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The electric potential close to a boundary between two dielectric material layers reflects the
geometry of such an interface. The local variations arise from the combination of material
parameters and from the nature of the inhomogeneity. Here, the arising electric field is considered
for both a sinusoidally varying boundary and for a “rough,” Gaussian test case. We discuss the
applicability of a one-dimensional model with the varying layer thickness as a parameter and the
generic scaling of the results. As an application we consider the effect of paper roughness on toner
transfer in electrophotographic printing. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2211329�

I. INTRODUCTION

In many applied physics and engineering applications,
one is interested in the behavior of static or time-dependent
electric field close to a boundary between two dielectric ma-
terials. Examples range from semiconductor devices to pack-
aging to paper making, and one may envision in the future
nanotechnology applications in which such questions are of
importance. The essential mathematical problem at hand is to
understand the qualitative and quantitative changes to the
homogeneous geometry, where the local field is constant in-
side both materials. In a typical case �see Sec. II for details�,
one has a potential difference imposed over a bi- or multi-
layered sample, such that one or more of the interfaces are
undulating or simply nonflat.

The interesting physics and the most pertinent complica-
tions ensue, naturally, in the proximity of such an interface
and if its “roughness” is of appreciable magnitude. In any
case, the practical issues are twofold: developing easy-to-use
models for potential applications and understanding the be-
havior of the electric field variation as a function of param-
eters that describe the geometry of the boundary layer. For
instance, in the case of a sinusoidally varying interface, one
has two parameters—the wavelength and amplitude—and
the above two issues can be considered in the phase space
defined by them. For more general, in particular, disordered
or random, boundaries such issues have been studied by us-
ing, e.g., perturbation theories for the solution of the static
Maxwell equations.1

One application area, in which the above-mentioned is-
sues are of importance, is electrophotographic printing.2 In it
colored toner particles are charged and transferred onto the
surface of paper using an electric field, which penetrates pa-
per. Elaborate two-dimensional computer simulations with
simplified one-dimensional modeling have been used to
study the effect of the nonhomogeneous structure of paper on
forces acting on toner particles and thus on the transfer effi-

ciency and print quality.3,4 Our approach here is similar but
the viewpoint is somewhat different. We hope that the results
below will prove to be useful for various other applications,
too. Our main findings concern the validity of the simple
one-dimensional solution involving the statistics of interface
variation and the scaling of the electric fields in general. As
an application we consider in the spirit mentioned above the
effect of paper roughness on the electric field in an electro-
photographic printing process and compare the results to the
existing literature on the field.

The one-dimensional �1D� model, starting with the par-
ticular geometry chosen, is derived in Sec. II. In Sec. III we
investigate its range of applicability by comparing it to nu-
merical, finite-element-method-based solutions of the prob-
lem. Section IV discusses the more general scaling properties
of the electric field statistics using artificially created �the
so-called Gaussian� interfaces and, again, numerical solu-
tions. In Sec. V we consider electrophotographic printing and
show how the model can be used to estimate the local toner
transfer efficiency. Finally, in Sec. VI we summarize again
our work and finish with a short discussion.

II. A CONTINUUM MODEL

We start by considering a two-dimensional case, illus-
trated in Fig. 1, where the system consists of three layers. A
potential difference is established initially between the bot-
tom side and the top side. The upper and lower interfaces are
taken to be flat and at potentials �=0 and �=V0, respec-
tively. The presence of the three layers is of interest here
since this case applies to a rough, dielectric plate in contact
with a flat layer. The layers are dielectric and we consider a
steady state without any electric currents.

The problem is thus to calculate the static electric field E
with given boundary conditions at the opposite faces. The
system can be described using the standard Gauss law for
dielectric media,5a�Electronic mail: mja@fyslab.hut.fi
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� · ��i�x,y�Ei�x,y�� = − � · ��i�x,y� � ��x,y�� = �i�x,y� ,

�1�

and the boundary conditions read as

�1�x,0� = V0, �3�x,D� = 0. �2�

Here � and � denote the permittivity and charge density,
respectively, D gives the thickness of the system, and the
subindex i=1,2 ,3 is used to refer to different layers. At the
interfaces between the layers, the boundary conditions are
the common continuity requirements,

�1�x,h�x�� = �2�x,h�x�� ,

�1n · ��1�x,h�x�� = �2n · ��2�x,h�x�� ,

�3�
�2�x,d1 + d2� = �3�x,d1 + d2� ,

�2n · ��2�x,d1 + d2� = �3n · ��3�x,d1 + d2� ,

where d1= �h�x�� is the mean height of the undulating inter-
face and n denotes the normal vector. This set of equations
completely determines the electric potential and the field.

1D approximation

In a complicated geometry, the analytic solution to Eq.
�1�, fulfilling boundary conditions �2� and �3�, is not acces-
sible. Before tackling the problem numerically, it is instruc-
tive to analyze the problem by a simple 1D capacitor ap-
proximation, illustrated in Fig. 2. Here the spatially varying
interface is replaced by its mean value. Another useful or
necessary simplification is to replace any local permittivity
with an effective value by averaging it over the thickness
�i�x ,y�→�i�x�= ��i�x ,y��y. A detailed discussion on effective
permittivities and the validity of the averaging procedure can
be found in Ref. 6; here it will be considered as a parameter
which can be measured. Note that the effective permittivity
is a local average and may still vary spatially.

Now Eq. �1� becomes

�2��y�
�y2 = −

�i

�i
, �4�

and the boundary conditions reduce to

�1�x,0� = V0, �3�x,d1 + d2 + d3� = 0,

�1�x,d1� = �2�x,d1� ,

�1�y�1�x,d1� = �2�y�2�x,d1� , �5�

�2�x,d1 + d2� = �3�x,d1 + d2� ,

�2�y�2�x,d1 + d2� = �3�y�3�x,d1 + d2� .

These are easily solved for the potential. We concentrate on
the field in the top layer and take �1=�2=0 and �3=� as this
case is considered in the experimental part in Sec. V. The
potential takes the form

�3�y� =
− �

2�3
�y2 − �d1 + d2 + d3�2�

+
�

�3
��� − V0��y − d1 − d2 − d3� ,

� = �d1

�1
+

d2

�2
+

d3

�3
�−1

, �6�

� = �d1 + d2

�
+

d3
2

2�3
� ,

which leads to the field

E3
�y��y� = − �y�3�y� =

�

�3
�V0 −

�d3
2

2�3
� +

�

�3
�y − d1 − d2� .

�7�

Note that all the information of the properties of layers 1 and
2 is included in �.

III. VALIDITY OF 1D APPROXIMATION

The validity of the 1D approximation is studied by com-
paring the result �7� to the numerical solution of the full
two-dimensional �2D� problem. Solving partial differential
equations in 2D numerically is a standard problem and many
ready made software packages exist for this purpose. We
have used the ELMER 3.0 package, developed by the Center
for Scientific Computing at Otaniemi, Finland �CSC Ltd�,

FIG. 1. Illustration of the model geometry and notation.

FIG. 2. Illustration of the 1D approximation. The system is locally approxi-
mated with a three layer capacitor.
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which employs the finite-element method. Detailed descrip-
tion on the numerical methodology can be found from the
CSC’s webpage.7 The choice of parameters used in the nu-
merical calculations was

d1 = 100 �m, d2 = 10 �m, d3 = 10 �m,

�1 = 4�0, �2 = �0, �3 = 2�0, �8�

�3 = − 8.5
C

m3 ,

unless stated otherwise. All the numerical results are given in
the units of the surface potential of the lowest layer V0.

The simplest way to quantitatively analyze the 1D
approximation is to create sinusoidal surface profiles, with
altering wavelengths � and amplitude H0: h�x�=d1

+H0 sin�2�x /��. The geometry is illustrated in Fig. 3 and
the numerical and 1D results for the field’s y component at
the middle of the top layer �y=115 �m� in Fig. 4. It is clear
that the 1D approximation yields a reasonable result for the y
component. The x component is about two orders in magni-
tude smaller, E�x� /E�y�	0.01, indicating that the field is to a
good approximation in the y direction.

A quantitative criterion for the limit of validity of the 1D
approximation can be found by looking at the variation in the
field strength Anum and comparing it to that of the 1D ap-

proximation, A1D �see Fig. 4�. The ratio Anum/A1D is plotted
as a function of the wavelength � in Fig. 5, for various val-
ues of the perturbation amplitude H0 and bottom layer thick-
ness d1. The 1D approximation clearly underestimates the
effect of long wavelength and overestimates the effect of
short wavelength variations. For long wavelengths the situa-
tion is not too bad, since the ratio is at most 2.

The accuracy of the 1D approximation seems to improve
as the perturbation is moved further away from the observa-
tion point �here it is the middle of the top layer�. Intuitively
this is clear as the diffusionlike equation �1� tends to
smoothen out nonuniformities. The same effect was illus-
trated in another context in Ref. 3, in which the effect of
fillers on the electric field was considered: The deeper the
filler particles are located inside the paper, the less they will
disturb the field around toner particles.

The fact that the 1D approximation applies further away
from the perturbation suggests that the relevant length is the
distance between the perturbation and the measurement
point, denoted as dper. In Fig. 6 the ratio Anum/A1D is replot-
ted but the wavelength is now scaled with dper. The scaling in

FIG. 3. The system geometry with a perturbed interface. Perturbation am-
plitude is H0=5 �m and wavelength �=128 �m. System size is 120
	512 �m2.

FIG. 4. Comparison of the y component of the electric field between nu-
merical and approximative solutions. Fields are calculated in the middle of
the uppermost layer 3 at y=115 �m.

FIG. 5. The ratio of the numerically, Anum, and analytically, A1D, determined
perturbation amplitudes in the y component for thicknesses d1=100 �m
�circle�, d1=95 �m �square�, and d1=90 �m �diamond� and perturbation
amplitudes H0=5 �m �full lines� and H0=10 �m �dashed lines�.

FIG. 6. The ratio of the numerically, Anum, and analytically, A1D, determined
perturbation amplitudes in the y component for thicknesses d1=100 �m
�circle�, d1=95 �m �square�, and d1=90 �m �diamond� and perturbation
amplitudes H0=5 �m �full lines� and H0=10 �m �dashed lines� plotted as a
function of the scaled wavelength � /dper. The red lines are results obtained
when the lower surface is perturbed instead of the upper side. Notation and
parameters are identical to Fig. 5.
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wavelength axis is reasonable. It also seems that one could
collapse the data further by multiplying the amplitudes by
parameter specific values. We leave this aside to demonstrate
the actual values of the ratio. Figure 6 shows the ratio also in
the case when the perturbation is made for the lower surface.
In this case the scaling is excellent. Based on this figure it
may be estimated that the 1D approximation is applicable for
perturbations with a wavelength �
3dper and that the per-
turbations with a wavelength ��dper are negligible. For the
parameters at hand, this means that for the upper �lower�
surface dper	10 �m�100 �m�, variations on scales below
10 �m�100 �m� are negligible and variations on scales
above 30 �m�300 �m� are well described by the 1D ap-
proximation.

IV. EFFECT OF SURFACE ROUGHNESS

It is instructive to study how the conclusions made so far
apply to a stochastic interface. The simplest possible model
for such is the Gaussian interface with exponential correla-
tions

P�h� =
1


2��2
exp�−

1

2�2 �h − h̄�2� ,

�9�

�h�x�� = h̄, �h�x�h�x��� = �2 exp�− x − x�


� ,

where � and  are the standard deviation and correlation
length, respectively, and � � denotes an average taken over
the relevant distribution. Any variations in the lowest surface

enter the model through the average thickness h̄. Now the
layer thicknesses can be written in terms of the height vari-
able h,

D = d1 + d2 + d3 = const, �10�

d1 = h, d2 = D − d3 − h, d3 = const. �11�

Gaussian interfaces as above are easily generated nu-
merically. However, if a soft, dielectric medium is brought to
contact with a hard one �at the top�, the height distribution is
modified due to the fact that the medium does not intrude
into the top layer. Consequently, the distribution would be
cut from above, at a height hmax in the simulations. The
height distribution then ends to a delta peak with strength
�hmax

� dhP�h�, at hmax. A determination of the cutoff height is
related to the question of the contact area between the two
layers and will not be discussed here.

The numerical result for the field in the top layer and the
corresponding 1D approximation are plotted in Fig. 7 for two
realizations with correlation lengths =50 �m and 
=2 �m. For the =50 �m case the analytical approximation
works quite well, even though small scale variations present
in the 1D result are absent in the full 2D solution. In the
other case, =2 �m, the small wavelength variations domi-
nate the 1D solution and only the average value of the field is
reasonable. This is in line with the results of the previous

section, which predict that reliable results are obtained from
the 1D approximation for variations at scales �30 �m, i.e.,
when �30 �m.

More precisely this can be seen in the distribution of the
y component of the field. The distributions are calculated by
averaging the results over an ensemble of 1000 realizations
of systems of size 120	512 �m2. The results for various
values of =2–50 �m are plotted in Fig. 8. The numerically
calculated distributions are compared to the 1D result, which
can be calculated analytically8 with the aid of Eq. �7�,

P�Ey� = P�h�Ey���dEy

dh
�−1

=
1

�Ey − E0�2

1


2��̃2
exp� − 1

2�̃2� 1

Ey − E0
− ��2� ,

�12�

where

E0 =
�

�3
�y − d1 − d2�, �̃ = �

��3/�1� − ��3/�2�
V0 − ��/�3��d3

2/2�
,

� =
d3 + ��3/�2��d1 + d2���3/�1 − �3/�2�h̄

V0 − ��/�3��d3
2/2�

. �13�

FIG. 7. The y component of the electric field at the middle of the third layer
y=115 �m obtained for a Gaussian surface of width �2=50 �m2, with cor-
relation lengths =2 �m �upper panel� and =50 �m �lower panel�.

FIG. 8. The distribution of the y component of the field at y=115 �m, for
various values of  ��2=50 �m2�.
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From Fig. 8 it is clear that the numerical result agrees
very well with the analytical approximation when 
�30 �m. For shorter correlation lengths the distribution de-
viates significantly from the analytical approximation. At
high field strengths the analytical distribution should be cut-
off, due to the cutoff in the height distribution at hmax, and it
should end in a delta peak at

Emax
�y� =

V0 − ��/�3��d3
2/2�

d3 + �3hmax�1/�1 + 1/�2�
+

�

�3
�y − hmax� . �14�

This peak also appears in the numerical distribution at the
right position in a rounded form, after which the distribution
dies rapidly.

It turns out that even if the 1D result for the field distri-
bution �12� does not apply directly when the correlation
length  is short, the shape of the distribution remains unal-
tered. This is easiest to see by defining a new variable

� =
V0 − ��/�3��d3

2/2�
E3

�y� − E0

= d3 +
d1 + d2

�2
+ h� �3

�1
−

�3

�2
� . �15�

Since � depends linearly on the height variable h, the new
variable has the same distribution as h, only the mean value
is shifted and the width scaled.9 For the Gaussian interface
model the distribution of � is then also Gaussian, as seen in
Fig. 9. The numerical results are scaled with the numerically
determined width �num and shifted to have a mean value of
zero. It is now obvious that the shape of the distribution
persists even beyond the validity of the 1D approximation.
Thus it may be concluded that the distribution of the y com-
ponent is given correctly by the 1D result. The two free
parameters �a convenient choice is the first two moments of
P���� can be determined by the 1D approximation, within its
validity, or they have to be determined numerically or, oth-
erwise, experimentally.

V. TONER TRANSFER

The model described above can be directly applied to
electrophotographic printing. It is based on transferring
charged, colored toner particles from a photoconductor to the
surface of paper with an electric field �for an introduction to

electrophotographic printing, see, e.g., Ref. 2�. Now the low-
est layer represents paper with a rough surface to be printed,
the topmost layer describes the toner on a photoconductor,
which is held at zero potential, and the layer in between is
the air gap between paper and toner. During toner transfer,
the field gets modified by the structure of paper. This causes
variations in the strength of the electrostatic transfer force
exerted on toner particles. Large enough variations may lead
to undesired variation in the transferred toner amount and to
visually observable defects in the print. Both the thickness
and local permittivity variations of paper are known to be
relevant sources for the field variations.3,4

Here we concentrate on the effect of paper roughness on
the electric field. A sheet of paper was printed with an elec-
trophotographic printer, where the electric field is created by
charging the other side of paper by a corona charger. To
emphasize toner transfer nonuniformity, printing conditions
were chosen away from optimal, i.e., a too low transfer volt-
age was used. Print was fixed in an oven after printing to
avoid toner movement that would take place in normal hot
nip fusing. Figure 10 shows a cross-section micrograph of
the printed sheet. The surfaces were extracted from the im-
age and the field was calculated using Eqs. �1�–�3�. For sim-
plicity, the toner layer was assumed to be uniform with a
constant thickness, permittivity, and charge density, and the
permittivity variations of paper were neglected.

Figure 11 compares the electric field strength �calculated
in the middle of the toner layer� to the amount of toner trans-
ferred. There is a clear correlation between the two even
though the toner amount includes shorter wavelength varia-
tions than predicted by the model. This is reasonable as there
are also other than electric forces involved during the
transfer.9 The close correspondence between the two, illus-
trated further in the enlarged part displayed in Fig. 12, indi-
cates that in this case the roughness of paper was the domi-
nant source for the variations in the transferred toner amount.
In Ref. 3 the effect of thickness �and thus also roughness�
variations on print quality was indirectly addressed by com-
paring the two-point correlation functions of thickness and
simulated electric field to each other. Here we have directly
demonstrated that there is less toner on locations, where the

FIG. 9. The scaled distribution of variable �. The data before the scaling
applied here are the same as in Fig. 8. This is shown at the original y
=115 �m, for various values of  ��2=50 �m2�. Dashed line is the Gauss-
ian distribution with �2=1.

FIG. 10. A cross-section image of a sheet printed with cyan toner at non-
optimal printing conditions. The width of the part of the sheet depicted in
the image is 5.3 mm and the interfaces of different layers are denoted by
white color. For illustration purposes, the image has been magnified five
times more in the vertical direction than in the horizontal one. The average
thickness is 120 �m.
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electric field is low. From the viewpoint of modeling, how-
ever, it is important to note that the simple one-dimensional
capacitor approximation was accurate enough to capture the
essential variations during toner transfer.

VI. SUMMARY AND DISCUSSION

The electric field fluctuations induced by a rough surface
are often harmful in practical applications. To obtain quanti-

tative estimates, first one has to be able to measure the
“roughness,” by direct profilometry or by other means, and
then use it to estimate the field variations. One of our goals
has been to obtain easy-to-use analytical expressions—the
one-dimensional model—which, keeping in mind their range
of validity, should prove useful for such purposes.

The accuracy of the one-dimensional approximation de-
pends both on the wavelength of the undulating interface and
the distance dper to the point at which the field is calculated.
The approximation underestimates the effect of long wave-
length and overestimates the short wavelength variations. As
a rule of thumb, the approximation is reasonably accurate for
wavelengths �
3dper, whereas the wavelengths ��dper do
not significantly contribute to the field. Furthermore, the dis-
tribution of field strengths is correctly given by the approxi-
mation for all length scales, at least for Gaussian interfaces
considered here. For instance, if it is known that a surface
has a Gaussian roughness profile, any estimate of its mean-
square width would be enough together with the analytical
theory.
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