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A dynamic prognosis algorithm in distributed fault tolerant model
predictive control

Alexey Zakharov, Miao Yu, Sirkka-Liisa Jämsä-Jounela

Abstract— This paper presents a dynamic prognosis algo-
rithm in distributed fault tolerant model predictive control
(DFTMPC). The dynamic prognosis, which means predicting
the trajectories of process variables under distributed model
predictive control, is performed when a fault is diagnosed and
several candidate reconfigured controls are proposed. Then, the
dynamic prognosis is utilized to check whether the candidate
reconfigured controls are able to drive the system to the
new operating conditions and to evaluate the performance
during the transition period. Thus, the most suitable candidate
reconfigured controller is selected and its feasibility is ensured
without using a Lyapunov function that is difficult to obtain for
large-scale systems. On the other hand, the on-line computation
burden of the prognosis algorithm is moderate under the
assumption that the sets of active constraints in non-faulty
subsystems remain the same as they are at the nominal
operating conditions. Thus, the dynamic prognosis for DMPC is
aimed to improve the applicability of the existing fault tolerant
methods to large-scale systems.

Index Terms— fault tolerant control, distributed model pre-
dictive control, dynamic prognosis, alkylation of benzene, in-
dustrial application.

I. INTRODUCTION

Increased global competition, higher product quality re-
quirements, and environmental regulations have forced the
process industry to continuously optimize the efficiency and
profitability. Advanced control strategies, such as model
predictive control (MPC), have made it possible to run
the processes close to the quality and safety limits thereby
increasing profitability, ensuring the better quality of the
end products, and enhancing safety in the plants [1], [2].
Furthermore, advanced management of abnormal situations,
such as process disturbances and faults, still provides great
possibilities for further improvement of the process efficiency
[3] [4] [5].

Recently, fault tolerant model predictive control (FTMPC),
providing flexibility in compensating for the fault effects by
considering the problem at least at the process unit level,
was extensively studied [6]. The corrective actions of FTC
can be categorized into fault accommodation and controller
reconfiguration techniques. In our previous works [7] and
[8], a fault accommodation based FTMPC was proposed and
tested in a complex dearomatization process. Despite being
an attractive approach, fault accommodation is infeasible
in many cases, especially when control capacity degrades
because of an actuator fault. Thus, control reconfiguration
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approach was proposed, aiming to replace the “dropped out”
actuator using redundant control capacity. For example, [9]
developed two alternative SISO controls of a polyethylene
reactor manipulating different actuators: the temperature of
a feed flow and a catalyst flow rate. In case of an actuator
failure, the control relying on the healthy actuator was
applied. Alternatively, [10] considered two actuator faults
and developed two back-up controls which were applied
when the respective fault was discovered. However, it is
difficult or impossible to develop back-up control strategies
for all possible faults in large-scale systems. That is why it is
important to provide the possibility to generate reconfigured
control and evaluate its performance on-line.

The first issue a FTC has to deal with on-line is the
selection of the plant operating point. The nominal pro-
cess operating conditions can sometimes become infeasible
because of a fault, and in such a case, a new operating
point must be defined. Thus, [10] proposed the use of the
feasible steady state closest to the nominal steady state of
the system as the new target operating points. [11] proposed
the selection of new operating points of the faulty unit in a
way that the downstream units could continue operating at
the nominal process conditions and this was implemented as
additional constraints imposed on the new operating points
of the faulty systems.

Another major issue is to ensure the plant stability under a
reconfigured control on-line while selecting among the can-
didate reconfigurations. [9] determined the stability regions
of the alternative controls when an actuator fault occurs, and
[10] utilized a modification of MPC to ensure its stability.
Even though both approaches were able to safeguard the
stability, a suitable Lyapunov function must be developed
in both methods, which makes them difficult or even im-
possible to use in case of large-scale systems. Recently,
[12] suggested a safe-parking approach which selects new
operating points from the feasible steady states of the system
which can be achieved by the reconfigured control without
destabilizing the system. As a result, the operating point at
the moment of fault diagnosis, which is typically close to
the nominal steady state, must belong to the stability region
of the reconfigured control that is developed to operate at
new process conditions. The drawback is that this makes the
stability properties even more difficult to obtain. Therefore,
there is a clear demand for easier solutions to evaluate the
possible control reconfigurations and to select one of them.

As most of the FTC systems in the literature were based
on a centralized MPC for the whole process, there have
been only a few attempts to establish FTC strategy based on



Fig. 1. Outline of DFTMPC

DMPC for complex industrial systems until now [11] [13]
[14]. In order to bridge the gap between FTC and DMPC
for large-scale systems, a general idea for the design of a
distributed fault tolerant model predictive control (DFTMPC)
strategy is presented. The key element of the DFTMPC is
the dynamic prognosis, which predicts the process variables
trajectories under the assumption that reconfigured controls
and new setpoints are proposed. The aim of this step is
to check whether the reconfigured control could drive the
process to the new operating conditions and to evaluate its
dynamic performance during the transition. Thus, the most
suitable one among the candidate reconfigured controllers is
found.

II. OUTLINE OF THE DFTMPC

The DFTMPC for large-scale systems mainly includes the
following five elements: DMPC, hierarchical FDD, determi-
nation of possible new operating conditions of the faulty unit
and generation of possible reconfigured controllers, dynamic
prognosis, and selection of corrective actions. The overall
structure of DFTMPC is shown in Figure 1.

A large-scale system can be decomposed into different unit
processes according to the process topology, which provides
a foundation for both FDD methods [15] and DMPC [16].

After the fault has been diagnosed, we need to define
the new operating conditions of the system according to
the control objectives with the fault information provided
by the FDD element. The new operating conditions of
the whole system can be selected from the set of steady
states of the system under faulty dynamics. As an additional
constraint, the target operating conditions in the downstream
units must be disturbed as little as possible [11]. A group
of candidate setpoints can be found by applying different

selection criteria, such as minimizing the distance from the
current process state, maximizing the economic efficiency of
the faulty process unit, and minimizing the production rate
degradation, etc.

The possible reconfigured controls are generated to
achieve the control aims in presence of the faults. For exam-
ple, in the case of an actuator fault (such as actuator freez-
ing), the faulty actuator is usually excluded from the control
structure. The reconfiguration also means that alternative
actuators can be included instead to compensate for the
excluded actuator, or some actuator constraints are modified,
for instance, according to degradation of a faulty actuator
capacity. Thus, several reconfigured control structures can
be generated for further evaluation.

The dynamic prognosis is the key step in selecting the
most suitable corrective actions. Namely, the ability of the
candidate reconfigured controllers to drive the process to
the proposed new operating conditions is checked. Next, the
trajectories of the process variables are studied to evaluate
the control quality during the transition period. The dynamic
prognosis for a DMPC essentially relies on the assumption
that the active constraints in the non-faulty subsystems
remain the same as they are in the nominal conditions.
This assumption allows considering the optimization of the
only MPC relating to the faulty subsystem, and then, the
rest of the controls in non-faulty subsystems are obtained
explicitly. In the result, the on-line computation burden of
the prognosis algorithm is not heavy and the decision can be
achieved early before the system state is driven away from
the nominal operating conditions. Finally, one of the suitable
reconfigured controls can be selected by some indexes, such
as minimizing the IAE between the predicted trajectories of
process variables and their setpoints.

III. DYNAMIC PROGNOSIS ALGORITHM

In this section, the dynamic prognosis is developed to
predict the process variables trajectories in both non-faulty
and faulty subsystems. Assuming the active constraints in
the non-faulty subsystems remain the same as they were in
the nominal operating conditions, the manipulated variables
related to the non-faulty subsystems can be expressed as
linear functions of the current plant state, the manipulated
variables related to the faulty subsystem, and the setpoints.
Thus, the decision variables of the DMPC optimization can
be reduced to the variables belonging to the faulty subsystem
only.

The following notations are used: capital letters stand
for matrices whereas the bold symbols denote the vectors
including components related to the future time instants.

The system dynamics of post-faulty processes are obtained
with FDD information as follows

x(k+1) = Ax(k)+Bu(k),

y(k) = Cx(k), (1)

where the input u, output y and states x can be decomposed
as follows according to the modular process structure: x(k) =
[xT

1 (k),x
T
2 (k), · · · ,xT

N(k)]
T , u(k) = [uT

1 (k),u
T
2 (k), · · · ,uT

N(k)]
T ,



y(k) = [yT
1 (k),y

T
2 (k), · · · ,yT

N(k)]
T , and the dynamics matrices

possess the appropriate block structure:

A =


A11 A12 · · · A1N
A21 A22 · · · A2N
· · · · · · · · · · · ·
AN1 AN2 · · · ANN

 ,
B = [B1|B2| · · · |BN ],

C =
[
CT

1 ,C
T
2 , · · · ,CT

N
]T

,

where A, B, and C are with appropriate dimensions.
The future trajectory of the outputs of subsystem i

can be obtained using the Toeplitz matrices as yi =

∑
N
j=1 Ti ju j + Vix0, where yi = [yT

i (1),y
T
i (2), · · · ,yT

i (P)]
T ,

ui = [uT
i (0),u

T
i (1), · · · ,uT

i (P−1)]T , P is the prediction hori-
zon of each local MPC, x0 is the initial state of the system,
and the Toeplitz matrices are defined as

Ti j =


CiB j 0 · · · 0

CiAB j CiB j · · · 0
· · · · · · · · · · · ·

CiAP−1B j CiAP−2B j · · · CiB j

 ,
Vi =

[
(CiA)T ,(CiA2)T , · · · ,(CiAP)T ]T .

Furthermore, consider the individual MPC formulation for
i-th subsystem with a quadratic objective as

Φi(u) =
P

∑
k=1

(yi(k)− si)
′
Qi(yi(k)− si)+u

′
i(k)Riui(k)

= (yi− si)
′
Qi(yi− si)+u

′
iRiui (2)

where si denote the vector containing the setpoints for
subsystem i, si = [si, · · · ,si]

T , matrices Qi and Ri represent the
MPC objective weights, Qi = diag{Qi} and Ri = diag{Ri}.
The linear constraints for i-th subsystem within the prediction
horizon are described as

ci(u,x0) = Giu+Gx
i x0 +gi ≥ 0, (3)

where Gi and Gx
i are some matrices related to input and state

respectively.
Denote i to be the index of the subsystem in which a

fault is found. Assume that the active constraints of the local
MPCs in other non-faulty subsystems will stay the same, as it
was at the nominal operating conditions. Denote G̃ j and g̃ j to
represent the matrices associated with the active constraints
in the non-faulty subsystems j,

G̃x
jx

0 + G̃i
jui + G̃ juc

i + g̃ j = 0, ∀ j 6= i, (4)

and assemble the constraints matrices as: G̃x
= [(G̃x

1)
T , · · · ,

(G̃x
i−1)

T ,(G̃x
i+1)

T , · · · ,(G̃x
N)

T ]T , G̃i
= [(G̃i

1)
T , · · · ,(G̃i

i−1)
T ,

(G̃i
i+1)

T , · · · ,(G̃i
N)

T ]T , G̃ = [(G̃1)
T , · · · ,(G̃i−1)

T ,(G̃i+1)
T ,

· · · ,(G̃N)
T ]T , and g̃= [(g̃1)

T , · · · ,(g̃i−1)
T ,(g̃i+1)

T , · · · ,(g̃N)
T ]T .

The values of the manipulated variables uc
i

relating to the subsystems other than i, i.e.
uc

i = [(uc
i )

T (0), · · · ,(uc
i )

T (P − 1)]T , where uc
i (k) =

[uT
1 (k), · · · ,uT

i−1(k),0,u
T
i+1(k), · · · ,uT

N(k)]
T , can be obtained

by minimizing the objective function (2) under constraints

(4), whereas the inputs ui representing the faulty subsystem
i and the initial system state x0 are fixed. Substituting
system dynamics into (2), uc

i can be obtained by minimizing
the following objective function

N

∑
j=1

(V jx0 +T jiui +Tc
jiu

c
i − s j)

′
Q j

×(V jx0 +T jiui +Tc
jiu

c
i − s j)+u

′
iRiui +(uc

i )
′
Rc

i uc
i

= (uc
i )
′
Huc

i +2(x0)
′
h1uc

i +2u
′
ih2uc

i

−2
N

∑
j=1

s
′
jQ jTc

jiu
c
i + const (5)

where

Tc
ji =


C jBc

i 0 · · · 0
C jABc

i C jBc
i · · · 0

· · · · · · · · · · · ·
C jAP−1Bc

i C jAP−2Bc
i · · · C jBc

i

 ,
Bc

i = [B1| · · · |Bi−1| 0 |Bi+1| · · · |BN ],

Rc
i = diag{Rc

i },
Rc

i = diag{Rc
1, · · · ,Rc

i−1,0,R
c
i+1, · · · ,Rc

N},

H =
N

∑
j=1

(Tc
ji)
′
Q jTc

ji +Rc
i ,

h1 =
N

∑
j=1

V
′
jQ jTc

ji,h2 =
N

∑
j=1

T
′
jiQ jTc

ji,

Considering optimization problem (5) under constraints
(4), the manipulated variables of non-faulty subsystems uc

i
is

uc
i = H−1

(
G̃
′ (

G̃H−1G̃
′)−1

G̃H−1− I
)

×

(
h
′
1x0 +h

′
2ui−

N

∑
j=1

(Tc
ji)
′
Q js j

)

−H−1
(

G̃
′ (

G̃H−1G̃
′))−1(

G̃xx0 + G̃iui + g̃
)

= W+W1x0 +W2ui +
N

∑
j=1

W3
js j, (6)

where

Φ = G̃
′ (

G̃H−1G̃
′)−1

,

W = −H−1
Φg̃,

W1 = H−1
((

ΦG̃H−1− I
)

h
′
1−ΦG̃x

)
,

W2 = H−1
((

ΦG̃H−1− I
)

h
′
2−ΦG̃i

)
,

W3
j = −H−1 (

ΦG̃H−1− I
)
(Tc

ji)
′
Q j. (7)

At this stage, the manipulated variables related to the
non-faulty subsystems have been expressed according to (6).
Substituting the value of manipulated variables related to
non-faulty subsystems (6) to the MPC objective (5) and
denoting

f j = V jx0 +Tc
ji

(
W+W1x0 +

N

∑
j=1

W3
js j

)
− s j (8)



then the MPC objective (5) can be represented as

min
ui

N

∑
j=1

(
f j +

(
T ji +Tc

jiW
2)ui

)′
Q j

×
(
f j +

(
T ji +Tc

jiW
2)ui

)
+u

′
iRiui

+

(
W+W1x0 +W2ui +

N

∑
j=1

W3
js j

)′
Rc

i

×

(
W+W1x0 +W2ui +

N

∑
j=1

W3
js j

)

= u
′
iFui +2

(
N

∑
j=1

f
′
jQ j
(
T ji +Tc

jiW
2)

+

(
W+W1x0 +

N

∑
j=1

W3
js j

)
Rc

i W2

)
ui + const (9)

where

F =
N

∑
j=1

(
T ji +Tc

jiW
2)′Q j

(
T ji +Tc

jiW
2)

+
(
W2)′Rc

i
(
W2)+Ri. (10)

Minimizing individual MPC objective (9) under linear con-
straints (3) gives ui, and the rest of the non-faulty manipu-
lated variables can be obtained using (6).

Finally, the procedure for the dynamic prognosis is sum-
marized as follows

1) Set the current time t to 0.
2) Considering the active constraints in the non-faulty

subsystems remain the same as they are in nominal
operating conditions (4), the manipulated variables re-
lated to the non-faulty subsystems uc

i can be expressed
as linear functions of the current plant state x0, the
manipulated variables related to the faulty subsystem
ui and the setpoints s j.

3) The objective function of the local MPC related to
faulty subsystem is defined according to (9), where the
necessary coefficients are obtained by (8) and (10).

4) The optimization of the local MPC (9) related to the
faulty subsystem is performed to derive ui, then ma-
nipulated variables of other subsystems uc

i are obtained
according to (6).

5) The obtained manipulated values are substituted to the
faulty system dynamics to obtain the predictions of the
actual states.

6) Increase the time index as t = t+1 and shift the active
constraints set of non-faulty subsystems accordingly,
then go to step 2 until the end of prediction horizon.

IV. SIMULATION RESULT

A. Process description and control strategy

The alkylation of benzene is a benchmark process that
has been used in the DMPC [16] and DFTMPC [13], [14].
The plant consists of five units as shown in Fig 2, i.e.
four continuous stirred-tank reactors (CSTR) and one flash
separator.

Fig. 2. Process flow diagram for alkylation of benzene [16]

TABLE I
STEADY-STATE INPUTS AND TEMPERATURES

u1s =−2.0 MJ/s u7s = 8.697×10−4 m3/s
u2s =−2.0 MJ/s T1s = 472.32 K
u3s =−2.0 MJ/s T2s = 472.35 K
u4s = 4.1 MJ/s T3s = 472.39 K
u5s =−0.01 MJ/s T4s = 471 K
u6s = 8.697×10−4 m3/s T5s = 474 K

In the normal condition, the manipulated inputs to the
process are the heat injected to or removed from the five
tanks, Q1, Q2, Q3, Q4 and Q5 (u1, u2, u3, u4 and u5, respec-
tively). The feed stream flow rates to CSTR 2 and CSTR 3,
F4 and F6, are the back-up manipulated variables (u6 and u7)
which are activated for the controller reconfiguration when a
fault is detected and diagnosed. The steady-state inputs, uis,
i = 1, · · · ,7, as well as the steady-state temperatures in the
five tanks (controlled variables) are shown in Table I.

In this work, the sensitivity-driven DMPC in [16] is
utilized as the base controller for the alkylation of benzene
process. The whole system is divided into two groups, one
includes CSTR 1, CSTR 2 and CSTR3, the other contains
CSTR 4 and the flash separator. Thus, the first local MPC
(LMPC1) controls the values of Q1, Q2 and Q3, and the
second local MPC (LMPC2) controls the values of Q4 and
Q5. These two local controllers exchange information in the
process operation.

The inputs are discretized as a piecewise constant with
sampling time t = 10s. The control horizon is L = 5, and the
prediction horizon is P = 20. The constraints of manipulated
inputs and temperatures are shown in Table II.

TABLE II
CONSTRAINTS OF MANIPULATED INPUTS AND TEMPERATURES

|∆u1| ≤ 0.75 MJ/s |∆u7| ≤= 2×10−3 m3/s
|∆u2| ≤ 0.5 MJ/s 471≤ T1 ≤ 474 K
|∆u3| ≤ 0.5 MJ/s 471≤ T2 ≤ 474 K
|∆u4| ≤ 0.6 MJ/s 471≤ T3 ≤ 474 K
|∆u5| ≤ 0.6 MJ/s 471≤ T4 ≤ 474 K
|∆u6| ≤= 2×10−3 m3/s 471≤ T5 ≤ 474 K
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Fig. 3. Test results with existing actuators and current operating point
(green dot dash line: setpoint; blue solid line: temperature variations; red
dot line: dynamic prognosis trajectory)

B. Case studies

1) Case study 1: evaluating candidate controller recon-
figurations: Firstly, when a fault is diagnosed, the current
operating point is checked to determine if it is feasible
under the original control strategy. We consider an actuator
fault occurs at t = 300s: u2 is frozen at 95% of its steady-
state value. Obviously, the temperature in CSTR 2 will
be increasing from that time if no FTC is implemented.
Figure 3 shows the test result with existing actuators and
current operating point. It shows directly that the current
operating point is not feasible without changing the controller
configuration, which is verified by the result under DMPC.

One possible solution is to activate another actuator in
order to compensate for the efficiency loss in u2. To demon-
strate the function of dynamic prognosis, two back-up control
reconfigurations are investigated. The first is to activate the
feed stream flow rates to CSTR 2, u6, and the second is to
activate the feed stream flow rates to CSTR 3, u7. Figure 4
and Figure 5 depict the test result with activating u6 and u7
under the current operating point respectively. From Figure
4, it is clear to see that the temperatures can be driven to
setpoint after 12 steps under the effect of u6. While Figure
5 demonstrates irrefutably that activating u7 does not make
much difference. After the comparison, it can be decided to
implement the first control reconfiguration at t = 310s, which
will result in the temperatures converging to the setpoint with
newly designed controller at t = 430s.

2) Case study 2: checking newly defined operating point:
In case that the current operating point is not feasible
with either original control strategy or any reconfigured
controllers, another operating point must be designed based
on the characteristics of the fault. We consider an actuator
fault at t = 300s: u1 is frozen at 97.5% of its steady-state
value, and obviously, the temperature in CSTR 1 will be
increasing from that time. At time t = 320s, the fault has
been detected and diagnosed. It is clear that the fault in
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Fig. 4. Test results with activating u6 and current operating point (green
dot dash line: setpoint; blue solid line: temperature variations; red dot line:
dynamic prognosis trajectory)
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Fig. 5. Test results with activating u7 and current operating point (green
dot dash line: setpoint; blue solid line: temperature variations; red dot line:
dynamic prognosis trajectory)

u1 in CSTR 1 cannot be compensated by current control
strategy or activating u6 and u7 in CSTR 2 and 3 as shown
in Figure 6. Thus, one possible solution is to increase the
setpoint for T1 within the constraints. Another choice is
to decrease the setpoint for the temperature in the flash
separator, T4. Since the recycled vapor stream goes from
flash separator to CSTR 1, the cooling of this stream can
also lead to the decreasing of T1. The new operating point is
designed as: T1s = 473.36K, T2s = 472.35K, T3s = 472.39K,
T4s = 471.00K, T5s = 473.00K. Figure 7 shows the dynamic
prognosis result for the future 20 steps with new setpoint. It
can be clearly seen that both second and third controllers can
obtain very good performance. After checking the difference
between the predicted trajectory and setpoint, it was found
that the third controller performs slightly better than the
second one and as a result, u7 is activated. The test result
with activating u7 and the newly designed operating point is
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Fig. 6. Dynamic prognosis result for the future 20 steps with current
setpoint at time t = 320s
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Fig. 7. Dynamic prognosis result for the future 20 steps with newly
designed setpoint at time t = 320s

shown in Figure 8.

V. CONCLUSION

This paper presents a dynamic prognosis algorithm in
DFTMPC systems. Under the assumption that the active
constraints in non-faulty subsystems remain the same, the
dynamic prognosis consider the optimization of the only
local MPC instead of handling the whole DMPC. Thus,
the on-line computation burden of the dynamic prognosis
is moderate.
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model predictive control and its application to the tennessee eastman
process,” Industrial & Engineering Chemistry Research, vol. 52,
no. 36, pp. 12 937–12 949, 2013.

[3] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-
tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2,
pp. 229–252, 2008.

[4] S. X. Ding, Model-based fault diagnosis techniques. Springer, 2008.
[5] T. Jain, J. J. Yame, and D. Sauter, “A novel approach to real-time

fault accommodation in nrel’s 5-mw wind turbine systems,” IEEE
Transactions on Sustainable Energy, vol. 4, no. 4, pp. 1082– 1090,
2013.

[6] M. Sourander, M. Vermasvuori, D. Sauter, T. Liikala, and S.-L. Jämsä-
Jounela, “Fault tolerant control for a dearomatisation process,” Journal
of Process Control, vol. 19, no. 7, pp. 1091–1102, 2009.

[7] M. Kettunen, P. Zhang, and S.-L. Jämsä-Jounela, “An embedded
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