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Identification of Two-Mass Mechanical Systems
Using Torque Excitation: Design and

Experimental Evaluation
Seppo E. Saarakkala and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper deals with methods for parameter estima-
tion of two-mass mechanical systems in electric drives. Estimates
of mechanical parameters are needed in the start-up of a drive for
automatic tuning of model-based speed and position controllers. A
discrete-time output error (OE) model is applied to parameter es-
timation. The resulting pulse-transfer function is transformed into
a continuous-time transfer function, and parameters of the two-
mass system model are analytically solved from the coefficients
of this transfer function. An open-loop identification setup and
two closed-speed-loop identification setups (direct and indirect)
are designed and experimentally compared. The experiments are
carried out at nonzero speed to reduce the effect of nonlinear fric-
tion phenomena on the parameter estimates. According to results,
all three identification setups are applicable for the parameter
estimation of two-mass mechanical systems.

Index Terms—Electric drives, parameter estimation, resonant
mechanical load, torsional oscillation.

I. INTRODUCTION

H IGH-PERFORMANCE ac electric drives are replacing
pneumatic and hydraulic actuators or dc motor drives in

modern machineries—such as injection molding machines [1],
machine tools [2], industrial robots [3]—due to their energy
efficiency, compact size, and flexible control algorithms. These
machineries often consist of several moving or rotating masses
coupled together with flexible mechanical transmissions (e.g.,
belts, gearboxes, long shafts), leading to mechanical reso-
nances. To achieve high dynamic performance, motion control
of the drive systems with resonant mechanical loads should be
based on higher-order mechanical models. The model-based
automatic controller tuning typically relies on the knowledge
of mechanical parameters and some performance specifications
(e.g., closed-loop bandwidth) [4], [5]. However, datasheets of
the mechanical components are not often available or the cal-
culation of the mechanical parameters can be a highly complex
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task. Hence, to enable model-based automatic tuning of the mo-
tion controllers, the mechanical parameters should be automat-
ically identified during the start-up of a drive [6], [7] or online
during the drive operation [8]–[12]. The extended Kalman filter
is a popular tool for estimating the parameters online [8], [10],
[11]. However, the main difficulty with the Kalman filters is
the selection of covariance matrices, which are further needed
when calculating the filter coefficients. Moreover, it is worth
mentioning that the identification of the mechanical system may
offer a possibility to diagnose mechanical faults. As examples,
a rolling-bearing damage [13] and gearbox faults [14], [15] can
be identified using electric drives.

The identification routines, proposed for parameter estima-
tion of two- or multi-mass mechanical systems, can be roughly
divided to parametric methods [3], [6], [16]–[20] and nonpara-
metric methods [16], [21]–[24]. The nonparametric methods
use the frequency-domain characteristics of the system, while,
in the parametric methods, the parameters of the two-mass
system transfer-function polynomials are estimated in the time
domain. When the identification is completed offline, e.g.,
during the start-up of a drive, the parameters of the mechanical
model can be estimated either in open loop or using closed-
loop speed control [25]. It is desirable to reduce the effect
of nonlinear friction phenomena on parameter estimates by
operating at nonzero speed. However, when using the open-loop
method, it may be difficult to find a suitable value for the offset
torque without causing the system to rush. On the other hand,
in closed-loop identification, the drive can be easily operated
at desired (nonzero) speed. Closed-loop identification methods
can be divided into direct and indirect methods [25]. In the case
of direct methods, the input signal is affected via the feedback
loop. Hence, a correct noise model is needed. In the case of
indirect methods, the closed-loop system is first identified, and
the open-loop model is then solved using the known control
law [26].

To excite the identified system sufficiently, the excitation
signal should contain all frequencies evenly distributed, and the
amplitude of the excitation signal should be as large as possible.
White noise is normally utilized in stochastical identification.
In electric drives, the torque and the speed are limited to
their maximum allowed values. With limited input signals, the
largest frequency variation is obtained by binary signals, which
have only two possible values (e.g., −1 and 1). A pseudo-
random binary signal (PRBS) fulfills the previously stated
requirements, and it can be easily formed with a shift register.
The statistical properties of the PRBS are studied in [27].
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In this paper, the mechanical system is excited using the
PRBS, which is superimposed on the electromagnetic torque by
means of field-oriented control. The rotor-speed response of the
driving motor is measured. Because the rotor-speed response is
noisy, the discrete-time OE model is used in identification, in
accordance with [3]. The main contributions of this paper are:

1) An indirect closed-loop method is proposed for identi-
fication of two-mass mechanical system. According to
the authors’ knowledge, indirect methods have not been
applied in this context before (except in the preliminary
study in [19]).1

2) The effect of the speed controller gain on identifiability is
analyzed by means of simulations and experiments.

3) The proposed indirect identification method is experimen-
tally compared with the open-loop identification method,
the direct identification method, and the frequency-
response based method proposed in [21].

II. MODEL OF A TWO-MASS MECHANICAL SYSTEM

The mechanical dynamics of the resonating two-mass system
are given as [28]

JMθ̈M = TM − TS − bMθ̇M (1a)

JLθ̈L = TS − TL − bLθ̇L (1b)

TS = KS(θM − θL) + cS(θ̇M − θ̇L) (1c)

where the angular positions of the motor and the load are
θM and θL, respectively. The motor electromagnetic torque,
the loading torque, and the shaft torque are TM, TL, and TS,
respectively. The motor speed is denoted by ωM = θ̇M and
the load speed by ωL = θ̇L. The moments of inertias of the
motor and the load are denoted by JM and JL, respectively.
The torsional stiffness and the damping of the shaft are KS and
cS, respectively. The friction is modeled as viscous damping
both on the motor and load sides, denoted by bM and bL,
respectively. From (1), the open-loop transfer function from the
torque TM(s) to the speed ωM(s) is obtained as

G(s) =
B(s)

A(s)
(2)

where

B(s) = JLs
2 + (cS + bL)s+KS

A(s) = JMJLs
3 + (JMcS + JLcS + JLbM + JMbL)s

2

+ (JMKS + JLKS + cSbM + cSbL + bMbL)s

+KS(bM + bL).

1The main differences between this paper and the preliminary study are:
1) the parameters of the OE model are estimated using a straightforward
iterative method; 2) the continuous-time transfer function parameters are an-
alytically derived from the discrete-time pulse-transfer function parameters;
and 3) the method is applied to estimate the mechanical parameters of an
experimental two-mass system, whereas a two-mass system emulator was used
in [19].

If bM = 0, bL = 0, and cS = 0 are assumed, the antiresonance
frequency and the resonance frequency are

fares =
1

2π

√
KS

JL
fres =

1

2π

√
KS

JM + JL
JMJL

(3)

respectively. It is to be noted that, at frequencies well below
the antiresonance frequency, the transfer function (2) can be
approximated by

G(s) =
1

(JM + JL)s
. (4)

On the other hand, at frequencies well above the resonance
frequency, the transfer function (2) can be approximated by

G(s) =
1

JMs.
(5)

III. PARAMETER ESTIMATION

First, three different identification setups are introduced.
Then, parameters of the continuous-time mechanical model are
linked with parameters of the discrete-time OE model. Further,
factors affecting the accuracy of the parameter estimation are
discussed.

A. Identification Setups

Three identification setups shown in Fig. 1 are considered.
The PRBS torque excitation is applied in all setups. Typical
torque-control bandwidths in ac servo drives are from several
hundred hertz up to a few kilohertz, while dominant reso-
nance frequencies of mechanical systems are lower. Hence,
the torque-control loop is usually significantly faster than the
mechanical system. If the sampling frequency of the para-
meter estimation is set significantly below the torque-control
bandwidth, the effect of torque control cannot be seen in the
identification signals and thus it can be omitted. In this paper,
ideal torque control is assumed, i.e., TM = TM,ref .

An open-loop setup is shown in Fig. 1(a). The open-loop
transfer function (2) can be directly estimated from the exci-
tation signal u and the output signal y, i.e., y(s) = G(s)u(s).
If the excitation signal has a zero average, identification will be
performed in the vicinity of zero speed. In this case, friction
phenomena are highly nonlinear and can cause bias to the
parameter estimates. Open-loop identification could also be
performed during an acceleration test or a deceleration test. In
these cases, the trend of the speed signal should be removed.
Similar open-loop setups have been studied in [18], [21].

Fig. 1(b) shows a direct closed-loop setup, where the ex-
citation signal is superimposed on the torque reference ob-
tained from the speed controller.2 The identification procedure
is similar to the open-loop case. However, the identification
input signal u and the noise (not shown in the figure) are now
correlated due to the speed controller, which may lead to biased

2An equivalent identification setup could be formed, if the excitation signal
is superimposed on the speed reference and a proportional speed controller is
used. In this case, the amplitude of the excitation signal would depend on the
gain of the speed controller.
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Fig. 1. Identification setups: (a) open loop; (b) direct closed loop; (c) indirect
closed loop. Ideal torque control is assumed. Input and output identification
signals are denoted by u and y, respectively.

parameter estimates. Similar direct setups have been considered
in [18], [21].

Fig. 1(c) shows an indirect closed-loop identification setup.
The excitation signal is superimposed on the torque reference as
in the direct setup. The identification input signal u, however,
is now the PRBS, which is not affected by the speed controller.
The transfer function from the input u(s) to the output y(s) is

y(s)

u(s)
=

G(s)

1 +G(s)C(s)
. (6)

This closed-loop transfer function to be estimated contains the
speed controller C(s), whose effect on parameter estimates
must be removed afterward. Therefore, the method is called
indirect [29]. For simplicity, a proportional (P) speed controller
is used, i.e., C(s) = kp. Hence, the order of the transfer func-
tion to be identified is the same in all three setups. It is worth
noticing that the indirect method can be applied for parameter
estimation even if the speed controller output is not accessible
(i.e., the direct closed-loop estimation method cannot be used),
assuming that the speed controller gain is known a priori.

B. Mechanical Parameters

The discrete-time OE model applied in parameter esti-
mation is

y(k) =
Bd(z)

Ad(z)
u(k) + e(k) (7)

where z is the time-shift operator, y(k) and u(k) are the discrete
samples corresponding to the signals y and u, respectively,

shown in Fig. 1, and e(k) is the output noise in the system.
The pulse-transfer function to be identified is given as

Bd(z)

Ad(z)
=

θ1z
2 + θ2z + θ3

z3 + θ4z2 + θ5z + θ6
(8)

where θ1, . . . , θ6 are the six parameters to be estimated.
The output of the pulse-transfer function (8) can be ex-

pressed as

y(k) = φT(k)θ (9)

where the regressor vector and the parameter vector are

φ(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u(k − 1)
u(k − 2)
u(k − 3)
−y(k − 1)
−y(k − 2)
−y(k − 3)

⎤
⎥⎥⎥⎥⎥⎥⎦

θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1
θ2
θ3
θ4
θ5
θ6

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

respectively. When the noise component is summed to the
output of the system, solving the parameter vector using (9)
and (10) leads to biased parameter estimates [29]. Here, a
straightforward iterative method is applied to reduce the bias in
the parameter estimates [30]. In this method, the input and out-
put signals are filtered using the estimated system polynomial
Âd(z) from the previous iteration. The output of the adaptive
filtered system is given as

yf(k) = φT
f (k)θ (11)

where the filtered regressor vector and output are

φf(k) =
1

Âd(z)
φ(k) yf(k) =

1

Âd(z)
y(k) (12)

respectively. When estimating the parameter vector θ, the adap-
tive filtered output vector yf and the regressor matrix Φf are
given as

Φf =
[
φf(3) φf(4) · · · φf(N)

]T
yf =

[
yf(3) yf(4) · · · yf(N)

]T
(13)

where N is the total number of samples used in the parameter
estimation. Then, the matrices are used in an iterative least-
squares algorithm to solve the parameter vector

θ =
(
ΦT

f Φf

)−1
ΦT

f yf (14)

which can be used to find Âd(z) for the next iteration

Âd(z) = z3 + θ4z
2 + θ5z + θ6. (15)

During the first iteration, the filtering polynomial Âd(z) = 1.
The iterations are continued until the estimated parameters
converge to the final values. It is important to check that the
roots of Âd(z) are inside the unit circle after each iteration.
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The pulse-transfer function (8) is then converted to a zero-
pole matching equivalent continuous-time transfer function

y(s)

u(s)
=

b1s
2 + b2s+ b3

s3 + a1s2 + a2s+ a3
(16)

where the parameters b1, . . . , b3 and a1, . . . , a3 are given in the
Appendix. When comparing (6) and (16), the following system
of equations is obtained:

b1 =
1

JM
b2 =

cS + bL
JMJL

b3 =
KS

JMJL
(17a)

a1 =
(JM + JL)cS + JLbM + JMbL + kpJL

JMJL
(17b)

a2 =
(JM+JL)KS + (bM+bL)cS + bMbL + kp(cS+bL)

JMJL
(17c)

a3 =
KS(bM + bL + kp)

JMJL
. (17d)

From (17), the mechanical parameters JM, JL, bM, bL, KS,
and cS can be solved. In the open-loop and direct closed-loop
identification setups, kp = 0 is substituted into (17).

If the dominant resonance frequencies of the mechanical
system were near the bandwidth of the torque control, the pa-
rameter estimates from (17) would be biased. If the bandwidth
of the torque control is known, the dynamics of the torque-
control loop could be included in the identification setups
shown in Fig. 1.

If the identified system is highly nonlinear, the linear iden-
tification methods presented in this paper could be augmented
with methods that can estimate the nonlinear elements, such
as backlash or friction [12], [16], [31]–[33]. If the nonlinear-
ity can be parametrized in the state variables (e.g., Coulomb
friction), it could be introduced in the regressor vector φ
in (10) [16]. Moreover, if the load inertia and the coupling
stiffness vary during the drive operation [34], the presented
identification methods could be used to estimate the parameters
of the mechanical system in various operating points, and then
construct a look-up table of parameter values as a function
of operating point. Alternatively, recursive methods could be
used to estimate the parameters online [20], [30], instead of the
iterative method discussed above.

The presented methods are primarily aimed at identifying
two-mass systems, i.e., the order of the discrete-time transfer
function (8) is fixed. In the case of three-mass (or multi-mass)
systems, the regressor and parameter vectors in (10) could be
augmented and the parameters of the discrete-time transfer
function estimated, but it is generally difficult to solve the re-
lations between the discrete-time transfer-function coefficients
and the physical parameters. However, since the resonances
in typical multi-mass systems appear clearly at separate fre-
quencies and the amplitude of the dominant low-frequency
resonance is highest [18], [26], [34], the presented methods
could be applied to identify the reduced-order (i.e., third-order)
approximate model for multi-mass systems.

C. Sampling Frequency and the Number of Samples

According to the Nyquist-Shannon sampling theorem, the
sampling frequency h of the discrete-time system should be at
least twice the highest frequency in the original continuous-
time signal. In most cases, the system response should also
be modeled slightly above the resonance frequency to see
if there are some additional dynamics at higher frequencies.
However, if the sampling frequency is selected too high, nu-
merical sensitivity issues can appear and cause the loss of
identifiability. A high sampling frequency also causes the model
fit to concentrate at high frequencies. A rule of thumb is to
select the sampling frequency ten times the bandwidth of the
process [29]. If a too low sampling frequency is selected, the
higher frequencies of the system are not identified correctly,
which further causes bias to the motor-side inertia estimate JM
according to (5).

If the model structure is chosen correctly, increasing the
number of samples N should decrease the effect of distur-
bance noise and enhance the accuracy of parameter estimates.
Memory and processing capacity may limit the number of
samples. A rule of thumb for selecting the number of samples is
N = 1/(f0h), where f0 is the lowest frequency to be identified
and it should be much below the lowest potential antiresonance
frequency. If too few samples are collected, lower frequencies
of the system are not identified accurately, which further causes
bias to the sum JM + JL of the inertia estimates according
to (4).

D. Model Validation

Model validation is an essential part of the identification
procedure. The designer needs to know whether the selected
model structure and the identification setup offers good enough
information from the real system. A common tool in val-
idation is residual analysis. Residual analysis is based on
the statistical properties of the residuals ε(k) = y(k)− ŷ(k).
The simulated-system output is denoted as ŷ(k) = Gd(z)u(k),
where Gd(z) represents the zero-pole equivalent discretization
of the continuous-time time transfer function (2), which is
obtained using the estimated system parameters.

The autocorrelation of the residuals is

Rε(τ) =
1

N

N∑
k=1

ε(k)ε(k − τ) (18)

where τ is the number of lags. The autocorrelation should ide-
ally resemble that of white noise. Furthermore, the normalized
cross-correlation

Rε,u(τ) =

∑N
k=1ε(k)u(k − τ)√∑N
k=1ε

2(k)
∑N

k=1u
2(k)

(19)

between the input signal and the residuals should ideally be
zero [30]. For the OE model, the emphasis in the residual
analysis is in the cross-correlation since a noise model is not
included in the OE structure [35]. Residual analysis should
include large enough values of τ to cover frequencies down
to the potential antiresonance frequency, i.e., τh > 1/fares. If
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Fig. 2. Experimental setup.

possible, the residual analysis should be performed using a
different input-output data set than the one which is used for
the parameter estimation. Moreover, the identified model can
be validated through the comparison of time- and frequency-
domain responses of the identified and the measured (real)
systems.

IV. RESULTS

The identification methods described in Section III are eval-
uated by means of simulations and experiments. First, the effect
of the speed controller gain on the parameter estimates is stud-
ied by means of simulations. Then, the mechanical parameters
of the experimental system are estimated and compared with the
parameter estimates obtained using a frequency-response based
identification method proposed in [21]. Finally, the results are
validated using correlation and frequency-domain analyses.

A. Experimental System

The experimental setup is shown in Fig. 2. The setup consists
of two mechanically coupled permanent-magnet synchronous
motors (PMSMs). An inverter-fed 4-kW 2400-rpm PMSM,
controlled with a dSPACE DS1104 board, is used as a driving
motor. The driving motor is connected to a 4-kW loading servo
motor using a flexible toothed belt. To vary coupling stiffness,
different belts can be used. An additional inertia disk can be
added to the shaft of the load motor.

The experiments were carried out using two mechanical
configurations, referred to as Configurations A and B. The load-
side inertia equals the motor-side inertia in Configuration A,
while Configuration B has an additional inertia disk (increas-
ing the load-side inertia). Furthermore, Configuration B has a
stiffer belt.

Mechanical parameters were calculated based on the
datasheet values of mechanical components [36]. These para-
meters are given in Tables I and II for Configurations A and B,
respectively. The antiresonance and resonance frequencies of
Configuration A, calculated using (3) with the datasheet values,
are close to each other (fares = 60 Hz and fres = 84 Hz), while
the antiresonance and resonance frequencies of Configuration B

are far away from each other (fares = 27 Hz and fres = 79 Hz).
The datasheet values for cS were approximated using

cS =
KS

2πfresQk
(20)

where Qk = 10 was used for flexible couplings [37].
Torque control is accomplished through field-oriented con-

trol. The torque-control loop operates at 10-kHz sampling
frequency and the torque-control bandwidth is 350 Hz. The
speed-control loop operates at 1-kHz sampling frequency. The
sampling frequency of the parameter estimation is 333 Hz, and
the torque-control loop is ignored in parameter estimation. The
number of samples is N = 1620. The excitation signal is a
PRBS with values −2 Nm and 2 Nm (the rated torque being
17 Nm).

The rotor speedωM of the driving motor is measured using an
incremental encoder. The angular speed is calculated from the
measured angular position difference within the fixed sampling
interval of 1 ms. This sampling scheme leads to a signif-
icant quantization noise especially at low rotational speeds
which also favors the use of the OE model structure in the
identification.

B. Benchmark Method for Experimental Comparison

The identification methods described in Section III are ex-
perimentally compared with a frequency-response based open-
loop method proposed in [21]. The identification setup shown in
Fig. 1(a) is applied. The experimental frequency-response func-
tion Ge(jω) is evaluated in M = 166 data points between the
frequencies of 1 Hz and 166 Hz by means of the Welch method.
Two different Hamming-window lengths (540 and 270) were
tested. Then, the parameter values of the analytical frequency-
response function G(jω) [obtained from (2)] are varied, and
the best fit is iteratively searched by minimizing the error
function

J(ϑ) =

M∑
i=1

|Ge(jωi)−G(jωi,ϑ)|2 (21)

where the parameter vector is ϑ = [JM, JL,KS, cS, bM, bL].
The initial values of the parameter vector, needed in the first
iteration, are selected according to the datasheet values given in
Tables I and II.

C. Simulation Results

The speed controller is a P controller. The effect of the
speed controller gain kp on the estimated antiresonance and
resonance frequencies is examined by means of simulations.
A white-noise signal with variance of 1 rad2/s2 is added to
the simulated motor speed. Numerical values for the resonance
frequencies are calculated using (3), based on the estimated
system parameters.

Fig. 3 shows the estimated resonance and antiresonance
frequencies as a function of the speed controller gain for
both the configurations. The system resembles the open-loop
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TABLE I
DATASHEET VALUES AND ESTIMATED MECHANICAL PARAMETERS FOR CONFIGURATION A

TABLE II
DATASHEET VALUES AND ESTIMATED MECHANICAL PARAMETERS FOR CONFIGURATION B

Fig. 3. Estimated resonance and antiresonance frequencies as a function of the speed controller gain: (a) Configuration A. (b) Configuration B. The results are
obtained from simulations.

setup at low gain values (kp < 0.1 Nms/rad). In both closed-
loop setups, high controller gains increase the effect of the
measurement noise due to the feedback. The high controller
gains (kp > 1 Nms/rad) also speed up the system, in which case
the sampling frequency should be increased. This can be seen
as biased resonance frequency estimates. It can be seen that the
proposed indirect method is less sensitive to the selection of the
speed controller gain than the direct method.

D. Experimental Results

In the closed-loop identification setups, the speed controller
gain kp = 0.2 Nms/rad is selected and the parameters are
estimated at the rotational speed of 200 r/min. To operate
approximately at the speed of 200 r/min also in the open-loop
setup, a constant offset torque is applied. The offset values
are removed both from the input and output signals before

identification. For model validation, a separate input-output
data set is measured in closed loop using the speed controller
gain of kp = 0.05 Nms/rad.

The parameter estimates of Configurations A and B are given
in Tables I and II, respectively. It can be seen that the parameter
values estimated using (17) are close to those obtained using
datasheets. However, it is important to notice that the datasheet-
based parameter values are not necessarily more accurate than
the estimated ones. Thus, also the datasheet-based parameter
estimates shall be validated by means of residual analysis. In
all the cases, an estimate of the motor-side damping bM is
negative. However, the sum bM + bL of the viscous damping es-
timates is positive. Furthermore, when substituting the obtained
parameter values back to the open-loop transfer function (2),
all the coefficients of the transfer function are positive (i.e., the
obtained poles and zeros are stable). When comparing the open-
loop parameter estimates obtained using (17) with those of the
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Fig. 4. Absolute values of normalized cross-correlation between input and residuals of Configuration A: (a) method [21] in open loop (Hamming-window length
540) and Datasheet values; (b) open loop; (c) closed loop. The 97% confidence limit is indicated as solid black line and the practical confidence limit as dashed
black line.

Fig. 5. Absolute values of normalized cross-correlation between input and residuals of Configuration B: (a) Method [21] in open loop (Hamming-window length
540) and Datasheet values; (b) open loop; (c) closed loop. The 97% confidence limit is indicated as solid black line and the practical confidence limit as dashed
black line.

frequency-response method, it can be seen that the frequency-
response method gives smaller values for the inertia moments
and for the coupling stiffness. Moreover, Tables I and Table II
show that the window length has a clear impact on the parame-
ter estimates obtained using the frequency-response method.

The parameter estimates given in Tables I and II are first
analyzed by means of residual analysis. The normalized cross
correlation between the input signal and the residuals is eval-
uated using (19). Fig. 4 shows the cross-correlation absolute
values for Configuration A and Fig. 5 for Configuration B. A
97% confidence limit (solid line) and a practical confidence
limit (dashed line) are introduced in the figures [30]. The 97%
confidence limit is calculated as 2.17/

√
N , where N is the

number of samples used in the estimation. Cross-correlation
values remaining below the practical confidence limit will
indicate that stochastically acceptable parameter estimates are
obtained. It can be seen in Figs. 4(b) and (c), 5(b) and (c) that
the normalized cross correlations between the input and the
residuals remain mostly below the practical confidence limit in
all the identification cases. Furthermore, the normalized cross-
correlation values shown in Figs. 4(a) and (b), 5(a) and (b) in-
dicate that the discrete-time polynomial-based identification
method gives better parameter estimates than the frequency-
response method [21] in an open-loop setup. The normalized

cross-correlation values shown in Figs. 4 and 5 also indicate
that it is better to use the identified parameter values over the
datasheet parameter values.

The frequency responses, obtained using the datasheet
parameter values and the estimated parameter values, are
compared. Fig. 6 shows the frequency responses of both the
configurations obtained using the open-loop identification se-
tups. It can be seen that the estimated amplitude is higher
at lowest frequencies when the frequency-response method
is applied because the inertia estimates are too low. When
analyzing solely the locations of the antiresonance and reso-
nance frequencies, it can be seen that the estimated resonance
frequencies agree well with the datasheet-based resonance fre-
quencies. In the case of the frequency-response method, the
antiresonances appear at too high frequencies, because the load-
inertia estimate is too low. These observations agree also with
the numerical values given in Tables I and II. Fig. 7 shows the
frequency responses of both the configurations obtained using
the closed-loop identification setups. It can be seen that the
estimated frequency responses agree well with the datasheet-
based frequency responses. It should be noted that the estimated
amplitudes at the resonance frequencies are not directly compa-
rable with the datasheet-based amplitudes, because bM = bL =
0 are assumed in the case of datasheet values. Furthermore, the
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Fig. 6. Frequency responses obtained using open-loop identification method: (a) Configuration A. (b) Configuration B.

Fig. 7. Frequency responses obtained using closed-loop identification methods: (a) Configuration A. (b) Configuration B.

datasheet values of cS are only rough approximations, obtained
using (20).

V. CONCLUSION

This paper proposes an indirect closed-loop method for
identification of two-mass mechanical system. Based on the
simulation results, the proposed method is less sensitive to the
selection of the speed controller gain than the direct method
(when the simple OE model structure is used). The proposed
indirect identification method was experimentally compared
with the open-loop identification method, the direct identifica-
tion method, and the frequency-response method. Based on the
validation results, it can be concluded that all the identification
setups are applicable for the parameter estimation of two-mass
mechanical systems. The most biased estimate was the sum

of the viscous friction coefficients, which is rarely needed in
motion controller tuning.

APPENDIX

CONTINUOUS-TIME TRANSFER FUNCTION PARAMETERS

The denominator of the pulse-transfer function (8) can be
expressed as a combination of the first-order pole and the
second-order complex-conjugate poles

Bd(z)

Ad(z)
=

θ1(z
2 + β2z + β3)

(z + α1)(z2 + α2z + α3)
(22)

where

β2 = θ2/θ1 β3 = θ3/θ1

α1 + α2 = θ4 α1α2 + α3 = θ5 α1α3 = θ6.
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The pulse-transfer function (22) is converted to a continuous-
time zero-pole matching equivalent transfer function using the
relation s = (1/h) ln(z), where h is the sampling interval [38].
The transfer function

y(s)

u(s)
=

b′1

(
s2 + 2b′2s+ b′2

2 + b′3
2
)

(s+ a′1)
(
s2 + 2a′2s+ a′2

2 + a′3
2) (23)

is obtained, where the parameters are

b′2 = − 1

h
ln (

√
β3) (24a)

b′3 =
1

h
arctan

(√
4β3/β2

2 − 1

)
(24b)

a′1 = − 1

h
ln (−α1) a′2 = − 1

h
ln (

√
α3) (24c)

a′3 =
1

h
arctan

(√
4α3/α2

2 − 1

)
(24d)

b′1 =
a′1β1(1 + β2 + β3)

(
a′2

2 + a′3
2
)

(1 + α1 + α2 + α1α2 + α3 + α1α3)
(
b′2

2 + b′3
2) .
(24e)

Using (24), the parameters in (16) are given as

b1 = b′1 b2 = 2b′1b
′
2 b3 = b′1

(
b′2

2
+ b′3

2
)

(25a)

a1 = a′1 + 2a′2 a2 = 2a′1a
′
2 + a′2

2
+ a′3

2 (25b)

a3 = a′1

(
a′2

2
+ a′3

2
)
. (25c)
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