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Helsinki University of Technology
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Abstract—This paper proposes a method for including both
hysteresis losses and eddy current losses in the dynamic space
vector model of induction machines. The losses caused by the
rotation and magnitude changes of the flux vector are taken into
account. The model can be applied, for example, to time-domain
simulations and real-time applications such as drive control.
Finite element analysis, simulations, and laboratory experiments
of a 45-kW motor are used for the investigation. It is shown that
the model can predict the iron losses in a wide frequency range.
The accuracy is significantly improved as compared to earlier
models.

I. INTRODUCTION

The control of induction machines in an electric drive

is commonly based on a simplified circuit model that can

represent the machine behavior. Depending on the degree of

accuracy required from the model, various phenomena can be

considered or omitted. For instance, incorporating iron losses

into the model topology enhances the accuracy of the identified

parameters and, therefore, the control of the motor [1]. Iron

losses should also be taken into account in simulation models

used in research and development of new control strategies,

such as loss minimization control.

In a real electrical machine, the iron losses are caused

by the magnetic field variation inside the magnetic materials

as the slotting and the motion of the rotor create compli-

cated magnetic flux patterns, even when the motor is fed

by a sinusoidal supply. The frequency converter, however,

aggravates the problem by increasing the harmonic content

in the magnetic flux density and current density. Thus, the

development of adequate methods for the loss prediction is

difficult and requires in-depth treatment.

The losses are conceptually separated into two loss com-

ponents, known as the hysteresis and eddy-current losses.

The hysteresis losses are proportional to the frequency while

the eddy current losses are proportional to the square of

the frequency. Within the circuit model, the complexity is

usually reduced. It is assumed that the iron losses simply

depend on the flux linkages. Conventionally, the iron losses

are modeled using a constant resistor placed in parallel with

the magnetizing inductance, which corresponds to losses that

are proportional to the square of the frequency [2]. Hence, the

frequency dependency corresponds to that of the eddy current

losses. In [3], the hysteresis losses are modeled by a nonlinear

resistor depending on the instantaneous angular frequency of

the stator flux. The model can predict the hysteresis losses

if the magnitude of the flux vector is constant, but it fails to

predict the losses caused by the pulsating flux magnitude.

In converter-fed induction machines, the dependency of the

iron losses on the frequency and flux linkage amplitude is

particularly important for the model of the machine. In this

paper, the idea of a dynamic hysteresis model [4], [5] is used in

the modeling of the iron losses. An explicit resistance function

that includes the rotation and pulsation of the flux vector in

the circuit model is proposed. Both hysteresis and eddy-current

losses are modeled. The model is validated using finite element

analysis, laboratory experiments, and simulations.

II. PRELIMINARIES: NONLINEAR INDUCTOR

Before looking into induction machine models, modeling

the iron losses of a nonlinear inductor is briefly described.

A general framework for hysteresis modeling was presented

in [4], [5] while no explicit functions were given. Here, an

explicit function for the iron-loss resistance is proposed based

on the desired steady-state iron-loss profile. In Section III, a

similar approach will be used for modeling the iron losses in

the induction machine.

A. Steady-State Model

The iron losses are typically modeled as

PFe = kFtω
2Ψ2 + kHyωΨn (1)

where the first term corresponds to the eddy-current losses

and the second term corresponds to the hysteresis losses [6].

Ψ is the rms flux linkage and ω is the angular frequency. The

exponent n in the hysteresis-loss term is typically 1 . . . 2. The

coefficients kFt and kHy determine the ratio between the loss

components. This steady-state model cannot be used in time-

domain simulations since the angular frequency ω is irrelevant

in transients and in the case of non-sinusoidal waveforms.

However, the model will serve as a reference in the following

when considering steady-state losses.

B. Dynamic Model

A hysteresis loop of a nonlinear saturable inductor can be

modeled using a parallel nonlinear resistor as depicted in Fig. 1

[4], [5]. The terminal current is given as

i = i′ + iFe

=
ψ

L(ψ)
+

u

R(u, ψ)

(2)



i′iFe

i

u R L

Fig. 1. Nonlinear inductor exhibiting a hysteresis loop.

where ψ is the instantaneous flux linkage, u = dψ/dt is

the voltage across the inductor, L is a nonlinear inductance

function, and R is a nonlinear iron-loss resistance function.

The magnetic saturation can be modeled using the function

[7]

L(ψ) =
Lu

1 + α|ψ|a
(3)

where Lu is the unsaturated inductance, and α and a are

nonnegative constants.

The proposed iron-loss resistance function is

R(u, ψ) =
RFt

1 + k|ψ|n−1/|u|
(4)

where RFt is a positive constant and k is a nonnegative

constant.1 The resistance function R can be interpreted as a

parallel connection of two resistances: the constant resistance

RFt related to the eddy-current losses and the voltage- and

flux-dependent nonlinear resistance

RHy(u, ψ) =
RFt

k

|u|

|ψ|n−1
(5)

related to the hysteresis losses.

The resistance function (4) leads to the instantaneous losses

pFe =
u2 + k|ψ|n−1|u|

RFt

(6)

Assuming sinusoidally varying flux linkage, the average losses

in steady state can be expressed as

PFe =
ω2Ψ2 + kωΨn

RFt

(7)

i.e. they correspond to (1). The parameter k determines the

ratio between the eddy-current and hysteresis losses. Selecting

n = 2 leads to the quadratic dependency on the flux in both

loss components. In this case, the eddy-current losses are equal

to the hysteresis losses at the angular frequency ω = k.

Examples of hysteresis loops, simulated using (2)–(4), are

shown in Fig. 2. A sinusoidal voltage (or flux linkage) excita-

tion was used in the case of Fig. 2(a). In the case of Fig. 2(b),

the excitation voltage included a tenth-harmonic component;

it can be seen that the model can produce minor hysteresis

loops.

1In accordance with [8], R can be classified as a first-order nonlinear
resistor.
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Fig. 2. Simulated hysteresis loops of a nonlinear inductor: (a) sinusoidal
voltage exitation; (b) voltage excitation including a tenth-harmonic compo-
nent. Parameter values are: RFt = 206 p.u., k = 3.05 p.u., n = 1.98, Lu =

3.17 p.u., α = 0.085 p.u., and a = 7.5.

III. Γ MODEL OF AN INDUCTION MACHINE

A. Voltage and Flux Equations

Fig. 3 shows the dynamic Γ model [2] of the induction

machine in a coordinate system rotating at an arbitrary angular

speed ωs. Real-valued space vectors are used; for example, the

stator flux vector is ψs = [ψsd, ψsq]
T and its magnitude is

ψs =
√

ψ2
sd + ψ2

sq (8)

The orthogonal rotation matrix is

J =

[

0 −1
1 0

]

(9)

The induction machine model can be described by the

voltage equations

dψs

dt
= us −Rsis − ωsJψs (10a)

dψR

dt
= uR −RRiR − ωrJψR (10b)

where the stator voltage vector is denoted by us, the stator

current vector by is, and the stator resistance by Rs. The rotor

voltage vector is uR (uR = 0 in cage-induction machines),

the rotor current vector iR, and the rotor resistance RR. The

angular slip frequency ωr = ωs − ωm, where ωm is the

electrical angular speed of the rotor. The stator and rotor flux

linkages are given by

ψs = LM(i′s + iR) (11a)

ψR = ψs + LσiR (11b)

respectively, where i′s = is − iFe, the magnetizing inductance

is LM, and the leakage inductance is Lσ. The iron loss current

is

iFe =
us −Rsis

RFe

(12)

where RFe is the iron-loss resistance. The magnetizing current

is iM = i′s + iR, and the leakage flux is ψσ = LσiR.
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Fig. 3. Γ model in synchronous coordinates, where ωr = ωs − ωm.

B. Power Balance

For per-unit quantities, the power balance of the induction

machine model is given by

iTs us + iTRuR = Rsi
2
s +RRi

2
R + pFe +

dWf

dt
+ Teωm (13)

where pFe represents the iron losses. The electromagnetic

torque is

Te = i′s
T
Jψs = ψT

RJiR (14)

and the rate of change of the magnetic energy is

dWf

dt
= i′s

T dψs

dt
+ iTR

dψR

dt

= iM
dψs

dt
+ iR

dψσ

dt

(15)

The last form is obtained by assuming the two flux vectors

to be parallel with the corresponding current vectors in accor-

dance with Fig. 3, while the inductances may be functions of

the currents or fluxes. The magnetizing inductance LM and

the leakage inductance Lσ are assumed to be saturable but

lossless. Hence, the incremental inductances should fulfill the

reciprocity condition [9], [10]:

∂ψs

∂iR
=
∂ψσ

∂iM
(16)

C. Magnetic Saturation

The magnetizing inductance saturates strongly as a function

of the main flux (or the magnetizing current). Due to closed

or skewed rotor slots, the magnetizing inductance may also

saturate as a function of the leakage flux (or the rotor current).

Similarly, the leakage inductance may saturate as a function

of both the leakage flux and the main flux.

The saturation due to the main and leakage flux interaction

can be modeled using the explicit inductance functions [11]

LM(ψs, ψσ) =
LMu

1 + αψa
s + γLMu

d+2
ψc

sψ
d+2
σ

(17a)

Lσ(ψs, ψσ) =
Lσu

1 + βψb
σ + γLσu

c+2
ψc+2

s ψd
σ

(17b)

where LMu and Lσu are the unsaturated inductances. The

parameters α, β, and γ as well as a, b, c, and d are nonnegative

constants. It can be shown that the functions (17) fulfill the

reciprocity condition (16). If the interaction between the main

and leakage fluxes is insignificant, γ = 0 can be selected,

resulting in the functions proposed in [7].

When the saturation is to be modeled, it is usually conve-

nient to choose the stator flux vector and the rotor flux vector

as state variables of the dynamic model, in order to avoid

the differentiation of the inductance functions. An advantage

from an implementation point of view is that the functions in

(17) depend only on the state variables of the Γ model, i.e. on

ψs = ‖ψs‖ and ψσ = ‖ψR−ψs‖. Therefore, the augmentation

of the Γ model with (17) does not involve algebraic loops.

D. Proposed Iron Loss Model

The stator iron losses of the induction machine are modeled

by a nonlinear resistance RFe parallel to the magnetizing

branch. An iron-loss resistance function corresponding to (4)

is considered:

RFe(u, ψs) =
RFt

1 + kψn−1
s /u

(18)

where the voltage across the iron-loss resistance is

u = ‖us −Rsis‖ (19)

The voltage can also be expressed as

u =

∥

∥

∥

∥

dψs

dt
+ ωsJψs

∥

∥

∥

∥

(20)

It can be seen that the voltage can describe both the changes

in the flux amplitude and the rotation of the flux vector. As

the resistance function is dependent on u, both rotational and

alternating losses can be included in the model.

The resistance function leads to the iron losses

pFe = pFt + pHy

=
u2

RFt

+
kψn−1

s u

RFt

(21)

where pFt denotes the eddy current losses and pHy the

hysteresis losses. The steady-state losses can be expressed as

PFe =
ω2

sψ
2
s + k|ωs|ψ

n
s

RFt

(22)

for constant magnitude ψs and constant angular frequency ωs

of the flux.

E. Implementation

The iron loss resistance in (18) depends on the stator current

via the voltage u in (19). In a voltage-driven dynamic model

using the fluxes as state variables, the currents i
′

s and iR
can be evaluated from the flux equations (11), whereas the

stator current is is unknown. To avoid algebraic loops in the

implementation, the dependency of RFe on the stator current

can be removed by algebraic manipulation. Since is = i′s+iFe,

the iron-loss current can be expressed using i′s as

iFe =
us −Rsi

′

s

R′

Fe

(23)

where the modified resistance function is

R′

Fe(u
′, ψs) = Rs +RFe

=
Rs +RFt

1 + kψn
s /u

′

(24)

The voltage u′ = ‖us −Rsi
′

s‖ now depends on i′s.



IV. RESULTS

The iron loss model was investigated by means of finite

element analysis, laboratory experiments, and time domain

simulations. A 45-kW cage-induction machine was used in

these investigations. The rating of the machine is: voltage 400

V; current 81 A; frequency 50 Hz; speed 1477 r/min; and

torque 291 Nm.

A. Finite Element Analysis

To identify the proposed iron loss model, finite element

analysis (FEA) was applied to the no-load operation at various

frequencies. In the computations, the stator winding was

supplied with a balanced three-phase voltage system. Three

different voltage levels were applied at each frequency. In

the two-dimensional, time-stepping FEA, a magnetodynamic

vector hysteresis model and the classical eddy-current loss

model were used for taking the iron loss components into

account [12], [13]. The iron loss model in (22) was fitted

to the iron losses obtained from the FEA. The least-squares

curve fitting algorithm lsqnonlin provided by Matlab was used

for the data fitting. The parameter values RFt = 249 p.u.,

k = 0.992 p.u., and n = 1.520 were obtained.

In Fig. 4, the iron losses obtained from FEA and the fitted

iron losses are shown. The iron losses at frequencies up to 50

Hz are shown in Fig. 4(a). The solid lines show the behavior

of the losses of the fitted model at the constant stator flux

levels 0.37 p.u., 0.74 p.u. and 0.81 p.u. In the field weakening

region above 50 Hz, the flux was inversely proportional to

the frequency. The data in this region are shown in Fig 4(b),

where the solid lines correspond to constant voltage levels.

It can be seen that the model fits well to the data obtained

from the FEA in a wide frequency range. If the exponent n is

fixed to 2, the sum of the iron loss square errors in the fitted

model is five times that obtained from the proposed model.

If a constant resistance is used, the square error is 68 times

larger.

B. Experimental Results

In the laboratory experiments, the induction motor was fed

by a frequency converter controlled by a dSPACE DS1104

PPC/DSP board. The slip was controlled by a servo motor

coupled to the shaft of the induction machine. The stator

voltage and the stator current were measured at different stator

frequencies and stator flux levels under no-load operation.

The stator flux amplitudes were 0.35 p.u., 0.5 p.u., 0.7 p.u.

and 0.8 p.u. The fundamental-frequency components of the

voltage and current were obtained from the measured signals

by means of Fourier transformation. The total losses of the

induction machine at the fundamental frequency could thus

be calculated. The stator resistance was measured in advance

by means of a DC test. At the synchronous speed, the total

losses consist of the stator iron losses and the resistive losses

of the stator winding. The stator iron losses at the fundamental

frequency were thus obtained by subtracting the resistive

losses from the total losses.
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Fig. 4. (a) The iron losses obtained from FEA and the iron losses obtained
from the fitted model up to 50 Hz. The iron losses of the fitted model at three
constant flux levels are shown by solid lines. (b) The iron losses from FEA
and the fitted iron losses used in the field weakening region. The solid lines
correspond to constant voltage levels.

The iron loss model in (22) was fitted to the measured iron

losses. The parameter values RFt = 206 p.u., k = 3.05 p.u.,

and n = 1.98 were obtained. The measured iron losses and the

iron losses obtained from the fitted model are shown in Fig. 5.

The iron losses are slightly higher than those obtained from

the FEA. According to the fitted model, the hysteresis losses

dominate in the frequency range considered. At the rated stator

frequency, the hysteresis losses constitute approximately 75%

of the total losses.

For comparison, a model with a constant iron loss resistance

was fitted to the measured data. This model leads to iron losses

that are proportional to the square of the angular frequency,

i.e. a frequency dependence corresponding to the eddy current

losses. The value of the fitted resistance is 46.0 p.u. The results

are illustrated in Fig. 6. It is obvious that a constant iron loss

resistance cannot model the measured data well.
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Fig. 5. The measured iron losses and the iron losses obtained from the fitted
model. The solid lines show the iron losses obtained from the fitted model at
constant flux levels.
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Fig. 6. The measured iron losses and the iron losses obtained from the fitted
model as the iron-loss resistance is assumed to be constant. The solid lines
show the iron losses obtained from the fitted model at constant flux levels.

C. Time-Domain Simulations

The proposed iron loss model was investigated by means of

simulations in the Matlab/Simulink environment. The 45-kW

induction machine was modeled using (10), (11), (17), (23),

and (24). The parameter values obtained from the data fitting

of the measured iron losses were used.

As an example, a DC voltage was applied to achieve

the rated flux, and a 2-Hz sinusoidal voltage signal was

superimposed on the DC voltage to produce pulsations in the

flux amplitude. The amplitude of the sinusoidal voltage was

0.02 p.u. The iron loss components and the iron loss current

are shown in Fig. 7. The iron losses mostly consist of the

hysteresis losses, the eddy current losses being less than 1%

of the total losses at the low frequency considered. In [3],

a nonlinear resistor depending on the instantaneous angular

frequency of the stator flux is used to model the iron losses.
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Fig. 7. The hysteresis losses, eddy current losses and the current through
the iron loss resistance obtained from simulations; the motor is magnetized
by a DC voltage, and a sinusoidal voltage is superimposed on the DC voltage
to produce flux pulsations.
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Fig. 8. Simulation results showing speed steps at no load. The first subplot
shows the speed, the second subplot shows the electromagnetic torque, the
third subplot shows the instantaneous hysteresis losses, and the last subplot
shows the eddy current losses.

If this resistor would be used, the iron losses would be zero

as the stator flux vector does not rotate.

The simulation results as rotor flux oriented vector control is

applied are shown in Fig. 8. The speed reference is increased in

steps of 0.2 p.u. and the load torque is zero. The inertia of the

machine is 1.10 kgm2. As the speed exceeds the rated value,



the hysteresis losses start to decrease as the flux amplitude

decreases. The eddy current losses are approximately constant

in the field weakening region.

V. CONCLUSIONS

In this paper, an iron loss model is proposed where both

the hysteresis losses and the eddy current losses are modeled.

The losses caused by the rotation of the flux vector as well

as the losses caused by the pulsation of the flux vector

magnitude are taken into account. A least-squares algorithm

is used to fit the model to data from finite element analysis

and laboratory experiments. It is shown that the model can

predict the iron losses in a wide frequency range. Particularly

at low frequencies, the accuracy is improved as compared to

conventional models.
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