state
and configures specialized forwarding hardware through proprietary applica-
tion programming interfaces (API) [40]. SDN, on the other hand, eliminates
these control-plane operations from network devices and moves the operating
system to a logically centralized controller, also referred to as the network
operating system. The controller exposes the network state learned from the

15
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Figure 2.1: (a) Traditional network and (b) SDN network

forwarding devices to software-based network applications. Routing decisions
are made by the applications and communicated to the controller, which in
turn translates these decisions in to forwarding rules and programs the ap-
propriate devices. Forwarding devices then perform packet header matching
against these rules to determine the port on which to send a packet out.

Communication between the network applications and the controller oc-
curs over so called northbound APIs. Communication between the controller
and forwarding devices occurs over southbound APIs. The forwarding de-
vices constitute the data-plane, the controller constitutes the control-plane,
and the networks applications form the management-plane [69]. Fig. 2.1 de-
picts the difference between traditional networks and SDN networks.

SDN can also be defined in terms of three abstractions: forwarding ab-
straction, distribution abstraction, and specification abstraction [69, 98].

• The forwarding abstraction allows network applications to make routing
decisions without knowing any details of the underlying hardware. This
is achieved through the use of open and standardized protocols for the
communication with the forwarding devices.

• The controller implements the distribution abstraction. This abstrac-
tion is essentially responsible for two tasks. First, it is responsible for
installing forwarding rules on the network devices. Secondly, it gathers
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Figure 2.2: (a) Out-of-band and (b) in-band control plane

information about the forwarding layer and exposes this state informa-
tion to network applications thereby allowing them to build a global
network view.

• The specification abstraction allows network applications to express de-
sired network behavior without being responsible for the actual imple-
mentation of the behavior itself.

Physical connections between the forwarding devices and the controller
can be set up in two ways: out-of-band and in-band [16]. In the out-of-
band scheme, each forwarding device has a dedicated physical connection to
the controller whereas in the in-band scheme, control-plane information is
carried over existing data-plane connections between the forwarding devices.
These scenarios are depicted in Fig. 2.2. Note that forwarding devices as
referred to as switches which in computer networks terminology are typically
layer-2 devices. In the context of SDN, a switch is a forwarding device which
performs packet header matching regardless of the layer to which the header
belongs; for instance forwarding can be based on layer-2 MAC addresses,
layer-3 IP addresses, layer-4 port numbers, or a combination of all these fields.
In SDN literature, the forwarding devices are nevertheless called switches as
a reference to the single forwarding function that they perform.

SDN offers network operators many advantages. Decoupling the control
and data planes allows the forwarding devices to be manufactured at lower
costs since they no longer require the computing intelligence to perform
control-plane processing [16]. The centralized control allows the controller
to maintain an up-to-date view of the full network topology. The expos-
ing of this network state to software applications enables better informed
forwarding decisions [69]. Softwarization of the forwarding decisions accel-
erates innovation and service creation. Network operators no longer need to
wait for standardization and implementation of new protocols. Instead, new
functionality can be deployed as plug-and-play software modules [66].
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2.2 Network sections

An operator’s telecommunication network is typically structured into the
access network, aggregation network and core network [70]. These networks
operate on packets of data which represent layer-2 and above of the network
protocol stack. The data is carried over the transport network, which consists
of optical switches and optical routers, and represents the physical layer
(layer-1). These network sections are depicted in Fig. 2.3.

• The access network, as the name suggests, is part of the network that
provides homes and enterprises with access to network services such as
voice, video and data. Access technologies include xDSL (e.g. ADSL2,
VDSL), optical access (e.g. PON, point-to-point fiber) and wireless
(e.g. 3G, LTE). Connections from end-users terminate at an Ethernet
switch, which we refer to as the access edge switch. It represents the
first point of entry for user traffic in to the operator network.

• The aggregation network provides traffic aggregation from the access
network. It consists of layer-2 Carrier Grade Ethernet and an under-
lying optical transport network (OTN). Typically, the logical network
topology is a tree-like arrangement of Ethernet switches [70], which are
physically interconnected via metro or region OTN rings [9]. The aggre-
gation network uses VLAN or Multiprotocol Label Switching (MPLS)
based technologies to route the traffic to the core network [11, 84].

• The core network constitutes a layer-3 IP-MPLS backbone. The logical
topology is typically a partial mesh network and the underlying OTN
can be a ring or full mesh network [9]. We refer to the border node
which interfaces with the global Internet or other peer networks as a
provider edge (PE) router.

2.3 Public key infrastructure

Public key infrastructure is a set of technical mechanisms, procedures and
policies that collectively enable deployment of security services [106]. PKI
is built on public key cryptography and digital certificates. Trusted nodes
known as Certificate Authorities (CA) issue digital certificates to clients of
the PKI (a human user, a server or a client machine). This allows clients
to learn other clients’ public keys securely. This is achieved as follows. The
CA typically has a self-signed certificate, i.e., the issuer and subject fields of
the certificate are the same and contain the CA’s distinguished name. The
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public key field contains the CA’s public key and the certificate is signed
with its private key. A client certificate issued by the CA contains the client’s
distinguished name in the subject field and the CA’s distinguished name in
the issuer field. The client’s public key is inserted in the public key field
and the certificate is signed with the CA’s private key. In this way, a digital
certificate creates a mapping between names and public keys [89]. Fig. 2.4
depicts the fields and their values as described above.

Now let us assume Alice wants to prove her identity to Bob. In order
to do so, Alice presents her CA-issued certificate to Bob. We assume that
Bob trusts this CA and possesses a copy of the CA’s certificate (and thereby

Subject: CA name

Issuer: CA name

Public Key: CA public key

Signature: with CA private key

Subject: Client name

Issuer: CA name

Public Key: Client public key

Signature: with CA private key

(a) (b)

Figure 2.4: (a) Self-signed CA certificate and (b) CA-issued client certificate
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the CA’s public key). When Bob verifies the signature on Alice’s certificate
using the CA’s public key, he can be sure that the correct CA (the one he
trusts) has issued the certificate. Consequently, he trusts Alice’s public key.

In a PKI, registration authorities are used to offload some of the work
handled by CAs. However, for simplicity we omit them from our discussion.
A more detailed discussion on PKI can be found in [65] and [24]. In the
following sections, we introduce the PKI model used in this thesis and provide
an overview of certificate management protocols.

2.3.1 PKI model

The PKI model considered in this thesis consists of the following actors and
certificate profiles (depicted in Fig. 2.5):

• Vendor CA – The vendor CA is controlled by the manufacturer of the
network equipment. It has a self-signed certificate which we refer to
as the vendor root certificate. It issues a device certificate to every
manufactured device. The vendor is responsible for installing both the
vendor root certificate and the device certificate on the manufactured
devices.

• Operator CA – The operator CA is controlled by the network operator
and has a self-signed certificate, which we refer to as the operator root
certificate. The operator CA is responsible for making decisions to
allow or reject a new device from joining the network domain. If the
device is allowed to join the domain, it issues a domain certificate to
the device.

• New device – This is the device that wants to connect to the network. It
is pre-installed with the vendor root certificate and a device certificate.
When a device wants to join the network, it first obtains a copy of the
operator root certificate. Then it requests the operator CA to issue a
domain certificate to itself.

We assume that the new device connects to other nodes (for instance, the
SDN controller) which are under control of the same network operator, i.e.
the common trust anchor for all devices is the operator CA. Furthermore, we
assume these nodes have already been registered to the network and possess
a copy of the operator root certificate and a domain certificate signed by the
operator CA.
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Figure 2.5: PKI actors and certificate profiles

2.3.2 Certificate management protocols

Certificate management protocols are used to support online exchanges of
messages between clients and the CA in order to facilitate functions such as
certificate enrollment, certificate revocation, key pair update, and key pair
recovery. Several certificate management protocols have been developed over
the years. The effort has mainly been driven by the Internet Engineering
Task Force (IETF) Public Key Infrastructure X.509 working group and has
been realized in the form of two management protocols – Certificate Manage-
ment Protocol (CMP) [13] and Certificate Management Messages over CMS
(CMC) [96]. The basic functionality of these two protocols is essentially the
same [6] although CMP is the more comprehensive and widely deployed pro-
tocol of the two. In addition to these protocols, Cisco has developed the
Simple Certificate Enrollment Protocol (SCEP) [90]. Despite being an Inter-
net draft for almost a decade, the protocol has seen widespread deployment.

In this section, we discuss how the CA can automatically authorize client
certificate requests. In order to do so, CMP and SCEP make use of an out-
of-band shared secret, referred to as the challengePassword in SCEP and
the initial authentication key in CMP. The CA generates a shared secret
and saves a binding between the secret and the requesting client’s name.
The shared secret is communicated securely to the client before it makes the
request.

In SCEP, the entire request is encrypted using the CA’s public key and the
challengePassword is included. Upon decrypting the request and comparing
the challengePassword with its database, the CA authorizes the certificate
request if the passwords match. In CMP, the initial authentication key is used
to protect the certificate request. If the CA is able to verify the message hash
using its own copy of the initial authentication key, it can then automatically
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authorize the request.
Both protocols also provide mechanisms to automatically authenticate the

clients based on certificates issued by other CAs; for instance, the operator
CA can authorize a device based on the device certificate. However, a trust
relation between the operator CA and the vendor CA must be established
in advance. Using device certificates to automatically authorize devices is
not sufficient as one vendor may sell devices to several operators. Hence
the operator must provision a white-list of the devices that are allowed to
connect to its network. After successful verification of the device certificate,
the CA consults the white-list, ensures that this device is allowed to join the
network and only then authorizes the certificate request.

2.3.3 Motivation for using digital certificates

IP Security (IPSec) [50] and Transport Layer Security (TLS) [41] are the
most notable protocols used for securing communication in the Internet today
[15]. Both protocols support authentication through pre-shared keys (PSKs)
as well as digital certificates.

A PSK is a string known by both communicating end-points. The PSK
is never actually transmitted over the network; rather it is used to derive
the keying material for the session. Configuring secure communication with
PSKs is easier than with digital certificates as digital certificates require an
associated public key infrastructure. However, digital certificates are con-
sidered a stronger authentication method [81] and are also a more scalable
authentication solution [7]. In a PSK scheme, the server needs to maintain a
mapping between the user and the PSK for every user. This is not required in
the digital certificate scheme. Unlike with PSK, a digital certificate’s creden-
tials can be revoked by placing them on certificate revocation lists (CRLs).
A certificate placed on the revocation list is no longer valid and the owner
can no longer authenticate itself with this certificate.

In the rest of this thesis, we consider only digital certificate based schemes
for securing communication.

2.4 Southbound protocols

Southbound interfaces enable the separation of control and data planes in
SDN networks. They include the communication protocol that forwarding
devices and the controller use to interact. Currently, considerable effort is
being spent on standardizing these protocols to promote openness and inter-
operability [69]. OpenFlow [83] has emerged as the predominant southbound
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protocol. In addition to OpenFlow, several existing protocols such as PCEP
[109], BGP [92] and NETCONF [46] can, with suitable modifications or ex-
tensions, also be used as southbound protocols. It is worth mentioning here
that networks are likely to support several protocols simultaneously.

In this section, we introduce some southbound protocols. We do not
provide an exhaustive list and limit the discussion to protocols well suited
to operator networks. Section 3.5 discusses the use cases and deployment
models of these protocols.

2.4.1 OpenFlow

OpenFlow was first proposed by McKeown et al. [83] in 2008 and has since
then gained industry-wide importance. Several versions of the OpenFlow
specifications have been released, the latest version being 1.5.0 released in
January, 2015. New versions of OpenFlow add new features to improve the
protocol but the inherent methods to program the forwarding devices remain
more or less the same.

An OpenFlow switch performs packet forwarding by consulting its flow
table to determine the output port on which to send the packet. Each entry
in the flow table (called a flow rule or flow entry) consists of the packet
header fields to match, the actions to apply on matching packets, and the
corresponding counters to update. When a switch receives a packet which
cannot be matched to any installed flow rule the switch typically first buffers
the packet and then requests a new flow rule from the controller with an
OFPT PACKET IN message. This message includes the packet’s header
fields. The controller then responds with an OFPT FLOW MOD message,
which contains a rule for handling the packet and the duration for which
to keep the flow rule in its flow table. This duration is called a timeout.
Each flow rule has two associated timeout values, an idle timeout value (or
soft timeout), which is triggered when the flow remains inactive, and a hard
timeout, which is triggered regardless of the flow’s activity. When either
of these timers expires, the switch removes the corresponding flow entry
from its flow table and sends an OFPT FLOW REMOVED message to the
controller. This mechanism of flow rule installation is reactive (depicted in
Fig. 2.6) meaning that rules are requested by the switch only upon receiving
data packets. Controllers may also behave proactively by installing rules to
handle expected data traffic [25] along the path of a flow when the packet is
seen at the ingress switch.

As mentioned above, when a switch first receives a packet belonging to a
new flow, it buffers the packet before sending an OFPT PACKET IN mes-
sage to the controller. This message includes a maximum of 128 bytes of the
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Figure 2.6: Reactive flow installation in OpenFlow
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Figure 2.7: Behavior when switch cannot buffer packets

received packet header. However, if the switch does not have buffering capa-
bilities or if the input buffer is full, the OpenFlow specification [5] mandates
the switch to send the entire packet to the controller encapsulated within the
OFPT PACKET IN message. In this case, the controller responds with an
OFPT PACKET OUT message which also includes the entire data packet.
No flow rule is installed and the switch simply performs the associated ac-
tion (which is typically to forward the packet out on the specified port). This
scenario is depicted in Fig. 2.7.

OpenFlow also provides additional methods such as those used to ex-
change capability information (e.g. supported version of the protocol), port
status information (e.g. when a port comes up or goes down), and error
messages (e.g. when a flow rule addition fails).
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2.4.2 Path computation element
communication protocol (PCEP)

PCEP [109] was designed to enable simpler and more efficient MPLS and
GMPLS path computation in large, multi-domain networks. The main idea
is to decouple path computation from network devices, and move the func-
tionality to dedicated entities with communication occurring over a stan-
dardized protocol. The network devices are referred to as Path Computation
Clients (PCCs), path-decisions are made by the Path Computation Element
(PCE), and the communication protocol is called PCEP. Fig. 2.8 shows the
normal call-flow between the PCC and the PCE. The diagram depicts a pas-
sive PCE, wherein a path is computed based on a received request. The
PCC sends to the PCE the Label Switched Path (LSP) path parameters
which may include the source IP address, the destination IP address, and
the required bandwidth. The PCE either replies positively and provides the
MPLS label to be used for the path, or it can reply negatively, for instance,
if the requested bandwidth is unavailable. PCEs may also behave actively by
installing paths dynamically when network changes are detected. Further-
more, PCEs can be stateless or stateful. Stateless PCEs do not maintain a
database of allocated resources and hence may create suboptimal paths.

TCP 3-way

Handshake

Open and Keepalive

Messages

TCP connection

termination

PCReq

PCRep

PCE Close

Message

PCC PCE

(LSP path parameters)

(positive/negative)

Figure 2.8: A PCEP session

2.4.3 Interface to routing system (I2RS)

Routers build their Routing Information Base (RIB) by participating in in-
terior and exterior gateway routing protocols. This database is built solely
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from control-channel communication with other nodes. Based on the learned
topology, routers populate their Forwarding Information Base (FIB), which
the data-plane references to perform packet-matching and forwarding. As
discussed in Section 2.4.1, OpenFlow allows programming the FIB. I2RS [1],
on the other hand, is an effort to standardize interfaces and data models
to allow programmability of the RIB. The proposed architecture includes
I2RS-Agents, I2RS-Clients and I2RS-Services [18] as depicted in Fig. 2.9.
Agents run on network devices and provide services such as accessing the
RIB manager and topology database. Applications access services through
I2RS-Clients. The protocol for communication between the client and the
agent is the I2RS protocol. I2RS is work in progress and there are no official
standards proposed yet. However, the IETF’s I2RS working group is driv-
ing an effort to standardize a data model, which can be used to define an
interface to the network device’s RIB [20].

Application Application

I2RS-Client

Application

I2RS-Client

I2RS-Agent
Policy
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Figure 2.9: I2RS architecture [19]
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2.4.4 BGP flow-spec

BGP flow-spec [80] is an extension to the Border Gateway Protocol (BGP)
to enable dissemination of traffic flow-specifications (flow-spec) to BGP peers.
RFC 5575 defines a new BGP Network Layer Reachability Information (NLRI)
address family. This NLRI allows encoding flow-specifications using the
multi-protocol extensions for BGP [21]. A flow-specification rule is like an
access control list (ACL) rule and consists of the criteria to match aggregated
traffic flows based on elements such as the IP destination prefix, IP source
prefix, and layer-4 port numbers. The actions to apply to matched flows
include accept, discard, rate-limit and redirect and they are specified in the
extended communities attribute [58] of the BGP message. In the context of
SDN, the controller may act as the flow-specification originator and update
policies dynamically on the network devices. The network devices can then
propagate this information to other BGP peers within the operator’s network
or to another operator’s network depending on the applied configuration.

2.4.5 Simple network management protocol (SNMP)

SNMP was first conceived in 1988 and has since then undergone several
revisions, the latest being SNMPv3 [32]. The SNMP architecture follows a
manager-agent model. The manager resides on the Network Management
System (NMS) and issues SET or GET requests to an agent running on the
managed device. The agent interacts with the device database, known as
the Management Information Base (MIB), and carries out the desired task.
Additionally, agents can also notify the manager on occurrence of certain
events through messages called SNMP traps.

Managed device

Network Managment

System

SNMP manager SNMP agent

MIB

SNMP SET / GET request

SNMP Response

SNMP Trap

Figure 2.10: SNMP

SNMP is a widely recognized protocol and is implemented extensively
across all sorts of network devices. Although SNMP is a good candidate
for a southbound interface, it has several practical shortcomings. These are
discussed in [99] and include the following:
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• SNMP performance of reading large amounts of data (such as router’s
routing table) is very poor.

• Network administrators view configuration of devices as a task se-
quence. However SNMP’s view is data-centric wherein configuration
implies changing state of data objects. Hence, there is a need for addi-
tional translation code on the management application.

• Writeable SNMP objects are not widely deployed. Furthermore, stan-
dard MIB modules do not always provide the writeable objects that
would be needed for SDN. Many such objects are contained only in
proprietary modules. Therefore SNMP cannot easily be used to pro-
gram forwarding rules on the network devices.

2.4.6 NETCONF

NETCONF was developed by the IETF to address the shortcomings of
SNMP. Like SNMP, it is a network management protocol and “provides
mechanisms to install, manipulate, and delete the configuration of network
devices” [46]. The NETCONF protocol is divided into four layers as depicted
in Fig. 2.11. Messages and configuration data exchanged between the NMS
(or client) and the network device (or server) are encoded using Extensible
Markup Language (XML) [28]. The protocol operations are carried out as
Remote Procedure Calls (RPCs).

Secure

Transport

Messages

Operations

Content

SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ...

<rpc>

<rpc-reply>

<edit-config>

Configuration

Data

<notification>

Notification 

Data

Layer Example

(1)

(2)

(3)

(4)

Figure 2.11: NETCONF protocol layers [46]

(1) The Secure Transport layer provides a communication path between the
client and the server. NETCONF requires this connection to be per-
sistent, connection-oriented and provide authentication, data integrity,
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confidentiality, and replay protection. NETCONF implementations are
required to support the SSH protocol.

(2) The Message layer provides mechanisms to encode the RPCs and no-
tifications in a transport-independent manner.

(3) The Operation layer specifies a set of operations to manage devices
and retrieve state information. Some examples include get, get-config,
edit-config, lock, and close-session. The operations may be extended
depending on the device’s capabilities.

(4) The Content layer is needed to model the configuration and state data
of the devices. NETCONF itself does not provide such a model. YANG
[27] has emerged as the leading data-modelling language to be used in
conjunction with NETCONF.

NETCONF is a proven standard for writing network configurations. Its
features include domain-specific knowledge, support for transactions, and
vendor independence. NETCONF can be used to configure the devices
through the edit-config operation. Thus it enables programmability of the
forwarding devices. NETCONF is the configuration protocol used by OF-
CONFIG [4] to program OpenFlow devices.

2.5 Protocols for topology discovery

Topology discovery involves learning how network devices are interconnected.
The discovered topology can represent either logical or physical connections.
A logical view of the topology is constructed from layer-3 information. With
this method, layer-2 devices are not discovered [23]. It only determines con-
nections between devices without knowing details of the physical links. On
the other hand, a physical view of the topology is constructed using layer-2
mechanisms and this method exposes the physical interconnections between
devices. Peers in the logical topology are routers that are one hop from
each other, whereas peers in the physical topology are directly connected
ports [105]. Topology discovery is a crucial component in SDN networks
as network applications depend on this information to make routing deci-
sions. Furthermore, applications need to know about the complete network
topology in order to make optimal routing decisions.

In this section we introduce some of the protocols used for topology dis-
covery in conventional networks. The same protocols can be used for topology
discovery in SDN networks as will be explained in Section 3.4.
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2.5.1 Simple network management protocol (SNMP)

SNMP has been presented in Section 2.4.5 as a southbound protocol. It can
also be used for the purpose of topology discovery. As previously mentioned,
devices with SNMP support store all information in Management Information
Bases (MIB).

The information on the devices is keyed by hierarchical Object Identifiers
(OIDs). There are both standard and proprietary MIBs. As an example of an
OID, the BGP version of a node is represented as iso(1).org(3).dod(6).internet(1).
mgmt(2).mib-2(1).bgp(15).bgpVersion(0) or simply 1.3.6.1.2.1.15.1.0. The
value returned by an SNMP query with this OID will be 4 if the IPv4 ver-
sion of the BGP protocol is being used by the queried device.

Other information stored as OIDs includes details regarding the device’s
ports and the neighbors to which it is connected. Control-plane protocols
such as IS-IS [59], OSPF [36, 85] and BGP [92] have standardized MIBs
[54, 63, 88]. By querying each device with the SNMP GET method, topology
information can be extracted from the devices and then pieced together to
form a complete view of the network topology.

2.5.2 Link layer discovery protocol (LLDP)

LLDP1 was standardized by the IEEE in the standards document 802.1AB
[10]. As the name suggests, it is a link-layer (layer-2) neighbor discovery pro-
tocol that enables adjacent switches to identify each other and exchange infor-
mation regarding their capabilities. The protocol was developed to supplant
proprietary protocols, such as the Cisco Discovery Protocol and Extreme
Discovery Protocol, and hence it was designed to work in a multi-vendor
environment.

LLDP works in two modes, the transmit mode and receive mode. In the
transmit mode, a switch periodically sends out Ethernet frames called LLDP
Data Units (LLDPDU) from each of its interfaces. Each LLDPDU contains
the switch identifier and the identifier of the port from which the frame is
sent. The destination MAC is set to a special multicast address. Upon
receiving an LLDPDU (in the receive mode), a switch parses the LLDPDU
and stores the switch identifier and port identifier in to the Physical Topology
Management Information Base (PTOPO-MIB) [26]. Devices are required to
consume the LLDPDU, i.e., they should not forward it to any other port [8].

LLDP allows switches to exchange information with their adjacent nodes,
and hence they are able to learn only about their immediate neighbors. A

1LLDP is formally referred to by the IEEE as Station and Media Access Control Con-
nectivity Discovery



CHAPTER 2. BACKGROUND ON NETWORK TECHNOLOGIES 31

system administrator can, via the network management system and SNMP,
retrieve a switch’s PTOPO-MIB [26]. By querying all the switches in the
network and thus gathering each switch’s neighbor information, the entire
network’s physical topology can be constructed.

2.5.3 BGP link-state (BGP-LS)

With interior gateway routing protocols (IGP), such as OSPF and IS-IS,
the network devices’ topology knowledge is limited to the area or domain to
which they belong to. Although it is possible to make the SDN controller a
passive IGP listener and thereby obtain topology information, this method
does not scale well. The controller needs to participate in the IGP at several
areas and piece together the gathered information to form the full network
topology. BGP-LS [52] has been proposed as a solution to this.

BGP-LS is an extension to BGP enabling it to carry link-state informa-
tion gathered by the IGPs. A BGP message contains one or more Link-State
NLRIs, which are further classified as Node NLRIs, Link NLRIs and Prefix
NLRIs. A Node NLRI uniquely identifies the router, a Link NLRI uniquely
identifies a link, and a Prefix NLRI uniquely identifies an IPv4 or IPv6 Pre-
fix originated by the BGP speaker. Each domain must have at least one
BGP speaker and the IGP information is redistributed to this node. The
SDN controller (or another dedicated network node with which the con-
troller interfaces) can act as a BGP route reflector, and thereby learn the
entire network’s topology. This scenario is depicted in Fig. 2.12.
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BGP-LS

Domain 2

(IS-IS)

BGP-LS

Domain N

(Multi-area IS-IS)

BGP-LS

BGP-LS
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SDN
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Figure 2.12: BGP-LS – gathering topology information [107]
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Chapter 3

SDN deployment solutions

This chapter presents our survey and analysis of deploying SDN in telecom-
munication networks. To build a new network or to upgrade an existing one,
the operator needs to determine the services that it wants to provide, analyse
the associated network requirements, and procure the network equipment.
The operator then needs to work out a deployment strategy and begin in-
stalling the devices in the network. Each installed device must be configured
with a management interface and have the appropriate protocols enabled. In
addition, the operator must configure the mechanisms and access rights for
performing network management tasks such as traffic engineering, network
monitoring, and troubleshooting. These jobs are quite diverse and automat-
ing them is crucial in order to be able to scale the deployment process and
enable ease of management.

In this chapter, we discuss some of these deployment considerations in
the context of SDN. We broadly classify them as follows:

• Setting up new hardware – strategies for transitioning to an SDN net-
work

• Bringing up a device – connecting a device to the network

• Bootstrapping security – provisioning security keys and configuration
on the device to enable secure control-plane communication

• Performing topology discovery – constructing a view of the network’s
physical topology

• Packet forwarding – southbound protocols and network applications for
installing packet forwarding rules

33
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3.1 Setting up new hardware

In order to reap the benefits of SDN, network operators first need to install
programmable network devices in the network. A straightforward strategy
is to simply swap-out existing network devices and replace them with SDN
devices. This approach is viable when rolling out a new network or deploying
SDN in closed environments such data-centers and campus networks [101].
For example, such a clean-state strategy was employed by Google in deploying
their inter data-center SDN network [60]. However, the deployment took
several years and the benefits were visible only after the entire switching
hardware was upgraded [72].

A complete network overhaul is not always a feasible solution. Network
operators want to protect their current investments, and budget constraints
may restrict purchase of large volumes of new equipment at one time. Hence,
another approach is to deploy SDN incrementally alongside the existing net-
works. We call a heterogeneous network with legacy hardware and SDN
hardware a hybrid network.

Another possibility to deploy SDN incrementally is through a dual-stack
approach, wherein a network device runs both legacy protocols and SDN pro-
tocols in parallel. We call such a device a hybrid switch. The implementation
of a hybrid switch can be twofold. In the basic hybrid switch, packets tagged
with certain VLAN tag numbers are processed by SDN methods whereas
other packets are handled by traditional methods. A variant of the hybrid
switch method, which is gaining popularity due to its inclusion in the Open-
Flow 1.3 specification [5], is one where the forwarding pipeline supports both
traditional processing and SDN processing. In such an implementation, the
controller maintains control over all the switch ports and VLANs. By insert-
ing appropriate rules in the forwarding table, the controller delegates control
decisions to the switch itself. For instance, the controller may install a rule
to forward all DNS requests to it for inspection but instruct the switch to
handle all other traffic in the traditional way. In this manner, the controller
(and network applications) can be light-weight modules that know only about
DNS and not any other kind of traffic. Furthermore, not all traffic needs to be
forwarded to the controller, thereby saving computing resources and network
bandwidth. The main advantage of the dual-stack deployment is that this
method allows for an overnight change in the forwarding hardware. When a
hybrid switch is installed in the network, the controller instructs it to handle
all traffic in the traditional way. Thus, it leads to a seamless transition to
an SDN-ready network where SDN functionality can slowly be switched on.
Fig. 3.1 depicts the three deployment strategies discussed in this section.
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Figure 3.1: SDN deployment models (a) clean-slate (b) hybrid network (c)
dual-stack

3.2 Bringing up a device

Bringing up a network device involves providing IP connectivity to the device
and enabling remote management of the device. In this phase of deployment,
the device behaves as an end-host rather than as a forwarding device, i.e.,
the device cannot forward any packets yet. We assume the device supports
the normal networking stack and protocols that are supported by end-hosts;
for example the Dynamic Host Configuration Protocol (DHCP) and Domain
Name System (DNS). The initial configuration operation can be performed
manually using the Command Line Interface (CLI) or in an automated man-
ner. In this section, we discuss the configuration parameters and associated
network infrastructure required to connect a device to the network.

3.2.1 Enabling IP connectivity

When manually bringing up the device, an engineer present at the installation
site performs the initial configuration tasks. The engineer connects one end
of a serial cable to a laptop and the other end to the console port of the device
and starts a terminal emulation software on the laptop. Now the device is
ready to be configured through vendor-specific CLI instructions. The first
step is to enable IP connectivity by configuring one or more interfaces with
IP addresses. A layer-2 switch has only a virtual interface associated with
an IP address. A layer-3 router has an IP address configured on each of its
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physical interfaces in addition to one or more virtual interfaces. Furthermore,
the address of the default gateway router, DNS server, network time protocol
server, and the device host name are also configured on the device.

Alternatively, the device can obtain some or all of the mentioned config-
uration parameters via DHCP [45] and BOOTP vendor extensions [14]. The
process of automatically enabling IP connectivity is depicted in the form of
a flow chart in Fig. 3.2. The operator must set up the DHCP server before
the device starts the DHCP protocol. A reservation (mapping of DHCP pa-
rameters to a specific device) should be added on the DHCP server based
on either the MAC address of the interface or device client identifier which
will be included in the DHCP request. This is required so that the DHCP
server can allocate to the device the correct host name and the Trivial File
Transfer Protocol (TFTP) server address from which to fetch subsequent
configuration. In case the host name is not learned via DHCP, the device
performs a reverse DNS lookup on the IP address it received via DHCP and
thus learns its host name. This means that the DNS server must also be set
up in advance and should be reachable from the device. Alternatively, there
may be a file on the TFTP server containing a mapping of the host name
and IP address. The device downloads this file and chooses the correct host
name. For the device and DHCP server to communicate over DHCP, the
DHCP server should reside on the same LAN as the device. If this is not
the case, there should be a DHCP relay agent which forwards requests and
replies between the device and the DHCP server.

Device 

powered-on

Assigned 

IP, TFTP server address 

via DHCP and BOOTP

DHCP offer

included 

hostname?

Reverse DNS

lookup to learn

hostname

Reverse

DNS

successful?

TFTP server

provided host-IP 

mapping?

Use learnt hostname to 

fetch device configuration 

from TFTP server

Enabling 

IP connectivity

successful

No

No

Yes

Yes

Yes

Obtained

configuration?

No

Enabling

IP connectivity

failed

No

Yes

Figure 3.2: Enabling IP connectivity for a network device
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3.2.2 Enabling Remote Management

For remote management of the device, Telnet and/or SSH need to be enabled.
This may be configured manually or may be part of the initial configuration
file downloaded from the TFTP server. Telnet can be used when connecting
to the device from within an isolated secure environment. However, Telnet
offers no encryption or server authentication. Also, when a Telnet connec-
tion is made, the user name and password are sent in clear text over the
network. Since the device does not know what kind of environment it is in,
Telnet should be disabled by default. SSH is the most commonly used secure
remote login protocol and provides public-key based authentication as well
as password-based authentication. Password-based authentication requires
the allowed user name and password to be provisioned on the device, for
example, as a part of the initial configuration file. However, as discussed in
Section 2.3.3, this method is not as secure as the public-key authentication
methods and does not scale well. For public-key authentication, the device
needs to generate a key pair. This can be triggered manually through the
CLI, or the device itself can generate keys at the first boot up. The keys,
once created, are stored in the device’s non-volatile memory.

3.3 Bootstrapping security

The most popular secure communication protocols, namely TLS/SSL and
IPSec, use digital certificates for authentication. In this section we discuss
mechanisms for:

(a) installing the operator root certificate

(b) provisioning a domain certificate signed by the operator CA

Please refer to Section 2.3 for details on the PKI actors and certificate
profiles.

3.3.1 Installing the operator root certificate

Each network device needs the operator root certificate in order to verify
the domain certificates presented by the SDN controller and other devices
to which it connects. It also uses the operator root certificate to verify the
authenticity of its own domain certificate during enrollment. The operator
root certificate can be installed on the device through the CLI or by installing
it from a USB disk. This method is secure as long as only authorized indi-
viduals have access to the CLI of the device. Alternatively, the device itself
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can download the required certificate directly from the CA or another public
certificate repository. The device needs to be provided with the URL from
where to download the certificate. However, manual intervention is required
to verify the authenticity of the certificate. The device or the device ad-
ministrator must compare the fingerprint of the received certificate with an
authentic fingerprint received by out-of-band methods. This fingerprint can
also be pre-configured on the device, in which case the interactive verification
of the certificate is no longer required. Fig. 3.3 depicts the steps to install
the operator root certificate.

1. Provide:

(a) Operator root certificate fingerprint

(b) Certificate Repository URL

2. Request operator root certificate

3. Provide requested certificate

4. Verify

fingerprint

Device Certificate Repository

Figure 3.3: Installing the operator root certificate

3.3.2 Provisioning a domain certificate

The device can register with the network through a manual process or in an
automated manner. The basic steps (depicted in Fig. 3.4) involved are as
follows:

1. Device creates a certificate signing request (CSR) and sends it to the
operator CA

2. Operator CA authorizes the request

3. Operator CA creates a signed domain certificate and makes it available
to the device

We first assume that the device has had no prior contact with the PKI
system and owns no digital certificates, i.e., it does not possess even a device
certificate. Additionally, we assume that the device has a key pair which it
wishes to have certified by the CA. In the manual mode, an engineer generates
a certificate signing request by entering CLI commands. The engineer then
transfers this request to the CA by any appropriate method, for example,
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by email, in a file, or with a copy-paste operation from the user interface.
The engineer must ensure that the request is transferred to the CA without
possibility of malicious modification and then manually authorize the CA to
issue the certificate. If the CA accepts the request and generates a certificate,
the engineer again transfers and installs the certificate onto the device.

In an automated method, the device uses certificate enrollment protocols
such as SCEP or CMP to obtain the digital certificate. In order to authorize
the request, the CA generates a password and creates a binding between
the device and the password. This operation is manually performed and
the password is configured on the device using out-of-band methods. The
certificate request is authenticated using this shared secret and hence the CA
can automatically authorize the request. There is no need for the device to
authenticate the CA as that can be done once the digital certificate has been
received. The device can verify if the expected CA created the certificate by
verifying the signature on the issued certificate.

When the device possesses a digital certificate signed by a third-party
CA (such as the vendor CA), authorization can be simplified (refer to sec-
tion 2.3.2). The operator CA can authorize requests based on the device
certificate presented by the device. However, one vendor may sell network
devices to several operators. So the operator needs to configure a white-list
with the serial number of the devices that are allowed to join the network.
Upon receiving a request, the CA checks this list for the presence of the serial
number and then proceeds to authenticate the device. In this case, the CA
needs to have a list of the trusted vendor root certificates in order to verify
the device’s identity.

2. Send CSR

4. Provide domain certificate

5. Verify

received certificate

Device CA

1. Create Certificate 

Signing Request (CSR)

3. Authorize CSR 

and grant request

Figure 3.4: Provisioning a domain certificate
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3.3.3 Bringing up a remote device outside the secure
operator network

A network device, for example one that is located in the access network, may
need to connect to the servers (e.g. the SDN controller) located in the secure
operator network over an insecure public Internet. In order to bring up the
device from such an insecure environment, all control-plane communication
with the device must be protected. IPSec is a suitable protocol for such an
environment as it enables encryption at the IP layer and thereby all traffic,
regardless of the transport protocol or service, can be protected. In this
case, the device first obtains an IP address via DHCP and also learns the
IP address of the IPSec gateway for the trusted domain. Then the device
performs certificate enrollment with the operator CA as discussed in the
section above and obtains the domain certificates for IPSec authentication.
It can then form an IPSec tunnel through the untrusted network and and
connect securely to the other servers, for instance the TFTP server. If the
operator CA resides within the secure operator network, appropriate firewall
rules and policies must be configured on the IPSec gateway to allow traffic
between the device and the CA before the device has formed an IPSec security
association.

3.3.4 Enhanced security with logging servers

As discussed earlier, the DHCP server or relay must be located on the same
LAN as the new device. Thus, if the new device is brought up in an untrusted
network, the DHCP server or relay will also be located in the untrusted
network. In this case, the device can be hijacked with a rogue DHCP server
so that its deployment to the operator network fails. Hence, the network
operator needs a mechanism to detect the successful or failed integration
of the device into the operator domain. This can be achieved through the
use of preconfigured event logging. We describe our assumptions and the
functionality below.

1. The device allows only one domain certificate, i.e., the domain certifi-
cate identifies the operator network to which the device is connected.
We assume here that the device is controlled only by one network op-
erator at a time.

2. The network equipment vendor knows which devices are sold to which
network operator.

3. The vendor provides a service via which operators can login to their
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accounts and view the list of devices. In addition to providing the list
of devices, the service also stores logs received from the device.

4. The device has fixed pre-configured fully qualified domain names for
the logging servers.

5. The operator configures its DNS servers to resolve the IP addresses of
these logging servers and its firewall to allow network devices to access
them.

Once the device obtains IP connectivity, it periodically sends the logging
servers its certificate details and the IP addresses of the SDN controllers to
which the device is connected. By manually observing logs from the new
device, the network operator can check whether the device has connected to
its domain as expected. The operator needs to verify the device’s identity,
the certificate issuer’s name and the details of the SDN controllers. If any of
the information is wrong, the operator can reset the device and start afresh.
On the other hand, if no events are seen on the logging server, it means that
the device may have obtained false configuration information from DHCP
and has been hijacked. Again, the device should be reset and the process
started afresh. These scenarios are shown in Fig. 3.5.

Operator signs in to the

 log server and selects the 

device being bootstrapped

Logs from 

the device 

are visible?

Faulty bootstrap

or

device hijacked

Device reports

correct certificate 

and

controller details?

Bootstrap

successful

Yes

Yes

No No

No

Figure 3.5: Detecting bootstrap result from log server

We propose that there are at least two logging servers – one vendor con-
trolled and the other operator controlled. The vendor’s logging service may
provide only a minimal service; for example the operator can list devices and
view logs from the device. This allows the operator to rely on the vendor
provided service initially, before the device has been configured to use the
operator’s own logging service. Additionally, the vendor logging server can
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make use of secure TLS connections through the use of device certificates. If
the operator does not wish to expose device information to the vendor, the
vendor’s logging service need not be resolved on the DNS server. Having an
operator-controlled logging server allows the operator to create monitoring
applications on top of the service. For instance, the logging server could send
email notifications or SNMP traps if the state of the device changes.

3.4 Topology discovery

Discovering the complete physical network topology is crucial in SDN net-
works as SDN applications require this information to make optimal routing
decisions. However, as learned in Section 3.1, operators are likely to employ
an incremental deployment strategy in which legacy and SDN devices need
to interoperate. This section considers how the full topology of such net-
works can be learned. In order to simplify the discussion, we first start with
topology discovery mechanisms in pure SDN networks followed with those
used in pure legacy networks. We then expand our discussion to the case of
hybrid SDN networks.

3.4.1 Topology discovery in pure SDN networks

OpenFlow messages combined with the Link Layer Discovery Protocol (LLDP)
can be used to construct the physical topology of pure SDN networks. We
assume here that all the devices in the network speak the OpenFlow pro-
tocol. To explain how discovery works we consider the simple topology as
illustrated in Fig 3.6.

Controller

c0

Switch A Switch B

2

1 1

2

Figure 3.6: Simple topology to explain how link discovery works

Upon initial connection establishment with each switch, the controller
installs a flow rule to forward LLDP packets to it. It then crafts an LLDP
packet containing its own controller identifier (c0) and the device identifier
of the switch to which the packet is destined. Let us assume the packet
is sent to switch A. The controller encapsulates the LLDP packet into a
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PACKET OUT message and instructs switch A to flood the packet. Switch
A then sends the LLDP packet out on all its data-plane ports, in this case
only port 2. When switch B receives this packet, a rule match for LLDP
is found. Switch B encapsulates the received packet into a PACKET IN
message and sends it to the controller. The PACKET IN message includes
the number of the port on which the LLDP packet was received (port 2 in
this case).

The controller parses the packet and determines that it had initially sent
this packet to switch A (based on the switch identifier). Hence it learns that
port 2 of switch B is connected to some port of switch A. It repeats this
process by sending an LLDP packet to switch B and when the same LLDP
packet is received in the PACKET IN message from Switch A, the controller
can learn that port 2 of switch A is connected to switch B. By combining
these two pieces of information, the controller now determines that port 2 of
switch A is connected to port 2 of switch B.

Controller c0 Switch BSwitch A

OFPT_PACKET_OUT

LLDP: cID="c0", sID="A"

LLDP: cID="c0", sID="A"

OFPT_PACKET_IN (rPort="2", sID="B")

LLDP: cID="c0", sID="A"

OFPT_PACKET_OUT

LLDP: cID="c0", sID="B"

LLDP: cID="c0", sID="B"

OFPT_PACKET_IN (rPort="2", sID="A")

LLDP: cID="c0", sID="B"

Determine bidirectional link:

port 2 of switch A

connected to port 2 of switch B

Learn unidirectional link:

port 2 of switch A

connected to switch B

Learn unidirectional link:

port 2 of switch B

connected to switch A

Figure 3.7: Topology discovery using OpenFlow and LLDP

The above described method of topology discovery is depicted in Fig.
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3.7. For a more detailed discussion, please refer to the work presented by
Sharma et al. [104] where they use the DHCP, ARP and LLDP protocols
with OpenFlow to bootstrap a pure SDN network. It is worth noting that the
OpenFlow standard [5] does not propose any topology discovery mechanism
or protocol but a white paper by the Open Networking Foundation [12] cites
the above mechanism.

3.4.2 Topology discovery in pure legacy networks

Legacy networks do not require knowledge of the full layer-2 topology in
order to forward packets. Legacy devices employ MAC learning and also use
control-plane protocols to build their topology database. MAC learning is
a process where switches examine received packets and save a mapping of
the source MAC address and the input port in their FIB. In this way, they
learn the direction, i.e. the port, via which the MAC address can be reached.
However, due to the local nature of MAC learning and the distributed nature
of control-plane protocols, the database on each switch represents only a
small subset of the entire network topology.

Building a global view of the layer-2 topology has been under active
research for several years. The most common method is to use SNMP to
query every network device individually and then piece together the complete
topology information [23, 29, 78, 87, 97]. One way is to retrieve entries in
the forwarding information databases (FIB) of all the devices and construct
a view of the topology based on the common entries in the forwarding tables.
Additionally, the most commonly used control-plane protocols provide their
own MIBs (refer to Section 2.5.1.) Information regarding neighbors and link
states can also be obtained from these MIBs.

3.4.3 Topology discovery in hybrid SDN networks

Neither of the schemes presented thus far can be used alone to construct a
view of the full network topology of a hybrid SDN network; instead, both
schemes need to be jointly used. Let us consider the topology depicted in
Fig. 3.8, wherein two SDN domains are separated by a legacy domain. In
this network, each SDN domain has its own controller. The topology of each
of the domains (referred to as Local TopoDB) can be discovered using the
mechanisms described above. A network application can then query each of
the local databases and construct a global topology.

However, this does not address discovering the links between the domains.
If the legacy domain uses LLDP for link discovery, the PTOPO-MIB of the
legacy device will contain information about the SDN device to which it is
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Figure 3.8: Topology discovery in hybrid SDN netwrk

connected. Furthermore, when the legacy device sends an LLDP packet to
the SDN device, the controller can determine that the device is connected
to a legacy domain as it does not find a controller identifier in the LLDP
packet. The network application can use these bits of information to correctly
construct the topology information.

If the legacy domain does not use LLDP but some other protocol, for
instance IS-IS, then it may not be possible to accurately determine the ex-
act network topology. In the worst case, all adjacent legacy switches ap-
pear as one switch. However, it is still viable to determine the devices (and
ports) through which the SDN domains are connected to each other. This is
achieved through the use of broadcast or other multicast MAC addresses in
the LLDP packet crafted by the controller instead of the MAC address spec-
ified by the LLDP standard. In this case, legacy switches should honour the
request for broadcast and the LDDP packet will eventually reach the other
SDN domain. This way, the controller can detect connections between the
SDN islands. The Floodlight controller utilises this mechanism and refers to
the protocol as the broadcast domain discovery protocol [49]. However, it
may not always be possible to determine which legacy device (and port) the
SDN domains are connected to. If the legacy devices send any control-plane
information which consists of the device identifier and the controller is able
to parse this message, then it could be possible to construct a view of the
full topology.
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3.4.4 Limitations of discussed protocols

The discussed methods of building a picture of the physical topology may
not always work in practical environments. Schafer et al. [97] discuss their
experience of using LLDP and SNMP. They highlight the following problems:

• Not all network devices support LLDP.

• A switch that is not 802.1D compliant, upon receiving an LLDPDU,
forwards the frame through all its ports. Hence, switches connected
to this switch falsely believe that they are directly connected to the
switches they are actually not.

• The LLDP specification does not mandate the support for SNMP.
Hence, although most vendors support SNMP, this is not guaranteed.

• Different network management systems may interpret the SNMP val-
ues differently. For instance the network management system used
by the authors only supported the mandatory TLVs and was unable
to parse the optional TLVs. Furthermore, one device reported wrong
port identities.

3.5 Packet forwarding

Once the network topology is known, applications make the routing decisions
in hybrid networks and communicate them to the controller. The controller
then translates these decisions into forwarding rules and configures the net-
work devices, i.e. the SDN switches, via southbound protocols. The switches
can now match packet headers against these rules and forward data-plane
traffic correctly.

In a hybrid SDN network, SDN devices and legacy devices need to in-
teroperate. This section discusses three different approaches that have been
proposed for enabling the packet forwarding functionality in hybrid networks.
These approaches differ considerably depending on the network section and
the legacy protocols that will be used alongside the new SDN protocols.

3.5.1 Forwarding in aggregation and core networks

Aggregation and core networks typically forward packets based on MPLS
labels. OpenFlow is a good southbound protocol candidate in these networks
as OpenFlow switches can match packets based on MPLS labels, and can also
push, pop, and swap the MPLS labels.
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If all the switches in the MPLS network speak the OpenFlow protocol,
the controller has two options to configure the bindings between forward-
ing equivalence classes and MPLS labels on the routers. The first method
involves a reactive controller. The controller provides switches with MPLS
labels and the output port on which to forward the packet hop-by-hop. In
other words, each switch forwards the first packet of a new flow to the con-
troller and the controller responds with the forwarding rule for that flow.
Alternatively, the controller may be proactive. In this case, when the ingress
switch requests an MPLS label for a new flow, the controller calculates the
entire label-switched path and configures all the switches on the calculated
path right away. This method reduces the number of control messages re-
ceived by the controller as only the ingress switch needs to send the first
packet of a new flow to the controller.

Operators can harness the benefits of SDN without upgrading their entire
MPLS network by deploying SDN switches only at the access edge [31]. They
can enforce Quality of Service (QoS) requirements and other access control
policies at the point user traffic enters the operator network [79]. However,
if only the edge nodes support OpenFlow and the other nodes are legacy
MPLS routers, network applications become more complex. They need to
implement the MPLS protocols for label distribution and also assist legacy
switches with building their topology databases.

The work presented in [103] demonstrates MPLS in a pure OpenFlow
network whereas [64] demonstrates MPLS in a hybrid network.

3.5.2 Unified control of transport and IP networks

Traditionally, the IP network and the transport network have been managed
independently. With SDN, there is an opportunity to centralize the con-
trol of both these networks [38]. Generalized Multiprotocol Label Switching
(GMPLS) is the de facto protocol used in wavelength switched optical to
set up and release lightpaths, and PCEP enables centralized control of these
networks. In order to provide unified control of transport and IP networks,
several works have proposed the integration of the OpenFlow and PCEP pro-
tocols [33, 34, 74, 82] while others have suggested extensions to the OpenFlow
protocol in order to provide the unified control [39, 75–77]. However, integrat-
ing OpenFlow and PCEP may be beneficial to operators as they can utilize
existing path calculation algorithms developed for PCEP [86] and therefore
do not need to develop new software modules for OpenFlow specifically.

We now discuss three schemes by which OpenFlow and PCEP can be
integrated [34, 86]. The first scheme represented in Fig. 3.9(a) is perhaps
the most straightforward one. The PCE exists as an external entity and
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the OpenFlow controller behaves as the PCC. The controller requests a path
with the PCEP protocol and communicates the calculated path back to the
switches with the OpenFlow protocol. In the second scheme (Fig. 3.9(b)), the
PCE runs as an application on top of the OpenFlow controller. There are two
independent instances of the link state database (LSPDB) and the topology
engineering database (TED) in both of these cases. Mechanisms to allow the
PCE to query the databases and synchronize them need to be developed.
The last scheme, depicted in Fig. 3.9(c), represents an integrated PCE and
OpenFlow controller. In this case, the controllers share the same LSPDB and
TED instances with a shared path computation application calculating the
required path. A full integration allows the application to maintain common
data structures and state, and thereby simplifies concurrent access.

PCE

API

OpenFlow

controller

LSPDB TED

LSP sateNetwork state PCC

API

OpenFlow

controller

LSP stateNetwork state Path

Computation

API

PCE / OpenFlow

controller
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LSPDBTED LSPDB TED

LSPDBTED

LSPDB TED

Figure 3.9: (a) Application, (b) external, and (c) integrated PCEP in
SDN [86]

3.5.3 Centralized inter-domain routing

BGP [92] is the de facto protocol for inter-domain routing. BGP comprises
of two protocols: external BGP (eBGP) and internal BGP. eBGP is used
for peering with external autonomous systems (AS) whereas iBGP is used
to distribute the routes learned via eBGP within the AS. Centralizing BGP
control can improve routing convergence time [51] and avoid forwarding loops
and path oscillations [47] in addition to providing typical SDN advantages
such as simplified architecture and easier management.

Feamster et al. [47] describes three phases for the evolution to a BGP-
free edge as represented in Fig. 3.10. Their routing control platform can be
compared to an SDN controller. In the first phase, the controller forms iBGP
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Figure 3.10: Evolution of centralized BGP control (a) phase 1 (b) phase 2
(c) phase 3 [47]

sessions with all the border routers within the AS. It learns eBGP routes from
each border router over the iBGP interface and also distributes the routes to
the other BGP peers in the same AS. This architecture is similar to that of
iBGP with route reflector but differs in the sense that the SDN controller can
choose the best router for each of the BGP peers individually. In the second
phase, in addition to performing its role as a route reflector, the controller also
interfaces with external ASes forming eBGP sessions. Now the controller does
not need to learn routes over iBGP sessions but only distributes the routes
that it has learned directly from external ASes. Lastly, in the third phase,
multiple domains exchange inter-domain routing information through their
SDN controllers. The controllers could use eBGP or some other protocol for
communication between themselves.

The first phase of deployment has been experimentally demonstrated in
[73] and the second phase in [94]. Both these works replace the border nodes
with OpenFlow switches and use the OpenFlow protocol instead of iBGP
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for communication with the controller. They also develop BGP applications
which implement the logic to form eBGP sessions with external domains,
perform the necessary route computations, and configure the switches with
forwarding rules. [68] presents an implementation proposal to realize phase
3 of deployment using OpenFlow.

3.6 Summary

This chapter has reviewed the key aspects in deploying SDN devices into
the operator network. An incremental deployment of SDN hardware is more
feasible than a clean-slate approach. Operators are likely to deploy network
devices that support both the SDN protocols and the legacy protocols. This
approach allows operators to migrate to an SDN-ready network and switch
on SDN functionality gradually.

We have presented an automated process by which newly deployed for-
warding devices can be bootstrapped into the network. The proposed process
uses DHCP to obtain the IP address of the switch’s management interface,
TFTP to obtain subsequent device-specific configuration, and a public-key
infrastructure to provision the domain certificate on the device. Once the de-
vice has its domain certificate, it connects to the SDN controller with the TLS
protocol. Now the device can obtain forwarding rules from the controller.

To provide these rules, the network applications need to know the physical
topology of the full network. SNMP crawling can be used to construct a
view of the connections between the legacy devices, and LLDP can be used
to construct a view of the connections between the SDN devices. In order to
learn about the physical connections between the legacy and SDN devices, a
broadcast version of the LLDP protocol can be used.

Lastly, we have discussed how existing protocols, such as PCEP and BGP,
can be combined with SDN protocols, such as OpenFlow, and how they can
be used to communicate rules to the forwarding devices and thereby enable
packet forwarding in the mixed networks.
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Implementation and evaluation

This chapter provides details about the proof-of-concept prototype devel-
oped in order to demonstrate automatic bootstrapping of SDN switches.
The implementation corresponds to the processes described in Section 3.2
and Section 3.3. This chapter is organized as follows: Section 4.1 describes
the emulation testbed and the tools used. Section 4.2 outlines the implemen-
tation wherein we describe the initial configuration tasks and the bootstrap
process. Lastly, Section 4.3 discusses the limitations of the implementation
and suggests some improvements.

4.1 Emulation testbed

We use Mininet1 [71] as the emulation platform for our implementation and
run our tests on a computer with Ubuntu 12.04. Mininet is written in Python
and provides a Python based API for the creation of hosts, switches, and
controllers. All the network nodes run on the same machine as lightweight
virtual machines, which are essentially processes running in their own name
spaces. However, all the processes share the computer’s file system. Mininet
also emulates links between the nodes as virtual Ethernet pairs. In our emu-
lation, we do not use the switch and controller classes provided by Mininet.
Instead, all the nodes created are based on the mininet.node.Host class. We
write our own Python code to create switch and controller processes on the
hosts. This is needed in order to have a fine-grained control over each of
these processes. Furthermore, Mininet allows setting host properties, such
as maximum CPU, and link metrics, such as latency and bandwidth. How-
ever, we do not use any of these properties as the aim of our prototype is not
to measure performance but to demonstrate the functional correctness of the

1http://mininet.org
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proposed bootstrapping process. It is worth mentioning that testing in an
emulated environment such as Mininet does not guarantee correctness of the
principles or the implementation. However, it can expose missing parts or
inadequacies in the process. Furthermore, experience shows that such testing
will often detect flaws that escape theoretical analysis (which may be based
on false assumptions) or go undetected in experimental deployment.

4.1.1 Emulation topology

We emulate the topology of NORDUnet [3] obtained from the Internet topol-
ogy database [2]. NORDUnet provides IP/MPLS connectivity between re-
search and educational networks of the Nordic countries. As depicted in
Fig. 4.1(a), the NORDUnet backbone consists of 6 switches located in Helsinki,
Stockholm, Copenhagen, Oslo, Reykjavik, and Hamburg. In this rest of the
chapter, we refer to the backbone switches by the name of the city; for in-
stance the switch located at Helsinki is referred to as the Helsinki switch.
In addition to the backbone switches, we add another switch and place it at
the network operation center (NOC) in Stockholm. We refer to this switch
as the NOC switch. It interfaces externally with the backbone network, and
internally with the servers required for bootstrapping the switches in the
NORDUnet network. The NOC network topology is depicted in Fig. 4.1(b).
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Figure 4.1: Emulated topology of NORDUnet

4.1.2 Tools used

In order to implement the SDN bootstrapping process, the following software
was used:
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• The DHCP server is implemented using isc-dhcpd-4.2.8 and the switches
run isc-dhclient-4.2.8.

• The TFTP server and client are implemented using tftp-hpa 5.2.

• The CA runs OpenSCEP2 server version 0.4.2 to provide certificate
enrollment to switches. OpenSCEP uses OpenSSL to perform PKI op-
erations. We had to make a few modifications to the OpenSCEP server
to make it compatible with the newer version of OpenSSL (OpenSSL
1.0.1).

• The CA also serves as the certificate repository and provides clients
with HTTP access to download its root certificate. The HTTP server
used is Apache/2.2.22. A fingerprint is used to check the integrity of
the downloaded root certificate.

• The log server runs syslog-ng 3.6.2 and the clients use a program written
in C to periodically report logs to the server.

• Legacy switches and the SDN switches are both implemented using
ovs-vswitchd 2.1.0. This version of the Open vSwitch supports the
OpenFlow protocol version 1.3 (and earlier).

• The controller used is the test-controller provided along with Open
vSwitch. The controller was earlier called ovs-controller but was re-
named by the developers of Open vSwitch to represent the fact that it
is not ready for use in a production environment. However, it provides
the required functionality for our prototype.

It should be noted that the above software and servers are only used for
bootstrapping the backbone switches in the NORDUnet network.

4.2 Bootstrapping process

This section is divided into three parts; Section 4.2.1 describes the prepa-
ration of the infrastructure needed for the bootstrapping process. Section
4.2.2 describes the initial configuration of the switches. Lastly, Section 4.2.3
describes the steps performed by the SDN switch during the bootstrapping
process. We demonstrate the automatic bootstrapping of the Helsinki switch.
All the other switches are legacy switches.

2http://openscep.othello.ch/
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4.2.1 Infrastructure preparation

Before the bootstrap process begins, the DHCP server, TFTP server and CA
are configured manually. These are the tasks that an operator should perform
before powering on the SDN device. First the DHCP server is configured with
the Helsinki switch’s host name, the IP address to allocate to the switch,
and the IP addresses (and port numbers) of the TFTP server, log server
and OpenFlow controller. Then a configuration file is created on the TFTP
server. The contents of this file include the URL of the repository containing
the operator root certificate, the fingerprint of this certificate, and the SCEP
enrollment URL. Lastly, the serial number of the device is added to the
white-list saved on the CA. In the emulation, we use the same string as
the host name and the device serial number. Additionally, the controller is
also configured with the operator root certificate and the controller’s domain
certificate.

4.2.2 Initial switch configuration

Both the SDN and legacy switches in the emulation are implemented using
Open vSwitch. This is achieved as follows: the OpenFlow specification [5]
specifies two modes of operation when an OpenFlow switch loses connectivity
with the controller. In the first mode called fail secure, the switch behaves
like an OpenFlow switch and requires rules from the controller to forward
packets. However, in the second mode called fail standalone, the switch
behaves like a normal Ethernet switch. We set up all the legacy switches in
the fail standalone mode from the start of the emulation and thereby achieve
legacy switching behaviour.

Our demonstration starts with the Helsinki switch also in the fail stan-
dalone mode. However, we set the switch to not forward any packets by
setting the kernel value net.ipv4.ip forward to 0. Therefore the switch be-
haves like an end-host.

4.2.3 Integrating the switch into the network

The steps performed by the Helsinki switch in order to integrate into the
network are described below. Fig. 4.2 also depicts these steps and provides
a list of the values obtained in each step of the process.

• Step 1 – The switch starts the DHCP client process. The server iden-
tifies the switch based on the client identifier and returns the switch’s
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host name, the IP address of the management interface, and the IP ad-
dresses (and port numbers) of the TFTP server, log server and Open-
Flow controller.

• Step 2 – The switch then connects to the log server and reports its
existence by logging its host name.

• Step 3 – Using the TFTP server address obtained via TFTP, the switch
downloads a host-specific configuration file. The file is identified by the
host name received through DHCP.

• Step 4 – The switch reads the certificate repository URL and the ex-
pected fingerprint from the TFTP configuration file. It then downloads
the operator root certificate and verifies that the certificate fingerprint
matches the expected one. Then the switch performs certificate enroll-
ment over SCEP and obtains the domain certificate when the request
is approved by the CA. It now reports its certificate details to the log
server.

• Step 5 – The switch’s mode is changed to fail secure and forwarding
is enabled. The switch then establishes a mutually authenticated TLS
connection with the controller and starts to receive forwarding rules
over the OpenFlow protocol. It now includes the controller details in
the messages to the log server.

At this point, the switch is connected to the network and SDN functionality
is enabled. A snippet of the output from the emulation is shown in Fig. 4.3.

4.3 Further improvements

The prototype system is only in its first stage of implementation and there
is much scope for improvement. There is no error handling incorporated in
the emulation. For instance, there is currently no provision to handle cases
when the switch fails to obtain an IP address via DHCP or to download
the configuration file from the TFTP server. There should be appropriate
timeout values, and upon failure, debug messages should be displayed to the
user. Also, the demonstration is sequential in nature. The CA grants the
request immediately upon receiving the request. However in practical de-
ployments this is typically not the case. Hence, there should be mechanisms
incorporated into the emulation to test the switch and server behaviour when
there are delays at different stages of the process. Furthermore, the private
keys are stored as text files on the file system of the computer running the
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host name

log server address
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controller address
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certificate fingerprint

SCEP enrollment URL

4. Fetch root certificate and

perform SCEP enrollment

operator root certificate

domain certificate

domain certificate details

(after step 4)

controller details

(after step 5)

5. Connect to controller

Figure 4.2: Bootstrap process

emulation. Eventually, secure hardware storage such as the trusted plat-
form module should be used for secure confidential storage. Lastly, we have
not implemented topology discovery and network applications in our proto-
type. Instead, the controller uses ARP flooding and MAC learning to learn
the location of the destination and to configure the switch with forwarding
rules. Such a method is not practical in backbone networks like NORDUnet.
It would also be valuable to extend the implementation and include MPLS
based forwarding into the demonstration.
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Figure 4.3: Screenshot of emulation output
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Chapter 5

Discussion

This chapter is organized as follows: Section 5.1 discusses aspects that op-
erators must consider in order to achieve carrier grade performance, Sec-
tion 5.2 reviews management tasks that can benefit from SDN deployments in
telecommunication networks, Section 5.3 describes the lessons learned while
implementing the prototype, and lastly, Section 5.4 disccuses ideas for future
research.

5.1 Meeting carrier grade requirements

SDN technologies for telecommunication networks must provide high perfor-
mance, be highly available and also achieve scalability. In this section, we
discuss how design decisions such as flow rule installation strategies, number
of controllers deployed, and the placement of these controllers can influence
meeting these carrier grade requirements.

Flow rule installation can be performed reactively or proactively. A reac-
tive strategy allows for fine-grained control over traffic flows but it increases
the number of routing decisions the controller needs to make. In large scale
networks, a controller may need to process millions of flows per second and,
thereby, it could become a processing bottleneck. A reactive strategy also
increases latency as the switch needs a forwarding rule from the controller for
every new flow. This introduces a delay of one round-trip time for commu-
nication between the controller and the switch. Therefore, operators cannot
rely on a purely reactive strategy and must consider using a combination of
proactive and reactive strategies in order to achieve high performance.

Another aspect to consider is the centralization of the control-plane. If
only one controller is deployed in the network, then the controller becomes
a single point of failure in addition to becoming the performance bottleneck.
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To achieve scalability and reliability, operators should deploy several phys-
ically distributed controllers. Onix [67] is an example of such a distributed
control-plane platform. However, to maintain logically centralized control
in a distributed architecture, operators and application designers must take
in to account the CAP theorem [30] which states that it is impossible for a
distributed architecture to be consistent, available and partition tolerant all
at the same time. Furthermore, to improve scalability, DevoFlow [37] and
DIFANE [114] propose relegating some of the control-plane tasks back to the
switches themselves. Additionally, [42] proposes a mechanism for dynami-
cally changing the controller to which a switch is connected based on the
temporal and spatial distribution of the data plane traffic.

Lastly, operators need to determine how many controllers are required for
their networks and where these controllers should be placed. The authors of
[57] point out that the optimal placement of the controller is strongly depen-
dent on the network topology. They also show that adding k controllers into
the network reduces the network latency by a factor of k. However, there
is always a trade-off between the worst-case latency and average latency de-
pending on the location of the controller. Furthermore, [93] develops heuris-
tics for the number of controllers required in a network. They demonstrate
that having 10 controllers is often sufficient to achieve 99.999% reliability in
most of the network topologies they analyzed.

5.2 Managing SDN networks after deployment

This thesis has focused on the bootstrapping phase of network management.
However, centralized control and visibility over the full network topology cre-
ates opportunities for other management functions to benefit from SDN and
justifies its deployment. Network monitoring, traffic engineering, and oper-
ations automation are likely to be the initial management tasks that utilize
SDN [91]. We now discuss these management tasks and provide examples of
how they have been realized using OpenFlow.

Network monitoring is a crucial component in flow-based programmable
SDN networks as applications require timely and accurate information about,
for example, link utilization in order to make optical routing decisions. Net-
work monitoring can be performed actively or passively. In the active method,
the controller periodically polls switches in order to obtain flow statistics
whereas, in the passive method, the controller gains flow information by ob-
serving the control-plane communication. OpenNetMon [108] is an example
of an active monitoring scheme where the controller periodically sends flow
statistics requests to the flow end points (source and destination switches)
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and collects information regarding the bandwidth and packet loss. However,
this method introduces an overhead on the control-plane channel and the
overhead increases with the frequency of the monitoring. On the other hand,
FlowSense [113] proposes a passive scheme wherein the controller listens to
packet-in and flow-removed messages and, based on them, determines the av-
erage utilization of link over a period of time. While this method eliminates
any monitoring overhead, the information is gathered at longer and variable
intervals. [35] combines these methods and proposes that the monitoring
application maintains a timer value for each flow. If the flow ends before
the timer expires, the controller will receive a flow removed message. How-
ever, if the timer expires, a flow statistics request is sent to the switch. This
method balances the timeliness of the flow information and the control-plane
overhead.

With sufficient network monitoring capabilities, applications can get real
time information on the traffic status and link status and route traffic on
paths that can satisfy traffic engineering requirements. These requirements
include guaranteeing quality of service (QoS), load balancing traffic over
network links and servers, and providing resilience and fast recovery through
path protection schemes. FlowQoS [100] describes mechanisms for enforcing
QoS per application on the home broadband access network. Such a mecha-
nism could be extended to customer-premise equipment deployed by network
operators. [53, 55] demonstrate schemes how load balancing web traffic using
OpenFlow can reduce response time for web services. Lastly, [102] demon-
strates how segment protection can be provisioned with OpenFlow leading
to recovery times of about 60ms.

SDN can also enable the automatic configuration and deployment of vir-
tual network functions. The recently proposed OF-CONFIG protocol [4] can
be used to instantiate OpenFlow data planes and manage resources such
as queues and ports on these switches. Additionally, SDN combined with
Network Functions Virtualization (NFV) will enable the migration towards
a completely software-based network platform. NFV is an initiative by the
European Telecommunications Standards Institute that aims at decoupling
network functions (e.g. network address translation and firewalls) from pro-
prietary hardware and deploying them as software modules on commercial
off-the-self hardware by employing standard IT virtualization schemes. The
SDN controller can be used to control virtual network resources as well as
to provision service chaining between the different virtual network functions
[95, 115].
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5.3 Reflections on the implementation

We would like to highlight three important lessons learned while developing
our prototype system. First, Mininet is a great platform for network emula-
tion. The Python API is feature rich and well documented. However, it is
worth exploring platforms such as Mininet CE [17] and MaxiNet [112] that
enable the emulation of much larger topologies. Secondly, we noticed a lack
of open source implementations of certificate management protocols. The
OpenSCEP server used in our implementation was developed over a decade
ago. Research would greatly benefit from an open source implementation
of the certificate management protocol [13]. Lastly, the software used for
the thesis were the latest versions available when developing the prototype.
Hence they were sometimes buggy and did not compile when built directly
from the Ubuntu repositories. We were able to get a deeper knowledge of
the code and functionality by building them by hand.

5.4 Future work

The work in this thesis can be extended by emulating a complete telecom-
munication network topology with a clear demarcation between network sec-
tions. Then, instead of using only OpenFlow for all network sections, each
network section could use a specific southbound protocol. For example, the
access network could use OpenFlow, the aggregation network PCEP, and
the core network BGP. Additionally, the emulation could include link met-
rics such as bandwidth and delay and also impose restrictions on the CPU
capacity of the controller nodes in order to better understand factors like
flow set up latency. Furthermore, the performance can be evaluated by us-
ing traffic traces from real networks. Network applications can be developed
for optimal routing and the network resource utilization can be compared to
that of legacy networks. Also, feasibility of the proposed approach to topol-
ogy discovery could be studied. Lastly, it would also be valuable to test the
end-to-end process with real hardware equipment.
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Conclusion

This thesis has focused on the deployment of SDN in telecommunication net-
works and has provided a comprehensive survey of factors an operator must
consider while deploying SDN. We have investigated strategies for the deploy-
ment of new programmable forwarding hardware, described the engineering
process to bring up the devices in an automated manner, reviewed various
southbound protocols, and also examined network topology discovery.

We believe that operators are most likely to opt for an incremental de-
ployment of SDN using hybrid forwarding devices. Such an approach will
enable operators to move to an SDN-ready network while they develop the
required network applications. Subsequently, operators can gain confidence
in SDN by carrying out field trials where low priority traffic is handled by
SDN and all other traffic is handled using legacy protocols. Additionally,
SDN devices are likely to be placed at the edges of the network. Operators
can then harness SDN benefits such as centralized policy control at the point
where traffic enters or exits the network.

Furthermore, operators may be required to deploy more networking hard-
ware in order to cope with the rapidly growing Internet traffic. Automating
the bringing up of network devices will reduce the operational costs and allow
faster deployment of new hardware. We have devised an automated process
that enables the newly installed device to obtain IP connectivity, perform
certificate enrollment operations to obtain a domain certificate, and then
connect securely to the SDN controller using this certificate. We have also
proposed the use of logging servers to monitor the bootstrapping process. To
evaluate the functional correctness of the automated process, we have em-
ulated the NORDUnet network topology using Mininet and performed the
automatic bootstrapping for one of the switches in the network.

Once the device is connected to the controller, it receives rules for packet
forwarding over southbound protocols. OpenFlow has emerged as the pre-
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dominant southbound protocol for this task. However, existing protocols
such as PCEP and BGP can also be used for this task. Using these proto-
cols has the advantage that operators will need only a software upgrade to
support the modified protocols instead of upgrading their network hardware.
It also allows operators to build on their knowledge of these protocols. We
have reviewed various southbound protocols and highlighted the use cases
for each of these protocols. We think that networks are likely to make use of
several of these protocols simultaneously.

Lastly, we have reviewed how the physical network topology can be discov-
ered in hybrid networks where legacy and SDN devices interoperate. Topol-
ogy discovery is crucial in SDN networks as applications require a global
network view to be able to make optimal routing decisions. On one hand, it
is possible to perform topology discovery in legacy networks by using existing
techniques such as SNMP crawling. On the other hand, topology discovery
in SDN networks can be performed by using the existing LLDP protocol al-
though the controller rather than the forwarding devices will create the LLDP
packets. By combining both these techniques, the entire network topology
can be discovered.

SDN presents a great opportunity for network operators to improve net-
work efficiency through centralization of control-plane decisions. It also al-
lows reduction in operational costs through lower cost hardware and by au-
tomating processes such as network management. However, for SDN to be
successfully deployed in telecommuncation networks, research must focus on
developing a seamless migration path from the existing legacy network, first
towards a hybrid SDN network, and eventually towards a network comprised
of purely SDN devices.
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