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Modeling of Saturation Due to Main and Leakage Flux

Interaction in Induction Machines

Toni Tuovinen, Marko Hinkkanen, and Jorma Luomi

Department of Electrical Engineering

Helsinki University of Technology

P.O. Box 3000, FI-02015 TKK, Finland

Abstract—Saturation due to the main flux and rotor leakage
flux interaction appears in induction machines, especially if the
rotor slots are skewed or closed. Conventional saturation models
used in connection with dynamic equivalent-circuit models do
not take this phenomenon into account. In this paper, explicit
functions for modeling this mutual saturation are proposed.
These functions are physically reasonable, they are easy to fit, and
the number of their parameters is small. The proposed functions
can be used in real-time applications and in computer simulations
if high accuracy and physical consistency are preferable. The
model fits well to the data obtained from finite element analysis
or experimental data of a 2.2-kW motor. The model predicts the
stator current with good accuracy both in steady state and in
transients.

Index Terms—Induction motors, motor models, mutual satu-
ration, closed slots, rotor skew.

I. INTRODUCTION

Induction machines are usually magnetically saturated in

the rated operating point. The main flux saturates strongly

as a function of the magnetizing current. Furthermore, it has

been observed that the main flux may depend significantly

on the load (or the rotor current) due to the interaction

between the main flux and the rotor leakage flux [1], [2].

This mutual saturation effect originates mainly from skewed

and closed rotor slots [3], which are used in the majority of

small machines. A typical main-flux saturation characteristics

is sketched in Fig. 1; to model the inductance corresponding

to the figure, a function of two variables is needed.

If the geometry of the machine and the material properties

are known, magnetic saturation can be modeled with good

accuracy using finite-element analysis (FEA). However, FEA

is computationally too demanding for many applications, in-

cluding real-time flux estimation in controlled drives, design

of control algorithms, and simulations of transient phenomena.

Instead, models based on lumped parameters, such as the

equivalent circuit in Fig. 2, are commonly used.

In equivalent-circuit models, the magnetizing inductance

is usually assumed to saturate only as a function of the

magnetizing current or main flux [4], [5], [6]. The effects

of the main flux saturation have been analyzed in [7], [8].

The leakage inductances have been modeled as functions of

their own currents [4], [9]. For the magnetizing curve, explicit

functions have been used, e.g. polynomials [10], [6], power

functions [11], [4], and rational power functions [12]. In

these previous models, the mutual saturation effect is omitted.

The small-signal model proposed in [13] takes the mutual

ψs ψs

iM iR00 iM1 iM2 iR2

iR = iR2

iR = 0 iM = iM2

iM = iM1

Fig. 1. Typical saturation characteristics of main flux ψs(iM, iR). On the
left-hand side, ψs is shown as a function of magnetizing current iM for two
different values of rotor current (iR = 0 corresponding to no-load operation
and iR2 corresponding to constant rotor current). On the right-hand side, ψs

is shown as a function of iR for two values of iM.

saturation effect into account, but no explicit functions are

given for saturation characteristics.

The accuracy of the inductance model is important in

various applications. If stator resistance adaptation is applied,

the low-speed stability of speed-sensorless drives depends

significantly on the inductance estimates [14]. In induction

machines fed by frequency converters, the harmonic losses

become dependent on the load current because of the mutual

saturation [15]. The effects of magnetic saturation during tran-

sients can be more accurately analyzed by means of computer

simulations if the mutual saturation effect is included in the

dynamic model. For example, the effects of saturation induced

saliencies are important when signal injection methods are

used.

The inductance values of a machine cannot be measured

directly. Usually, only the stator current, the stator voltage

and the rotor speed are measured. If the magnetic saturation

is modeled using functions, it is possible to obtain the func-

tion parameters by exploiting experimental data from several

operating points [16].

In this paper, explicit functions are proposed for the sat-

uration characteristics—including the mutual saturation. The

inductances become functions of two variables (fluxes or

currents). The proposed functions are physically reasonable,

they are easy to fit, and the number of parameters is compara-

tively small. The proposed functions can be used in computer

simulations where high accuracy and physical consistency are

preferable. As an example, the inductance data of a 2.2-

kW induction motor (obtained from FEA) are fitted to the
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Fig. 2. Dynamic Γ model in coordinates rotating at angular speed ωs, the
angular slip frequency being ωr.

proposed model, and a method to obtain the model parameters

from laboratory measurements is demonstrated. A comparison

between simulated and experimental stator currents is also

given for a transient phenomenon.

II. MACHINE MODEL

As stated in [17], the T-equivalent dynamic model is more

complex than necessary in the case of linear magnetics, and it

is inadequate for use when the machine is saturated. Saturation

effects appearing in machines equipped with closed or skewed

rotor slots can be conveniently included in the Γ-equivalent

model shown in Fig. 2, where the total leakage inductance is

placed on the rotor side.

Real-valued space vectors will be used. They are denoted

by boldface lowercase letters; for example, the stator current

vector is is = [isd, isq]
T and its magnitude is

is =
√

i2sd + i2sq (1)

The orthogonal rotation matrix is

J =

[

0 −1
1 0

]

(2)

Since the saturation is to be modeled, it is convenient to

choose the stator flux vector ψs and the rotor flux vector

ψR as state variables, in order to avoid the differentiation

of saturable inductances. In a synchronous coordinate system

rotating at angular speed ωs, the voltage equations of the

induction machine are

dψs

dt
= us −Rsis − ωsJψs (3a)

dψR

dt
= uR −RRiR − ωrJψR (3b)

where us is the stator voltage vector, Rs the stator resistance,

uR the rotor voltage vector, RR the rotor resistance, and iR
the rotor current vector. The angular slip frequency is ωr =
ωs − ωm, the electrical angular speed of the rotor being ωm.

The stator and rotor current vectors are

is = ψs/LM − iR (4a)

iR = (ψR −ψs)/Lσ (4b)

respectively, where LM is the magnetizing inductance and

Lσ is the total leakage inductance. The leakage flux can be

expresses as ψσ = LσiR and the main flux as ψs = LMiM,

where iM = is + iR is the magnetizing current.

It is worth noticing that the flux vectors are assumed to be

parallel with the corresponding current vectors in accordance
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Fig. 3. (a) Space vector diagram and (b) magnetic flux paths: stator flux and
rotor leakage flux.

with Fig. 2, while the scalar-valued inductances may be func-

tions of the currents or fluxes. Inductances are assumed to be

lossless. Hence, the inductances should fulfill the reciprocity

condition [18], [3]:

∂ψs

∂iR
=
∂ψσ

∂iM
(5)

If needed, the iron losses can be taken into account separately

[17], [19], [20]. A short-circuited rotor winding will be con-

sidered in this paper, i.e. uR = [0, 0]T.

III. OVERVIEW OF MAGNETIC SATURATION

If the stator slots are semi-closed (or open) as usual, the

saturation of the stator leakage inductance is insignificant un-

less the current is very high. The stator leakage flux increases

the load dependency of LM only slightly.

A. Stator Flux and Leakage Flux

A vector diagram showing fluxes and currents of the Γ
model is depicted in Fig. 3(a). The stator flux path and the

leakage flux path are sketched in the motor cross-section in

Fig. 3(b). The stator flux causes saturation principally in the

teeth and yokes of the stator and the rotor.

In the case of closed rotor slots, the slot bridges provide

a path for the rotor leakage flux. The leakage inductance Lσ

saturates strongly as a function of the rotor current [21], [22].

The rotor flux is smaller than the stator flux due to the leakage

flux since ψR =
√

ψ2
s − L2

σi
2
R. Thus, increasing the rotor

current should decrease the saturation in the rotor teeth and

yoke. However, the leakage flux is nearly perpendicular to the

stator flux, and it can be noticed in Fig. 3(b) that the saturation

at the rotor surface and in the slot bridges caused by the rotor

leakage flux appears in the stator flux path. Therefore, the

magnetizing inductance LM may saturate as a function of the

rotor leakage flux (or the rotor current), particularly if the rotor

slots are closed.
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Fig. 4. Effect of skewed rotor when the motor consists of three slices
with different rotor positions: (a) current space vectors and (b) saturation
characteristics. Currents in the end slices are marked by subscripts 1 and 3
and currents in the middle slice by the subscript 2.

B. Rotor Skewing

Assuming linear magnetic properties, skewing the rotor

slots reduces the magnetic coupling between the stator and

rotor windings, and increases the leakage inductance [23]. The

rotor skew also has an influence on the magnetic saturation,

reducing the magnetizing inductance. A dominant effect is the

change in the relative phase of the stator and rotor currents in

the axial direction due to the skewed rotor bars, causing the

saturation level of a loaded motor to vary in the axial direction.

The decrease in flux at one end of the machine is not balanced

by the increase of the flux at the other end of the machine [2].

A skewed motor can be considered to consist of an infinite

number of elemental machines lying in radial planes and con-

nected in series, with a gradual relative phase shift between the

stator and rotor currents in the axial direction [24]. The motor

is assumed to consist of three slices in Fig. 4(a), where the

rotor current vectors are iR1, iR2, and iR3 and the magnetizing

current vectors are iM1 = is + iR1, iM2 = is + iR2, and

iM3 = is + iR3. The effect of magnetic saturation on the

corresponding flux linkages ψs1, ψs2, and ψs3 is illustrated

in Fig. 4(b). If a skewed motor is saturated, the magnetizing

inductance

LM =
ψs1 + ψs2 + ψs3

iM1 + iM2 + iM3

(6)

becomes a function of the rotor current and decreases as the

rotor current increases.

IV. SATURATION MODELS

A. Conventional Functions

Conventionally, the saturable magnetizing inductance is

modeled as

LM(ψs) =
ψs

iM(ψs)
or LM(iM) =

ψs(iM)

iM
(7)

The first form is often preferred since iM(ψs) can be modeled

using polynomials or power functions. For example, the power

function [11], [4]

iM(ψs) =
ψs

LMu

(1 + αψa
s ) (8)

includes only three parameters (α ≥ 0, a ≥ 0, and the

unsaturated inductance LMu > 0). The resulting inductance

function is

LM(ψs) =
LMu

1 + αψa
s

(9)

If needed, functions corresponding to (8) could be used to

model iR(ψσ). This kind of saturation models always fulfill

(5), but they cannot model the mutual saturation effect. Instead

of the power function (8), a polynomial could be used [10],

[6].

B. Proposed Power Function

In this paper, the mutual saturation effect is taken into

account by modeling the magnetizing inductance LM and the

rotor leakage inductance Lσ as

LM(ψs, ψσ) =
ψs

iM(ψs, ψσ)
(10a)

Lσ(ψs, ψσ) =
ψσ

iR(ψs, ψσ)
(10b)

The goal is to find physically reasonable functions

iM(ψs, ψσ) and iR(ψs, ψσ) fulfilling (5) and having a small

number of parameters. It is convenient to consider functions

of the form [25]

iM(ψs, ψσ) = i′M(ψs) +
df(ψs)

dψs

g(ψσ) (11a)

iR(ψs, ψσ) = i′R(ψσ) + f(ψs)
dg(ψσ)

dψσ

(11b)

The function (8) is adopted for i′M(ψs) and i′R(ψσ). The

mutual saturation effect is modeled with power functions:

f(ψs) ∝ ψc+2
s and g(ψσ) ∝ ψd+2

σ .

The resulting saturation characteristics are

iM(ψs, ψσ) =
ψs

LMu

(

1 + αψa
s +

γLMu

d+ 2
ψc
sψ

d+2
σ

)

(12a)

iR(ψs, ψσ) =
ψσ

Lσu

(

1 + βψb
σ +

γLσu

c+ 2
ψc+2
s ψd

σ

)

(12b)

where {α, β, γ} ≥ 0 and {a, b, c, d} ≥ 0. It can be easily

shown that the condition (5) holds. Furthermore, any other

functions could be used for i′M(ψs) and i′R(ψσ) without violat-

ing the reciprocity condition. The inductances corresponding

to (12) are

LM(ψs, ψσ) =
LMu

1 + αψa
s + γLMu

d+2
ψc
sψ

d+2
σ

(13a)

Lσ(ψs, ψσ) =
Lσu

1 + βψb
σ + γLσu

c+2
ψc+2
s ψd

σ

(13b)

If no mutual saturation existed in the machine to be analyzed,

parameter γ would be zero and the model would be identical

to the model proposed in [11].



V. PARAMETER IDENTIFICATION

A. Direct Method

The currents and the fluxes of the machine can be computed

using FEA at different operating points, and the corresponding

magnetizing inductance LM and leakage inductance Lσ can

be evaluated directly from the results. The parameters of the

proposed model are fitted by minimizing the cost function

J(LMu, Lσu, α, β, γ, a, b, c, d)

=

N
∑

n=1

(

L̂M,n − LM,n

)2

+
(

L̂σ,n − Lσ,n

)2 (14)

where the inductance estimates L̂M and L̂σ are calculated

from the proposed functions (13) using the actual values of

the fluxes ψs and ψσ in each operating point. The index n
refers to an operating point and N is the total number of

different operating points.

B. Indirect Method

The inductances of the induction machine cannot be mea-

sured directly. However, the parameters of the inductance

functions (13) can be identified indirectly based on more easily

measurable variables: the stator voltage us, the stator current

is, and the angular speed ωm of the rotor. The identification

method is based on steady-state measurements.

1) No-Load Test: First, the stator resistance Rs is measured.

Then, the machine is operated in steady state at no load at

various voltage levels. At each operating point, the estimate

ψ̂s of the stator flux is determined based on the stator voltage

equation (3a):

ψ̂s = −J (us −Rsis) /ωs (15)

Considering (13a) at no load, the stator current estimate can

be expressed as

îs =
ψ̂s

LMu

(1 + αψ̂a
s ) (16)

at every operating point, since the rotor current is zero. The

cost function to be minimized is

J(LMu, α, a) =
N
∑

n=1

∣

∣

∣

∣

∣

∣
îs,n − is,n

∣

∣

∣

∣

∣

∣

2

(17)

2) Load Test: The parameters LMu, α, and a are known

after the no-load test. It was found that the exponents b, c,
and d have a relatively small effect on the resulting saturation

characteristics, but they make the fitting process more difficult.

Therefore, parameter values b = 1, c = 1 and d = 0 were

fixed. To determine the remaining parameters of the inductance

model (13), the motor is operated at various voltage levels and

at various non-zero slip frequencies.

The stator flux estimate ψ̂s is evaluated independently of

the inductance model (13) using the stator voltage equation

(15). The rotor current estimate can be expressed as

îR =
ψ̂s

LMu

(

1 + αψ̂a
s +

γLMu

2
ψ̂sψ̂

2
σ

)

− is (18)

0 0.2 0.4 0.6 0.8

-0.02

0

0.02

0.04
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ω
r
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.u

.)

Fig. 5. Stator voltage magnitudes and angular slip frequencies used in
parameter estimation from the FEA data. Circles denote the data used in
load tests, crosses denote the no-load data. The stator frequency is 0.5 p.u.

in accordance with (12a). The leakage flux estimate can be

solved from the rotor voltage equation (3b),

ψ̂σ = − î
T

Rψ̂s

î
T

RîR

îR (19)

At each operating point, the leakage flux estimate ψ̂σ can be

analytically solved from (18) and (19) for any given value of

γ. Then, the estimated currents corresponding to (12) can be

evaluated:

îM =
ψ̂s

LMu

(

1 + αψ̂a
s +

γLMu

2
ψ̂sψ̂

2
σ

)

(20a)

îR =
ψ̂σ

Lσu

(

1 + βψ̂σ +
γLσu

3
ψ̂3
s

)

(20b)

The values for Lσu, β, and γ are obtained by minimizing

J(Lσu, β, γ) =

N
∑

n=1

∣

∣

∣

∣

∣

∣
îs,n − is,n

∣

∣

∣

∣

∣

∣

2

(21)

where îs = îM − îR. It is worth noticing that there are

alternative ways to indirectly identify the parameters of the

inductance model; in the method described above, the values

of the angular slip frequency ωr are needed only if the values

of the rotor resistance are of interest.

VI. RESULTS

Saturation characteristics of a 2.2-kW squirrel-cage induc-

tion machine were studied by means of two-dimensional time-

harmonic FEA [26], [27] and laboratory experiments. The

machine is equipped with closed and skewed rotor slots, and its

rating is: voltage 400 V; current 5 A; frequency 50 Hz; speed

1436 r/min; and torque 14.6 Nm. The base values are: angular

frequency 2π50 rad/s; voltage
√

2/3·400 V; and current
√
2·5

A. The rotor skew was modeled using six motor slices in the

FEA.



TABLE I
FITTED PER-UNIT PARAMETERS OBTAINED FROM FEA DATA AND

EXPERIMENTAL DATA

FEA FEA Experimental
Direct Indirect

LMu 2.65 2.65 2.28
Lσu 1.48 0.441 0.216
α 0.406 0.429 0.383
β 10.5 3.86 0.511
γ 6.49 3.18 3.20
a 9.0 9.0 7.5
b 0.5 1.0 1.0
c 0.5 1.0 1.0
d 0.5 0.0 0.0

A. Finite Element Analysis

The operating points used in parameter estimation from the

FEA data are presented in Fig. 5. The stator frequency ωs was

0.5 p.u. in order to reach the stator flux value 1.1 p.u. within

the rated voltage limit.

1) Direct Method: The parameters of the proposed model

(13) were identified based on the inductance data obtained

from FEA. The direct method presented in Section V-A

was used. Since fractional exponents may be computationally

inefficient, the exponents a, b, c, and d were rounded to the

nearest half-integers (or integers) after the first fitting, and the

other parameters were re-fitted. The cost function (14) was

minimized using the Matlab function fminsearch. The fitted

per-unit parameters are given in Table I.

The inductance data from FEA and the curves from the fitted

functions are shown in Fig. 6. In Fig. 6(a), the magnetizing

inductance LM is shown as a function of ψs for three different

values of ψσ. In Fig. 6(b), LM is shown as a function of ψσ

for three different values of ψs. Similar representation for the

rotor leakage inductance Lσ is used in Figs. 6(c) and 6(d).

It can be seen that the proposed model for LM fits very

well to the FEA data. The mutual saturation appears to be

very significant in the analyzed machine; in the case of no

mutual saturation, the curves in Fig. 6(a) would overlap while

the curves in Fig. 6(b) would be straight horizontal lines.

The differences in Lσ between the FEA data and the fitted

curves at low values of ψσ are partly due to numerical prob-

lems in FEA; the rotor-side parameters cannot be determined

reliably if the rotor current is close to zero. Furthermore, the

peak in Lσ in the vicinity of ψs ≈ 1.0 p.u. is not consistent

with the reciprocity condition; there should be similar peak

in LM as a function of ψσ. Obviously, any simple equivalent-

circuit model cannot capture all the nonlinearities of the FEA

solution.

2) Indirect Method: The indirect method presented in Sec-

tion V-B is demonstrated by first applying it to the FEA data.

The stator resistance was fixed to Rs = 0.0795 p.u. based on

the FEA data. The cost function (21) was minimized using the

Matlab function fminsearch. The fitted per-unit parameters are

given in Table I.

It can be noticed that the parameter values, particularly Lσu,

β and γ, differ from those obtained by using the direct method.

The different value of exponent b has an effect on parameters

Lσu and β, whereas different values for c and d has an effect

on parameter γ.

The inductance data from FEA and the curves from the

fitted functions are shown in Fig. 7 in a fashion similar to

Fig. 6. The differences between the curves obtained by using

the direct method (Fig. 6) and indirect method (Fig. 7) are

small.

B. Experiments

In the laboratory experiments, the 2.2-kW induction ma-

chine was fed by a frequency converter controlled by a

dSPACE DS1103 PPC/DSP board. The dc-link voltage was

measured, and a simple current feedforward compensation for

dead times and power device voltage drops was applied [28].

All three phase currents were measured, and the components

isd and isq of the stator current vector is were calculated. The

sampling was synchronized to the modulation, and both the

switching frequency and the sampling frequency were 5 kHz.

1) Steady State: At each operating point, the stator fre-

quency was ωs = 0.5 p.u., while the magnitude of the stator

voltage was varied. The stator frequency was chosen to be

lower than the rated value, in order to reach the stator flux

value 1.1 p.u. within the rated voltage limit. The slip frequency

ωr was adjusted using a servo motor.

The indirect method was used to identify the parameters of

the inductance model based on experimental data. The stator

resistance was fixed to Rs = 0.0628 p.u. obtained from a dc

test. The operating points used in indirect parameter estimation

from the experimental data are presented in Fig. 8.

The resulting inductance values are depicted in Fig. 9 in

a fashion similar to Figs. 6 and 7, and the fitted per-unit

parameters are given in Table I. Comparing Figs. 7(a,b) to

Figs. 9(a,b), it can be noticed that the magnetizing inductance

function fitted to the FEA data corresponds well to that fitted

to the experimental data. Comparison of Figs. 7(c,d) and

Figs. 9(c,d) reveals a difference in the case of the leakage

inductance. This difference is related to the geometry and

material properties models used in the FEA: the thickness of

the rotor slot bridges is uncertain due to tolerances associated

with the punching of the rotor sheets, and the degradation of

magnetic properties of these very thin bridges is not modeled.

For comparison, the estimated and measured stator currents

are depicted in Fig. 10. In Fig. 10(a), the magnitude of the

stator current vector is is shown as a function of the magnitude

of the stator voltage vector us for three different values of

the angular slip frequency ωr. In Fig. 10(b), is is shown

as a function of ωr for three different values of us. Similar

representation for the displacement power factor cosϕ is used

in Figs. 10(c) and 10(d). The values of the stator current were

obtained by inserting the stator voltage and the slip frequency

into the motor model and finding the values for ψs and ψσ

that satisfied the voltage equations (3) in steady state. The

model predicts the magnitude of the stator current and the

displacement power factor with good accuracy.

In addition to the model parameters given in Table I, an

estimate for the rotor resistance value was needed in order to

estimate the stator current as a function of ωr. After ψ̂σ and
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Fig. 6. Results of direct method applied to the inductance values obtained from the FEA data: (a) LM as a function of ψs for three different values of ψσ ,
(b) LM as a function of ψσ for three different values of ψs, (c) leakage inductance Lσ as a function of ψs for three different values of ψσ , (d) Lσ as a
function of ψσ for three different values of ψs. In (a) and (c), the values of ψσ correspond to iR ≈ 0.5 p.u. (dash-dotted line), iR ≈ 1.0 p.u. (dashed line)
and iR ≈ 2.0 p.u. (solid line). In (b) and (d), the values of ψs are 0.4 p.u. (dash-dotted line), 0.7 p.u. (dashed line) and 1.0 p.u. (solid line).
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Fig. 7. Results of indirect method applied to the FEA data: (a) LM as a function of ψs for three different values of ψσ , (b) LM as a function of ψσ for
three different values of ψs, (c) Lσ as a function of ψs for three different values of ψσ , (d) Lσ as a function of ψσ for three different values of ψs. In
(a) and (c), the values of ψσ correspond to iR ≈ 0.5 p.u. (dash-dotted line), iR ≈ 1.0 p.u. (dashed line) and iR ≈ 2.0 p.u. (solid line). In (b) and (d), the
values of ψs are 0.4 p.u. (dash-dotted line), 0.7 p.u. (dashed line) and 1.0 p.u. (solid line).
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Fig. 8. Stator voltage magnitudes and angular slip frequencies used in indirect
parameter estimation from the experimental data. Circles denote the data used
in load tests, crosses denote the no-load data. The stator frequency is 0.5 p.u.

îR were solved from (18) and (19) in every operation point

used in the indirect parameter estimation, R̂R was solved from

the rotor voltage equation (3b) in steady state. The mean value

R̂R = 0.0416 p.u. was used in the stator current estimation.

2) Transient State: The dynamic properties of the proposed

model were studied in a transient test. The rotor was locked

in order to avoid changes in the rotor speed. Initially, ωs was

0.2 p.u. At t = 3.0 s, ωs was reversed to −0.2 p.u. The

magnitude of the stator voltage was 0.15 p.u. The parame-

ters obtained from the experimental data using the indirect

estimation method were used in the simulation model.

In addition to the model parameters given in Table I,

an estimate for the rotor resistance value was needed for

simulation purposes. The data obtained from a locked-rotor

test was used. Using the estimation method described in

Section VI-B1, the value R̂R = 0.0433 p.u. was obtained.

The measured stator current and the simulated stator current

are depicted in Fig. 11 as a function of time. The magnitude

is of the stator current was evaluated according to (1). In

Fig. 11(a), the simulation model includes the mutual saturation

effect. In Fig. 11(b), the mutual saturation effect has been

omitted. The behavior of is, particularly the first peak after t
= 3.0 s, is predicted more accurately by the simulation model

that includes the mutual saturation effect.

The particular transient test was chosen since it is easy to

present without unduly extending the manuscript. In this test,

the disturbances caused by speed oscillations are eliminated,

and it shows that the model has influence on the large-

signal behavior of the motor. The modeling improvements

can be seen more clearly in parameter identification methods

that are based on signal injection and in stator resistance

adaptation. The authors plan to include these results in a future

publication.

VII. CONCLUSIONS

Mutual saturation between the main flux and the rotor

leakage flux appearing in induction machines can be modeled

analytically. The proposed functions are physically reasonable,

and the number of their parameters is small. The functions can

be used in real-time applications and in computer simulations

where high accuracy and physical consistency are preferable.

The model fits well to the data obtained from finite element

analysis and to the experimental data for a 2.2-kW induction

motor with closed and skewed rotor slots. The model predicts

the stator current with good accuracy both in steady state and

in transient state.
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Fig. 9. Results of indirect method applied to experimental data: (a) LM as a function of ψs for three different values of ψσ , (b) LM as a function of ψσ

for three different values of ψs, (c) Lσ as a function of ψs for three different values of ψσ , (d) Lσ as a function of ψσ for three different values of ψs. In
(a) and (c), the values of ψσ are 0.14 p.u. (dash-dotted line), 0.22 p.u. (dashed line) and 0.28 p.u. (solid line). In (b) and (d), the values of ψs are 0.4 p.u.
(dash-dotted line), 0.7 p.u. (dashed line) and 1.0 p.u. (solid line).
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Fig. 10. Results of indirect method applied to experimental data: (a) magnitude of stator current is as a function of us for three different values of ωr, (b)
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Fig. 11. Experimental and simulation results of the transient test, the magnitude of the stator current vector is as a function of time: (a) the simulation model
includes the mutual saturation effect, (b) the mutual saturation effect has been omitted. The initial value of ωs is 0.2 p.u. At t = 3.0 s, ωs is reversed to −0.2
p.u. The magnitude of the stator voltage is 0.15 p.u. Solid line is the measured stator current, dashed line is the simulated stator current.
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