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Analysis and Design of a Position Observer with

Resistance Adaptation for Synchronous Reluctance

Motor Drives

Toni Tuovinen, Marko Hinkkanen, and Jorma Luomi

Aalto University School of Electrical Engineering

Department of Electrical Engineering, P.O. Box 13000, FI-00076 Aalto, Finland

Abstract—A back-EMF-based reduced-order position ob-
server with stator-resistance adaptation is analyzed for motion-
sensorless synchronous reluctance motor drives. Analytical equa-
tions for steady-state estimation errors and stability conditions
are derived (with and without resistance adaptation), taking into
account errors in the parameter estimates. The effect of the
observer gain on the noise reduction is studied by means of
eigenvector analysis. A robust gain selection is proposed, which
maximizes the allowed uncertainties in the parameter estimates.
The proposed observer design is experimentally evaluated using
a 6.7-kW synchronous reluctance motor drive; stable operation
is demonstrated at low speeds under various parameter errors.

Index Terms—Observer, stability conditions, speed sensorless,
stator resistance estimation.

I. INTRODUCTION

Modern synchronous reluctance motors (SyRMs) are be-

coming interesting competitors to induction motors and

permanent-magnet synchronous motors in variable-speed

drives [1], [2]. The rotor position of a synchronous motor has

to be known with good accuracy in order to obtain stable

operation and high performance. The rotor position can be

either measured or estimated. Motion-sensorless control is

usually preferable: motion sensors are expensive, they can be

damaged or, in some environments and applications, cannot

be installed.

Signal-injection-based methods can be used for SyRMs. In

order to avoid additional noise and losses, it is desirable to use

a method based on the back electromotive force (EMF), and

combine a signal-injection method with it only at the lowest

speeds [3], [4]. Back-EMF-based observers for SyRM drives

have been proposed in [1], [5]–[8]. However, the stability anal-

ysis has been omitted, with the exception of [8]. The effect of

parameter uncertainties should be accounted for in the stability

analysis, which makes the task even more complicated. The

model parameters are rarely known accurately, and in practice,

they are not constant. The stator resistance varies with the

winding temperature during the operation of the motor. The

d-axis flux component usually saturates strongly as a function

of the d-axis current component, and the d-axis saturation is

coupled with the q-axis saturation [9].

In this paper, a reduced-order observer with stator-resistance

adaptation—originally proposed for PMSM drives in [10]—

is applied for SyRM drives. Analytical equations for steady-

state estimation errors and stability conditions are derived,

taking into account errors in the parameter estimates (that

were omitted in the analysis in [10]). Based on these design

tools, a robust gain selection is proposed, which maximizes the

allowed uncertainties in the parameter estimates. Furthermore,

the effect of the observer gain on the noise reduction is

studied by means of eigenvector analysis. If desired, the

observer could be augmented with a signal-injection method,

for example in a fashion similar to [3]. The performance of

the proposed observer design is evaluated using laboratory

experiments with a 6.7-kW SyRM drive.

II. SYRM MODEL AND ROTOR-POSITION OBSERVER

A. Model

Real space vectors will be used here. For example, the

stator-current vector is is = [id, iq]
T, where id and iq are the

components of the vector and the matrix transpose is marked

with the superscript T. The identity matrix and the orthogonal

rotation matrix are defined as

I =

[

1 0
0 1

]

, J =

[

0 −1
1 0

]

.

The electrical position of the d axis is denoted by ϑm. The

d axis is defined as the direction of the maximum inductance

of the rotor. The position depends on the electrical angular

rotor speed ωm according to

dϑm
dt

= ωm (1a)

To simplify the analysis in the following sections, the machine

model will be expressed in the estimated rotor reference frame,

whose d axis is aligned at ϑ̂m with respect to the stator

reference frame. The stator inductance is

L = e−ϑ̃mJ

[

Ld 0
0 Lq

]

eϑ̃mJ (1b)

where ϑ̃m = ϑ̂m − ϑm is the estimation error in the rotor

position, Ld the direct-axis inductance, and Lq the quadrature-

axis inductance. The voltage equation is

dψs

dt
= us −Rsis − ω̂mJψs (1c)
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Fig. 1. Motion-sensorless rotor-oriented controller. The observer is imple-
mented in the estimated rotor coordinates.

where ψs is the stator-flux vector, us the stator-voltage vector,

Rs the stator resistance, and ω̂m = dϑ̂m/dt is the angular

speed of the coordinate system. The stator current is a non-

linear function

is = L
−1ψs (1d)

of the stator-flux vector and the position error ϑ̃m.

B. Observer

A typical rotor-oriented control system is depicted in Fig. 1,

where the reduced-order observer proposed in [10] is consid-

ered. It is based on estimating the rotor position and the d

component ψ̂d of the stator flux in estimated rotor coordinates.

For a SyRM, the componentwise presentation of the observer

is

dψ̂d

dt
= ud − R̂sid + ω̂mL̂qiq + k1(ψ̂d − L̂did) (2a)

dϑ̂m
dt

=
uq − R̂siq − L̂q

diq
dt

+ k2(ψ̂d − L̂did)

ψ̂d

(2b)

where R̂s, L̂d and L̂q are estimates of the corresponding actual

parameters, and k1 and k2 are observer gains. The observer is

of the second order and there are only two gains.

With accurate parameter estimates, the closed-loop system

consisting of (1) and (2) is locally stable in every operating

point if the gains are given by

k1 = −b+ β(c/ω̂m − ω̂m)

β2 + 1
, k2 =

βb − c/ω̂m + ω̂m

β2 + 1
(3)

where β = iq/id and the design parameters b > 0 and

c > 0 may depend on the operating point1. The observer gain

design problem is reduced to the selection of the two positive

parameters b and c, which are actually the coefficients of the

characteristic polynomial of the linearized closed-loop system.

Hence, (3) can be used to place the poles of the linearized

closed-loop system arbitrarily.

1For ω̂m = 0, c = 0 has to be selected to avoid division by zero, giving
only marginal stability for zero speed.

For improved robustness at the lowest speeds, the observer

(2) can be augmented with the stator-resistance adaptation law

[10]
dR̂s

dt
= kR(ψ̂d − L̂did) (4)

where kR is the adaptation gain. With accurate parameter

estimates, the general stability conditions for the system aug-

mented with (4) are

kRiqω̂m > 0 (5a)

kR[(id − βiq)b− 2iqω̂m] + bc > 0 (5b)

where b and c are the positive design parameters in (3).

III. SELECTION OF GAINS

With parameter errors included, the stability is not guaran-

teed for all positive values of the design parameters b and c
in (3). It will be studied how these design parameters should

be chosen in order to reduce sensitivity to parameter errors

(Section III-A) and process noise (Section III-B).

The nonlinear estimation error dynamics of the closed-loop

system consisting of (1) and (2) are

dψ̃s

dt
= (KL̂

−1 − ω̂mJ)ψ̃s +
[

K(L̂
−1
L− I)− R̃s

]

is (6a)

where the gain matrix is

K =

[

k1L̂d 0

k2L̂d 0

]

. (6b)

The estimation error of the stator flux is ψ̃s = ψ̂s − ψs and

other estimation errors are defined similarly. In the reduced-

order observer (2), the error of the q-axis flux is a nonlinear

function of the position error, since ψ̂q = L̂qiq and

ψq =
1

2
(Lq − Ld)

(

sin(2ϑ̃m)id + cos(2ϑ̃m)iq

)

+
1

2
(Ld + Lq)iq.

(6c)

A. Stability With Uncertain Parameters

With erroneous parameter estimates, the stability of (6)

should be analyzed in the vicinity of the steady-state position

error ϑ̃m0 that is nonzero. It is assumed that the estimation

error consists of the steady-state error and a small variation

in the vicinity of that steady-state error. In steady-state, the

time derivative of ψ̃s in (6) vanishes. The equation for the

steady-state position error ϑ̃m0 is

A cos 2ϑ̃m0 +B sin 2ϑ̃m0 + C = 0 (7a)

where

A = −ω̂m(Ld − Lq) [k1 + β(ω̂m − k2)] (7b)

B = −ω̂m(Ld − Lq) [(ω̂m − k2)− βk1] (7c)

C =
[

(2L̂d − Ld − Lq)k1ω̂m + 2R̃s(ω̂m − k2)
]

+
[

2R̃sk1 + ω̂m(Ld + Lq − 2L̂q)(ω̂m − k2)
]

β.
(7d)
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Fig. 2. Stability map in the design parameter space. All b > 0 and
c > 0 guarantee stable operation with the accurate parameter estimates. The
operating point corresponds to ω̂m = 0.05 p.u., id = 0.4 p.u., iq = 0. The
worst-case stability boundaries corresponding to the parameter uncertainties
of 10% and 20% are shown by solid lines.

The solution for the steady-state position error is

ϑ̃m0 = − sin−1
(

C
D

)

+ φ

2
(8a)

where

φ = tan−1

(

A

B

)

, D =
B

cosφ
(8b)

If the steady-state error of the d axis flux is of interest, it can

be obtained from

ψ̃d0 =
iq

[

2R̃s + k2 sin(2ϑ̃m0)(Ld − Lq)
]

2(k2 − ω̂m)

−
idk2

[

(Ld − Lq) cos(2ϑ̃m0) + Ld + Lq − 2L̂d

]

2(k2 − ω̂m)
(9)

after ϑ̃m0 is solved.

The estimation error dynamics (6) are linearized in the

vicinity of this steady-state error ϑ̃m0, yielding

d

dt

[

ψ̃d

ψ̃q

]

=

[

k10 −k10β′ + ωm0

k20 − ωm0 −k20β′

][

ψ̃d

ψ̃q

]

(10a)

where

β′ = tan(2ϑ̃m0 + tan−1 β0) (10b)

and operating-point quantities are denoted by the subscript 0.

The system (6) is locally stable if

b′ = k20β
′ − k10 > 0 (11a)

c′ = ω̂2
m0 − ω̂m0 [k20 + k10β

′] > 0 (11b)

where b′ and c′ are coefficients of the characteristic poly-

nomial of (10a). With accurate parameter estimates, β′ =
tan(tan−1 β0) = β, and (11) leads to (3). Equations (7) and
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Fig. 3. Areas of stable operation for three different values of iq for the
parameter uncertainties of 10% and ω̂m = 0.05 p.u.: iq = 0 p.u. (solid line),
iq = 0.8 p.u. (dotted line), and iq = −0.8 p.u. (dashed line).

(11) could be used to minimize the steady-state position error,

to eliminate the effect of a certain parameter error2, or to

maximize the parameter tolerances.

The conditions (11) are studied in no load operation with

actual parameters Ld = 2.50 p.u., Lq = 0.397 p.u., and Rs =

0.043 p.u. of a 6.7-kW SyRM. The same relative uncertainty

is assumed for all three parameter estimates L̂d, L̂q, and R̂s.

Hence, eight different worst-case combinations, consisting of

minimum and maximum values of the parameter estimates, can

be formed. For example, if the relative uncertainty is defined

to be 20%, one of the worst-case combinations is L̂d = 0.8Ld,

L̂q = 1.2Lq, and R̂s = 0.8Rs.

At each studied operating point, the local stability of the

observer was analyzed for all eight worst-case combinations

of erroneous parameter estimates. First, the estimation error

of the rotor position was analytically solved in steady state.

Then, the local stability of this operating point was checked

using (11).

The stability of the estimation-error dynamics with erro-

neous parameter estimates was analyzed for different values

of the design parameters b and c. Fig. 2 shows an example

of the stability map in the design-parameter space for the

parameter uncertainties of 10% and 20%. In the figure, the

vertical axis is scaled with the inverse rotor speed (in order to

help the comparison at different speeds). The operating point

in Fig. 2 is defined by ω̂m = 0.05 p.u., id = 0.4 p.u., and

iq = 0. It can be seen that the region of b and c yielding

the stable operation is large even in the case of the parameter

uncertainty of 20%. As the parameter uncertainty increases,

the stable region shrinks (and disappears if the uncertainty

is high enough). The size of the stable region depends on

the speed and the current components, but its shape remains

approximately unchanged. Based on the analysis results, the

2For example, the choice k2 = k1β + ω̂m eliminates R̃s.



design parameter c can be chosen as

c = κb|ω̂m|+ ω̂2
m (12)

where the parameter κ should approximately correspond to

the slope of the line passing through the centers of the stable

regions in the stability maps, cf. Fig. 2 as an example. As the

uncertainty increases, eventually with the combination L̂d <
Ld and R̂s > Rs, b

′ in (11) becomes negative, and with the

combination L̂d > Ld and R̂s < Rs, |C/D| in (8) is larger

than one, suggesting that there is no steady-state solution for

that combination. Provided that b ≫ ω̂m, it can be shown

that the largest possible parameter uncertainty is achieved with

κ =
√
3 for SyRMs.

In Fig. 3, the stability map for the parameter uncertainties

of 10% is depicted for three different values of iq in a fashion

similar to Fig. 2. The d axis current is id = 0.4 p.u. The

values for iq are −0.8 p.u., 0 and 0.8 p.u., corresponding to

the negative rated load, no load and the rated load. It can be

seen that the area of stable operation rotates clockwise as |iq|
increases. It seems that a slightly lower value of κ can be used

for generator operation than for no-load operation. This result

can be used to reduce noise in generator operation.

B. Noise Reduction

In this subsection, accurate parameters are considered. The

eigenvalues of the linearized estimation-error dynamics are

s1,2 =
−b±

√
b2 − 4c

2
(13)

At low speeds, s1 ≈ −κ|ω̂m| and s2 ≈ −b + κ|ω̂m|. In

multiple-input-multiple-output systems, the eigenvalues do not

provide all the necessary information considering the system

dynamics. The eigenvalues describe the gains in the directions

of the corresponding eigenvectors. In order to reduce the noise

in the position estimate, the eigenvectors of (10a) are analyzed

in the following, and a modification to (12) is proposed.

Provided that |s1| 6= |s2|, any value of ψ̃s can be written

as ψ̃s = λ1v1 + λ2v2, where v1 and v2 are the eigenvectors

corresponding to s1 and s2, respectively. The equation for the

small-signal dynamics (10a) can be written as

dψ̃s

dt
= s1λ1v1 + s2λ2v2 (14)

The normalized eigenvectors are

v1 =
−1

√

(s22 − ω̂2
m)(1 + β2)

[

βs2 − ω̂m

s2 + βω̂m

]

(15a)

v2 =
−1

√

(s21 − ω̂2
m)(1 + β2)

[

βs1 − ω̂m

s1 + βω̂m

]

(15b)

If c is smaller than b, which is the case at low speeds, |s1|
is small as compared to |s2|, corresponding to slow and fast

dynamics, respectively. It might be desirable that the d axis

component of the estimated stator flux is updated in the faster

time scale, and the q axis component (angle) is updated in

the slower time scale, because the flux dynamics are faster

than the speed dynamics. Hence, v1 should point to the q axis

direction and v2 should point to the d axis direction, or close

to it.

At some operating points, both eigenvectors may point

to the q axis direction. Consequently, a small error in the

estimated d axis component is compensated by updating the

q axis component. Furthermore, the d component of v2 is

zero when κβ sign(ω̂m) ≈ −1 (since βs1 ≈ −βκ|ω̂m|). In

the regenerating mode, the eigenvector of the faster time scale

points to the q axis direction, which means that the rotor angle

is updated in the faster time scale.

The fast eigenvector can be rotated more to the d axis

direction by decreasing the value of κ. A lower limit κmin has

to be used for κ since too small values might lead to instability

if the parameters are not accurate enough. Therefore, κ in (12)

is chosen as

κ =











κmin, if
√
3 + β sign(ω̂m) ≤ κmin√

3− |β|, if κmin <
√
3 + β sign(ω̂m) <

√
3√

3, otherwise.

(16)

It can be seen that the value of κ is decreased in the

regenerating mode, and κ is constant in the motor mode and

no-load.

The tracks of the normalized eigenvectors as iq changes

are depicted in Fig. 4 in two cases. The eigenvectors corre-

sponding to slow and fast dynamics are depicted for κ =
√
3

in Figs. 4(a) and 4(b), respectively. The eigenvectors corre-

sponding to slow and fast dynamics are depicted when κ is

selected according to (16) with κmin = 0.6 In Figs. 4(c) and

4(d), respectively. The component iq changes from −1 p.u. to

1 p.u., b = 5, id = 0.4 p.u., and ω̂m = 0.1 p.u.

C. Stator-Resistance Adaptation

The nonlinear estimation error dynamics of the system

augmented with stator-resistance adaptation consist of (6) and

(4). The steady-state position error ϑ̃m0 is determined by

A cos 2ϑ̃m0 +B sin 2ϑ̃m0 + C = 0 (17)

where

A =
(

1− β2
)

(Ld − Lq) (18a)

B = −2β(Ld − Lq) (18b)

C =
(

1 + β2
)

(Ld + Lq)− 2
(

L̂d + β2L̂q

)

(18c)

The solution for the steady-state position error is given by (8),

unless |β| = 1 (coefficient A vanishes) or β = 0 (coefficient

B vanishes). If |β| = 1, the steady-state position error is given

by

sin(2ϑ̃m0) = sign(β)
Ld − L̂d + Lq − L̂q

Ld − Lq

(19)

and if β = 0, the steady-state position error is given by

cos(2ϑ̃m0) =
2L̂d − Ld − Lq

Ld − Lq

(20)
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Fig. 4. Tracks of the normalized eigenvectors of the linearized system as iq varies: (a) slow and (b) fast eigenvector for κ =
√
3, (c) slow and (d) fast

eigenvector for κ selected according to (16). Crosses denote the starting points at iq = −1 p.u., circles denote the no-load points, and diamonds denote the
end points at iq = 1 p.u. Arrows denote the direction of increasing iq, and are located at |β| = 1.

The steady-state errors ψ̃d0 and R̃s0 can be obtained from

ψ̃d0 =− 1

2
id

[

(Ld − Lq) cos(2ϑ̃m0) + Ld + Lq − 2L̂d

]

+
1

2
iq sin(2ϑ̃m0)(Ld − Lq)

(21a)

R̃s0 =
Ld + Lq − 2L̂d + (Ld − Lq) cos(2ϑ̃m0)

2β
ω̂m

− (Ld − Lq) sin(2ϑ̃m0)

2
ω̂m

(21b)

It can be seen that the steady-state errors are independent of

the gain selections, and only R̃s0 is affected by the estimated

speed. Furthermore, R̃s0 increases as ω̂m increases or β de-

creases, suggesting that the stator-resistance adaptation should

be used only at low speeds and high load.

The estimation error dynamics are linearized in the vicinity

of the steady-state error ϑ̃m0, yielding

d

dt





ψ̃d

ψ̃q

R̃s



=





k10 −k10β′ + ωm0 −id0
k20 − ωm0 −k20β′ −iq0

kR0 −kR0β
′ 0









ψ̃d

ψ̃q

R̃s



 (22)

These results can be used to optimize the stator-resistance

adaptation gain kR0 in a fashion similar to optimization of the

design parameters b and c. With accurate parameter estimates,

the linearized system (22) is locally stable if the stability
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conditions (5) are satisfied.

IV. EXPERIMENTAL SETUP AND PARAMETERS

The motion-sensorless control system was implemented in a

dSPACE DS1104 PPC/DSP board. A 6.7-kW four-pole SyRM

is fed by a frequency converter that is controlled by the

DS1104 board. The rated values of the SyRM are: rotational

speed 3175 r/min; frequency 105.8 Hz; line-to-line rms voltage

370 V; rms current 15.5 A; and torque 20.1 Nm. The base

values for angular speed, voltage, and current are defined as

2π · 105.8 rad/s,
√

2/3 · 370 V, and
√
2 · 15.5 A, respectively.

A servo motor is used as a loading machine. The rotor

speed ωm and position ϑm are measured using an incremental

encoder for monitoring purposes. The shaft torque is measured

using a Dataflex 22 torque measuring shaft. The total moment

of inertia of the experimental setup is 0.015 kgm2 (2.7 times

the inertia of the SyRM rotor).

The block diagram of the motion-sensorless control system

implemented in the DS1104 board is shown in Fig. 1. The

stator currents and the DC-link voltage are measured, and

the reference voltage obtained from the current controller

is used for the observer. The sampling is synchronized to

the modulation, and both the switching frequency and the

sampling frequency are 5 kHz. A simple current feedforward

compensation for dead times and power device voltage drops is

applied. The control system shown in Fig. 1 is augmented with

a speed controller, whose feedback signal is the speed estimate

ω̂m obtained from the proposed observer. The bandwidth of

this PI controller, including active damping [11], is 2π · 5.3
rad/s (0.05 p.u.). The stator-resistance adaptation is disabled

in all experiments.

The saturation has been modeled as functions of the mea-

sured current,

Ld =







Ld0 − αid − δ
∣

∣

∣

iq
id0

∣

∣

∣
, if id ≤ id0

Ld0 − αid − δ
∣

∣

∣

iq
id

∣

∣

∣
, otherwise

(23a)

Lq =







Lq0 − γ
√

|iq| − δ
∣

∣

∣

id
iq0

∣

∣

∣
, if iq ≤ iq0

Lq0 − γ
√

|iq| − δ
∣

∣

∣

id
iq

∣

∣

∣
, otherwise

(23b)

where id0 and iq0 are transition values for id and iq to avoid

divisions by small numbers. The measured inductances and

the curves from the fitted functions are shown in Fig. 5. In

Fig. 5(a), the d axis inductance Ld is shown as a function of

id for three different values of iq. In Fig. 5(b), Lq is shown as

a function of iq for three different values of id. The saturation

model parameters are: Ld0 = 3.15 p.u., Lq0 = 0.685 p.u., α =
2.24 p.u., γ = 0.353 p.u. and δ = 0.085 p.u.

V. EXPERIMENTAL RESULTS

Fig. 6 shows experimental results of a slow change of

id from 0.3 p.u. to 0.5 p.u. at the speed ω̂m = 0.1 p.u.

when the parameter κ =
√
3 and −50% of the rated load

torque is applied. It can be seen that as id increases in

the regenerating mode, the noise in the position estimate

increases. This behavior suggests that the noise originates from

saturation-induced harmonics. The frequency of the noise is

approximately 21 Hz, which is two times the operating-point

frequency (10.5 Hz), as can be seen in the magnification in

Fig. 6(b).

Results of a stepwise speed reversal from ω̂m = 0.10 p.u.

to ω̂m = −0.10 p.u. and back to 0.10 p.u. are depicted in

Fig. 7. The rated load torque is applied, and id = 0.5 p.u. It

can be seen that the noise in the estimation error is amplified

in the regenerating mode in Fig. 7(a), when κ =
√
3. With

the selection (16) and κmin = 0.6, this noise is reduced in

Fig. 7(b), as assumed based on the eigenvector analysis.

The effect of the parameter errors on the position estimation

error at the speed ω̂m = 0.1 p.u. with 50% rated load torque
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Fig. 6. Experimental results of a slow change in id from 0.3 p.u. to 0.5 p.u. with −50% of the rated load torque applied when κ =
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3: (a) full sequence,

(b) magnification from 10 s ≤ t ≤ 11 s.
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Fig. 7. Experimental results of a stepwise speed reversal (0.10 p.u. → − 0.10 p.u. → 0.10 p.u.) with rated load torque applied: (a) κ =
√
3, (b) κ is

selected according to (16) and κmin = 0.6.

applied are shown in Fig. 8. The data is captured by disabling

the saturation model and varying each model parameter from

90% up to 110% of the actual value in 10 seconds. It can be

seen that the model parameters R̂s and L̂q have only a small

effect on the position error, whereas an incorrect value for L̂d

increases the estimation error rapidly. It should be noted that

the relative errors of Ld and Lq are defined with respect to

the (original) operating-point values. As the estimation error

increases, the actual values of id and iq change, resulting in

changes in actual values of Ld and Lq due to saturation.

VI. CONCLUSIONS

In this paper, equations for steady-state errors and analytical

stability conditions are derived for the reduced-order position

observer with incorrect parameter estimates. Based on the

stability conditions and small-signal dynamics, design rules
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Fig. 8. Measured errors in the position estimate at ω̂m = 0.1 p.u. with
50% rated load torque applied. The data is captured by varying each model
parameter from 90% up to 110% of the actual value in 10 seconds.

are proposed. The system can be augmented with the stator-

resistance adaptation for improved low-speed operation. The

equations for steady-state errors and small-signal dynamics

are derived for the system augmented with the resistance

adaptation. The performance of the proposed observer design

was evaluated using laboratory experiments with a 6.7-kW

SyRM drive. Stable operation at low speed under different

parameter errors and different loads was demonstrated. With

the proposed design rules, saturation-induced noise in the

position estimate can be reduced.
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