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Signal-Injection Assisted Full-Order Observer
With Parameter Adaptation for

Synchronous Reluctance Motor Drives
Toni Tuovinen and Marko Hinkkanen, Senior Member, IEEE

Abstract—A back-EMF-based position observer for motion-
sensorless synchronous reluctance motor (SyRM) drives is aug-
mented with parameter-adaptation laws for improved operation
at all speeds, including standstill. The augmented observer is
theoretically analyzed under various operation conditions. The
analysis indicates that the stator-resistance adaptation should be
enabled only at low speeds, the d-axis inductance adaptation
should be enabled only at medium and high speeds near no
load, and the q-axis inductance adaptation should be enabled
only at high speeds under high load. The augmented observer is
experimentally evaluated using a 6.7-kW SyRM drive.

Index Terms—Inductance adaptation, observer, parameter
adaptation, parameter uncertainties, resistance adaptation, sen-
sorless, signal injection, stability conditions.

I. INTRODUCTION

The synchronous reluctance motor (SyRM) has recently
reemerged as a contender to the induction motor in variable-
speed drives [1]–[3]. As compared to the permanent-magnet
synchronous motor (PMSM), the SyRM is magnetized from
the stator winding, which renders field-weakening operation a
straightforward procedure. The fluctuating price of rare-earth
metals has also made the SyRM more favorable in relation to
the PMSM.

In order to operate synchronous machines, the position of
the rotor has to be either measured or estimated. Position-
sensorless operation is commonly preferred. Estimation meth-
ods relying on the back electromotive force (EMF) fail to
estimate the position at lowest speeds under load. However,
as the SyRM is inherently salient, methods providing a rotor-
position estimate even at standstill are readily applicable.
These methods can be roughly categorized as: signal-injection
methods [1], [3]–[6]; modified PWM [7], [8]; and methods
based on stator current variation without additional signal [9],
[10]. Since the signal-injection methods inflict additional noise
and losses, back-EMF-based position estimation methods are
a desirable starting point. At the lowest speeds, the underlying
back-EMF-based observer can be augmented with additional
information from a signal-injection based method [1], [11]–
[14].

SyRMs are usually magnetically saturated in the rated
operating point. The d-axis flux component saturates strongly
as a function of the corresponding current component, and
the d-axis saturation is coupled with the q-axis saturation.
In this paper, the inductance estimates are adjusted using a
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back-EMF-based method for improved medium- and high-
speed operation. The proposed inductance-adaptation method
is intended to be used in an initialization test in order to
obtain data of the operating-point inductances. This inductance
data could then be stored in look-up tables, or a function-
based saturation model could be fitted to this data in a fashion
similar to [15]. Alternatively, if dynamic requirements of the
application are moderate, the inductance-adaptation method
could be applied during normal operation of the drive (instead
of using look-up tables or a saturation model).

The stator resistance depends on the temperature. In this
paper, the stator-resistance estimate of the underlying speed-
adaptive full-order observer is adjusted on-line at low speeds
using a high-frequency signal-injection method. This cor-
rection produced by the signal-injection method affects the
estimation-error dynamics. Hence, additional focus has to be
put on the tuning of the augmented observer, in order to
avoid unstable regions and to guarantee smooth transitions
between low and high speed regions. The augmented observer
proposed in this paper is of a lower order than the method
proposed in [13], where the information provided by the
signal-injection method was used via introducing a fictitious
speed-correction parameter, which was then utilized to update
the resistance estimate. Reduction of the complexity of the
observer simplifies the analysis and tuning procedure.

After a review of the motor model in Section II and the
rotor-position observer in Section III, the main contributions
of the paper are presented in Sections IV and V:

1) An adaptation law to adjust the inductance estimates
at medium and high speeds using a back-EMF-based
method is proposed.

2) Analytical equations for steady-state position-estimation
and inductance-estimation errors are derived, taking into
account the errors in the other parameter estimates. A
stabilizing gain selection for the inductance adaptation
is proposed based on the analytical stability conditions.

3) An adaptation law to adjust the stator-resistance estimate
at low speeds using a signal-injection based method is
proposed.

4) An analytical equation for steady-state resistance-esti-
mation error is derived, and a stabilizing gain selection
is proposed.

The experimental setup is described in Section VI, and per-
formance of the proposed observer design is evaluated using
laboratory experiments with a 6.7-kW SyRM drive in Section
VII.
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Fig. 1. Block diagram of the vector control system. The DC-link voltage
uDC and the phase currents ia, ib, and ic are measured. The high-frequency
voltage excitation uc = [uc cos(ωct), 0]T is superimposed on the voltage
reference. Dead-time effect and power-device voltage drops are compensated
for in the space-vector modulator (SVPWM) using the phase-current feedback.
The contents of the blocks “Adaptive observer” and “Error signal” are shown
in Figs. 2(a) and 2(b), respectively.

II. SYRM MODEL

Real space vectors will be used here. For example, the
stator-current vector is is = [id, iq]

T, where id and iq are
the components of the vector and the matrix transpose is
marked with the superscript T. The orthogonal rotation matrix
is defined as

J =

[
0 −1
1 0

]
.

The electrical position of the d-axis is denoted by ϑm. The
d-axis is defined as the direction of the maximum inductance
of the rotor. The position depends on the electrical angular
rotor speed ωm according to

dϑm

dt
= ωm. (1)

To simplify the analysis in the following sections, the machine
model will be expressed in the estimated rotor reference frame,
whose d-axis is aligned at ϑ̂m with respect to the stator
reference frame. The stator inductance is

L = e−ϑ̃mJ

[
Ld 0
0 Lq

]
eϑ̃mJ (2)

where ϑ̃m = ϑ̂m − ϑm is the estimation error in the rotor
position, Ld the direct-axis inductance, and Lq the quadrature-
axis inductance. The voltage equation is

dψs

dt
= us −Rsis − ω̂mJψs (3a)

where ψs is the stator-flux vector, us the stator-voltage vector,
Rs the stator resistance, and ω̂m = dϑ̂m/dt is the angular
speed of the coordinate system. The stator current is a non-
linear function

is = L
−1ψs (3b)

of the stator-flux vector and the position error ϑ̃m.

(a)

(b)

Fig. 2. (a) Adaptive observer. The adjustable model is defined in (5). The
blue lines and blocks represent inductance adaptation, and the red lines and
blocks represent resistance adaptation. (b) Error-signal calculation scheme.
The bandwidth of the first-order low-pass filter (LPF) is αlp. The effect of
the discretization delay on the demodulation process is compensated for by
means of the constant parameter φd.

III. ROTOR-POSITION OBSERVER

The block diagram of a sensorless vector-controlled SyRM
drive is shown in Fig. 1. When the drive is operated in
the speed-control mode, the control system is augmented
with the speed controller, whose feedback signal is the rotor
speed estimate ω̂m. In the following, the speed-adaptive full-
order observer [16], [17] and the error-signal calculation are
considered.

A. Speed-Adaptive Full-Order Observer

The speed-adaptive full-order observer is illustrated in Fig.
2(a). The dynamics of the rotor position estimate are given by

dϑ̂m

dt
= ω̂m. (4)

In the adjustable model, the stator-flux vector and stator-
current vector are estimated according to

dψ̂s

dt
= us − R̂sîs − ω̂mJψ̂s +Kĩs (5a)

îs = L̂
−1
ψ̂s (5b)

where îs is the estimated stator-current vector, ĩs = îs − is is
the estimation error of the stator current, K is the observer
gain matrix, and R̂s is the stator resistance estimate. The
inductance estimate matrix is

L̂ =

[
L̂d 0

0 L̂q

]
(6)
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where L̂d and L̂q are the direct-axis and quadrature-axis
inductance estimates, respectively. Without loss of generality,
the elements of the observer gain matrix are expressed as

K =

[
R̂s + L̂dk11 L̂qk12

L̂dk21 R̂s + L̂qk22

]
(7)

in order to simplify the following equations. The four tuning
parameters are k11, k12, k21, and k22. The rotor speed is
estimated with the PI mechanism

ω̂m = kpĩs +

∫
kiĩsdt. (8)

The gain vectors kp = [0, kp] and ki = [0, ki] are chosen to
utilize the estimation error only in the q-axis direction.

B. General Stabilizing Gain Design

In order to simplify the following analysis, the gains k12

and k22 are selected according to [18]

k12 = −βk11, k22 = −βk21 (9)

where β = iq/id. Locally stable estimation-error dynamics
in every operating point are guaranteed for accurate model
parameters, if the remaining elements of the observer gain
matrix are selected as

k11 = k1, k21 = k2 (10)

where the functions k1 and k2 are

k1 = −b+ β(c/ω̂m − ω̂m)

β2 + 1
, k2 =

βb− c/ω̂m + ω̂m

β2 + 1
. (11)

The new design parameters are b and c, which should be
positive. In order to simplify the resulting equations, the speed-
adaptation gains kp and ki are selected according to

kp =
L̂qd

(L̂d − L̂q)id
, ki =

L̂qe

(L̂d − L̂q)id
(12)

where d and e are design parameters, which may depend on
the rotor speed. With this gain selection, the characteristic
polynomial of the closed-loop system consisting of (1) – (12)
can, after linearization, be split into a product of two second-
order polynomials [18],

(s2 + bs+ c)(s2 + ds+ e) (13)

and the stability is guaranteed for all positive values of b, c,
d, and e, if the parameter estimates are accurate. It is worth
noticing that the splitting of the characteristic polynomial in
(13) originates from the selection (9). The observer is of the
fourth order, and there are four gains. In order to further reduce
the number of design parameters, d and e can be chosen as
[18], [19]

d = 2ρ, e = ρ2 (14)

yielding a double pole located at s = −ρ. The remaining three
design parameters are b, c, and ρ, which should be positive.

IV. INDUCTANCE ADAPTATION

The proposed approach to adjust the inductance estimates
is to use an adaptation law

L̂ =

∫
kLĩsdt (15)

where the gain vector kL = [L̂dkL, 0] is chosen to utilize the
estimation error only in the d-axis direction. The gain vector is
scaled by L̂d in order to simplify the following equations. The
estimate L̂ can be the d-axis inductance estimate L̂d or the q-
axis inductance estimate L̂q. The method is closely related to
the permanent-magnet flux adaptation law proposed in [13].
The method is intended to be used in an initialization test in
order to obtain data of the operating-point inductances for a
saturation model. However, if dynamic requirements of the
application are moderate, the inductance-adaptation method
could also be applied during normal operation of the drive
(instead of using a saturation model). In the following, only
the key results are given, while the derivations can be found
in the Appendix.

A. L̂d Is Adapted

1) Steady-State Errors: If the adaptation law (15), com-
bined with the speed-adaptive full-order observer, is used to
update the d-axis inductance estimate, it can be shown from
(1) – (8) and (15) that the equation for the steady-state position
error ϑ̃m0 is (cf. Section B in the Appendix)

(Ld − Lq)β[cos(2ϑ̃m0)− 1]

+ (Ld − Lq) sin(2ϑ̃m0) + 2L̃qβ − 2R̃s/ω̂m = 0
(16)

where R̃s = R̂s − Rs is the resistance-estimation error and
L̃q = L̂q − Lq is the q-axis inductance-estimation error. The
equation suggests that the position error is large when the load
is large (because the effect of L̃q is large) and when the speed
of the motor is small (because the effect of R̃s is large). Hence,
the scheme should be used at high speeds and low loads.

The solution for the steady-state d-axis inductance estimate
is

L̂d =
Ld − Lq

2
cos(2ϑ̃m0)− β

Ld − Lq

2
sin(2ϑ̃m0)

+
Ld + Lq

2
− βR̃s

ω̂m
.

(17)

Characteristic behaviour of the the worst-case d-axis induc-
tance estimation error at different loads with parameter un-
certainty is depicted in Fig. 3. The relative uncertainty of
20% is assumed for the parameter estimates L̂q and R̂s.
Hence, four different worst-case combinations, consisting of
minimum and maximum values of the parameter estimates, can
be formed. For example, one of the worst-case combinations
is L̂q = 1.2Lq and R̂s = 0.8Rs. At each studied operating
point, the steady-state estimation errors of the system were
evaluated for all four worst-case combinations of erroneous
model parameters. It can be seen that the position error and the
inductance-estimation error are large when the load is large.
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(a) (b)

Fig. 3. Characteristic behaviour of the d-axis inductance adaptation at different loads with 20-% parameter uncertainty: (a) position estimation error; (b)
inductance estimation error. The q-axis inductance is Lq = 0.3 p.u., the stator resistance is Rs = 0.04 p.u., and the speed is ω̂m = 0.5 p.u. Only the worst
case is illustrated.

(a) (b)

Fig. 4. Characteristic behaviour of the q-axis inductance adaptation at different loads with 20-% parameter uncertainty: (a) position estimation error; (b)
inductance estimation error. The d-axis inductance is Ld = 2.0 p.u., the stator resistance is Rs = 0.04 p.u., and the speed is ω̂m = 1 p.u. Only the worst
case is illustrated.

2) Gain Selection: The inductance adaptation (15) affects
the dynamics of the closed-loop system slightly, and the tuning
of the augmented observer has to be reconsidered. The gain
selection (10) is lifted, and an alternative formulation for k11

and k21 is used, when the inductance adaptation is active.
It is assumed that the speed-adaptation loop (8) is faster than

the inductance-adaptation loop and the flux observer. Under
this assumption, the characteristic polynomial of the linearized
closed-loop system consisting of (1) – (9) and (15) is (cf.
Section C in the Appendix)

s3 +A2s
2 +A1s+A0 (18a)

where

A2 = βk21 − k11 + kLid (18b)
A1 = −ω̂m (k21 − ω̂m + βk11) (18c)

A0 = kLidω̂
2
m. (18d)

For design purposes, the characteristic polynomial is written
in the form

(s2 + bs+ c)(s+ αL). (19)

Equating (18) and (19), the gains of the augmented observer
can be written as functions of the design parameters b, c,
and αL, which all should be positive in order to stabilize the
system. When the d-axis inductance is adapted, the stabilizing
observer gain selection with accurate R̂s and L̂q is

k11 = k1 −
k2αL

ω̂m
, k21 = k2 +

k1αL

ω̂m
(20)

where k1 and k2 are defined in (11). The adaptation gain is

kL =
cαL

idω̂2
m

. (21)

It is worth noticing that if the parameter αL is small, the
original selection (10) for k11 and k21 could be used.

B. L̂q Is Adapted

1) Steady-State Errors: If the adaptation law (15), com-
bined with the speed-adaptive full-order observer, is used
to update the q-axis inductance estimate, the position-error
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equation is (cf. Section B in the Appendix)

(Ld − Lq)[cos(2ϑ̃m0)− 1]/β

− (Ld − Lq) sin(2ϑ̃m0)− 2L̃d/β − 2R̃s/ω̂m = 0
(22)

where L̃d = L̂d−Ld is the d-axis inductance-estimation error.
The equation suggests that the position error is large when the
load is small (because the effect of L̃d is large) and when the
speed of the motor is small (because the effect of R̃s is large).
Hence, the scheme should be used at high speeds and high
loads.

The solution for the steady-state q-axis inductance estimate
is

L̂q =
Ld + Lq

2
− Ld − Lq

2
cos(2ϑ̃m0)

+
R̃s

βω̂m
− Ld − Lq

2β
sin(2ϑ̃m0).

(23)

Characteristic behaviour of the worst-case q-axis inductance
estimation error at different loads with parameter uncertainty
of 20% is depicted in Fig. 4. It can be seen that the position
error and the inductance-estimation error are large when the
load is small.

2) Gain Selection: The stabilizing gain selection is derived
in a fashion similar to previous subsection. The coefficients
for (18) are (cf. Section C in the Appendix)

A2 = βk21 − k11 − kLidβ
2 (24)

A1 = −ω̂m (k21 − ω̂m + βk11) (25)

A0 = −kLidω̂
2
mβ

2. (26)

When the q-axis inductance is adapted, the stabilizing gain
selection with accurate R̂s and L̂d is determined by (20) and
the adaptation gain is

kL = − cαL

β2idω̂2
m

. (27)

V. STATOR-RESISTANCE ADAPTATION

A. High-Frequency Signal Injection
As shown in Fig. 1, a high-frequency voltage excitation

is superimposed on the stator voltage in the estimated d-axis
direction [20],

uc =

[
uc cos(ωct)

0

]
(28)

where uc and ωc are the magnitude and the angular frequency,
respectively, of the injected voltage. The high-frequency cur-
rent responses depend on the position error,

idc =
uc sin(ωct)

ωcLdet

[
LΣ − L∆ cos(2ϑ̃m)− Ldq sin(2ϑ̃m)

]
(29a)

iqc =
uc sin(ωct)

ωcLdet

[
L∆ sin(2ϑ̃m)− Ldq cos(2ϑ̃m)

]
(29b)

where

Ldet = LddLqq − L2
dq (30a)

LΣ =
Ldd + Lqq

2
(30b)

L∆ =
Ldd − Lqq

2
(30c)

and

Ldd =
∂ψd

∂id
, Ldq =

∂ψd

∂iq
, Lqq =

∂ψq

∂iq
. (30d)

The block diagram of the error-signal calculation is shown
in Fig. 2(b). In order to compensate for the cross-saturation
effects, the error signal ε is calculated using a combination of
the d- and q-axis current components [21]. This combination
is demodulated and low-pass filtered (LPF) [19], [22],

ε = LPF

{(
L̂dq

L̂qq

id + iq

)
sin(ωct+ φd)

}
(31)

where L̂dq is the estimated incremental inductance between
the two axis and L̂qq is the estimated q-axis incremental
inductance. The effect of the discretization delay on the
demodulation process is compensated for by means of the con-
stant parameter φd. A first-order low-pass filter is considered
in the demodulation process.

Assuming accurate model parameters and small position
error, the error signal ε in quasi-steady state reduces to [21]

ε ≈ kε sin(2ϑ̃m) (32)

where kε is the signal-injection gain given by

kε =
uc

ωc

L∆Lqq − L2
dq

2LdetLqq
. (33)

With accurate compensation factor L̂dq/L̂qq, the error signal
ε vanishes with ϑ̃m = 0. Hence, the position error caused by
the cross-saturation can be ideally reduced to zero if the ratio
L̂dq/L̂qq is known.

B. Proposed Adaptation Method

The proposed stator-resistance adaptation method is to feed
the error signal ε obtained from (31) to the PI mechanism

R̂s = γpε+

∫
γiεdt. (34)

When the resistance-adaptation mechanism is combined with
the speed-adaptive full-order observer, it can be shown from
(1) – (9) that the steady-state resistance-estimation error is (cf.
Section B in the Appendix)

R̃s = ω̂m
k11L̃d + L̃qβ(k21 − ω̂m)

k21 − ω̂m − βk11
(35)

where ϑ̃m0 = 0 is assumed (corresponding to the assumption
that the error signal ε produced by the signal-injection method
is proportional to the position-estimation error). It can be seen
that the resistance-estimation error is proportional to the rotor
speed. Hence, the resistance adaptation should be disabled at
higher speeds.
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C. Proposed Gain Selection

The stator-resistance adaptation (34) affects the closed-loop
estimation error dynamics, and the tuning of the augmented
observer has to be reconsidered. The gain selection (10) is
lifted, and an alternative formulation for k11 and k21 has to
be used, when the stator-resistance adaptation is active.

It is assumed that the speed-adaptation loop (8) is faster than
the resistance-adaptation loop and the flux observer. Under
this assumption, the characteristic polynomial of the linearized
closed-loop system consisting of (1) – (9) and (31) – (34) is
(cf. Section C in the Appendix)

s4 +A3s
3 +A2s

2 +A1s+A0 (36a)

where

A3 = αlp − k11 + βk21 (36b)

A2 =
2kε

Ld − Lq
αlpβγp − αlp(k11 − βk21)

− ω̂m(k21 − ω̂m + βk11)

(36c)

A1 =
2kε

Ld − Lq
αlp [βγi + γp(k21 − ω̂m − βk11)]

− αlpω̂m(k21 − ω̂m + βk11)

(36d)

A0 =
2kε

Ld − Lq
αlpγi(k21 − ω̂m − βk11) (36e)

and αlp is the bandwidth of the low-pass filter in (31).
For design purposes, the characteristic polynomial is written

as
(s2 + bs+ c)(s+ α′lp)(s+ αR) (37)

where b and c are design parameters associated with the flux
observer. In the following, the design parameters α′lp and αR

are associated with the low-pass filter (31) and the resistance-
adaptation loop (34), respectively. The signal-injection can be
turned off by selecting αR = 0. Equating (36) and (37), the
gains of the augmented observer can be written as functions
of the design parameters {b, c, α′lp, αR}, which all should be
positive in order to stabilize the system.

When b, c, αR, and αlp are the design parameters, the
observer gain k11 is determined by

k11 = βk21 − b− αR + αlp − α′lp (38a)

and the resistance-adaptation gains γi and γp are

γi =
Ld − Lq

2kε

α′lpαRc

αlp(k21 − ω̂m − βk11)
(38b)

γp =
Ld − Lq

2kε

ω̂m(k21 − ω̂m + βk11)

k21 − ω̂m − βk11

+
Ld − Lq

2kε

α′lp(c+ bαR) + cαR

αlp(k21 − ω̂m − βk11)

− βγi

k21 − ω̂m − βk11
.

(38c)

The remaining constraint from (36) and (37) is a cubic
equation for either α′lp or k21. However, if the bandwidth αlp

of the low-pass filter in (31) is large, i.e. αlp � αR and
αlp � |−b±

√
b2 − 4c|/2, then approximation α′lp = αlp can

be used and k21 can be considered as a free variable. When

αR → 0, then k21 → k2 should hold in accordance with (10),
which also leads to k11 → k1.

VI. EXPERIMENTAL SETUP AND IMPLEMENTATION

The motion-sensorless control system, shown in Fig. 1, was
implemented in a dSPACE DS1104 PPC/DSP board. A 6.7-
kW four-pole SyRM was fed by a frequency converter that
is controlled by the DS1104 board. The rated values of the
SyRM are: speed 3175 r/min; frequency 105.8 Hz; line-to-
line rms voltage 370 V; rms current 15.5 A; and torque 20.1
Nm. The base values for angular speed, voltage, and current
are defined as 2π · 105.8 rad/s,

√
2/3 · 370 V, and

√
2 · 15.5

A, respectively.
A servo motor was used as a loading machine. The rotor

speed ωm and position ϑm were measured using an incre-
mental encoder for monitoring purposes. The total moment of
inertia of the experimental setup is 0.015 kgm2 (2.7 times the
inertia of the SyRM rotor).

The stator currents and the DC-link voltage were measured,
and the reference voltage obtained from the current controller
was used for the observer according to Fig. 1. The sampling
was synchronized to the modulation, and both the switching
frequency and the sampling frequency were 5 kHz. The effect
of inverter nonlinearities on the stator voltage is substantial
at low speeds. Therefore, the most significant inverter non-
linearities, i.e., the dead-time effect and power device voltage
drops, have to be compensated for [23], [24]. Using phase a
as an example, a compensated duty cycle for the pulsewidth
modulator was evaluated as

da = da,ref +
2dδ
π

arctan

(
ia
iδ

)
(39)

where da,ref is the ideal duty cycle obtained from the current
controller and ia is the phase current. The parameter dδ =
0.009 p.u. takes into account both the dead-time effect and
the threshold voltage of the power devices, while the on-
state slope resistance of the power devices is included in the
stator-resistance estimate. The shape of the arctan function is
determined by the parameter iδ = 0.014 p.u. The duty cycles
of phases b and c were evaluated in a similar manner.

The control system was augmented with a speed controller,
whose feedback signal was the speed estimate ω̂m obtained
from the observer. The bandwidth of this PI controller, includ-
ing active damping [25], was 0.05 p.u. The stator resistance
estimate used in the inductance-adaptation tests is R̂s = 0.042
p.u. (i.e., the measured dc resistance at room temperature).

The magnetic saturation has been modeled as functions of
the estimated flux [26],

id =
ψd

Ldu

(
1 + α|ψd|k +

δLdu

n+ 2
|ψd|m|ψq|n+2

)
(40a)

iq =
ψq

Lqu

(
1 + γ|ψq|l +

δLqu

m+ 2
|ψd|m+2|ψq|n

)
(40b)

where Ldu = 2.73 p.u., Lqu = 0.843 p.u., α = 0.333 p.u.,
γ = 5.58 p.u., δ = 2.60 p.u., k = 6.6, l = 0.8, m = 1, and
n = 0. The constant d-axis current reference id,ref = 0.4 p.u.
is used.
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A smooth transition from standstill to high-speed operation
is implemented by decreasing the injected voltage as the speed
increases,

uc = uc0f(ω̂m) (41)

where the transition function is

f(ω̂m) =

{
1−

∣∣∣ ω̂m

ω∆

∣∣∣ , if |ω̂m| ≤ ω∆

0, otherwise
(42)

and uc0 = 0.1 p.u. and ω∆ = 0.1 p.u.
The design parameter b is chosen according to

b =

{
ω∆, if |ω̂m| ≤ ω∆

|ω̂m| , otherwise.
(43)

Other design parameters values were: c = 2.0·b2, ωc = 2π·500
rad/s, αlp = 0.3 p.u., αR = 0.02 p.u.·f(ω̂m), and ρ = 2 p.u.
The gain selection was based on (38) and k21 was selected
according to

k21 =
β(b+ αR) + ω̂m

β2 + 1
− cω̂m

ω2
∆(β2 + 1)

(44)

when |ω̂m| < ω∆, which reduces to (10) when αR → 0 and
|ω̂m| → ω∆.

The resistance estimate R̂sf seen by the remaining parts of
the system, such as the current controller, is obtained using a
0.5-Hz low-pass filter for the internal resistance estimate R̂s

of the flux observer. The compensation for cross saturation is
modeled as

L̂dq

L̂qq

= −0.45 · 2
π
arctan

(
iq

0.2 p.u.

)
. (45)

VII. SIMULATION AND EXPERIMENTAL RESULTS

A. Inductance Adaptation

Simulation results of inductance adaptation in no-load
condition are depicted in Fig. 5(a). The speed reference is
ωm,ref = 0.5 p.u. The adaptation is turned on at t = 1 s
with adaptation parameter αL = 0.1 p.u. and initial value
L̂d = 2.0 p.u. It can be seen that the estimated inductance
converges to the actual value, and the position error decreases
simultaneously.

Similar results for the experimental setup are depicted
in Fig. 5(b). Since the actual machine saturates, the initial
value of the actual inductance is slightly larger than the final
value due to position error. In this experiment, the q-axis
inductance estimate is L̂q = 0.45 p.u. The final value of the
estimated inductance coincides with the mean value of the
actual inductance, and the mean value of the position error is
close to zero. If the bandwidth of the inductance adaptation
were increased, the inductance estimate would follow the
inductance harmonics (which is typically undesirable).

Experimental results of the q-axis inductance adaptation
with load-torque step are depicted in Fig. 6. Initially, the
rated load torque was applied. The adaptation is turned on
at t = 1 s with adaptation parameter αL = 0.1 p.u. and initial
value L̂q = 0.45 p.u. In this experiment, the d-axis inductance
estimate is L̂d = 1.92 p.u. The load torque was reversed at t =

Fig. 6. Experimental results of the q-axis inductance adaptation with load-
torque step (positive rated→ negative rated). The speed reference is ωm,ref =
0.5 p.u. The adaptation is turned on at t = 1 s.

4.0 s. The speed reference is ωm,ref = 0.5 p.u. It can be seen
that the position error decreases close to zero. The adapted q-
axis inductance differs from the value given by the inductance
model due to error in the (constant) d-axis inductance estimate.

B. Resistance Adaptation
Experimental results of the resistance adaptation with load-

torque steps when the speed reference was kept at 0 are shown
in Fig. 7. Initially, the negative rated load torque was applied
at ω̂m = 0.1 p.u. The drive was decelerated to standstill at
t = 1 s. The load torque was reversed at t = 5.0 s and
reversed again at t = 7.5 s. It can be seen that the filtered
resistance estimate in the third subplot recovers rapidly from
a sudden load reversal, and the variation is nearly independent
of the sign of the load. The small variation originates from the
fact that in the analysis it was assumed that the steady-state
position error is zero, which is not actually the case.

Experimental results of sloped speed reversals from ω̂m =
0.1 p.u. to ω̂m = −0.1 p.u. and then back to ω̂m = 0.1 p.u.
under the negative rated load torque are shown in Fig. 8.
In Fig. 8(a), the resistance adaptation has been disabled. In
Fig. 8(b), the adaptation has been enabled. It can be seen that
the drive is unstable in the vicinity of zero speed without the
resistance adaptation.

The filtered resistance estimate in the third subplot varies
with the speed, as predicted by (35), but the variation remains
small. The noise in the estimates originates from saturation-
induces saliencies (second harmonic), which is seen as a speed
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(a) (b)

Fig. 5. Adaptation of the d-axis inductance adaptation in no-load condition: (a) simulation results; (b) experimental results. The speed reference is ωm,ref =
0.5 p.u. The adaptation is turned on at t = 1 s.

deviation by the speed controller and thus amplified. The noise
disappears as the speed approaches zero.

The actual behaviour of the resistance estimate (34) in
Fig. 8(b), when the speed is ω̂m ≈ −0.05 p.u., is shown in
Fig. 9. The solid line shows the actual resistance estimate R̂s

and the dashed line shows the filtered estimate R̂sf seen by
remaining parts of the system, such as the current controller.
It can be seen that the resistance estimate varies with twice
the rotational frequency. Hence, the resistance estimate (34)
should be considered as an internal compensation variable and
the filtered resistance estimate represents the actual resistance.

VIII. CONCLUSIONS

In this paper, a speed-adaptive full-order observer is aug-
mented with parameter-adaptation laws for SyRM drives. The
inductances are adapted using a back-EMF-based method,
and the stator resistance is adapted using a signal-injection
method. The analytical equations for steady-state estimation
errors indicate that the resistance adaptation should be enabled
only at low speeds, the d-axis inductance adaptation should be
enabled only at medium and high speeds near no load, and the
q-axis inductance adaptation should be enabled only at high
speeds under high loads. The methods perform well under the
intended operation conditions, and both small position error
and small parameter estimation errors are demonstrated in
laboratory experiments.
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APPENDIX
ESTIMATION ERRORS

First, nonlinear closed-loop estimation-error dynamics re-
lating to the augmented observer are given as a starting
point. Then, the equations for steady-state estimation errors
are given. Finally, the linearized models for the estimation-
error dynamics are shown.

A. Nonlinear Estimation-Error Dynamics

The nonlinear estimation-error dynamics of the closed-loop
system, consisting of (3) and (5), are

dψ̃s

dt
=
[(
K − R̂sI

)
L̂
−1
− ω̂mJ

]
ψ̃s

+
[(
K − R̂sI

)(
L̂
−1
L− I

)
− R̃sI

]
is

(46a)

ĩs = L̂
−1
ψ̃s +

(
L̂
−1
L− I

)
is (46b)

where ψ̃s = ψ̂s − ψs. The inductance matrix L, defined in
(2), is a function of the position estimation error ϑ̃m, whose
dynamics are

dϑ̃m

dt
= ω̃m (47)
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(a) (b)

Fig. 8. Experimental results of sloped speed reversals (ω̂m = 0.1 p.u. → ω̂m = −0.1 p.u. → ω̂m = 0.1 p.u.) under the negative rated load torque: (a)
without the resistance adaptation; (b) with the resistance adaptation.

according to (1) and (4). The dynamics of the speed-estimation
error ω̃m = ω̂m − ωm are

dω̃m

dt
= kiĩs +

d

dt
(kpĩs) (48)

based on (8). Similarly, the dynamics of the inductance-
estimation error L̃ = L̂− L are

dL̃

dt
= kLĩs (49)

based on (15).

B. Steady-State Estimation Errors

The flux-estimation error in steady state can be solved from
(46a). If the gains are selected according to (9), the flux-

estimation errors are

ψ̃d0 = − idk21(β
2 + 1)(Ld − Lq)[cos(2ϑ̃m0)− 1]

2(k21 − ω̂m + βk11)

+ id
β(k21 + ω̂m − βk11)R̃s + k21ω̂m(L̃d − β2L̃q)

ω̂m(k21 − ω̂m + βk11)
(50a)

ψ̃q0 =
idk11(β

2 + 1)(Ld − Lq)[cos(2ϑ̃m0)− 1]

2(k21 − ω̂m + βk11)

− id
(ω̂m − k21 + βk11)R̃s + k11ω̂m(L̃d − β2L̃q)

ω̂m(k21 − ω̂m + βk11)
(50b)

Naturally, the flux estimation error is zero, if accurate parame-
ter estimates are assumed. The steady-state position-estimation
error can be solved from (48) after the steady-state flux-
estimation errors are solved,

A cos(2ϑ̃m0) +B sin(2ϑ̃m0) + C = 0 (51a)

where

A = (Ld − Lq) [β(k21 − ω̂m)− k11] (51b)
B = (Ld − Lq) [(k21 − ω̂m) + βk11] (51c)

C = −A+ 2[βk11 − (k21 − ω̂m)]R̃s/ω̂m

+ 2k11L̃d + 2β(k21 − ω̂m)L̃q. (51d)



10

d

dt


ψ̃d

ψ̃q

ϑ̃m

ω̃m

L̃d

 =


k11 k12 + ω̂m a13 ψ̃q0 −k11id

k21 − ω̂m k22 a23 −ψ̃d0 −k21id
0 0 0 1 0

a41 a42 a43 a44 − dk21

L̂d−L̂q

kL 0 −kLβnum 0 −kL
βden+2ψ̃d0+(Ld+Lq)id

2L̂d



ψ̃d

ψ̃q

ϑ̃m

ω̃m

L̃d

 (53)

d

dt



ψ̃d

ψ̃q

ϑ̃m

ω̃m

R̃s

ε̃

 =


k11 k12 + ω̂m a13 ψ̃q0 −id 0

k21 − ω̂m k22 a23 −ψ̃d0 −iq 0
0 0 0 1 0 0
a41 a42 a43 a44 a45 0
0 0 2γpαlpkε 0 0 γi − γpαlp

0 0 2αlpkε 0 0 −αlp





ψ̃d

ψ̃q

ϑ̃m

ω̃m

R̃s

ε̃

 (56)

d

dt


ψ̃d

ψ̃q

R̃s

ε̃

 =


k11 k12 + ω̂m + a13

(Ld−Lq)id
−id 0

k21 − ω̂m k22 +
a23

(Ld−Lq)id
−iq 0

0
2kεαlpγp

(Ld−Lq)id
0 γi − αlpγp

0
2kεαlp

(Ld−Lq)id
0 −αlp



ψ̃d

ψ̃q

R̃s

ε̃

 (57)

Fig. 7. Experimental results of the stator-resistance estimation with load-
torque steps (negative rated → rated → negative rated) when the speed
reference is kept at 0. The drive was decelerated to standstill at t = 1 s
from ω̂m = 0.1 p.u.

From (49), an additional constraint is obtained for the
position-estimation error in the steady state:

(Ld − Lq)[1− cos(2ϑ̃m0) + β sin(2ϑ̃m0)]

+ 2L̃d + 2βR̃s/ω̂m = 0.
(52)

Together with (51), this determines L̃d and ϑ̃m0 when the d-

Fig. 9. Behaviour of the resistance estimate, when ω̂m ≈ −0.05 p.u. in
Fig. 8(b). The solid line is the actual estimate R̂s and the dashed line is the
filtered estimate R̂sf .

axis inductance is adapted, or L̃q and ϑ̃m0 when the q-axis
inductance is adapted. If the stator resistance is updated using
the signal injection, the additional constraint with accurate
compensation is ϑ̃m0 = 0, and R̃s can be solved from (51).

C. Linearized Models

1) Inductance Adaptation: The nonlinear estimation-error
dynamics consisting of (46) – (49) are linearized. When the
d-axis inductance is adapted, the resulting fifth-order linearized
system is given in (53), where

a13 = −k11βnum − k12βden, a23 = −k21βnum − k22βden

a41 = d
k21 − ω̂m

(L̂d − L̂q)id
, a42 =

e+ k22d

(L̂d − L̂q)id

a43 =
da23 − eβden

(L̂d − L̂q)id
, a44 = −d ψ̃d0 + βden

(L̂d − L̂q)id

a45 = −d iq

(L̂d − L̂q)id
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and

βden = (Ld − Lq)[id cos(2ϑ̃m0)− iq sin(2ϑ̃m0)]

βnum = (Ld − Lq)[iq cos(2ϑ̃m0) + id sin(2ϑ̃m0)]

For design purposes, the order of the system is reduced by
assuming the speed-adaptation loop to be much faster than the
dynamics of the flux observer and the inductance-adaptation
loop. Hence, the speed adaptation can be considered to be
in quasi-steady state, corresponding to ĩq = 0 and further
ψ̃q = id(Ld − Lq)ϑ̃m. Using this condition, (53) reduces to

d

dt

ψ̃d

ψ̃q

L̃d

 =

 k11 k12 + ω̂m −k11id
k21 − ω̂m k22 −k21id

kL −kLβ −kLid

ψ̃d

ψ̃q

L̃d

 (54)

where ϑ̃m0 = 0 is assumed. The characteristic polynomial of
this system is given in (18). In a similar manner, the linearized
estimation-error dynamics are obtained for the adaptation of
the q-axis inductance:

d

dt

ψ̃d

ψ̃q

L̃q

 =

 k11 k12 + ω̂m −k12iq
k21 − ω̂m k22 −k22iq

kL −kLβ kLβ
2id

ψ̃d

ψ̃q

L̃q

 (55)

2) Resistance Adaptation: When the speed-adaptive full-
order observer is augmented with the low-pass filter (31)
and the stator-resistance adaptation law (34), the linearized
estimation-error dynamics are governed by the sixth-order
system (56). In order to reduce the order of the system, it
is assumed that the speed-adaptation loop is faster than the
flux observer and the resistance-adaptation loop, i.e. ψ̃q =
id(Ld −Lq)ϑ̃m. Under this assumption, (56) reduces to (57).
The characteristic polynomial of (57) is given in (36).
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