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Modeling of Mutual Saturation in Induction Machines

Toni Tuovinen, Marko Hinkkanen, and Jorma Luomi

Department of Electrical Engineering

Helsinki University of Technology

P.O. Box 3000, FI-02015 TKK, Finland

Abstract—Mutual saturation between the main flux and the
rotor leakage flux appears in induction machines, especially if the
rotor slots are skewed or closed. Conventional saturation models
used in connection with dynamic equivalent-circuit models do
not take this phenomenon into account. In this paper, explicit
functions for modeling the mutual saturation are proposed. The
proposed functions are physically reasonable, they are easy to
fit, and the number of their parameters is small. The proposed
functions can be used in real-time applications and in computer
simulations where high accuracy and physical consistency are
preferable. The model fits well to the data obtained from finite
element analysis or experimental data of a 2.2-kW motor.

Index Terms—Induction motors, motor models, mutual satu-
ration, closed slots, rotor skew.

I. INTRODUCTION

Induction machines are usually magnetically saturated in

the rated operating point. The main flux saturates strongly

as a function of the magnetizing current. Furthermore, it has

been observed that the main flux may depend significantly on

the load (or the rotor current) [1], [2]. This mutual saturation

effect originates mainly from skewed and closed rotor slots [3],

which are used in the majority of small machines. A typical

main-flux saturation characteristics is sketched in Fig. 1; to

model the inductance corresponding to the figure, a function

of two variables (i.e. a surface) is needed.

If the geometry of the machine and the material properties

are known, magnetic saturation can be modeled with good

accuracy using finite-element analysis (FEA) [4]. However,

FEA is computationally too demanding for many applications,

including real-time flux estimation in controlled drives, design

of control algorithms, and simulations of transient phenomena.

Instead, models based on lumped parameters, such as the

equivalent circuit in Fig. 2, are commonly used.

In equivalent-circuit models, the magnetizing inductance

is usually assumed to saturate only as a function of the

magnetizing current or main flux [5], [6], [7]. The leakage

inductances have been modeled as functions of their own

currents [5], [8]. For the magnetizing curve, explicit functions

have been used, e.g. polynomials [9], [7], power functions

[10], [5], and rational power functions [11]. In these previously

proposed models, the mutual saturation effect is omitted.

The small-signal model proposed in [12] takes the mutual

saturation effect into account, but no explicit functions are

given for saturation characteristics.

If high accuracy is required, conventional saturation models

used in connection with equivalent-circuit models may not be

sufficient. In controlled drives, for example, an oversimplified

ψm ψm

im ir00 im1 im2 ir2

ir = ir2

ir = 0 im = im2

im = im1

Fig. 1. Typical saturation characteristics of main flux ψm(im, ir). On the
left-hand side, ψm is shown as a function of magnetizing current im for two
different values of rotor current (ir = 0 corresponding to no-load operation
and ir2 corresponding to constant rotor current). On the right-hand side, ψm

is shown as a function of ir for two values of im.

is ir

im
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Fig. 2. Dynamic T model of an induction motor in coordinates rotating at
angular speed ωs, the angular slip frequency being ωr. The magnetic circuit
(dashed line) is assumed to be lossless.

saturation model may result in poor accuracy of the produced

torque or even instability in speed-sensorless drives.

The inductance values of a machine cannot be measured

directly. Usually, only the stator current, the stator voltage

and the rotor speed are measured. If the magnetic saturation

is modeled using functions, it is possible to obtain the func-

tion parameters by exploiting experimental data from several

operating points [13].

In this paper, explicit functions are proposed for the sat-

uration characteristics—including the mutual saturation. The

inductances become functions of two variables (fluxes or

currents). The proposed functions are physically reasonable,

they are easy to fit, and the number of parameters is compara-

tively small. The proposed functions can be used in computer

simulations where high accuracy and physical consistency are

preferable. As an example, the inductance data of a 2.2-kW

induction motor (obtained from FEA) are fitted to the proposed

model, and a method to obtain the model parameters from

laboratory measurements is demonstrated.



II. MACHINE MODEL

Vectors will be denoted by boldface lowercase letters and

matrices by boldface uppercase letters. The matrix transpose

will be marked with the superscript T. The identity matrix,

the orthogonal rotation matrix, and the zero matrix are

I =

[

1 0
0 1

]

, J =

[

0 −1
1 0

]

, 0 =

[

0 0
0 0

]

(1)

respectively.

In a synchronous coordinate system rotating at angular

speed ωs, the voltage equations of the induction machine are

dψs

dt
= us −Rsis − ωsJψs (2a)

dψr

dt
= ur −Rrir − ωrJψr (2b)

where us = [usd, usq]
T is the stator voltage vector, is =

[isd, isq]
T the stator current vector, and Rs the stator resistance.

The rotor resistance is Rr, the rotor voltage vector ur, the rotor

current vector ir, and the angular slip frequency ωr = ωs−ωm,

the electrical angular speed of the rotor being ωm. A short-

circuited rotor winding will be considered in this paper, i.e.

ur = [0, 0]T.

The stator and rotor flux linkage vectors are

ψs = Lsis + Lmir (3a)

ψr = Lmis + Lrir (3b)

respectively, where Lm is the magnetizing inductance. The

stator and rotor inductances are defined by Ls = Lm+Lsσ and

Lr = Lm+Lrσ , respectively, where Lsσ and Lrσ are the stator

and rotor leakage inductances, respectively. The T-equivalent

circuit model corresponding to (2) and (3) is depicted in Fig. 2.

The stator and rotor leakage fluxes are ψsσ = Lsσis and

ψrσ = Lrσir, respectively, and the main flux is ψm = Lmim,

where im = is + ir is the magnetizing current.

It is worth noticing that the flux vectors are assumed to

be parallel with the corresponding current vectors in accor-

dance with Fig. 2, while the scalar-valued inductances may

be functions of the currents or fluxes. All inductances are

assumed to be lossless. Hence, the inductances should fulfill

the reciprocity conditions [14], [3]:

∂ψm

∂is
=
∂ψsσ

∂im
,

∂ψm

∂ir
=
∂ψrσ

∂im
,

∂ψrσ

∂is
=
∂ψsσ

∂ir
(4)

where ψm = ||ψm|| and the magnitudes of other vectors are

obtained similarly. If needed, the iron losses can be taken into

account separately (as described in the Appendix).

III. SATURATION MODELS

A. Conventional Functions

Conventionally, the saturable magnetizing inductance is

modeled as

Lm(ψm) =
ψm

im(ψm)
or Lm(im) =

ψm(im)

im
(5)

The first form is often preferred since im(ψm) can be modeled

using polynomials or power functions. For example, the power

function [10], [5]

im(ψm) =
ψm

Lm0

(1 + αψa
m) (6)

includes only three parameters (α ≥ 0, a ≥ 0, and the

unsaturated inductance Lm0 > 0). The resulting inductance

function is

Lm(ψm) =
Lm0

1 + αψa
m

(7)

If needed, functions corresponding to (6) could be used to

model ir(ψrσ) or is(ψsσ). This kind of saturation models

always fulfill (4), but they cannot model the mutual saturation

effect. Instead of the power function (6), a polynomial could

be used [9], [7].

B. Proposed Power Function

In this paper, the mutual saturation effect is taken into

account by modeling the magnetizing inductance Lm and the

rotor leakage inductance Lrσ as

Lm(ψm, ψrσ) =
ψm

im(ψm, ψrσ)
(8a)

Lrσ(ψm, ψrσ) =
ψrσ

ir(ψm, ψrσ)
(8b)

In operating points typical of controlled induction motor

drives, the stator leakage inductance Lsσ can usually be

assumed to be a constant [3]. Due to these assumptions, only

the reciprocity condition

∂im
∂ψrσ

=
∂ir
∂ψm

(9)

is needed.

The goal is to find physically reasonable functions

im(ψm, ψrσ) and ir(ψm, ψrσ) fulfilling (9) and having a small

number of parameters. It is convenient to consider functions

of the form [15]

im(ψm, ψrσ) = i′m(ψm) +
df(ψm)

dψm

g(ψrσ) (10a)

ir(ψm, ψrσ) = i′r(ψrσ) + f(ψm)
dg(ψrσ)

dψrσ

(10b)

The function (6) is adopted for i′m(ψm) and i′r(ψrσ). The

mutual saturation effect is modeled with power functions:

f(ψm) ∝ ψc+2
m and g(ψrσ) ∝ ψd+2

m .

The resulting saturation characteristics are

im(ψm, ψrσ) =
ψm

Lm0

(

1 + αψa
m +

γLm0

d+ 2
ψc

mψ
d+2
rσ

)

(11a)

ir(ψm, ψrσ) =
ψrσ

Lrσ0

(

1 + βψb
rσ +

γLrσ0

c+ 2
ψc+2

m ψd
rσ

)

(11b)

where {α, β, γ} ≥ 0 and {a, b, c, d} ≥ 0. It can be easily

shown that the condition (9) holds. Furthermore, any other

functions could be used for i′m(ψm) and i′r(ψrσ) without



violating the reciprocity condition. The inductances corre-

sponding to (11) are

Lm(ψm, ψrσ) =
Lm0

1 + αψa
m + γLm0

d+2
ψc

mψ
d+2
rσ

(12a)

Lrσ(ψm, ψrσ) =
Lrσ0

1 + βψb
rσ + γLrσ0

c+2
ψc+2

m ψd
rσ

(12b)

If no mutual saturation existed in the machine to be analyzed,

parameter γ would be zero and the model would be identical

to the model proposed in [10].

IV. PARAMETER IDENTIFICATION

A. Direct Method

The currents and the fluxes of the machine can be calculated

using FEA at different operating points. The parameters of the

proposed model are fitted by minimizing the cost function

J(Lm0, Lrσ0, α, β, γ, a, b, c, d)

=

N
∑

n=1

(

L̂m,n − Lm,n

)2

+
(

L̂rσ,n − Lrσ,n

)2 (13)

where the magnetizing inductance is Lm = ψm/im and the

rotor leakage inductance is Lrσ = ψrσ/ir. The inductance

estimates L̂m and L̂rσ are calculated from (12) using the actual

values of the fluxes ψm and ψrσ in each operating point. The

index n refers to an operating point and N is the total number

of different operating points.

B. Indirect Method

The inductances of the induction machine cannot be mea-

sured directly. However, the parameters of the inductance

functions (12) can be identified indirectly based on more easily

measurable variables: the stator voltage us, the stator current

is, and the angular speed ωm of the rotor. The identification

method is based on steady-state measurements.

1) No-Load Test: First, the stator resistance Rs is measured.

Then, the machine is operated in steady state at no load at

various voltage levels. At each operating point, the estimate

ψ̂m of the main flux is determined based on the stator voltage

equation (2a):

ψ̂m = −J (us −Rsis) /ωs − L̂sσis (14)

Considering (12a) at no load, the magnetizing inductance

estimate can be expressed as

L̂m =
Lm0

1 + αψ̂a
m

(15)

at every operating point. The main flux vector and the stator

current vector are parallel, ψm = Lmis, since the rotor current

is zero. The cost function to be minimized is

J(L̂sσ, Lm0, α, a) =
N
∑

n=1

(

L̂m,n − ψ̂m,n/is,n

)2

(16)

2) Load Test: The parameters L̂sσ , Lm0, α, and a are

known after the no-load test. It was found that the exponents

b, c, and d have a relatively small effect on the resulting

saturation characteristics, but they make the fitting process

more difficult. Therefore, it was decided to predetermine those

parameters based on a priori information. Direct fitting to the

FEA data of 2.2-kW and 37-kW machines gave b = 1 . . . 1.5,

c = 1 . . . 1.5 and d = 0 . . . 0.5. To determine the remaining

parameters of the inductance model (12), the motor is op-

erated at various voltage levels and at various non-zero slip

frequencies.

The main flux estimate ψ̂m is evaluated independently of

the inductance model (12) using the stator voltage equation

(14). The rotor leakage flux estimate can be expressed as

ψ̂rσ =
R̂r

ωr

J

(

îm − is
)

− ψ̂m (17a)

where

îm =
ψ̂m

Lm0

(

1 + αψ̂a
m +

γLm0

d+ 2
ψ̂c

mψ̂
d+2
rσ

)

(17b)

in accordance with (11a). At each operating point, the rotor

leakage flux estimate ψ̂rσ can be numerically1 solved from

(17) for any given values of R̂r and γ. Then, the inductance

estimates corresponding to (12) can be evaluated:

L̂m =
Lm0

1 + αψ̂a
m + γLm0

d+2
ψ̂c

mψ̂
d+2
rσ

(18a)

L̂rσ =
Lrσ0

1 + βψ̂b
rσ + γLrσ0

c+2
ψ̂c+2

m ψ̂d
rσ

(18b)

Based on the rotor voltage equation (2b), the rotor induc-

tance can be expressed as

Lr =
Rri

T
s Jψr

ωri
T
s ψr

(19)

The values for R̂r, Lrσ0, β, and γ are obtained by minimizing

J(R̂r, Lrσ0, β, γ) =
N
∑

n=1

(

L̂r −
R̂ri

T
s,nJψ̂r,n

ωr,ni
T
s,nψ̂r,n

)2

(20)

where the rotor inductance estimate is L̂r = L̂m + L̂rσ and

the rotor flux estimate is ψ̂r = ψ̂m + ψ̂rσ . It is worth

noticing that there are alternative ways to indirectly identify

the parameters of the inductance model; the method described

above is comparatively robust against measurement errors.

V. RESULTS

Saturation characteristics of a 2.2-kW squirrel-cage induc-

tion machine were studied by means of two-dimensional time-

harmonic FEA [16], [4] and laboratory experiments. The

machine is equipped with closed and skewed rotor slots, and its

rating is: voltage 400 V; current 5 A; frequency 50 Hz; speed

1436 r/min; and torque 14.6 Nm. The base values are: angular

frequency 2π50 rad/s; voltage
√

2/3·400 V; and current
√

2·5
A.
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Fig. 4. Results of direct method applied to the inductance values obtained from the FEA data: (a) Lm as a function of ψm for three different values of
ψrσ , (b) Lm as a function of ψrσ for three different values of ψm, (c) rotor leakage inductance Lrσ as a function of ψm for three different values of ψrσ ,
(d) Lrσ as a function of ψrσ for three different values of ψm. In (a) and (c), the values of ψrσ correspond to ir ≈ 0.5 p.u. (dash-dotted line), ir ≈ 1.0 p.u.
(dashed line) and ir ≈ 2.0 p.u. (solid line). In (b) and (d), the values of ψm are 0.4 p.u. (dash-dotted line), 0.7 p.u. (dashed line) and 1.0 p.u. (solid line).

0 0.2 0.4 0.6 0.8
−0.04

0

0.04

0.08

0.12

us (p.u.)

ω
r

(p
.u

.)

Fig. 3. Stator voltage magnitudes and angular slip frequencies used in
parameter estimation from the FEA data. Circles denote the data used in
load tests, crosses denote the no-load data. The stator frequency is 0.5 p.u.

A. Finite Element Analysis

The operating points used in parameter estimation from the

FEA data are presented in Fig. 3. The stator frequency ωs was

0.5 p.u. The no-load points were not used in direct fitting.

1) Direct Method: The parameters of the proposed model

(12) were identified based on the inductance data obtained

1Analytical solution can be found if d = 0.

TABLE I
FITTED PER-UNIT PARAMETERS OBTAINED FROM FEA DATA AND

EXPERIMENTAL DATA

FEA FEA Experimental
Direct Indirect

Lm0 2.58 2.57 2.27
Lrσ0 0.691 1.23 0.365
Lsσ - 0.0224 0.0270
Rr - 0.0398 0.0395
α 0.523 0.445 0.459
β 20.1 37.9 22.1
γ 30.6 30.2 20.4
a 10.5 10.0 7.5
b 1.0 1.0 1.0
c 1.0 1.0 1.0
d 0.5 0.5 0.5

from FEA. The direct method presented in Section IV-A

was used. Since fractional exponents may be computationally

inefficient, the exponents a, b, c, and d were rounded to the

nearest half-integers (or integers) after the first fitting, and the

other parameters were re-fitted. The fitted per-unit parameters

are given in Table I.

The inductance data from FEA and the curves from the fitted

functions are shown in Fig. 4. In Fig. 4(a), the magnetizing

inductance Lm is shown as a function of ψm for three different

values of ψrσ . In Fig. 4(b), Lm is shown as a function of ψrσ

for three different values of ψm. Similar representation for the

rotor leakage inductance Lrσ is used in Figs. 4(c) and 4(d).
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Fig. 5. Results of indirect method applied to the FEA data: (a) Lm as a function of ψm for three different values of ψrσ , (b) Lm as a function of ψrσ for
three different values of ψm, (c) Lrσ as a function of ψm for three different values of ψrσ , (d) Lrσ as a function of ψrσ for three different values of ψm.
In (a) and (c), the values of ψrσ correspond to ir ≈ 0.5 p.u. (dash-dotted line), ir ≈ 1.0 p.u. (dashed line) and ir ≈ 2.0 p.u. (solid line). In (b) and (d), the
values of ψm are 0.4 p.u. (dash-dotted line), 0.7 p.u. (dashed line) and 1.0 p.u. (solid line).

It can be seen that the proposed model for Lm fits very

well to the FEA data. The mutual saturation appears to be

very significant in the analyzed machine; in the case of no

mutual saturation, the curves in Fig. 4(a) would overlap while

the curves in Fig. 4(b) would be straight horizontal lines.

The differences in Lrσ between the FEA data and the fitted

curves at low values of ψrσ are partly due to numerical prob-

lems in FEA; the rotor-side parameters cannot be determined

reliably if the rotor current is close to zero. Furthermore, the

peak in Lrσ in the vicinity of ψm ≈ 0.8 p.u. is not consistent

with the reciprocity condition; there should be similar peak in

Lm as a function of ψrσ .

2) Indirect Method: The indirect method presented in Sec-

tion IV-B is demonstrated by first applying it to the FEA data.

The direct method applied to the 2.2-kW machine proposes

the exponents b = 1, c = 1 and d = 0.5, hence these values

were fixed. The stator resistance was fixed to Rs = 0.0779

p.u. based on the FEA data. The fitted per-unit parameters are

given in Table I.

It can be noticed that the parameter values, particularly Lrσ0

and β, differ from those obtained by using the direct method.

The assumption of constant stator leakage inductance has an

effect on parameters α and a, whereas β and γ are affected

by the assumption of constant rotor resistance.

The inductance data from FEA and the curves from the

fitted functions are shown in Fig. 5 in a fashion similar to

Fig. 4. The differences between the curves obtained by using

the direct method (Fig. 4) and indirect method (Fig. 5) are

small.

B. Experiments

In the laboratory experiments, the 2.2-kW induction ma-

chine was fed by a frequency converter. At each operating

point, the stator frequency was ωs = 0.5 p.u, while the

magnitude of the stator voltage was varied. The slip frequency

ωr was adjusted using a servo motor.

The indirect method was used to identify the parameters of

the inductance model based on experimental data. The stator

resistance was fixed to Rs = 0.0628 p.u. obtained from a dc

test. Before data fitting, the exponents b = 1, c = 1, and

d = 0.5 were fixed, based on results from FEA data. The

operating points used in indirect parameter estimation from

the experimental data are presented in Fig. 7.

The resulting inductance values are depicted in Fig. 6

in a fashion similar to Figs. 4 and 5, and the fitted per-

unit parameters are given in Table I. The behavior of the

inductances is very similar to the results from FEA.

For comparison, the estimated and measured stator currents

are depicted in Fig. 8. In Fig. 8(a), is is shown as a function

of us for three different values of ωr. In Fig. 8(b), is is shown

as a function of ωr for three different values of us. Similar

representation for the displacement power factor cosϕ is used

in Figs. 8(c) and 8(d). The values of the stator current were

obtained by inserting the stator voltage and the slip frequency

into the motor model and finding the values for ψm and ψrσ

that satisfied the voltage equations (2) in steady state.
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Fig. 6. Results of indirect method applied to experimental data: (a) Lm as a function of ψm for three different values of ψrσ , (b) Lm as a function of ψrσ

for three different values of ψm, (c) Lrσ as a function of ψm for three different values of ψrσ , (d) Lrσ as a function of ψrσ for three different values of
ψm. In (a) and (c), the values of ψrσ are 0.09 p.u. (dash-dotted line), 0.14 p.u. (dashed line) and 0.19 p.u. (solid line). In (b) and (d), the values of ψm are
0.4 p.u. (dash-dotted line), 0.7 p.u. (dashed line) and 1.0 p.u. (solid line).
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Fig. 7. Stator voltage magnitudes and angular slip frequencies used in indirect
parameter estimation from the experimental data. Circles denote the data used
in load tests, crosses denote the no-load data. The stator frequency is 0.5 p.u.

The model predicts the magnitude of the stator current and

the displacement power factor with good accuracy. The error

in the estimated displacement power factor originates from the

assumptions made in the model (i.e. ignoring the iron losses,

and using a constant rotor resistance).

VI. CONCLUSIONS

Mutual saturation between the main flux and the rotor

leakage flux appearing in induction machines can be modeled

analytically. The proposed functions are physically reasonable,

they are easy to fit, and the number of their parameters is

small. The functions can be used in real-time applications and

in computer simulations where high accuracy and physical

consistency are preferable. The model fits well to the magne-

tizing inductance data obtained from finite element analysis

and experimental data for a 2.2-kW induction motor with

closed and skewed rotor slots.

APPENDIX

IRON LOSSES

Fig. 9 illustrates the dynamic T model augmented with the

stator-iron-loss resistance RFe,s [17], [18] and the stray-load-

loss resistance RFe,σ [19]. The losses related to constant RFe,s

and RFe,σ are proportional to ω2
sψ

2
s and ω2

rψ
2
rσ , respectively,

in steady state. If the inductance model is lossless (reciprocal),

the power balance of the model is well defined. The proposed

saturation models could be directly used in the model in Fig. 9.
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Fig. 8. Results of indirect method applied to experimental data: (a) magnitude of stator current is as a function of us for three different values of ωr, (b)
is as a function of ωr for three different values of us, (c) displacement power factor cosϕ as a function of us for three different values of ωr, (d) cosϕ as
a function of ωr for three different values of us. In (a) and (c), the values of ωr are 0.02 p.u. (dash-dotted line), 0.06 p.u. (dashed line) and 0.1 p.u. (solid
line). In (b) and (d), the values of us are 0.15 p.u. (dash-dotted line), 0.35 p.u. (dashed line) and 0.55 p.u. (solid line).
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Fig. 9. Dynamic T model of Fig. 2 augmented with two iron loss resistances. Resistance RFe,s is related to iron losses in the stator while RFe,σ models
the stray-load losses.
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