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Abstract—This paper deals with discrete-time models and cur-
rent control methods for synchronous motors with a magnetically
anisotropic rotor structure, such as interior permanent-magnet
synchronous motors (IPMSMs) and synchronous reluctance mo-
tors (SyRMs). Dynamic performance of current controllers based
on continuous-time models is limited, especially if the ratio of the
sampling frequency to the fundamental frequency is low. An exact
closed-form hold-equivalent discrete motor model is derived.
The zero-order hold of the stator-voltage input is modeled in
stationary coordinates, where it physically is. An analytical
discrete-time pole-placement design method for a two-degree-of-
freedom state-space current controller with an integral action is
proposed. The proposed method is easy to apply: only the desired
closed-loop bandwidth and the three motor parameters (Rs, Ld,
Lq) are required. The robustness of the proposed current control
design against parameter errors is analyzed. The controller is
experimentally verified using a 6.7-kW SyRM drive.

Index Terms—Current control, delay, discrete-time model,
interior permanent-magnet synchronous motor (IPMSM), syn-
chronous reluctance motor (SyRM), zero-order hold.

I. INTRODUCTION

Synchronous motors with a magnetically anisotropic rotor—
such as interior permanent-magnet synchronous motors
(IPMSMs), synchronous reluctance motors (SyRMs), and
permanent-magnet-assisted SyRMs—are more and more ap-
plied in hybrid (or electric) vehicles, heavy-duty working
machines, and industrial applications. In these applications, the
maximum speeds and, consequently, the maximum operating
frequencies can be very high (e.g., 12 000 r/min corresponding
to the frequency of 1 000 Hz for a ten-pole machine). Since
the switching frequency of the converter feeding the motor
is limited due to the losses, the resulting ratio between the
switching frequency and the maximum fundamental frequency
can be even below ten. This will affect the sampling frequency,
too, as it is typically equal to or twice the switching frequency.

Generally, the stator current of synchronous motor drives
is controlled in rotor coordinates [1]–[11]. This coordinate
system is a natural selection since the controllable quantities
are DC in steady state, the inductance matrix and the PM-flux
vector are (ideally) constant, and other parts of the control
system typically operate in rotor coordinates. The most widely
used current control approach is to use a synchronous-frame
proportional-integral (PI) controller, often augmented with
decoupling terms to compensate for the cross-coupling due to
the rotating coordinate system. Typically, the controller is first
designed in the continuous-time domain and then discretized
for the digital implementation using, e.g., the Euler or Tustin

approximation [1]–[5]. This approach is well understood and
works well in most applications. However, the closed-loop
control bandwidth and the maximum operating frequency are
limited to below approximately 5% of the sampling frequency.
Furthermore, heuristic compensations for the angular errors
due to time delays are often needed. Higher dynamic perfor-
mance at a given sampling frequency could be achieved by
designing the controller directly in the discrete-time domain
[6], [8]–[11].

A hold-equivalent discrete model—including the effects
of the zero-order hold (ZOH) and a sampler—of the motor
drive is needed for the direct discrete-time control design. An
exact closed-form hold-equivalent model has been derived for
induction motor drives in [12] and an approximate discrete
model for the IPMSM drives has been proposed in [9],
[10]. The exact closed-form hold-equivalent model for surface
permanent-magnet synchronous motor (SPMSM) drives can
be found in [6], [8], but the closed-form expressions valid for
IPMSM drives are not available in the literature.

In this paper, current control designs based on discrete
IPMSM models are considered. First, the motor model and the
control design in the continuous-time domain are reviewed in
Section II. Then, the main results are presented as follows.

1) An exact closed-form hold-equivalent discrete model
for IPMSM drives is derived in Section III. The ZOH
of the stator-voltage input is modeled in stationary
coordinates, where it physically is. The model provides
the mapping between the continuous-time model (with
physical parameters) and the discrete-time model. The
derived closed-form expressions can be applied to the
design, analysis, and implementation of controllers and
observers (e.g., in connection with deadbeat [13] or
predictive [14] direct torque control methods).

2) An analytical direct discrete-time pole-placement design
method for a two-degree-of-freedom (2DOF) state-space
current controller with an integral action is proposed in
Section IV. The time delays are inherently taken into
account in the design. The proposed method is easy to
apply: only the desired closed-loop bandwidth and the
three motor parameters are needed.

3) The robustness of the proposed current control design
against parameter errors is analyzed in Section V. The
operation of the controller is further investigated by
means of simulations and experiments using a 6.7-kW
SyRM drive.



Naturally, the model and the control design method are directly
applicable to SPMSM drives as well.

II. CONTINUOUS-TIME MODEL AND CONTROL DESIGN

A. Continuous-Time Model

In order to model IPMSMs, real space vectors will be used
throughout the paper. For example, the stator-current vector
is is = [id, iq]

T, where id and iq are the components of the
vector and the matrix transpose is marked with the superscript
T. The identity matrix, the orthogonal rotation matrix, and the
zero matrix are defined, respectively, as1

I =


1 0

0 1

�
, J =


0 �1

1 0

�
, O =


0 0

0 0

�
(1)

Vectors are denoted using boldface lowercase letters and
matrices using boldface uppercase letters. Space vectors in
stator coordinates are marked with the superscript ”s”, no
superscript is used for space vectors in rotor coordinates.

The electrical angular speed and angle of the rotor are
denoted by !m and #m(t) = s !mdt, respectively. The time
dependency of the variables is denoted by the argument t. It is
worth noticing that the rotor speed and the motor parameters
will be considered as quasi-constant parameters, when the
continuous-time model is discretized.

In rotor coordinates, the state-space representation corre-
sponding to the standard model of the IPMSM is

d s(t)

dt
= A s(t) +Bus(t) + b pm (2a)

is(t) = C s(t) + d pm (2b)

where  s is the stator flux vector, us is the stator voltage
vector, and  pm is the permanent-magnet (PM) flux. The
system matrices are

A =


�Rs/Ld !m

�!m �Rs/Lq

�
, B = I, b =


Rs/Ld

0

�

C =


1/Ld 0

0 1/Lq

�
, d =


�1/Ld

0

�
(3)

where Rs is the stator resistance, Ld is the direct-axis induc-
tance, and Lq is the quadrature-axis inductance. The state-
space representation in (2) has two inputs: the stator voltage
us(t) and the PM flux  pm (which is constant). If Ld = Lq,
the model represents the SPMSM. If  pm = 0, the model of
the SyRM is obtained.

The model (2) can be expressed in the Laplace domain as

is(s) = Y c(s) [us(s)� ui(s)] (4)

where the transfer-function matrix is

Y c(s) = C(sI �A)

�1
=


Rs + sLd �!mLq

!mLd Rs + sLq

��1

(5)

1The notation is very similar to that obtained for complex space vectors:
the rotation matrix J corresponds to the imaginary unit j and the coordinate
transformation matrices can be expressed using matrix exponentials, i.e.,
e

#J
= cos#I + sin#J .

and ui = [0,!m pm]
T is the voltage induced by the PM flux.

This induced voltage can be considered as a load disturbance
from the current controller point of view.

For the purposes of Section III, the stator voltage input in
(2a) can be expressed in stator coordinates, leading to

d s(t)

dt
= A s(t) +B0

(t)us
s(t) + b pm (6)

where the time-varying input matrix is

B0
(t) = e

�#m(t)J (7)

If constant !m is assumed, #m(t) = #m(0) + !mt holds.

B. Preliminaries: Continuous-Time Current Control Design

For starters, a continuous-time 2DOF PI-type current con-
troller is reviewed. A state controller with an integral action
and reference feedforward will be used as a design framework.
In the Laplace domain, this control law, expressed in rotor
coordinates, is

us,ref(s) = Ktcis,ref(s) +
K ic

s
[is,ref(s)� is(s)]�K1cis(s)

(8)
where us,ref is the resulting reference voltage, is,ref is the
reference current, Ktc is the feedforward gain, K ic is the
integral gain, and K1c is the state feedback gain. The gains
are real 2⇥2 matrices. The voltage production of the inverter is
assumed to be accurate and delayless, i.e., us = us,ref holds.
Using (4) and (8), the closed-loop current response becomes

is(s) = Hc(s)is,ref(s)� Y ic(s)ui(s) (9)

The closed-loop transfer-function matrices for the reference
following and disturbance rejection are

Hc(s) = (s2I + sA1c +A0c)
�1

(sB1c +B0c) (10)
Y ic(s) = (s2I + sA1c +A0c)

�1
(sC) (11)

where

A0c = CK ic, A1c = C(K1c �AC�1
)

B0c = CK ic, B1c = CKtc (12)

General control objectives for current controllers are: 1) no
cross-coupling between the d- and q-axis and 2) the same
closed-loop dynamics for both the axes. Hence, the non-
diagonal elements of Hc(s) should be zero due to the first
objective and the diagonal elements should be equal due to the
second objective. The resulting desired closed-loop transfer-
function matrix is of the form

Hc?(s) =
b1cs+ b0c

s2 + a1cs+ a0c
I (13)

Based on (12) and (13), the closed-loop poles and zeros can
be placed using the relations

Ktc = b1c ˆC
�1

, K ic = a0c ˆC
�1

K1c =
ˆA ˆC

�1
+ a1c ˆC

�1
(14)



where the hat indicates parameter estimates, e.g.:

ˆC
�1

=


ˆLd 0

0

ˆLq

�
(15)

Choosing the design parameters2

a0c = ↵2, a1c = 2↵, b1c = ↵ (16)

the transfer-function matrix (13) reduces to the first-order
unity-gain low-pass filter

Hc?(s) =
↵

s+ ↵
I (17)

where ↵ is the desired closed-loop control bandwidth. If
accurate parameter estimates in (14) are assumed, Hc(s) =

Hc?(s) holds. It can be easily shown that the controller
corresponding to (8), (14), and (16) is equivalent to the 2DOF
PI-type current controller considered in [2], [15], [16].

Advantages of this pole-placement design are its simplicity
and easy tuning: only the desired bandwidth ↵ and three
parameter estimates ( ˆRs, ˆLd, and ˆLq) are needed. For digital
implementation, the algorithm has to be discretized using, e.g.,
the Euler or Tustin methods. Unfortunately, unless the sam-
pling frequency is much higher than the closed-loop bandwidth
and the maximum operating frequency, the actual closed-loop
system deviates significantly from (17) due to discretization
errors, leading to the cross-coupling between the d- and q-
axis, oscillations, or even instability.

Assuming accurate parameter estimates in (14), the
disturbance-rejection transfer-function matrix in (11) reduces
to Y ic?(s) = s/(s + ↵)2C. Alternatively, the poles and
zeros could be placed using the complex vector design [3],
which leads to the same desirable reference-following transfer-
function matrix (17), but the disturbance-rejection transfer-
function matrix becomes different. According to [3], the
complex vector design reduces the sensitivity to parameter
mismatch.

III. DISCRETE-TIME MODELS

A. Exact Model

For the development of an exact discrete-time model, sam-
pling of the stator currents is assumed to be synchronized
with the pulse-width modulation (PWM). The switching-cycle
averaged quantities are considered. Under these assumptions,
the stator voltage in stator coordinates is piecewise constant
between two consecutive sampling instants, which corresponds
to the ZOH in stator coordinates. In other words, us

s(t) is
constant during kTs < t < (k + 1)Ts, where Ts is the
sampling period and k is the discrete-time index. The sampling
frequency is defined by fs = 1/Ts.

In the derivation of discrete-time models, two different
approaches to model the stator-voltage input have been used
in the literature depending on whether the ZOH of the voltage
input is assumed to be in rotor coordinates [7], [17] or in

2When placing the poles, it is often convenient to express the characteristic
polynomial as s2 + 2⇣!0s+ !2

0 , where !0 is undamped angular frequency
and ⇣ is the damping ratio. Hence, a0c = !2

0 and a1c = 2⇣!0.

stator coordinates [6], [8]. An additional compensation for the
delay due to the ZOH is needed in the first approach [17].
The latter approach is chosen here, since it inherently takes
the ZOH delay properly into account.

At this point, the system without the computational time
delay is considered, i.e., only the effect of the ZOH in the
stator-voltage input is taken into account. The system model
will then be augmented with the time delay of one sampling
period in Section III-D. When the stator flux is used as the
state variable, the discrete-time state-space representation is
given by

 s(k + 1) = � s(k) + �us(k) + � pm (18a)
is(k) = C s(k) + d pm (18b)

where �, � , �, C, and d are the discrete-time system
matrices. The discrete-time state matrix is

� = e

ATs
=


�11 �12
�21 �22

�
(19)

The input matrix B0
(t) in (7) corresponding to the stator

voltage is time variant. Hence, the discrete-time input matrix
becomes

� =

Z
Ts

0
e

A⌧B0
(Ts � ⌧)d⌧ · e#m(0)J

=


�11 �12
�21 �22

�
(20)

The input matrix corresponding to the PM flux is

� =

Z
Ts

0
e

A⌧

d⌧ · b =


�1
�2

�
(21)

The closed-form expressions of the elements in (19)–(21) are
given in the Appendix.

In the case of the SPMSM, where Ld = Lq = L, the exact
discrete-time model becomes much simpler. As an example,
the system matrices � and � reduce to3

� = e

��Ts
e

�!mTsJ , � =

1� e

��Ts

�
e

�!mTsJ (22)

where � = Rs/L. These expressions are mathematically
identical to those given in [6], [8] (where the complex-valued
space-vector notation has been used).

B. Approximation Based on Series Expansion

The system matrix � in (18) can be expressed using the
series expansion [18]

� = I + TsA (23)

where
 = I +

TsA

2!

+

T 2
s A

2

3!

+ . . . (24)

The exact voltage input matrix � cannot be easily expressed
as a series expansion due to the time-varying matrix B0

(t) in
(7). If the ZOH of the stator voltage were in rotor coordinates,
the matrix � would equal Ts B. However, the voltage is kept
constant in stator coordinates during the sampling period as

3Unlike the IPMSM model, the SPMSM model could be expressed using
complex space vectors by replacing the matrix J with the imaginary unit.
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Fig. 1. 2DOF state-space current controller with an integral action. The sampling of the stator currents is synchronized with the PWM. The effects of the
ZOH in stator coordinates, the coordinate transformations, and the computational time delay z�1 are included in the plant model. The angular error due to
the time delay is compensated for in the coordinate transformation of the stator voltage. The gains K1, K2, Ki, and Kt are 2⇥ 2 matrices.

discussed before. In [17], an approximate compensation for
this effect was derived. Applying this compensation, the input
matrix for the voltage can be approximated as

� ⇡ Ts B
!mTs/2

sin(!mTs/2)
e

�(!mTs/2)J (25)

Since the PM flux is constant in rotor coordinates, the input
matrix for the PM flux is

� = Ts b (26)

Typically, only the first two terms of (24) are needed, i.e.,
 = I+(Ts/2)A. Choosing  = I yields the Euler approx-
imation, which suffices only at high sampling frequencies.

C. Current as a State Variable
The current control design becomes more straightforward,

if the stator current is chosen as a state variable. With this
selection, the state equation can be expressed as

is(k + 1) = Fis(k) +Gus(k) + g pm (27)

where the new system matrices are

F = C�C�1, G = C� , g = (I � F )d+C� (28)

D. Inclusion of the Control Delay
Fig. 1 shows the plant model from the control system

point of view. As shown in the figure, the digital control
system and PWM update have (at least) one-sampling-period
time delay due to the finite computation time, i.e., us

s(k) =

u0s
s,ref(k � 1) in stator coordinates, or, when transformed

into rotor coordinates, us(k) = e

�!mTsJu0
s,ref(k � 1). To

simplify the notation, us,ref = e

�!mTsJu0
s,ref is defined,

giving us(k) = us,ref(k � 1). The effect of the time delay
on the voltage angle can be easily compensated for in the
coordinate transformation of the reference voltage (cf. Fig. 1).

For control design, the time delay can be included in the
plant model as [18]

is(k + 1)

us(k + 1)

�
=


F G
O O

� 
is(k)
us(k)

�
+


O
I

�
us,ref(k)+


g
0

�
 pm

(29)

It is worth noticing that both the states are readily available
as feedback signals in the state feedback control: is is the
measured feedback and us is obtained from the previous value
of the reference voltage us,ref .

In the following section, the current controller will be
designed based on the reference-following dynamics (similarly
as in Section II-B). The effect of the disturbance voltage ui on
the stator current will be omitted for simplicity. If needed, its
effect can be analyzed separately based on the superposition
principle. Hence, from (29), the stator current in the z-domain
can be expressed as is(z) = Y (z)us,ref(z), where

Y (z) = z�1
(zI � F )

�1G (30)

IV. DISCRETE-TIME CURRENT CONTROL DESIGN

A. Framework

A 2DOF state-space controller with an integral action,
shown in Fig. 1, is considered. The control law is

xi(k + 1) = xi(k) + is,ref(k)� is(k) (31a)
us,ref(k) = Ktis,ref(k) +K ixi(k)

�K1is(k)�K2us(k)
(31b)

where xi is the integral state, K i is the integral gain, Kt is the
feedforward gain, K1 and K2 are the state-feedback gains,
and us(k + 1) = us,ref(k). Since all the states are directly
available, the closed-loop poles can be placed arbitrarily. The
control law (31) can be expressed in the z-domain as

us,ref(z) = Ktis,ref(z) +
K i

z � 1

[is,ref(z)� is(z)]

�K1is(z)�
K2

z
us,ref(z)

(32)

From (30) and (32), the closed-loop dynamics become

is(z) = H(z)is,ref(z) (33)

where

H(z) = (z3I + z2A2 + zA1 +A0)
�1

(zB1 +B0) (34)



and the matrices are

A0 = G(K2G
�1F +K i �K1)

A1 = F +G[K1 �K2G
�1

(I + F )]

A2 = GK2G
�1 � I � F

B0 = G(K i �Kt), B1 = GKt (35)

A closed-loop state-space representation can be formed
from (29) and (31) as

2

4
is(k + 1)

us(k + 1)

xi(k + 1)

3

5
=

2

4
F G O

�K1 �K2 K i

�I O I

3

5

2

4
is(k)
us(k)
xi(k)

3

5 (36)

where the inputs are omitted for simplicity. The poles of (34)
equal the eigenvalues of the system matrix in (36). The system
is stable if the eigenvalues are inside the unit circle. When
analyzing the robustness of the system, it is worth noticing that
F and G should be the exact system matrices calculated using
the actual motor parameters, while the gains can be based on
approximations and erroneous parameter estimates (depending
on the controller under analysis). If the control design is based
on the exact model and the motor parameters are perfectly
known, the eigenvalues of (36) equal the desired closed-loop
poles.

B. Approximation of the Continuous-Time Design

The gains of the discrete-time controller (31) can be deter-
mined by approximating the continuous-time controller (cf.
Section II-B) with the Euler method. In the framework of
Fig. 1, the angular error of !mTs due to the computational
delay is compensated for in the coordinate transformation.
When approximating continuous-time designs, the angular
error of !mTs/2 caused by the ZOH delay should also be
taken into account [17]. Embedding this compensation into
the gains yields

K1 = e

(!mTs/2)J
⇣
2↵ ˆC

�1
� ˆRsI � !mJ ˆC

�1
⌘
, K2 = O

Kt = e

(!mTs/2)J↵ ˆC
�1

, K i = e

(!mTs/2)JTs↵
2
ˆC
�1

(37)

The performance of this design is acceptable if the sampling
frequency is about twenty times higher than the closed-loop
bandwidth and the operating frequency. At lower sampling
frequencies, direct discrete-time design methods are preferred.

C. Proposed Direct Discrete-Time Design

General control objectives for current controllers in the case
of the discrete-time design are the same as in the continuous-
time case, cf. Section II-B. Hence, the non-diagonal elements
of H(z) in (34) should be zero in order to avoid cross-
coupling of the axes and the diagonal elements should be equal
in order to achieve the same dynamics for both the axes. The
desirable closed-loop transfer-function matrix is of the form

H
?

(z) =
b1z + b0

z3 + a2z2 + a1z + a0
I (38)

Due to the time delay, a0 = 0 is selected. The gain matrices
can be solved using (35) and (38):

K1 = K i + (1 + a2) ˆG
�1

ˆF +

ˆG
�1

ˆF
2

K2 = (1 + a2)I +

ˆG
�1

ˆF ˆG

Kt = b1 ˆG
�1

, K i = (1 + a1 + a2) ˆG
�1

(39)

Using these expressions, the poles and zero in (38) can be
arbitrarily placed. The gains depend on the rotor speed via the
matrices ˆF and ˆG.

Choosing the coefficients a1 = �2, a2 = �2�, and b1 =

1� � leads to

H
?

(z) =
1� �

z(z � �)
I (40)

where � = e

�↵Ts is the exact mapping in the discrete domain
of the intended real pole of the system. The diagonal matrix
consists of the delay and the first-order unity-gain low-pass
filter; the pole in (38) is cancelled by the zero in a similar
manner as in the continuous-time case in (17), cf. Section II-B.
In digital control, the computational time delay z�1 cannot be
avoided in practice. It is worth noticing that the same input
parameters for the design are needed as in the continuous-time
case ( ˆRs, ˆLd, ˆLq, and ↵). The proposed design can be seen
as a discrete-time counterpart to the control law presented in
Section II-B.

V. RESULTS

A transverse-laminated 6.7-kW four-pole SyRM is consid-
ered. The rated values of the motor are: speed 3175 r/min;
frequency 105.8 Hz; line-to-line rms voltage 370 V; and rms
current 15.5 A. Four different current control designs have
been evaluated:

Design 1: approximation of the continuous-time design;
Design 2: proposed design based on the approximate model

with  = I;
Design 3: proposed design based on the approximate model

with  = I + (Ts/2)A;
Design 4: proposed design based on the exact model.

For brevity, only selected results are presented in the follow-
ing.

A. Robustness Analysis

The robustness of the four current control designs against
parameter errors is analyzed by calculating the eigenvalues
of (36). The controller gains have been calculated using the
parameter estimates ˆLd = 2.0 p.u., ˆLq = 0.3 p.u., and ˆRs =

0.04 p.u. The desired bandwidth ↵ is varied in a range from
0 to 2⇡·500 rad/s.

Fig. 2 shows the stability maps as a function of the desired
bandwidth ↵ and the ratio Lq/ˆLq. The actual inductance Lq

is varied in a range from 0 to 2.5ˆLq, while other actual
parameters perfectly match with their estimates. Figs. 2(a)
and 2(b) show the stability maps at zero speed when the
sampling frequency is 2 kHz and 1 kHz, respectively. It can be
seen that Design 1 has clearly the smallest stable regions: the
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Fig. 2. Stability maps for the four different current control designs as a function of the desired bandwidth ↵ and the ratio Lq/ˆLq: (a) electrical angular
speed !m = 0 of the rotor, the sampling frequency fs = 2 kHz; (b) !m = 0, fs = 1 kHz; (c) !m = 2⇡ · 200 rad/s, fs = 2 kHz; and (d) !m = 2⇡ · 200
rad/s, fs = 1 kHz.

Fig. 3. Stability maps for the four different current control designs as a
function of the desired bandwidth ↵ and the ratio Rs/ ˆRs. The speed is !m =

2⇡ · 200 rad/s and the sampling frequency is fs = 1 kHz.

desired bandwidth ↵ is limited to about 2⇡·150 rad/s when
the sampling frequency is 2 kHz and to about 2⇡·75 rad/s
when the sampling frequency is 1 kHz. The stable regions of
Designs 3 and 4 basically overlap with those of Design 2, i.e.,
there are no significant differences between Designs 2. . . 4. A
comparison of Figs. 2(a) and 2(b) shows that decreasing the
sampling frequency from 2 kHz to 1 kHz makes the stable
regions smaller in all the designs. It is worth noticing that, if
Lq > ˆLq, the actual bandwidth becomes generally lower than
the desired bandwidth ↵.

Figs. 2(c) and 2(d) show the stability maps at the electrical
angular speed !m = 2⇡ · 200 rad/s when the sampling fre-

quency is 2 kHz and 1 kHz, respectively. When the sampling
frequency is 1 kHz, Design 1 has no stable region at all.
Further, the stable region of Design 2 is very small: ↵ is
limited to about 2⇡·50 rad/s, if there are no parameter errors.
The stable regions of Designs 3 and 4 are comparatively large.
A comparison of Figs. 2(c) and 2(d) show that decreasing the
sampling frequency from 2 kHz to 1 kHz makes the stable
regions smaller in all the designs and the difference between
Designs 3 and 4 increases.

The robustness against erroneous ˆLd and ˆRs has also been
analyzed. In the case of ˆLd, the results are very similar to
those in Fig. 2 and are not shown here. All the current control
designs are almost insensitive to errors in ˆRs in the whole
speed range. As an example, Fig. 3 shows the stability maps as
a function of the desired bandwidth ↵ and the ratio Rs/ ˆRs. The
actual resistance Rs is varied in a range from 0 to 2.5 ˆRs, while
other actual parameters perfectly match with their estimates.
The speed is !m = 2⇡ · 200 rad/s and the sampling frequency
is 1 kHz. It can be seen that the stable region of Design 2 is
almost independent of the stator resistance error. Further, the
stable regions of Designs 3 and 4 effectively cover the whole
area. Design 1 is unstable due to the low sampling frequency
(independently of the stator resistance error).

It is worth noticing that the actual parameters were assumed
to be constant (but erroneous) in this robustness analysis. In
practice, the actual inductances may vary significantly (due
to the magnetic saturation) even during one sampling period,
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Fig. 4. Simulation results at the speed !m = 2⇡ ·200 rad/s with the accurate
parameter estimates: (a) Design 3; (b) Design 4. The desired bandwidth is
↵ = 2⇡ · 100 rad/s and the sampling frequency is fs = 1 kHz. Sampled
values of id (blue), iq (red), and their references (black) are shown.

which causes additional bandwidth limitations.

B. Simulation Results

Figs. 4 and 5 show time-domain simulation results of the
current waveforms. The electrical angular speed of the rotor
is !m = 2⇡ · 200 rad/s. The desired bandwidth is ↵ = 2⇡ ·
100 rad/s and the sampling frequency is 1 kHz. The current
references id,ref and iq,ref are changed stepwise. The sampled
values of the current components id and iq are shown (but the
ripple between the sampling instants is fairly large at this low
sampling frequencies, cf. [7]).

Figs. 4(a) and 4(b) show the results for Designs 3 and 4,
respectively. The actual parameters perfectly match with their
estimates. Some cross-coupling and overshoot appears in Fig.
4(a), while the results in Fig. 4(b) completely agree with the
desired performance. If the sampling frequency were increased
to 2 kHz, the results of Design 3 would become very close
to those of Design 4. In accordance with the stability maps
in Fig. 2(d), the time-domain simulations for Designs 1 and 2
were unstable under these operating conditions.

Fig. 5 demonstrates the effects of parameter mismatches
on the step responses in the case of Design 4. The actual
inductance is Lq = 0.7ˆLq in Fig. 5(a), where significant
oscillations appear. These oscillations could also be anticipated
based on Fig. 2(d), where the given operating condition
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Fig. 5. Simulation results at the speed !m = 2⇡ ·200 rad/s for Design 4: (a)
Lq = 0.7ˆLq; (b) Lq = 1.5ˆLq. The desired bandwidth is ↵ = 2⇡ ·100 rad/s
and the sampling frequency is fs = 1 kHz. Sampled values of id (blue), iq
(red), and their references (black) are shown.

is close to the stability boundary. In Fig. 5(b), the actual
inductance is Lq = 1.5ˆLq. The step response is now well
damped, but the actual bandwidth is much less than the desired
bandwidth.

C. Experimental Results

The discrete-time current controllers were experimentally
investigated using the 6.7-kW SyRM drive. A servo induction
machine was used as a loading machine in the speed-control
mode. The four current control designs (described in the
beginning of the section) were implemented in a dSPACE
DS1104 PPC/DSP board. The sampling was synchronized with
the PWM. The sampling and switching frequencies were 2
kHz.

The actual inductances Ld(id, iq) and Lq(id, iq) of the
SyRM depend significantly on the current components due to
the magnetic saturation. The saturation effects were modeled
in the estimates ˆLd and ˆLq by means of the power functions
[19]. In order to properly model the effect of the differential
inductances, a one-step prediction of the inductance estimates
would be needed, since the transformations in (28) become
F (k) = C(k + 1)�(k)C�1

(k) and G(k) = C(k + 1)� (k).
Here, for simplicity, the effect of the differential inductances
was omitted, i.e., the matrices were calculated as ˆF (k) =

ˆC(k) ˆ�(k) ˆC
�1

(k) and ˆG(k) = ˆC(k) ˆ� (k).
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Fig. 6. Experimental results at the rotor speed !m = 0 for Design 4. The
desired bandwidth is ↵ = 2⇡ ·100 rad/s and the sampling frequency is fs = 2

kHz. Sampled values of id (blue), iq (red), and their references (black) are
shown.

Fig. 6 shows an example of experimental results at zero
speed. The current references are changed stepwise. Design 4
is used. Designs 2 and 3 gave similar results, in accordance
with the stability maps in Fig. 2(a). It can be seen that the
control response is close to the desired response, except for
the oscillations after the steps in iq,ref . The fast change in iq
causes both Ld and Lq change substantially even during one
sampling period. The cross-saturation also causes some cross-
coupling between the d- and q-axis. These oscillations could
probably be reduced by taking the effect of the differential
inductances into account in the saturation model. Generally,
the saturation effects tend to be less severe in IPMSMs and
PM-assisted SyRMs than in SyRMs.

Fig. 7 shows examples of experimental results at the rotor
speed !m = 2⇡ · 200 rad/s. The desired bandwidth is ↵ =

2⇡ · 100 rad/s and the sampling frequency is 2 kHz. Designs
2 and 4 are used in Figs. 7(a) and 7(b), respectively. The
stator voltage is approximately zero until t = 0.02 s, but after
the step in id,ref , the voltage increases up to about 80% of the
rated value. The system remains stable in the case of Design 2,
but much noise and some cross-coupling can be observed. The
performance of Design 4 is much better. The ripple seen in the
waveforms in Fig. 7(b) originates mainly from the imperfect
magnetic saturation model. At this sampling frequency of 2
kHz, the results for Design 3 were very similar to those for
Design 4 shown in Fig. 7(b), in accordance with the stability
maps in Fig. 2(c).

VI. CONCLUSIONS

An exact closed-form hold-equivalent discrete model of
IPMSM and SyRM drives was derived. The model can be
applied to design, analysis, and implementation of controllers
and observers. Further, an analytical discrete pole-placement
design method for a 2DOF state-space current controller with
an integral action was proposed. The time delays are inherently
taken into account in the design. The proposed design method
is easy to apply: only the desired closed-loop bandwidth and
three motor parameters are needed. The hold-equivalent model
applied in the current control design can be either the exact
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Fig. 7. Experimental results at the rotor speed !m = 2⇡ · 200 rad/s: (a)
Design 2; (b) Design 4. The desired bandwidth is ↵ = 2⇡ · 100 rad/s and
the sampling frequency is fs = 2 kHz. Sampled values of id (blue), iq (red),
and their references (black) are shown.

model or a series expansion (where one more term than in the
Euler method already gives good results). According to the
results of eigenvalue analysis, simulations, and experiments,
the proposed design improves the dynamic performance and
robustness especially at high speeds as compared to the
benchmark methods. The design method is directly applicable
to SPMSM drives as well.

APPENDIX
EXACT DISCRETE-TIME MODEL

The closed-form solutions for the elements of � in (19) are

�11 = e

��Ts


cosh(�Ts)� �

sinh(�Ts)

�

�

�22 = e

��Ts


cosh(�Ts) + �

sinh(�Ts)

�

�

�21 = ��12 = �!me
��Ts

sinh(�Ts)

�
(41)

where � =

p
�2 � !2

m and4

� =

Rs

2

✓
1

Ld
+

1

Lq

◆
, � =

Rs

2

✓
1

Ld
� 1

Lq

◆
(42)

4If !2
m > �2, then � = j�im = j

p
!2
m � �2 is imaginary. All

the matrix elements remain real since cosh(j�imTs) = cos(�imTs) and
sinh(j�imTs)/(j�im) = sin(�imTs)/�im hold due to the properties of
hyperbolic functions. Furthermore, for � = 0, these functions reduce to
cosh(�Ts) = sinh(�Ts)/� = 1.



The closed-form solutions for the elements of � in (20) are

�11 = G
h
g11 cos(!mTs)� g12 sin(!mTs)� g11�11

+ (� + �)!2
m(�11 � �22)

i

�12 = G
h
g12 cos(!mTs) + g11 sin(!mTs)� g12�11 + g22�21

i

�21 = G
h
g21 cos(!mTs)� g22 sin(!mTs)� g21�22 � g11�21

i

�22 = G
h
g22 cos(!mTs) + g21 sin(!mTs)� g22�22

+ (� � �)!2
m(�22 � �11)

i (43)

where G = 1/[(�2 � �2)2 + 4�2!2
m] and

g11 = (� � �)2(� + �) + 4�!2
m, g12 = 2(� � �)�!m

g21 = 2(� + �)�!m, g22 = (� + �)2(� � �) + 4�!2
m (44)

In the previous derivations, it is important to notice that
e

x+y

= e

x

e

y does not hold for matrix exponentials in general.
The elements of � in (21) are given by

�1 = H [(� � �)(1� �11)� !m�21]

�2 = H


���21 + !m

✓
�11 + �22

2

� 1

◆�
(45)

where H = (� + �)/[(� + �)(� � �) + !2
m].
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