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Current Control for Synchronous Motor Drives:
Direct Discrete-Time Pole-Placement Design

Marko Hinkkanen, Senior Member, IEEE, Hafiz Asad Ali Awan, Zengcai Qu,
Toni Tuovinen, and Fernando Briz, Senior Member, IEEE

Abstract—This paper deals with discrete-time models and cur-
rent control methods for synchronous motors with a magnetically
salient rotor structure, such as interior permanent-magnet syn-
chronous motors and synchronous reluctance motors (SyRMs).
The dynamic performance of current controllers based on the
continuous-time motor model is limited, particularly if the ratio
of the sampling frequency to the fundamental frequency is low. An
exact closed-form hold-equivalent discrete motor model is derived.
The zero-order hold of the stator-voltage input is modeled in sta-
tionary coordinates, where it physically is. An analytical discrete-
time pole-placement design method for two-degrees-of-freedom
proportional–integral current control is proposed. The proposed
method is easy to apply: only the desired closed-loop bandwidth
and the three motor parameters (Rs, Ld, Lq) are required. The
robustness of the proposed current control design against para-
meter errors is analyzed. The controller is experimentally verified
using a 6.7-kW SyRM drive.

Index Terms—Current control, delay, discrete-time model, inte-
rior permanent-magnet synchronous motor (IPM), saliency, syn-
chronous reluctance motor (SyRM), zero-order hold (ZOH).

I. INTRODUCTION

SYNCHRONOUS motors with a magnetically salient
rotor—such as interior permanent-magnet synchronous

motors (IPMs), synchronous reluctance motors (SyRMs), and
permanent-magnet (PM)-assisted SyRMs—are more and more
applied in hybrid (or electric) vehicles, heavy-duty working
machines, and industrial applications. In these applications, the
maximum speeds and, consequently, the maximum operating
frequencies can be very high (e.g., 12 000 r/min corresponding
to the frequency of 1000 Hz for a ten-pole machine). Since
the switching frequency of the converter feeding the motor
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is limited due to the losses, the resulting ratio between the
switching frequency and the maximum fundamental frequency
can be even below 10. This will affect the sampling frequency,
too, as it is typically either equal to the switching frequency or
twice the switching frequency.

Generally, the stator current of synchronous motor drives
is controlled in rotor coordinates [1]–[13]. This coordinate
system is a natural selection since the controllable quantities
are dc in steady state, the inductance matrix and the PM flux
vector are (ideally) constant, and other parts of the control
system typically operate in rotor coordinates. The most widely
used approach is a synchronous-frame proportional–integral
(PI) controller, often augmented with decoupling terms to com-
pensate for the cross coupling due to the rotating coordinate
system [1]–[6]. Disturbance rejection can be further improved
with additional feedback from the stator current, referred to
as an active resistance [4], [8], [11], [14]. Most of these two-
degrees-of-freedom (2DOF) PI current controllers can be also
represented as full-state feedback controllers with integral ac-
tion and reference feedforward; this framework simplifies the
systematic design and analysis of controllers.

Surface permanent-magnet synchronous motors (SPMs) and
other magnetically nonsalient motors can be conveniently mod-
eled using complex space vectors [3]–[6], [9], [14], [15]. From
a current controller perspective, a plant to be controlled is
the stator admittance, which can be represented as a complex
transfer function [16]. The closed-loop poles can be placed
in the desired locations, and the predetermined response is
ideally achieved. On the other hand, in the case of IPMs and
other salient motors, real space vectors (or the dq components)
are needed. The stator admittance becomes a 2 × 2 transfer
function matrix, which impedes the controller design proce-
dure, since pole placement of multiple-input–multiple-output
(MIMO) systems is not generally unique [17]. Furthermore,
generalizing the current control designs of SPM drives to suit
IPM drives is not trivial; sometimes, rough approximations are
used [6], [13], or a generalization method is not explained [9].

A current controller can be first designed in the continuous-
time domain and then discretized for the digital implementation
using, e.g., the Euler or Tustin approximation [1], [3]–[6], [15].
This approach is well understood and works well in most ap-
plications. However, the ratio between the sampling frequency
and the maximum operating frequency should be more than 15
in the case of an SPM [9], whereas IPMs and SyRMs are known
to be even more demanding from this perspective [10], [13].
Similarly, the closed-loop control bandwidth is also limited
by the sampling frequency. Higher maximum speeds, higher
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dynamic performance, and better robustness at a given sam-
pling frequency could be achieved by designing the controller
directly in the discrete-time domain [2], [7], [9], [10], [12], [13].

A hold-equivalent discrete model—including the effects of
the zero-order hold (ZOH) and a sampler—of the motor drive
is needed for the direct discrete-time control design. The exact
closed-form hold-equivalent models have been derived for in-
duction motor drives in [18] and for SPM drives in [7] and [9].
An approximate discrete model of IPM drives has been pro-
posed in [10] and [12], but the exact closed-form expressions
valid for IPM drives are not available in the literature.

Furthermore, a computational delay (an actuator delay) of
one sampling period typically exists in the control loop. In the
continuous-time domain, this delay can be approximated as a
first-order low-pass filter and compensated for in the controller
[15]. In the discrete-time domain, the delay can be modeled in
an exact manner easily [7], [9], [10], [12]. If the state-feedback
controller were used, the controller output could be stored in
the memory, and the delayed output could be then used as an
additional state in the state feedback law [19]. This simple
approach is well known in control theory, but it has not been
applied to discrete-time current control.

A few direct discrete-time current controller designs for
IPMs are available [7], [10], [12], [13]. The controller proposed
in [7] is based on the exact (but numerically evaluated) hold-
equivalent discrete-time model, and the computational delay
is taken into account. However, the controller is complicated,
and its order is unnecessarily high. The methods in [10],
[12], and [13] are based on approximations, which makes it
difficult to evaluate their performance. Pole-placement designs,
enabling simple analytic controller tuning, are not available for
IPM drives.

In this paper, current control designs suitable for IPM drives
are considered. First, the IPM model in the continuous-time
domain is reviewed in Section II. Then, the main results are
presented as follows.

1) Continuous-time 2DOF PI current controller designs for
SPM drives [3], [4], [14] are extended to IPM drives in
Section III. A basis for the generalization is that 2 × 2
coefficient matrices of the transfer function matrix are
analogous to complex coefficients of the complex transfer
function; this approach is kin to block-pole placement
of MIMO systems [20], [21]. State control with integral
action and reference feedforward is used as a design
framework.

2) An exact closed-form hold-equivalent discrete model for
IPM drives is presented in Section IV and derived in
Appendix A. The ZOH of the stator-voltage input is
modeled in stationary coordinates, where it physically
is. The model can be applied to the design, analysis,
and implementation of controllers and observers (e.g., in
connection with deadbeat [22] or predictive [23] direct
torque control methods).

3) An analytical direct discrete-time design method for a
2DOF PI current controller is proposed in Section V.
The method is analogous to its continuous-time coun-
terpart discussed in Section III, but it is based on the

discrete-time model, and the computational delay is taken
into account in the state feedback law. The proposed
method is easy to apply: only the desired closed-loop
bandwidth and the three motor parameters are needed.

The robustness of the proposed current control design against
parameter errors is analyzed in Section VI. The operation of the
controller is further investigated by means of simulations and
experiments using a 6.7-kW SyRM drive. Naturally, the model
and the control design method are directly applicable to SPM
drives as well.

II. CONTINUOUS-TIME MODELING

In order to model IPMs, real space vectors will be used
throughout this paper. For example, the stator-current vector
is is = [id, iq]T , where id and iq are the components of the
vector, and the matrix transpose is marked with the superscript
T . The identity matrix, the orthogonal rotation matrix, and the
zero matrix are respectively defined as1

I =

[
1 0
0 1

]
J =

[
0 −1
1 0

]
O =

[
0 0
0 0

]
. (1)

Vectors are denoted using boldface lowercase letters, and matri-
ces are denoted using boldface uppercase letters. Space vectors
in stator coordinates are marked with the superscript s; no
superscript is used for space vectors in rotor coordinates. The
time dependence of the variables is denoted by the argument t.

The standard model of the IPM in rotor coordinates is
considered. The electrical angle of the rotor is denoted by ϑm,
and the electrical angular speed is

dϑm(t)

dt
= ωm. (2)

When the stator-current vector is chosen as a state variable, the
state equation becomes

dis(t)

dt
= F cis(t) + Gcus(t) + gcψf (3)

where the inputs are the stator-voltage vector us and the PM
flux ψf (which is constant). The system matrices are

F c =

[
−Rs/Ld ωmLq/Ld

−ωmLd/Lq −Rs/Lq

]

Gc =

[
1

Ld
0

0 1
Lq

]
gc =

[
0

−ωm/Lq

]
(4)

where Rs is the stator resistance, Ld is the direct-axis induc-
tance, Lq is the quadrature-axis inductance, and the subscript
c refers to the continuous-time model. If Ld = Lq, the model
represents the SPM. If ψf = 0, the model of the SyRM is
obtained.

1The notation is very similar to that obtained for complex space vectors:
the rotation matrix J corresponds to the imaginary unit j, and the coordi-
nate transformation matrices can be expressed using matrix exponentials, i.e.,
eϑJ = cosϑI + sinϑJ.
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The model can be expressed in the Laplace domain as

is(s) = Y c(s) [us(s) − ui(s)] (5)

where the transfer function matrix is

Y c(s)= (sI − F c)
−1Gc =

[
Rs + sLd −ωmLq

ωmLd Rs + sLq

]−1

(6)

and ui = [0,ωmψf ]T is the voltage induced by the PM flux.
This induced voltage can be considered as a load disturbance
from the current controller point of view.

III. CONTINUOUS-TIME CURRENT CONTROL DESIGN

A. Framework

For starters, a 2DOF PI current controller is reviewed in the
continuous-time domain. A state controller with integral action
and reference feedforward will be used as a design framework.
In the Laplace domain, this control law, expressed in rotor
coordinates, is

us,ref(s)=Ktcis,ref(s) +
K ic

s
[is,ref(s) − is(s)] − K1cis(s)

(7)
where us,ref is the resulting reference voltage, is,ref is the
reference current, Ktc is the feedforward gain, K ic is the
integral gain, and K1c is the state-feedback gain. The gains are
real 2 × 2 matrices. The voltage production of the inverter is
assumed to be accurate and delayless, i.e., us = us,ref holds.

Integral action of the controller compensates for the PM-
induced voltage ui, which is ideally a quasi-constant vector in
dq coordinates. However, harmonics in PM-flux linkage distri-
bution may cause a steady-state current ripple, which could be
reduced by augmenting the controller (7) with a feedforward
compensation method [2].

B. Block-Pole Placement

Using (5) and (7), the closed-loop current response becomes

is(s) = Hc(s)is,ref(s) − Y ic(s)ui(s). (8)

The closed-loop transfer function matrices are

Hc(s) = (s2I + sA1c + A0c)
−1

(sB1c + B0c) (9)

Y ic(s) = (s2I + sA1c + A0c)
−1

(sGc) (10)

where the 2 × 2 coefficient matrices are

A0c = GcK ic A1c = GcK1c − F c

B0c = GcK ic B1c = GcKtc. (11)

It is worth noticing that B0c = A0c, which naturally agrees
with the obvious steady-state condition Hc(0) = I caused by
integral action of the controller (7).

The coefficient matrices in (11) can be considered as exten-
sions of complex (scalar) coefficients of the complex transfer

functions, applied in modeling of SPMs. The coefficient matri-
ces define the system poles, which are the zeros of det(s2I +
sA1c + A0c). The gain matrices can be solved from (11) as

Ktc = Ĝ
−1
c B1c⋆ K ic = Ĝ

−1
c A0c⋆

K1c = Ĝ
−1
c (F̂ c + A1c⋆) (12)

where the desired coefficient matrices are marked with the
subscript ⋆, and the hat indicates parameter estimates. The poles
and transmission zeros of (9) can be placed arbitrarily via the
coefficient matrices using (12). The gains depend on the rotor
speed via the matrices F̂ c and Ĝc.

C. Selection of Coefficient Matrices

General reference tracking objectives for current controllers
are as follows: 1) no cross coupling between the d- and q-axes
and 2) the same closed-loop dynamics for both axes. Hence,
the nondiagonal elements of Hc(s) should be zero due to the
first objective, and the diagonal elements should be equal due to
the second objective. In the following, two current controllers
designed for SPM drives will be extended to IPM drives.

1) Internal Model Control Design: Choosing the coefficient
matrices

A0c⋆ = α2I A1c⋆ = 2αI B1c⋆ = αI (13)

leads to the desirable closed-loop transfer function matrix

Hc⋆(s) =
α

s + α
I (14)

which corresponds to the first-order unity-gain low-pass filter
having the bandwidth of α. If accurate parameter estimates
in (12) are assumed, Hc(s) = Hc⋆(s) holds. Furthermore,
closed-loop disturbance rejection (10) reduces to the diagonal
transfer function matrix

Y ic⋆(s) =
s

(s + α)2
Ĝc. (15)

This design may need a significant control effort at higher
speeds, where the open-loop dynamics in (6) have large nondi-
agonal elements (i.e., strong cross coupling between the axes).

It can be shown that the controller consisting of (7), (12), and
(13) is equal to the so-called internal model controller consid-
ered in [3], [11], and [24]. The advantages of this approach are
its simplicity and easy tuning: only the desired bandwidthα and
three parameter estimates (R̂s, L̂d, and L̂q) are needed.

2) Complex Vector Design: Choosing the coefficient
matrices

A0c⋆=αI(αI − F̂ c) A1c⋆ = 2αI − F̂ c B1c⋆ = αI (16)

leads to same desirable reference tracking (14). On the other
hand, disturbance rejection is governed by

Y ic⋆(s) =
s

s + α

[
(s + α)I − F̂ c

]−1
Ĝc (17)

where the nondiagonal elements of the open-loop dynamics (6)
are preserved, thus reducing the control effort and improving
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Fig. 1. State-feedback current controller with integral action and reference feedforward. The gray blocks represent the physical system (including the motor,
PWM, samplers, and inherent computational delay z−1). The block “Motor” consists of (2), (3), and the coordinate transformations. The PWM is modeled as the
ZOH in stator coordinates. The sampling of the stator currents is synchronized with the PWM. The white blocks represent the discrete-time control algorithm. The
angular error due to the time delay is compensated for in the coordinate transformation of the stator voltage.

robustness at higher speeds. The design (16) can be seen as an
extension of the complex vector design [4] to IPMs.2

D. Digital Implementation

For digital implementation, continuous-time control algo-
rithms have to be discretized using, e.g., the Euler or Tustin
methods. Unfortunately, unless the sampling frequency is much
higher than the closed-loop bandwidth and the maximum
operating frequency, the actual closed-loop system deviates
significantly from (14) due to discretization errors, leading to
the cross coupling between the d- and q-axes, oscillations, or
even instability [8], [9]. The performance of continuous-time
designs is acceptable if the sampling frequency is about 20
times higher than the closed-loop bandwidth and the operating
frequency. At lower sampling frequencies, direct discrete-time
design methods are preferred.

IV. DISCRETE-TIME MODELING

A. Closed-Form Hold-Equivalent Exact Model

Fig. 1 represents the current-controlled motor drive as a sam-
pled data system, which consists of the continuous-time motor
model, discrete-time controller, pulsewidth modulator (PWM),
and samplers. Sampling is assumed to be synchronized with the
PWM. The switching cycle averaged quantities are considered.
Hence, the actual stator voltage us

s(t) in stator coordinates is
piecewise constant between two consecutive sampling instants,
which corresponds to the ZOH in stator coordinates.

A ZOH-equivalent discrete motor model is needed for the
direct discrete-time control design. At this point, the system
without the computational time delay is considered, i.e., only
the effects of the ZOH and sampling are taken into account.
The system model will be then augmented with the time delay
of one sampling period Ts in Section IV-C. The discrete-time
IPM model in rotor coordinates can be expressed as

is(k + 1) = Fis(k) + Gus(k) + gψf (18)

2In [4], the resistance estimate R̂s = 0 was assumed for F̂ c in (16).

where F , G, and g are the system matrices, and k is the discrete-
time index. The exact closed-form expressions for these matri-
ces are derived in Appendix A. To reduce the computation time,
the trigonometric and hyperbolic functions needed in these
expressions can be implemented with lookup tables.

B. Approximation Based on Series Expansion

The exact system matrix F can be also expressed using the
series expansion [19]

F = I + TsΨF c (19)

where

Ψ = I +
TsF c

2!
+

T 2
s F 2

c

3!
+ · · · . (20)

Since the PM flux is constant in rotor coordinates, the input
matrix for the PM flux is g = TsΨgc.

The exact input matrix G cannot be easily expressed as a se-
ries expansion. If the ZOH of the stator voltage were in rotor co-
ordinates, the matrix Gwould be equal to TsΨGc. However, the
voltage is kept constant in stator coordinates during the sampling
period, as discussed before. In [25], an approximate compensa-
tion for this effect was derived. Applying this compensation,
the input matrix for the voltage can be approximated as

G ≈ TsΨGc

ωmTs
2

sin
(
ωmTs

2

)e−(ωmTs
2 )J. (21)

Typically, the first two terms of (20) suffice, i.e., Ψ = I +
(Ts/2)F c. This model requires less memory but longer com-
putation time compared with the exact model implemented with
lookup tables. Choosing Ψ = I yields the Euler approximation,
which is computationally efficient but leads to much larger
approximation errors.

C. Inclusion of the Control Delay

Fig. 1 shows the plant model from the control system point
of view. As shown in the figure, the digital control system and
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PWM update have (at least) one-sampling-period time delay
due to the finite computation time, i.e., us

s(k) = us
s,ref(k −

1) in stator coordinates, or, when transformed into rotor
coordinates, us(k) = e−ωmTsJus,ref(k − 1). To simplify the
notation, u′

s,ref = e−ωmTsJus,ref is defined, giving us(k) =
u′

s,ref(k − 1). The effect of the delay on the voltage angle can
be easily compensated for in the coordinate transformation of
the reference voltage (see Fig. 1).

For control design, the time delay can be included in the plant
model as [19]
[
is(k + 1)
us(k + 1)

]
=

[
F G
O O

] [
is(k)
us(k)

]
+

[
O
I

]
u′

s,ref(k)+

[
g
0

]
ψf .

(22)

Both states are readily available as feedback signals in the
state-feedback control: is is the measured feedback, and us is
obtained from the previous value of the reference voltage u′

s,ref .
In the following section, the current controller will be de-

signed based on the reference-tracking characteristics (similarly
as in Section III). The disturbance-rejection characteristics are
determined by the same system poles, which will be placed
by the state feedback. Hence, the transfer function matrix from
the disturbance voltage ui to the stator current can be dropped
from the following equations without loss of generality (and if
needed, it can be taken into account separately based on the
superposition principle). From (22), the stator current in the
z-domain can be expressed as is(z) = Y (z)u′

s,ref(z), where

Y (z) = z−1(zI− F )−1G. (23)

V. DISCRETE-TIME CURRENT CONTROL DESIGN

A. Framework

A state-feedback controller with integral action and reference
feedforward, shown in Fig. 1, is considered. The control law is

xi(k + 1) =xi(k) + is,ref(k) − is(k) (24a)
u′

s,ref(k) =Ktis,ref(k) + Kixi(k)

− K1is(k) − K2us(k) (24b)

where xi is the integral state, Ki is the integral gain, Kt is
the feedforward gain, K1 and K2 are the state-feedback gains,
and us(k + 1) = u′

s,ref(k). Since all the states are directly
available, the closed-loop poles can be placed arbitrarily. The
control law (24) can be expressed in the z-domain as

u′
s,ref(z) = Ktis,ref(z) +

Ki

z − 1
[is,ref(z) − is(z)]

− K1is(z) − K2

z
u′

s,ref(z). (25)

If needed, the control law can be augmented with a feed-
forward compensation method for nonsinusoidal PM-flux
distribution [2].

B. Approximation of the Continuous-Time Design

The gains of the discrete-time controller (24) can be deter-
mined by approximating the continuous-time controller (see

Section III) with the Euler method. In the framework of Fig. 1,
the angular error of ωmTs due to the computational delay
is compensated for in the coordinate transformation. When
approximating continuous-time designs, the angular error of
ωmTs/2 caused by the ZOH delay should be also taken into ac-
count [25]. Embedding this compensation into the gains yields

K1 = e(
ωmTs

2 )JK1c K2 = O

Kt = e(
ωmTs

2 )JKtc Ki = Tse(
ωmTs

2 )JKic (26)

where the continuous-time gains K1c, Ktc, and K1c are
obtained using (12) with either (13) for the internal model
control design or (16) for the complex vector design.

C. Proposed Block-Pole Placement

From (23) and (25), the closed-loop dynamics become

is(z) = H(z)is,ref(z) (27)

where

H(z) = (z3I + z2A2 + zA1 + A0)
−1(zB1 + B0) (28)

and the coefficient matrices are

A0 = G(K2G
−1F + Ki − K1)

A1 = F + G[K1 − K2G
−1(I + F )]

A2 = GK2G
−1 − I − F

B0 = G(Ki − Kt) B1 = GKt. (29)

It is to be noted that B0 depends on the other coefficient ma-
trices, i.e., B0 = I + A2 + A1 + A0 − B1, which also agrees
with the steady-state condition H(1) = I. The gain matrices
can be solved from (29) as

Kt = Ĝ
−1

B1⋆ K2 = I + Ĝ
−1

(F̂ + A2⋆)Ĝ

K1 = K2Ĝ
−1

(I + F̂ ) − Ĝ
−1

(F̂ − A1⋆)

Ki = K1 − K2Ĝ
−1

F̂ + Ĝ
−1

A0⋆. (30)

Using these expressions, the poles and transmission zeros of
(28) can be arbitrarily placed. The gains depend on the rotor
speed via the matrices F̂ and Ĝ.

D. Selection of Coefficient Matrices

General control objectives for current controllers are the
same as in the continuous-time case (see Section III-C). Hence,
the nondiagonal elements of H(z) in (28) should be zero in
order to avoid cross coupling of the axes, and the diagonal
elements should be equal in order to achieve the same dynamics
for both the axes. In the following, discrete-time variants of the
two controller designs considered in Section III-C are given.
Due to the time delay, A0⋆ = O is selected.

1) Internal Model Control Design: The discrete-time coun-
terpart to the internal model control design in (13) is

A1⋆ = β2I A2⋆ = −2βI B1⋆ = (1 − β)I. (31)
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TABLE I
DATA OF THE 6.7-kW SYRM

The corresponding desirable closed-loop transfer function
matrix is

H⋆(z) =
1 − β

z(z − β)
I (32)

where β = e−αTs is the exact mapping in the discrete domain
of the intended real pole of the system. The diagonal matrix
H⋆(z) consists of the delay and the first-order unity-gain low-
pass filter. In digital control, the computational time delay z−1

cannot be avoided in practice. The same input parameters for
the design are needed as in the continuous-time case (R̂s, L̂d,
L̂q, and α).

2) Complex Vector Design: The discrete-time counterpart to
the complex vector design in (16) is

A1⋆ = β2F̂ A2⋆ = −β(I + F̂ ) B1⋆ = (1 − β)I (33)

which also leads to reference tracking (32). The disturbance-
rejection transfer function matrix is not diagonalized, but the
open-loop poles are moved in an analogous manner to the
continuous-time case. Furthermore, it can be seen that both
(31) and (33) lead to deadbeat control if β = 0 is selected (or,
equivalently, as α approaches infinity).

VI. RESULTS

In the following, discrete-time current control designs are
evaluated by means of the robustness analysis, simulations,
and experiments. The studied motor is a transverse-laminated
6.7-kW four-pole SyRM, whose data are given in Table I. Four
variants of the complex vector design are considered:

Design 1: approximation of the continuous-time design;
Design 2: proposed design based on the approximate model

with Ψ = I;
Design 3: proposed design based on the approximate model

with Ψ = I + (Ts/2)F c;
Design 4: proposed design based on the exact model.

The performance of the internal model control design was
also evaluated, but the results are not shown here for brevity.3

Generally, the performance of the internal model control design
is similar to the complex vector design, which, however, is more
robust against parameter errors.

3Results for the internal model control design can be found in the conference
version [26] of this paper.

A. Robustness Analysis

The robustness of the four current control designs against pa-
rameter errors is analyzed by calculating the poles of (28). The
poles of (28) are the zeros of det(z3I + z2A2 + zA1 + A0).
The system is stable if all the poles are inside the unit circle.
It is worth noticing that F and G are the exact system matri-
ces calculated using the actual motor parameters, whereas the
gains can be based on approximations and erroneous parameter
estimates (depending on the control design under analysis). If
the control design is based on the exact model and the motor
parameters are perfectly known, the poles of (28) are equal to
the desired closed-loop poles.

The controller gains have been calculated using the parame-
ter estimates L̂d =2.20 per unit (p.u.), L̂q =0.33 p.u., and R̂s =
0.04 p.u. The desired bandwidth α is varied in a range from 0
to 2π · 500 rad/s. Fig. 2 shows the stability maps as a function
of the desired bandwidth α and the ratio Lq/L̂q. The actual
inductance Lq is varied in a range from 0 to 2.5L̂q, whereas the
other actual parameters perfectly match with their estimates.
Fig. 2(a) and (b) shows the stability maps at zero speed when
the sampling frequency is 1 and 2 kHz, respectively. It can
be seen that Design 1 clearly has the smallest stable regions:
the desired bandwidth α is limited to about 2π · 75 rad/s when
the sampling frequency is 1 kHz and to about 2π · 150 rad/s
when the sampling frequency is 2 kHz. The stable regions of
Design 3 and Design 4 basically overlap with those of Design 2,
i.e., there are no significant differences between Design 2 and
Design 4. A comparison of Fig. 2(a) and (b) shows that increas-
ing the sampling frequency from 1 to 2 kHz makes the stable
regions larger in all the designs. It is to be noted that, if Lq >L̂q,
the actual bandwidth becomes generally lower than the desired
bandwidth α.

Fig. 2(c) and (d) shows the stability maps at the electrical an-
gular speedωm =2π · 200 rad/s when the sampling frequency is
1 and 2 kHz, respectively. The desired bandwidth α of Design 1
is limited to about 2π · 20 rad/s when the sampling frequency is
1 kHz and to about 2π · 100 rad/s when the sampling frequency
is 2 kHz. The stable regions of Design 3 and Design 4 are com-
paratively large. A comparison of Fig. 2(a) and (b) shows that
increasing the sampling frequency from 1 to 2 kHz significantly
increases the stable regions of Design 1 and Design 2.

The robustness against erroneous L̂d and R̂s has been also
analyzed. In the case of L̂d, the results are very similar to those
in Fig. 2 and are not shown here. Design 2 to Design 4 are
almost insensitive to errors in R̂s in the whole speed range. As
an example, Fig. 3 shows the stability maps as a function of the
desired bandwidthα and the ratio Rs/R̂s. The actual resistance
Rs is varied in a range from 0 to 2.5R̂s, whereas other actual
parameters perfectly match with their estimates. The speed is
ωm = 2π · 200 rad/s, and the sampling frequency is 1 kHz. It
can be seen that the stable region of Design 2 is almost inde-
pendent of the stator resistance error. Furthermore, the stable re-
gions of Design 3 and Design 4 effectively cover the whole area.

The actual parameters were assumed to be constant (but
erroneous) in this robustness analysis. In practice, the actual
inductances may vary significantly (due to the magnetic satura-
tion) even during one sampling period, which causes additional
bandwidth limitations.
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Fig. 2. Stability maps for the four different current control designs as a function of the desired bandwidth α and the ratio Lq/L̂q . (a) Electrical angular speed
ωm = 0, the sampling frequency fs = 1 kHz. (b) ωm = 0, fs = 2 kHz. (c) ωm = 2π · 200 rad/s, fs = 1 kHz. (d) ωm = 2π · 200 rad/s, fs = 2 kHz.

Fig. 3. Stability maps for the four different current control designs as a function
of the desired bandwidth α and the ratio Rs/R̂s. The speed is ωm = 2π ·
200 rad/s, and the sampling frequency is fs = 1 kHz.

B. Simulation Results

Figs. 4 and 5 show the time-domain simulation results of the
current waveforms. The electrical angular speed of the rotor
is ωm = 2π · 200 rad/s. The desired bandwidth is α = 2π ·
100 rad/s, and the sampling frequency is 2 kHz. The current ref-
erences id,ref and iq,ref are changed stepwise: id,ref steps from
0 to 0.15 p.u. at t = 0.02 s; iq,ref steps first from 0 to 0.3 p.u. at
t = 0.04 s, then to −0.3 p.u. at t = 0.08 s, and finally back to 0
at t = 0.12 s. The sampled values of the current components id
and iq are shown (but the ripple between the sampling instants
is fairly large at this low sampling frequencies; see [8]).

Fig. 4(a) and (b) shows the results for Design 2 and Design 4,
respectively. The actual parameters perfectly match with their
estimates. Significant cross coupling after t = 0.02 s and
some overshoots appear in Fig. 4(a), whereas the results in
Fig. 4(b) completely agree with the desired performance. The
results for Design 1 and Design 3 are not shown for brevity:
Design 1 is almost unstable in accordance with the stability
map in Fig. 2(d), and the results for Design 3 are almost equal
to those for Design 4 at this sampling frequency of 2 kHz.
The performance of Design 3 starts to degrade at sampling

Fig. 4. Simulation results at the speed ωm = 2π · 200 rad/s with the accurate
parameter estimates. (a) Design 2. (b) Design 4. Sampled values of id (blue),
iq (red), and their references (black) are shown.

frequencies roughly below 1.5 kHz, whereas Design 4 works
perfectly at very low sampling frequencies (within the limits of
the sampling theorem) in these ideal conditions. The numeric
per-unit values of the gain matrices corresponding to Fig. 4 are
given in Appendix B for comparison purposes.

Fig. 5 demonstrates the effects of parameter mismatches
on the step responses in the case of Design 4. The actual
inductance is Lq = 0.5L̂q in Fig. 5(a), where some oscillations
appear. These oscillations could be also anticipated based on
Fig. 2(d), where the given operating condition is close to the
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Fig. 5. Simulation results at the speed ωm = 2π · 200 rad/s for Design 4.
(a) Lq = 0.5L̂q . (b) Lq = 2L̂q .

stability boundary. In Fig. 5(b), the actual inductance is Lq =
2L̂q. The step response is now well damped, but the actual
bandwidth is less than the desired bandwidth.

C. Experimental Results

Design 3 and Design 4 were experimentally investigated
using the 6.7-kW SyRM drive, but only the results for Design 4
are shown in the following for brevity. A servo induction
machine was used as a loading machine in the speed-control
mode. The controllers were implemented in a dSPACE DS1104
PPC/DSP board. The sampling is synchronized with the PWM.
The sampling and switching frequencies are 2 kHz. The desired
bandwidth is α = 2π · 100 rad/s.

The actual inductances of the SyRM depend significantly
on the current components due to the magnetic saturation, as
shown in Fig. 6 (see Appendix C). In the controller, however,
a simple saturation model is applied. The d-axis inductance
estimate depends only on id as

L̂d(id) =
Ld0 − Ld∞

1 + ad2i2d + ad4i4d
+ Ld∞ (34)

where the parameters Ld0 = 3.01 p.u., Ld∞ = 0.89 p.u., ad2 =
2.79 p.u., and ad4 = 2.67 p.u. correspond to the no-load con-
dition. The constant value L̂q = 0.33 p.u. for the q-axis in-
ductance estimate is used. The inductance estimates are also
illustrated in Fig. 6.

Fig. 7 shows examples of the experimental results for
Design 4. The current references are changed stepwise at zero
speed in Fig. 7(a). It can be seen that the control response
is close to the desired response despite the simple saturation
model in the controller. Design 3 gave similar results, in accor-
dance with the stability maps in Fig. 2(b).

Fig. 6. Magnetic saturation characteristics of the 6.7-kW SyRM based on the
measured inductances. (a) Ld as a function of id for iq = 0 (black), 0.6 p.u.
(blue), and 1.2 p.u. (red). (b) Lq as a function of iq for id = 0 (black), 0.3 p.u.
(blue), and 0.6 p.u. (red). The magenta curves with circle markers present the
inductance estimates L̂d(id) and L̂q = 0.33 p.u. used in the controller.

Fig. 7. Experimental results for Design 4. (a) ωm = 0. (b) ωm = 2π ·
200 rad/s.

Fig. 7(b) shows the current reference steps at the speed
ωm = 2π · 200 rad/s. The stator voltage is approximately zero
until t = 0.02 s, but after the step in id,ref , the voltage increases
up to about 80% of the rated value. Despite this challenging
transient condition, there is almost no cross coupling between
the components of the stator current. The response of iq is
slightly slower than the desired response, particularly after
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t = 0.04 s and after t = 0.08 s, where |iq| increases from the
zero level. This skewing of the response can be understood
based on the saturation characteristics shown in Fig. 6(b), where
Lq > 2L̂q at iq = 0. At this sampling frequency of 2 kHz, the
results for Design 3 were very similar to those for Design 4.
The selection between Design 3 and Design 4 can be seen as a
tradeoff between the computation time and the memory usage.

Lowering the sampling frequency down to 1 kHz caused a
severe ripple in the current components at high speeds. Based
on the time-domain simulations (with the saturation charac-
teristics of the SyRM modeled), this ripple is induced by the
combined effect of the nonlinear actual inductances and the
very low sampling frequency. It might be possible to mitigate
the ripple by improving the saturation model in the controller,
but compensating for the effect of the differential inductances
is not trivial [2], [12].

VII. CONCLUSION

An exact closed-form hold-equivalent discrete model of IPM
and SyRM drives has been derived. The model can be ap-
plied to design, analysis, and implementation of controllers
and observers. Furthermore, an analytical discrete-time pole-
placement design method for a 2DOF PI current controller was
proposed. The time delays are inherently taken into account in
the design. The proposed design method is easy to apply: only
the desired closed-loop bandwidth and three motor parameters
are needed. The hold-equivalent model applied in the current
control design can be either the exact model or a series expan-
sion (where one more term than in the Euler method already
gives good results). According to the results of eigenvalue
analysis, simulations, and experiments, the proposed design
improves the dynamic performance and robustness, particularly
at high speeds, compared with the benchmark methods. The
design method is directly applicable to SPM drives as well.

APPENDIX A
DERIVATION OF THE EXACT DISCRETE-TIME MODEL

A. Continuous-Time Model

In order to simplify the derivation of the exact discrete-time
model, the stator-flux vector ψs is chosen as a state variable.
The state-space representation corresponding to (3) is

dψs(t)

dt
= Aψs(t) + Bus(t) + bψf (35a)

is(t) = Cψs(t) + dψf (35b)

where the system matrices are

A =

[
−Rs/Ld ωm

−ωm −Rs/Lq

]
B = I, b =

[Rs
Ld

0

]

C =

[
1

Ld
0

0 1
Lq

]
d =

[
−1/Ld

0

]
. (36)

These matrices are linked with the system matrices in (4) as

F c = CAC−1 Gc = C gc = Cb − F cd. (37)

B. Hold-Equivalent Discrete-Time Model

1) Assumptions: In the derivation of hold-equivalent
discrete-time models, two different approaches to model the
stator-voltage input have been used in the literature depending
on whether the ZOH of the voltage input is assumed to be in
rotor coordinates [8], [25] or in stator coordinates [7], [9]. An
additional compensation for the delay due to the ZOH is needed
in the first approach [25]. The latter approach is chosen here,
since it inherently takes the ZOH delay properly into account.

Sampling of the stator currents is synchronized with the
ZOH, and the switching cycle averaged quantities are consid-
ered. Under these assumptions, the actual stator voltage us

s(t)
in stator coordinates is constant during kTs < t < (k + 1)Ts.
The stator voltage input in (35a) can be expressed in stator
coordinates, leading to

dψs(t)

dt
= Aψs(t) + B′(t)us

s(t) + bψf (38)

where the time-varying input matrix is

B′(t) = e−ϑm(t)J. (39)

As quasi-constant ωm is assumed, ϑm(t) = ϑm(0) + ωmt
holds. Furthermore, the motor parameters Rs, Ld, Lq, and ψf

are assumed to be quasi-constant.
2) Structure and System Matrices: When the stator flux is

used as the state variable, the discrete-time state-space repre-
sentation is given by

ψs(k + 1) = Φψs(k) + Γus(k) + γψf (40a)

is(k) = Cψs(k) + dψf (40b)

where Φ, Γ , and γ are the discrete-time system matrices. The
discrete-time state matrix is

Φ = eATs =

[
φ11 φ12

φ21 φ22

]
. (41)

The input matrix B′(t) in (39) corresponding to the stator
voltage is time variant. Hence, the discrete-time input matrix
becomes

Γ =

Ts∫

0

eAτB′(Ts − τ)dτ · eϑm(0)J =

[
γ11 γ12

γ21 γ22

]
. (42)

The input matrix corresponding to the PM flux is

γ =

Ts∫

0

eAτdτ · b =

[
γ1

γ2

]
. (43)

It is important to notice that ex+y = exey does not hold for
matrix exponentials in general. If the stator current is used as a
state variable, the system matrices become

F = CΦC−1 G = CΓ g = Cγ + (I − F )d. (44)
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3) Closed-Form Expressions: The closed-form solutions for
the elements of Φ in (41) are

φ11 = e−σTs

[
cosh(λTs) − δ

sinh(λTs)

λ

]

φ22 = e−σTs

[
cosh(λTs) + δ

sinh(λTs)

λ

]

φ21 = −φ12 = −ωme−σTs
sinh(λTs)

λ
(45)

where λ =
√
δ2 − ω2

m and4

σ =
Rs

2

(
1

Ld
+

1

Lq

)
δ =

Rs

2

(
1

Ld
− 1

Lq

)
. (46)

The closed-form solutions for the elements of Γ in (42) are

γ11 =G
[
g11 cos(ωmTs) − g12 sin(ωmTs) − g11φ11

+ (σ + δ)ω2
m(φ11 − φ22)

]

γ12 =G
[
g12 cos(ωmTs)+g11 sin(ωmTs)−g12φ11+g22φ21

]

γ21 =G
[
g21 cos(ωmTs)−g22 sin(ωmTs)−g21φ22−g11φ21

]

γ22 =G
[
g22 cos(ωmTs)+g21 sin(ωmTs)−g22φ22

+ (σ − δ)ω2
m(φ22 − φ11)

]
(47)

where G = 1/[(σ2 − δ2)2 + 4σ2ω2
m], and

g11 = (σ − δ)2(σ + δ) + 4σω2
m g12 = 2(σ − δ)δωm

g21 = 2(σ + δ)δωm g22 = (σ + δ)2(σ−δ) + 4σω2
m. (48)

The elements of γ in (43) are given by

γ1 = H [(σ − δ)(1 − φ11) − ωmφ21]

γ2 = H

[
−σφ21 + ωm

(
φ11 + φ22

2
− 1

)]
(49)

where H = (σ + δ)/[(σ + δ)(σ − δ) + ω2
m].

In the special case Ld = Lq corresponding to the SPM, the
system matrices Φ and Γ reduce to

Φ = e−σTse−ωmTsJ Γ =
1 − e−σTs

σ
e−ωmTsJ (50)

where σ = Rs/Ld. These expressions are mathematically iden-
tical to those given in [7] and [9].

4If ω2
m > δ2, then λ = jλim = j

√
ω2

m − δ2 is imaginary. All the
matrix elements remain real since cosh(jλimTs) = cos(λimTs), and
sinh(jλimTs)/(jλim) = sin(λimTs)/λim holds due to the properties of
hyperbolic functions. Furthermore, for λ = 0, these functions reduce to
cosh(λTs) = sinh(λTs)/λ = 1.

APPENDIX B
NUMERIC VALUES OF THE GAIN MATRICES

For comparison purposes, the numeric values of the gain
matrices have been computed for Design 2 and Design 4. The
conditions correspond to the simulations shown in Fig. 4: Ts =
0.5 ms (0.332 p.u.), α = 2π · 100 rad/s (0.945 p.u.), ωm =
2π · 200 rad/s (1.89 p.u.), and the parameters in Table I are used.
The per-unit values for Design 2 are

Kt =

[
1.444 −0.157
1.049 0.217

]
Ki =

[
−0.086 −0.146
0.950 −0.007

]

K1 =

[
4.152 0.021
−0.064 0.606

]
K2 =

[
0.534 0.174
−0.165 0.532

]

and the per-unit values for Design 4 are

Kt =

[
1.446 −0.160
1.058 0.221

]
Ki =

[
0.148 −0.160
1.053 0.029

]

K1 =

[
3.355 −0.006
0.059 0.496

]
K2 =

[
0.486 0.157
−0.153 0.480

]
.

It can be seen that only the gain matrix K2 is almost skew sym-
metric. Furthermore, the values of the matrix Kt are similar for
Design 2 and Design 4, whereas there are clear differences in
the case of other matrices.

APPENDIX C
MAGNETIC SATURATION

The saturation characteristics of the 6.7-kW SyRM are de-
scribed by rational functions similar to those in [27]. Here, the
reciprocity condition ∂ψd/∂iq = ∂ψq/∂id [28], [29] is taken
into account in order to reduce the number of parameters from
16 to 11, leading to

Ld(id, iq) = Ldd(id) − Ldq(id, iq) (51a)

Lq(id, iq) = Lqq(iq) − Lqd(id, iq) (51b)

where

Ldd(id) =
Ld0 − Ld∞

1 + ad2i2d + ad4i4d
+ Ld∞ (52a)

Lqq(iq) =
Lq0 − Lq∞

1 + aq2i2q + aq4i4q
+ Lq∞ (52b)

Ldq(id, iq) =
Ldq0cqi2q

(1 + cdi2d)
2(1 + cqi2q)

(52c)

Lqd(id, iq) =
Ldq0cqi2d

(1 + cqi2q)2(1 + cdi2d)
. (52d)

The parameter values were obtained by fitting the induc-
tance functions (51) to the measured inductances as described
in [30]. The fitted per-unit values are Ld0 = 3.01, Ld∞ =
0.89, ad2 = 2.79, ad4 = 2.67, Lq0 = 1.20, Lq∞ = 0.25, aq2 =
18.06, aq4 = 0, Ldq0 = 0.81, cd = 5.44, and cq = 7.25. The
inductance functions are illustrated in Fig. 6.
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