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Abstract 
  Power systems require an adequate capacity and higher utilization efficiency for an economic 
and reliable supply of electricity. However, their utilization efficiency is ordinary owing to low 
load factor and reserve capacity needs. Moreover, the growth of electricity demand and aging 
infrastructure call for massive investments in form of expansions and replacements. Therefore, 
the power industry is searching for novel solutions to deal with the future needs. Demand 
response (DR), a load shaping tool in smart grids, can be a potential solution to the future needs. 
  The aim of the dissertation is to assess the DR benefits of capacity utilization gain and better 
life management for major assets of high voltage grid. The study focuses on subtransmission 
grids because they have captured least attention in the prior research. Primary substation 
transformers have given special attention here due to their vital position in the system and high 
component cost. The aim of the dissertation is further divided into three tasks in order to 
distinguish the DR benefit among phases of operations and planning and various components. 
The first task proposes optimization models for utilization gain and life management of 
transformers by DR during normal and contingency operations. The second task offers tools 
for optimal capacity planning of transformers in primary distribution substations with and 
without considering DR. These tools incorporate all transformer related costs, their failure rate 
increase with age, and their salvage value based on loss-of-life. The third task determines the 
potential of DR in mitigating the redundancy needs of lines/cables, transformers, and busbars 
by comparing outage cost due to their contingencies. 
  The simulations are performed using the developed models for typical Finnish systems. The 
results indicate the following notable deductions. The utilization efficiency of grid components 
can be substantially improved using DR that depends upon load shape and its DR capability. 
Also, DR offers significant better life management potential for transformers during both nor- 
mal and contingency operations. Moreover, the employment of DR along with remote switch- 
ing of load transfer between substations provides superior savings in transformer capacity 
planning as compared to that of manual load shifting. Furthermore, the optimal decisions of DR 
activations are essential in order to gain the intended DR benefits at a minimal expense. 
  The power system utilities can use the models of this dissertation for making decisions of DR 
deployments. These deployments will be helpful in delaying or eliminating the capacity 
investments. Moreover, the tools of the second task will help asset managers for taking optimal 
planning decisions of transformer ratings and their replacement and maintenance schedules. 

Keywords Demand response, high voltage grid, transformers, aging, asset utilization, 
contingency, redundancy, smart grids. 
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Tiivistelmä 
  Voimajärjestelmät tarvitsevat riittävästi kapasiteettia ja korkean käyttöasteen taatakseen 
taloudellisen ja luotettavan sähkön saannin. Järjestelmän potentiaalia ei saada kuitenkaan 
hyödynnettyä täydellisesti matalan käyttökertoimen ja reservivaatimusten takia, minkä lisäksi 
kasvava sähkön kysyntä ja ikääntyvä järjestelmä lisäävät painetta investointeihin. Tämän takia 
sähköteollisuus on kiinnostunut uusista ratkaisuista, joilla järjestelmäresurssit saadaan 
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kysyntäjouston kanssa ja ilman. Kolmannessa osassa tutkitaan kysyntäjouston potentiaalia 
vähentää järjestelmän ylimitoittamista vertailemalla keskeytyskustannuksia. 
  Työssä suoritettavat simuloinnit tehdään Suomen järjestelmää kuvaavalla mallilla. Tulokset 
osoittavat, että verkostokomponenttien hyödyntämistä voidaan tehostaa huomattavasti 
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i  General symbol for parameters (of capacity, cost, resistance, and no-load of loss of 

transformer) of size i  

,j ini  Parameters (capacity, cost, resistance, and no-load of loss) for initial transformers at 
location j  

,j rep  Parameters (capacity, cost, resistance, and no-load of loss) for replacement 
transformers at location j  

A  Ambient temperature 

H  Winding hot-spot-temperature 

H  Hottest-spot-temperature peak bound 

,H t  Linear variable for HST at time t  

c  Outage rate of a component 
a
j  Outage rate of a transformer at location j and year a  

uv  Transition rate from state u  to v  

 Hours of operation of a transformer 

TO  Transformer oil time constant 

w  Transformer winding time constant 
a
j  Binary decision variables for refurbishment of transformer at location j  and year a  

v  Visit duration of state v  in a Markov model 

v  Visit frequency of state v  in a Markov model 

  
t  Time interval 

H  Winding hottest-spot rise over top-oil temperature 

,H i  Initial hottest-spot rise over top-oil temperature 

,H U  Ultimate hottest-spot rise over top-oil temperature 

,H R  Hottest-spot temperature at rated load 

TO  Top-oil rise over ambient temperature 

,TO i  Initial top-oil rise over ambient temperature 

,TO R  Top-oil temperature rise at rated load 

,TO U  Ultimate top-oil rise over ambient temperature 
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1 Introduction 
 

 

 

1.1 Background 
High voltage (sub-transmission) networks provide the connection between transmission systems 

and medium voltage distribution systems. Their adequate capacity and high utilization 

efficiency are critical factors for a reliable and an economical delivery of electricity to the end 

use consumers [1]. However, their utilization efficiencies are ordinary due to low load factor 

and reserve capacity requirements to provide support during contingencies [2]. Approximately, 

a quarter of distribution assets are used only for 440 hours of peak load [3]. Furthermore, owing 

to the growing load and aging systems, the capacity of network components needs to be 

enhanced in response. The classical approach of capacity enhancement by installing new 

equipment is expensive, complex, lengthy, and may disturb the surrounding environment [4]. 

Therefore, innovative solutions are required for future networks to cope with the increased 

demand and aging infrastructure while maintaining the rational utilization efficiency [1]. In the 

last few years, several novel solutions have been proposed such as dynamic thermal ratings 

(DTR) with online condition monitoring, network reconfiguration, distributed generation, and 

demand response (DR) [2], [5] - [12]. In particular, DR has gained a tremendous attention in 

smart grid as it can be used as load shaping tool to achieve its potential benefits. Yet, 

prospective advantages of DR for high voltage distribution system components need further 

research. This dissertation puts an emphasis on the DR benefits of capacity and life management 

for the major assets of high voltage distribution system. This thorough study is necessary to 

compare the DR potential benefits with their required investment before making any real world 

implementation. 

1.2 Objectives and Scope of the Dissertation 
The objective of the dissertation is to assess the potential benefits of DR in utilization 

improvement and aging reduction in high voltage grid (subtransmission). The components 

considered in the analysis include primary substation (high-voltage/medium-voltage) 

transformers, lines/cables, and busbars. As primary substation transformers are the most critical 

and costly individual components and their contingencies results into acute and economic 

consequences [2], therefore, they are given a significant importance in the assessment. 
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The objective is further divided into tasks in order to distinguish the DR potential benefit among 

operational stages, planning phases, and components. The dissertation work consists of the 

following tasks: 

Task 1: Assess the capacity and life time management benefits of DR for transformers during 

operational stages. Specifically, the subtasks include: 

a) Develop an optimization model to quantify the benefits of DR in utilization 

improvement of transformers in normal operations (without considering contingencies) 

and its impact on aging. Then perform the simulation to obtain the results. 

b) Develop a static rating limit based optimization model to estimate the potentials of DR 

for operational life extension and efficient capacity utilization of power transformers 

during contingencies. After that, demonstrate the impact of DR by simulation outcomes. 

c) Develop a DTR limit based model for optimal use of DR for effective life management 

and capacity utilization of power transformers during contingencies. Afterwards, show 

the applicability of the model with the simulation of appropriate case studies. 

Task 2: Evaluate the DR potentials in long-term capacity planning of substation power 

transformers. This task consists of the following subtasks: 

a) Develop a planning tool for optimal capacity management of substation transformers 

over long-run and conduct simulations for various situations of transformer capacity 

planning encountered by utilities. 

b) Modify the optimal transformer capacity planning tool of Task 2 (a) to include the DR 

and automation features and then quantify the benefits of DR through simulation 

results. 

Task 3: Develop Markov models for evaluating the redundancy mitigation in high voltage grids 

using DR. Subsequently, assess the DR impact using the developed models. 

In order to accomplish the objectives of the dissertation, at first DR capability of input load 

profile is determined by using a disaggregated load profile and identifying the flexible portion 

along with their duration of flexibility. Then, this data is utilized in the simulation of developed 

models in tasks that are mentioned in the beginning of this section. In each subtask, DR is 

assumed to be incentive based and it is activated to obtain the intended target. Afterwards, 

appropriate case studies are performed on typical Finnish systems. Finally, results are analyzed 

to report the findings. 

1.3 Contributions of the Dissertation 
This dissertation contains six publications [I] - [VI]. A brief overview of the major contributions 

in each publication is given in this section. 
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1.3.1 Demand Response Benefits for Transformers during Operations 

The first three publications [I] - [III] discuss the capacity and life management benefits of DR 

for transformers during operational stages. 

Publication [I] proposes a hottest-spot-temperature (HST) based optimization model to quantify 

the DR benefits for utilization efficiency improvement of transformers during normal operating 

conditions (without contingencies). The model aims to minimize the load deferrals under DR 

while maintaining the HST under a certain limit. This model is applied to a typical Finnish 

system for case studies of demand with and without DR. The results demonstrate that the 

capacity utilization of transformers can be significantly increased resulting into monetary 

benefits. Utilities can use this model for determining economically feasible zones where DR 

infrastructure investments should be made. 

Publication [II] offers a novel optimization model to estimate the potentials of DR for 

operational life extension and efficient capacity utilization of power transformers during 

contingencies. The model selects combination of best remedial actions among DR, load 

curtailment (LC), and transferring load to a neighboring substation to relieve overload on 

healthy transformers during contingencies. The simulations are performed for typical Finnish 

substations based on the availability of DR and connection with the neighboring substation. The 

investigation of results depicts that the loss-of-life (LOL) of healthy transformers can be 

substantially reduced during contingency and utilization of transformers can be significantly 

improved. This model can be used by operators in selecting optimal combination of load 

relieving option during transformer contingencies. The level of loading increase during normal 

operation can also be determined by this work. Moreover, this study is useful in making DR 

investment decisions. 

A universal optimization model is developed in [III] which is applicable for power transformers 

installed in all ambient conditions to obtain the optimal life management and effective capacity 

utilization benefits of DR. In this model, load relieving decisions for healthy transformers in a 

substation following contingencies are taken based on the HST thus resulting into optimal 

choices. The applicability of the model is validated by appropriate studies considering 

transformer contingencies in summer and winter seasons. By employing this model, the utilities 

need not to adjust transformer static ratings according to ambient conditions to obtain DR 

benefits towards lifesaving and utilization improvement. 

1.3.2 Demand Response Benefits for Transformers during Planning 

A tool for optimal capacity management of substation transformers is developed in [IV] and 

then DR and network automation features are added in the modified tool in [V]. 
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In [IV], a new tool is developed for optimal planning of substation capacity over long-run. This 

tool contains an optimization model that considers the present worth costs of investment, losses, 

maintenance, reliability, and salvage value of transformers and provides the optimal selection 

and scheduling of multistage transformer installations and their refurbishments. The model 

incorporates the features of transformers’ increase in failure rate with age and salvage value 

determination based on the actual LOL. The application of the tool is depicted by presenting 

various case studies representing the various situations encountered by utilities. 

Publication [V] provides a novel planning tool for substation transformers capacity management 

with DR enabled load. In addition to DR and characteristics of [IV], load transfer to a 

neighboring substation (NSS) and associated switching types (i.e. manual or remote) has also 

been incorporated in this tool. Several case studies and sensitivity analyses are performed for 

typical Finnish substation capacity planning problems. The investigation of results obtained 

through this tool can help in deciding the DR employments. 

1.3.3 Demand Response for Redundancy Mitigation in High Voltage Grid 

The last publication [VI] investigates the potential of DR in mitigating the redundancy 

requirements of HV grid. The comparison of outage cost for future network is adopted as an 

assessment method; this comparison is between non-investment in the network and use of DR 

as redundancy alternative activated by network contingencies. In the presence of DR, novel 

Markov reliability models are developed in order to calculate the outage cost. The contingencies 

of lines, busbars, and transformers are considered in the assessment. The analysis conducted on 

a typical Finnish sub-transmission network indicates that the redundant capacity of the network 

proportional to DR capacity can be mitigated. Thus, significant investments can be avoided or 

delayed and network efficiencies can be improved using DR. 

1.4 Dissertation Outline 
The summary part of the dissertation begins with a brief Introduction (Chapter 1) on the 

dissertation subject covering background, objectives, and contributions. Chapter 2 contains the 

basics of DR and transformer thermal and aging fundamentals. 

Chapter 3 deals with the capacity gain and lifesaving benefits of DR for transformers during 

operational stages [I] - [III]. These benefits are examined by developing optimization models 

and applying them in case studies for normal [I] and contingency operations [II], [III] in 

separate subsections. 

Chapter 4 presents the design and application of tools for optimal capacity planning of 

substation transformers [IV], [V]. At first, a mathematical model is formulated for capacity 

planning of transformers over long-run [IV]. Then, DR and load transfer to NSS features are 
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added in the modified planning tool [V]. The application of both the tools is also illustrated by 

appropriate case studies. 

In Chapter 5, focus is on the redundancy mitigation of network components capacity using DR 

[VI]. Firstly, Markov models are developed for reliability analysis of HV grid. Afterwards, 

outage cost is compared for future networks between without DR and with DR enabled load. 

The obtained results for Finnish sub-transmission network are discussed in detail. 

Chapter 6 provides the concluding remarks and possible future works. 

Finally, the publications of the dissertation [I] - [VI] are attached in the Appendix. 
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2 Preliminaries 
 

 

 

2.1 Introduction 
This chapter provides the basic information of demand response (DR) and transformer thermal 

dynamics. The basics of DR include its definition, types, capability, benefits, and barriers. The 

methods of calculating transformer hottest-spot-temperature (HST) and aging are given in 

transformer preliminaries. 

2.2 Demand Response 

2.2.1 Demand Response Definition 

A number of definitions have been used in the literature to describe the concept of DR; 

however, the following definition proposed by U. S. Department of Energy is the most popular 

and relevant. 

“Changes in electric usage by end-use customers from their normal consumption patterns in 

response to changes in the price of electricity over time, or to incentive payments designed to 

induce lower electricity use at times of high wholesale market prices or when system reliability 

is jeopardized.’’ [13] 

According to the above definition, DR refers to the deliberate actions of electricity customers 

that lead to changes in their normal load profile. These changes in loads profile are required at 

critical periods when electricity procurement costs are very high or when reliability is 

compromised due to outage of critical components. The customers perform these changes to 

obtain monetary savings in their bills. These savings can be offered to them in form of reduced 

electricity prices or incentive payments. 

2.2.2 Demand Response Types 

DR programs are classified into two major categories; price-based and incentive-based [14]. 

This classification is based on the ways by which load changes are instigated. The following 

paragraphs provide the summary of these DR programs. 

Price-based Demand Response Programs 

Price-based DR programs are centered on dynamic pricing rates in which customers are charged 

with time-varying prices. These time-varying prices reflect the underlying costs of production 
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and delivery. Customers modify their electricity usage according to the prices in order to reduce 

their electricity bills. These actions by customers also results into overall lower system cost. The 

most common price-based DR programs include Time-of-use (TOU) pricing, critical peak 

pricing, and real-time pricing. 

By TOU pricing, different electricity prices are introduced in different periods of time. In its 

simplest form, it has two time periods; the peak and the off-peak. Electricity price at the peak 

period is set higher than that of the off-peak period. For example, a utility in Helsinki offers 

TOU tariff in which night prices are about 20% lower than that of day prices [15]. In critical 

peak pricing, pre-specified high electricity rates are superimposed over TOU or normal flat 

pricing for a short duration. The events of critical peak pricing are called during contingencies 

or high wholesale electricity prices for limited number of days or hours per annum. In real-time 

pricing scheme, customers are charged with hourly fluctuating prices that reflect the power 

system condition and real cost of electricity in wholesale market [16]. It is thought that real-time 

pricing is the most effective scheme for competitive electricity markets. 

Incentive-based Demand Response Programs 

Incentive-based DR programs offer monetary incentives to the customers for reducing their load 

in response to request signals. These programs are established by utilities, load serving entities, 

or regional grid operators to decrease load when grid reliability is jeopardized or when 

electricity prices are too high. The program administrators may penalize the enrolled customers 

that fail to fulfil their contractual commitments. The most common incentive-based demand 

response programs include direct load control, interruptible/curtailable rates, emergency 

demand response, and demand bidding/buyback. 

In a direct load control program, the program operator can remotely control some customer 

devices on a short notice. Such programs have been commonly used to control water heaters and 

air conditioning devices in residential and small commercial areas. Interruptible/curtailable rates 

programs do not take the control of customer devices, however, contracted customers are bound 

to reduce the load on request to avoid penalty. In emergency demand response programs, 

customers receive incentive payments for reducing their load during emergencies conditions; 

however, these load reductions are voluntary. In demand bidding/buyback programs, customers 

bid for specific load reduction with associated cost in wholesale electricity markets. These load 

reductions are also obligatory for the selected bids. 

2.2.3 Demand Response Capability 

DR capability is the measure of possible energy that can be shifted over time. To assess the 

capability (available capacity) of DR, a number of studies and pilot projects around the globe 
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have been performed [17] - [25]. As notified in [17], full deployment of advanced metering 

infrastructure in the US can reduce peak demand by 20% in 2019. In another study [18], it is 

estimated that technical potential of a summer peak demand reduction by DR is about 15.7% 

and expected share from residential, commercial, and industrial sectors is equal. Reference [19] 

stated that demand response in the U. K. is capable of reducing its peak demand by more than 

15%. The estimated DR potential for the Nordic region is 21% of the peak demand [20]. 

Reference [20] also estimates the potential of demand response in Finland to be 20% of its peak 

demand. Based on a survey conducted in 2005, Finnish large scale industries have a technical 

DR potential of 9% of the peak load [21]. 

The focus of this thesis is the exploitation of DR capability benefit rather than its quantification, 

yet the input data of demand response capability is required. In order to determine the available 

DR capability of load at a particular time, information of following elements are needed; 

appliances existing at load side, their disaggregated load profile, and flexibility of each 

appliance. The method used to determine the DR capability of residential load in this 

dissertation is explained in the following paragraphs. 

Domestic Appliances and their Demand Response Capability: 

Based on flexibility in operation, domestic electrical appliances are classified into two 

categories: responsive and critical. The operation of responsive appliances can be shifted in time 

whereas critical appliances do not offer such a flexibility in operation. Washing machines and 

dishwashers can offer DR by delaying wash action and by changing cycle interval. DR in 

clothes dryers can be obtained by delaying its operation or by altering heating phase time. In 

cooling appliances (refrigerator and freezer), DR can be attained by postponing ice forming and 

defrost activities, modifying on-time cycle, and allowing slight temperature alterations during 

emergency times. Similarly, heaters and air conditioners can respond by rescheduling run time 

and by modifying temperature limits within the bounds set by users. The distinctive nature of 

heating loads, instigated by thermal inertia, makes them greatly responsive [26]. Table 2‒I lists 

the DR time shifting capacity of controllable appliances [27] - [29] considered in this 

dissertation. Rest of all the devices are in the group of critical appliances. 

 

TABLE 2-I 
DEMAND RESPONSE POTENTIAL OF DOMESTIC APPLIANCES [27] - [29] 

Appliance DR Potential (Hours) 
Refrigerator/Freezer/Air Conditioner / 
Clothes Dryer/Direct Space Heating 

1 

Storage Water Heater 3 
Washing Machine 4 
Storage Space Heating/Dish Washer 5 



32 
 

 

Load Disaggregation: 

To obtain a disaggregated load profile, a one year automatic meter reading of hourly load data 

measured from 1600 residential customers in central Finland is used. A statistical regression 

technique (conditional demand analysis) is applied to this metered data, weather information, 

and statistical figures collected by survey [30]. The survey data comprises the information 

associated to houses, people living in them, and electrical appliances. The disaggregated load 

profile of a typical winter week-day for a typical house is shown in Fig. 2.1. 

 

 

Fig.  2.1. Disaggregated load profile of a typical winter week-day for a typical house. 

 

Finally, the average DR capability of load is determined by utilizing the disaggregated demand 

and DR values of appliances from Table 2‒I. 

2.2.4 Demand Response Benefits 

The deployment of DR may provide significant technical, economic, and environmental 

benefits. The major benefits of demand response are briefly presented below: 

Participants’ Financial Benefits: Customers can decrease their electricity bills by shifting their 

load from higher price periods to lower price periods. They can also obtain bill savings through 

incentives by enrolling in various demand response programs. [31] - [33] 

Improved System Utilization Efficiency: Customers’ actions of shifting load from on-peak 

periods to off-peak periods produce relatively flatter load profile. This modified profile with 

lower peak results into overall higher utilization efficiency of power system infrastructure. The 

higher utilization efficiency can reduce the need of expensive expansions. [29], [34] - [35] 
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Reduction of Average Energy Price and Volatility: Decrease in peak load by DR lowers the 

costs of generation, transmission, and distribution. Thus, the average energy price reduces. It 

also reduces the price volatility by avoiding the use of expensive generators and relieving 

network limits at high demand. [13], [36] - [38] 

Improved Reliability: DR improves the system reliability by acting as reserve capacity during 

contingencies and congestions. [39] - [42] 

Market Power Mitigation: DR deters the abuse of market power of energy suppliers in 

situations of limited supplies or network constraints. [13] 

Environmental Benefits: Peak reduction by DR mitigates the operation of high-polluting 

generation plants. Furthermore, demand response is also useful for the integration of 

intermittent renewables. [43] - [45] 

2.2.5 Demand Response Barriers 

Despite the significant recognized benefits of DR, it faces some barriers and difficulties in 

implementations [17], [46] - [47]. These barriers are related to technology and their cost, 

regulations, and knowledge. These barriers are briefly listed in below. 

Technical Barriers 

i. Lack of advanced metering infrastructure. 

ii. High cost of some enabling technologies. 

iii. Lack of standards for interoperability. 

iv. Lack of automated load management system. 

Regulatory Barriers 

i. Lack of appropriate program design. 

ii. Measurement and verification challenges. 

iii. Lack of real time information sharing. 

iv. Proper division of cost and benefits between various players. 

Other Barriers 

i. Lack of customer awareness related to potential opportunity. 

ii. Confidentiality, privacy, and cyber security issues. 

The efforts are being made to overcome these barriers by introducing new technologies, 

programs, regulations, and customer awareness campaigns. 
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2.3 Transformer Thermal and Aging Models 
A transformer thermal model for calculating HST and aging equations are described in this 

section. 

2.3.1 Thermal Model 

The IEEE and IEC standards [48] - [49] give the following notions (1) - (5) for estimating the 

winding HST of transformers. It comprises of three elements; ambient temperature, top-oil rise 

over ambient temperature, and winding hottest-spot rise over top-oil temperature. All the 

temperatures are in °C. 

H A TO H  (1) 

/
, , ,( )(1 exp )TO

TO TO U TO i TO i  (2) 

/
, , ,( )(1 exp )w

H H U H i H i  (3) 

2

, ,
( 1)

( 1)

n

U
TO U TO R

K R
R  (4) 

2
, ,

m
H U H R UK  (5) 

Where, 

H  is winding hot-spot-temperature. 

A  denotes ambient temperature. 

TO is top-oil rise over ambient temperature. 

H  represents winding hottest-spot rise over top-oil temperature. 

,TO U and ,TO i are ultimate and initial top-oil rise over ambient temperature, respectively. 

,H U and ,H i  are ultimate and initial hottest-spot rise over top-oil temperature, 

respectively. 

TO  and w  are oil and winding time constants, respectively. 

 is hours of operation of a transformer. 

,TO R  and ,H R are top-oil rise and hottest-spot rise at rated load, respectively. 

UK is the ratio of ultimate to rated load. 

R  represents the load loss ratio. 

m  and n  are factors that depend upon the type of cooling of transformers. 

2.3.2 Aging Model 

The standards [48] - [49] also provide (6) - (8) for calculating the aging and loss-of-life of 

thermally upgraded paper (reference temperature 110 C). 
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Where, 

AAF  is the aging acceleration factor. 

EQAF  represents equivalent aging factor. 

 is the index of time. 

t  is a time interval. 

The value of AAF corresponding to a transformer operation at HST of 110 C is unity. It should 

be mentioned that with continuous operation at this temperature, normal insulation life of the 

transformer is 20.55 years (180,000 hours) [48]. 

2.4 Conclusion 
This chapter provided the preliminary material related to DR and Transformers. The DR 

preliminaries included its definition, types, benefits, barriers, and an approach of determining 

DR capability of a system. Transformer preliminaries covered HST and aging calculation 

method. 
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3 Demand Response Benefits for Transformers’ Operations 
 

 

 

This chapter deals with Task 1 of the dissertation (tasks are defined in Chapter 1). The aim is to 

present the demand response (DR) benefits of utilization improvement and lifesavings for 

primary substation (HV/MV) transformers during operational stages. This task is divided into 

three subtasks. The first subtask deals with the benefit of utilization improvement of 

transformers during normal operating conditions (without contingency). The second subtask 

addresses the possibility of lifesaving of transformers using DR during transformer 

contingencies based on static rating. In the third subtask, an optimization model is proposed by 

which efficient utilization of transformer and lifesaving benefits for transformers during 

contingencies can be achieved for transformers irrespective of ambient conditions through 

dynamic thermal ratings (DTR). The details of subtasks are described in the following sections 

after the initial section containing introduction and literature review. 

3.1 Introduction and Literature Review 
Transformers are generally the most expensive and critical element in a power delivery system 

[2]. Their high utilization efficiency is vital to obtain rational return on investments [1]. Owing 

to moderate load factor and reserve capacity obligations to provide support during 

contingencies, utilization efficiency of transformers is ordinary. They are traditionally loaded 

around 40-60% during normal operations [2]. Furthermore, transformers are overloaded during 

contingencies due to shifting of disconnected load to healthy transformers in a highly utilized 

system. These overloads produce heat losses in the transformer that in turn deteriorate the paper 

insulation at high rate. As health of the paper insulation is the measure of the age of a 

transformer, therefore, intensity of overloads must be lessened to avoid loss-of-life (LOL) at an 

accelerated rate. Moreover, investments in transformer capacity are needed to support growing 

load at peak hour and to replace aging infrastructure. The traditional approach of capacity 

addition is not economical [4]. Therefore, novel solutions are required to avoid massive upgrade 

cost of transformers [1]. DR can be used during normal operations and during contingencies to 

improve asset utilization and to mitigate the LOL. 

In literature, various techniques including DR have been proposed for utilization efficiency 

increase and life extension of transformers. References [50] - [51] propose a scheme to extend 

the life of secondary distribution transformers by distributed generation. Online condition 

monitoring, loading equipment up to their dynamic thermal rating (DTR), and continuous 
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removal of aging and degradation products from oil are also used for power transformer life 

extension and utilization improvement [5]- [7], [52] - [55]. The DTR of transformers have been 

examined well in [48] - [49]. IEEE standard [48] recommends maximum hottest-spot 

temperature (HST) of 110 C and 140 C for safe operation of transformers continuously and 

during contingencies, respectively. However, the use of only DTR cannot offer the substantial 

potential benefit towards utilization improvement as peak load hours still limit the loading 

capability. The combination of DR and DTR can deliver the significant improvement in asset 

utilization efficiency. 

The effect of controlled and uncontrolled electric vehicles (EV) charging on secondary 

distribution (medium-voltage/low-voltage) transformers aging was evaluated by numerous 

researchers [56]- [60]. In [61] - [62], the problem of additional load of EV charging was solved 

by DR of flexible household appliances. The DR was used to limit the demand to a certain level; 

however, DTR was not considered. References [63] - [65] also analyze the impact of EV and 

DR on primary distribution transformer. A smart distribution transformer management with 

multi-agent techniques was proposed for DR implementation at a distribution transformer level 

[66]. Reference [67] proposed transformer terminal unit based integration of DR for transformer 

management system. Reference [68] investigates the impact of DR on the lifetime of a 

secondary distribution transformer by optimizing transformer temperature. In that investigation, 

the thermal dynamics were considered, however, the optimization target of minimizing the sum 

of HST over a day by DR is not efficient because load rescheduling can only change mean HST 

if variations in ambient temperature are significant. Furthermore, utilization gain of 

transformers was not assessed in [68]. 

Prior to [I], hardly any study has examined the utilization improvement of transformers using 

DR in combination with DTR. Neither any research investigated the impact of DR in reducing 

the LOL of power transformers during contingencies until [II] and [III]. 

3.2 Demand Response Benefit for Normal Operation of Transformers 
This section presents the prospective of DR in improving the utilization of transformers during 

normal conditions. At first, an optimization model is proposed to determine optimal DR 

activation in order to maintain the HST of a transformer within a certain limit. In the proposed 

model, a dynamic thermal model is applied to estimate the HST and insulation aging. Then, 

simulations are performed for case studies of load with and without DR for a primary 

distribution transformer in a typical Finnish residential area. The analysis results indicate that 

transformer’s utilization can be increased considerably by using DR. 
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3.2.1 Proposed Model 

Fig. 3.1 displays the flow chart of the proposed algorithm for computing the gain in transformer 

utilization with DR support. The chart comprises of the following eight modules. 

 Module 1: The first step is to gather the data related to the system under study. The data 

contains the information of transformer input parameters for thermal calculations, annual 

load profile, DR potential of load, ambient temperature, and HST bound. 

 
Start
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Module 1
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End
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Fig.  3.1.  Flow diagram of the proposed algorithm. 

 

 Module 2: The second block initializes the load multiplier that denotes the scaling of the 

basic load profile. The load multiplier is increased gradually in order to determine the 

loading limits. 

 Module 3: A new load profile is created in this module by multiplying the initial load data 

with the load multiplier. Then, thermal and aging numerical values are computed for the 

newly created annual load profile by using (1) - (8). 

 Module 4: In this step, the transformer HST, which was calculated in previous module, is 

compared with the highest permitted value. HST lesser than the predefined limit leads to 

load multiplier increment until this condition is violated. This module determines the 

maximum load value for which the transformer HST remains within the bound without 

activating DR. 
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 Module 5: The HST of the transformer surpassed the permitted limit for the last loading 

values in the previous module. Therefore, load reduction by DR activation is needed to keep 

the transformer operation within the set temperature bound. In this block, the following 

optimization model is employed to obtain a modified load profile. 

The aim is to decrease the HST to a definite value by activating the least amount of load 

rescheduling under DR during a day. The minimum DR activation is framed in the objective 

function (9) whereas HST limit is defined by constraint (10). 

24 , ´

1 ´
Minimize t t

DR
t t

f L  (9) 

Where, 

t  and (́ )t t  are the indices of time intervals. 
, ´t t

DRL  is a linear variable representing load deferred from one time t  to a later time 't . 

The optimization function is subject to the following constraints: 
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tot DR C DR DR
t t

P P P L L t  (12) 

Where, 

,H t  and H are linear variables for HST at time t  and its peak bound, respectively. 

t , ´t , and ´́t are indices of time interval. 
max

DRT  is the maximum time for which a load can be deferred. 
, ´t t

DRL  and , ´t t
DRP are linear variables for load deferred from time t  to later time 't and its peak 

bound, respectively. 
´́ ,t t
DRL  is a linear variable for load deferred to t  in prior times ´́t  (DR load recovery). 
t

DRP  and t
CP  are available flexible and critical loads at time t , respectively. 

t
totP  is a modified load profile at time t  after DR activation. 

In the above formulation, (10) sets the bound on the HST. (11) is the constraint of DR potential; 

load postponed to a particular later hour should be lesser than the sum of available power that 

can be delayed to that time or later. The modified load profile after DR activation is given by 

(12), which is the summation of available responsive load, critical load, and load that was 

postponed in prior times minus load delayed to later times. 



41 
 

The output of the optimization is the amended load profile ( t
totP ) and DR activities ( , ´t t

DRL ) 

required to decrease the HST to the defined level. 

 Module 6: The outcome of the optimization is determined in this step. The success of the 

optimization designates that the DR activation is capable of decreasing the HST to the 

desired level. The load multiplier is incremented and steps of Module 5 and 6 are repeated. 

As the goal of the algorithm is to find the maximum prospective utilization increase of the 

transformer, therefore, this loop is iterated until the optimization fails to provide an answer. 

The load multiplier for the final successful optimization provides the maximum utilization 

improvement of the transformer that can be obtained by DR without violating HST limit. 

 Module 7: Here, the thermal and aging values are calculated for the last load profile attained 

from Module 6. 

 Module 8: Lastly, the results of prior modules are gathered. 

3.2.2 Case Studies and Results 

A typical Finnish residential area primary substation transformer (40 MVA, 110/20 kV) is 

considered as a test entity [69]. It is supplying power to 1800 households belonging to four 

primary heating type groups; district heating, direct electric heating, electric storage heating, 

and ground source heat pump. The load profile of the transformer is formed by using one year 

hourly measures load data for each type of household in central Finland. The input data for 

thermal calculations of the primary transformer are listed in Table 3‒I. To make the 

optimization problem solvable by usual solvers, the cooling parameters (m and n) are assumed 

to be unity [68]. The quadratic optimization problem formulated in Section 3.2.1 is solved via 

the general algebraic modelling system (GAMS) [70] environment for two case studies 

designated as Case 1(load is non responsive) and Case 2 (DR enabled load). In both the cases 

HST peak limit is set to 110°C. 

TABLE 3-I 
PRIMARY DISTRIBUTION TRANSFORMER PARAMETERS. [71] 
Type of cooling. OFAF 
Hottest-spot rise over ambient at rated load. 80 °C 
Top-oil rise over ambient at rated load. 56 °C 
Load loss at rated load to no-load loss. 6 
Winding time constant. 7 min 
Oil time constant. 90 min 

 

Table 3‒II shows the results for the progressively incrementing loading scenarios that are 

purposely selected for elaboration of results. Scenario 1 is for the rated load, maximum DTR is 

presented by scenario 3, and scenario 2 shows loading condition between scenario 1 and of 3 in 

which DTR is applied on the transformer. Scenarios 4 through 7 represent the progressive 

loading situations where DR is activated to limit HST below its bound. Scenario 7 indicates 
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maximum possible loading with accessible DR. In scenario 8, the HST limit is eased to 115°C 

to assess the extent of winding HST that can be decreased by activating the DR potential of load 

past scenario 7. 

TABLE 3-II 
CASE STUDY RESULTS FOR PRIMARY SUBSTATION TRANSFORMER 

Scenario 
Average 

Load 
(p.u.) 

Case 1 (without DR) Case 2 (with DR) Difference 
Peak 
Load 
(p.u.) 

HST 
max 
(°C) 

LOL 
(%) 

Peak 
Load 
(p.u.) 

HST 
max 
(°C) 

LOL 
(%) 

Peak 
Load 
(p.u.) 

HST 
max 
(°C) 

LOL 
(%) 

1 0.37 1.00 37 0.00003 1.00 37 0.00003 - - - 
2 0.52 1.40 80 0.00036 1.40 80 0.00036 - - - 
3 0.60 1.62 110 0.00494 1.62 110 0.00492 - - - 
4 0.61 1.65 115 0.00726 1.60 110 0.00692 0.05 5 0.00034 
5 0.69 1.85 146 0.10049 1.68 110 0.05063 0.17 36 0.04986 
6 0.73 1.95 164 0.37484 1.66 110 0.10478 0.29 54 0.27006 
7 0.74 1.98 169 0.55480 1.66 110 0.12780 0.32 59 0.42699 
8 0.75 2.00 173 0.71984 1.70 113 0.18072 0.30 60 0.53912 

 

The peak loads of scenario 1 (100%) and scenario 2 (140%) produces a maximum HST of 37°C 

and 80°C in Case 1, respectively. These small HST values are a result of cold ambient 

conditions in winter when load peaks occur. In scenario 3 of Case 1, 162% loading generates the 

HST of 110°C which is set as operational bound. Loading beyond this level requires DR 

activation in order to maintain the HST within the limit. 

In scenario 4 of Case 1, HST rises to 115°C that is brought back to 110°C by optimally delaying 

the responsive load in Case 2. Likewise, DR activation reduces the maximum HST of scenarios 

5, 6, and 7 (146°C, 164°C, and 169°C respectively) to the desired level. Lack of DR potential in 

decreasing the HST produces no optimization solution for transformer loading beyond 198%. 

The transformer can supply any average loading level of 60% (corresponding peak load 162%) 

without violating HST condition in case DR is not available at load side (Case 1, scenario 3). 

With the activation of DR (Case 2, scenario 7), the operation up to average loading of 74% is 

acceptable (corresponding Case 1 peak load 198%). The potential for increase in loading of this 

transformer by DR is about 36% for peak loading, and corresponding increase in average load is 

14%. In each scenario the LOL of transformer is also decreased in Case 2, however, the LOL 

values are small in both the cases due to overall low average load and cold ambient conditions. 

The ambient temperature at maximum HST is about -14°C. 

The amount of annual load delayed in obtaining the results of Case 2 is given in Table 3‒III. 

The demand delay values are presented based on delay duration (one to five hours) and as 

fraction of annual demand ( aW ). In scenario 4, DR activation on 1818 kWh (0.001% of annual 

demand) of responsive load decreases the maximum HST by 5°C. Higher reduction in HST 



43 
 

requires greater share of load shift under DR. The maximum utilization gain (scenario 7) 

requires 854 MWh demand shift which reduces the HST by 59°C. This load postponement is 

equal to 0.33% of the annual demand and major share is constituted by responsive capability of 

direct space heaters (demand delay for 1 h). 

TABLE 3-III 
ANNUAL LOAD TRANSFER UNDER DR IN CASE 2 FOR PRIMARY SUBSTATION TRANSFORMER. 

Scenario 
(Case 2) 

Total demand shift under DR in a year (kWh) 
1 h 2 h 3 h 4 h 5 h Total % of aW  

4 354 446 398 339 281 1 818 0.001 
5 62 755 21 835 22 354 13 658 28 077 148 679 0.062 
6 325 826 52 975 49 209 42 558 112 199 582 766 0.229 
7 526 472 68 207 67 912 52 507 139 361 854 459 0.330 

 

Fig. 3.2 displays the peak-day primary transformer loading and associated temperatures of both 

the cases for scenario 5. In Case 1, HST bound is violated for 5 hours (1800 to 2100 and 0000) 

which are eradicated by DR in Case 2. The total demand modification in the day to restrict the 

HST to 110°C is 45.64 MWh. The demand postponement for 1, 2, 3, 4 and 5 hours are 28.82, 

2.56, 3.77, 3.86, and 6.63 MWh, respectively. 

 

 

Fig.  3.2. Load and temperature curves of scenario 5’s peak day for primary substation transformer. 
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The following deductions can be made from the case study results: 

 The utilization efficiency of transformers can be improved considerably (up to 36% for 

peak load and 14% for average load). This utilization gain can help in delaying or 

completely avoiding the transformer investment cost needed to counter load growth or 

replacement of aged transformers. 

 The utilization improvement of transformers by the proposed model does not adversely 

impact the LOL because the HST is maintained below a defined limit, which is the cause of 

aging in transformers. 

3.3 Demand Response Benefit for Transformers during Contingencies 

(Based on Static Ratings) 
In the previous section transformer utilization gain with DR in normal conditions (without 

contingencies) was assessed. This section proposes an optimization model for life extension and 

utilization efficiency improvement of transformers during contingency events by using event 

driven DR. The optimization model selects the best combination of load relieving options 

among DR, load curtailment (LC), and transferring load to a neighboring substation (NSS); in 

order to decrease the loading on an overloaded transformer to a pre-defined level during 

contingencies. To quantify the DR benefits, simulations are performed for a typical Finnish 

residential load dominant two-transformer primary substation. 

3.3.1 Proposed Optimization Model 

Fig. 3.3 shows the flow diagram of the proposed algorithm for calculating the required aging 

quantities with DR supported loads. The diagram contains the following eight modules. 

 

 
Fig.  3.3. Flow diagram of the proposed algorithm. 
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 Module 1: The data related to system are gathered in this block. The data may include; 

transformers size, rating, interconnection, fault rates, repair times, operation procedures, 

configuration, and load profile. 

 Module 2: The nature of power system faults is random and load is hourly varying. 

Therefore, time of contingency event determines its impact on the system. To cover each 

hour contingency, the hour counter t  is initialized here. 

 Module 3: This step introduces a transformer contingency in a multi-transformer substation 

and disconnected load is shifted to healthy transformer(s) in the same substation. 

 Module 4: In this module, the necessity of load alleviation on healthy transformer(s) is 

judged. The load reduction is needed in case it is more than the acceptable limit. 

 Module 5: There are three possible remedial actions for relieving load on the overloaded 

transformer; transferring load to a NSS, DR activation, and LC. The best combination of 

remedial actions is decided by the following optimization model. 

The goal is to determine the combination of load decreasing actions during transformer repair 

with the minimum total cost. The mathematical formulation of the optimization problem is as 

follows: 

, ´

1 1 ´
Minimize ( )

r rT T
t t t
LC LC SW DR DR

t t t
f L c b c L c  (13) 

Where, 

t  and ´t  are indices of time interval. 

rT  is repair duration of transformers. 
t
LCL  is linear variable for amount of critical load curtailed. 

LCc  represents the unit load curtailment cost. 

b  is binary variable that represents the transfer of load to a neighboring substation. 

SWc  denotes the cost of load shifting to a neighboring substation. 
, ´t t

DRL  is linear variable representing load deferred from time t  to later time 't . 

DRc  denotes the unit incentive paid to customers for using their DR flexibility. 

The above objective function is subject to the following constraints. 

´́ , , ´

´́ ´
    t t t t t t t t

tot DR C DR LC DR
t t

P P P L L L t  (14) 

max     t NP
tot tran tran NSSP P P b P t  (15) 

, ´ ´́ ,

´ ´́
0     t t t t t t t

LC DR C DR DR
t t

L P P L L t  (16) 

, ´ , ´ max

´ ´
  ´ {1,2,3,..., }t t t t

DR DR DR
t t

L P t t T  (17) 
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Where, 

t , ´t , and ´́t  are indices of time interval. 
t

totP is modified load profile at time t  after DR activation. 

NP
tranP and max

tranP  are transformer nameplate ratings and maximum permitted load in per unit, 

respectively. 

NSSP  represents the neighboring substation load receiving capacity. 
t

DRP  and t
CP  are available flexible and critical loads at time t , respectively. 

, ´t t
DRL  and , ´t t

DRP are linear variable for load deferred from time t  to later time 't and its peak 

bound, respectively. 
´́ ,t t
DRL  represents load deferred to t  in prior times ´́t  (DR load recovery) variable. 
max

DRT  denotes the maximum time for which a load can be deferred. 

Equation (14) calculates the modified load profile after load curtailment and DR activation. 

Constraint (15) ensures that the modified load profile is always lesser than the defined limit 

(sum of transformer emergency ratings and neighboring substation capacity). The upper load 

curtailment limit set by (16) depends upon available critical and responsive load, load delayed 

to later times, and DR load recovery. (17) is the constraint of DR potential; load postponed to 

particular later hour should be lesser than sum of available power that can be delayed to that 

time or later. 

The output of the optimization is the modified load profile, necessary actions required to restrict 

load on transformers, and conforming cost of modifications. 

 Module 6: In this module, optimized load profile along with weather and transformer input 

data are used to determine the aging and LOL quantities. 

 Module 7: To cover a full year, steps of Modules 3 - 8 are repeated 8760 times. 

 Module 8: Finally, each time step contingency results are gathered for analysis and reporting. 

3.3.2 Case Studies and Results 

A typical Finnish residential two-transformer primary distribution substation (110 kV/20 kV), 

as Fig. 3.4 schematized, is used as a test system. The primary substation contains two identical 

transformers (40 MVA each) which acts as back-up to each other during contingencies. The 

present peak of typically hourly varying load at each transformer is 24 MVA. 

The input data for thermal calculations and values of optimization parameters are listed in Table 

3‒IV and Table 3‒V, respectively. The mixed integer linear optimization problem framed in 

Section 3.3.1 is solved via the general algebraic modelling system (GAMS) environment. 
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Typical diurnal and seasonal variations of the Finnish ambient temperature are also considered 

in the analysis. 

 

110 kV

20 kV

T 1 T 2
Neighboring
substation
connection

Load
 

Fig.  3.4. Single-line diagram of the test system (a typical Finnish substation). 

 

TABLE 3-IV 
PRIMARY DISTRIBUTION TRANSFORMER PARAMETERS. 

Type of cooling (m/n). OFAF(0.8/0.9) 
Hottest-spot rise over ambient at rated load. 80 °C 
Top-oil rise over ambient at rated load. 56 °C 
Load loss at rated load to no-load loss. 6 
Winding time constant. 7 min 
Oil time constant. 90 min 

 

TABLE 3-V 
VALUES OF OPTIMIZATION PARAMETERS FOR TEST NETWORK 

Cost of load curtailment ( LCc ). 10 €/kWh 

Cost of demand response activation ( DRc ). 0.20 €/kWh 

Cost of load switching to neighboring substations: 6 man-hours ( SWc ). 90 € 

Maximum allowed loading of transformer ( max
TranP ). 1.2 p.u. 

 

Simulations are conducted for the following case studies assuming scenarios of progressively 

growing load and considering single transformer contingency in the substation. The loading 

scenarios are intentionally selected for elaboration of results. 

 Case 1: In this case, the entire load is considered to be critical. The only way of relieving 

an overload condition (more than 120%) is by shifting load to an adjacent transformer 

otherwise transformers are allowed to violate the loading limit. This case provides LOL 

benchmark for the established methodology. 

 Case 2: In addition to load transfer to neighboring substation, load curtailment is also 

considered as a choice in bringing transformers’ operation within the set limit in this case. 
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This case provides the base cost of load reduction for comparison between cases of load 

with and without DR. 

 Case 3: Event driven working DR is also assumed in this case. Here, DR potential activated 

by the proposed optimization model assists the network operators to relieve transformer 

overloads by delaying responsive loads to later times. 

The results of above case studies are illustrated below for summer and winter contingencies in 

two situations; NSS support absent and available. 

Neighboring Substation Support: Absent (Summer Contingency) 

Table 3‒VI demonstrates the LOL comparison for a near-peak transformer contingency in 

summer while connection to adjacent substations is not available. In scenario 1, overload is not 

observed even during contingency (peak load 120%). For other scenarios, transformer 

contingency produces overload on healthy transformer (Case 1) which is removed by LC (Case 

2) and optimal remedial actions (Case 3). 

TABLE 3-VI 
LOSS-OF-LIFE COMPARISON FOR CASE STUDIES CONSIDERING CONTINGENCY NEAR-PEAK LOAD 

Scenario Normal peak Loss-of-life (%) Lifesaving (Aging Hours) 
# (%) Case 1 Case 2 Case 3 Case 2 Case 3 [Case 2-Case 3] 
1 60 0.0038 0.0038 0.0038 - - - 
2 65 0.0125 0.0087 0.0098 7 5 2 
3 70 0.0426 0.0181 0.0220 44 37 7 
4 74 0.1139 0.0291 0.0368 153 139 14 
5 75 0.1456 0.0324 0.0419 204 187 17 
6 80 0.4932 0.0545 0.0713 790 760 30 
7 90 5.3341 0.1380 0.1617 9 353 9310 43 

 

Table 3‒VII lists the load reduction actions needed to obtain the results of Table 3‒VI. Fig. 3.5 

and 3.6 displays the load, temperature, and aging rate curves for scenario 3 and 5, respectively. 

In Case 1 of scenario 3, load on the transformer is higher than the limit for twelve hours and the 

transformer observe the peak load of 56 MW (Fig. 3.5a). Transformer maximum HST, 

maximum aging acceleration rate, and corresponding ambient temperature are 137 °C, 13, and 

16 °C, respectively (Fig. 3.5b). In Case 2, LC of 49.88 MWh (cost 498.81 k€) provides the 

lifesaving value of 44 aging hours. Case 3 offers lifesaving gain of 37 aging hours during 

transformer contingency operation by delaying 77 MWh of demand (cost 15.40 k€). The 

maximum HST and corresponding aging acceleration rates in Case 3 are 120 °C and 2.7. In DR 

case, the valley filling by payback load generates lower aging benefit as compared to that of 

Case 2 in which peaks are only clipped by LC. Moreover, mitigation of rebound load peaks 

requires extra DR actions, therefore, the quantity of total demand deferred in Case 3 (77 MWh) 

is higher than the LC in Case 2 (49.88 MWh). 
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TABLE 3-VII 
LOAD REDUCTION ACTIONS AND ASSOCIATED COST FOR NEAR-PEAK TRANSFORMER CONTINGENCY IN CASE 2 AND  

CASE 3 

Scenario 
Load curtailed 

Demand deferred in Case 3 (MWh) 
Cost of load reduction 

(MWh) (k€) 

# Case 2 Case 3 1 h 2 h 3 h 4h 5 h Total Case 2 Case 3 Case 2 – Case 
3 

2 16.23 - 6.6 3.9 3.3 2 1.7 17.5 162.30 3.50 158.80 
3 49.88 - 42 8.8 10 7.1 9.1 77 498.81 15.40 483.41 
4 102.37 - 159.2 13.7 14.3 12.4 31.6 231.2 1023.74 46.24 977.50 
5 120.58 4.1 170.5 15.7 17 15.3 35.6 254.1 1205.80 91.82 1113.98 
6 231.09 37.3 283 21.1 20.9 27.7 94.2 446.9 2310.91 462.38 1848.53 
7 621.66 366.5 299.5 32.3 35.8 40.8 109.3 517.6 6216.60 3768.52 2448.08 

 
 

 
Fig.  3.5. Load, temperature, and aging acceleration factor curves for near-peak contingency in scenario #3. 

 

Fig. 3.6 illustrates the loading and related HST in all the cases for scenario #5. The peak load 

reduction from 60 MW to 48 MW is attained by 120.58 MWh of LC in Case 2 (cost 1205.8 k€). 

The equal amount of peak clipping in Case 3 requires 4.1 MWh of LC and 254.1 MWh of 

demand delay (cost 91.82 k€). As depicted in Fig. 3.6b, DR actions are required at hour 52 and 

53 even in presence of small valley because load postponed in prior times creates a new peak 

here. At the hour 48, part of the load is curtailed even in presence of sufficient responsive load 

in order to reduce the demand to the set level; because demand deferral at this hour will form 

rebound peaks at later hours thus requiring demand modifications on at least ten upcoming 

hours. In such a condition, higher cost of overall load deferment compared to LC or responsive 

load limit at any hour confines DR operation. The results (Table 3‒VII) show that Case 2 needs 

fewer alterations in load as compared to Case 3, however, the cost of load alleviation is lower in 

Case 3 due to less expense of DR actions. 
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The maximum utilization of transformers is 74% (Case 3-scenario 4) by using only DR while 

satisfying the peak load bound. This indicates that DR support during contingency can improve 

the normal utilization efficiency of transformers by 14%. 

 

 
Fig.  3.6. Load, temperature, and load reduction actions for near-peak contingency in scenario #5. 

 

Neighboring Substation Support: Available (Summer Contingency) 

Here, it is assumed that support from an identical neighboring substation is available during 

contingencies. In such a system, single transformer contingency can be fully supported for 90% 

utilized transformers (given maximum long-term emergency loading of transformers is 120%). 

At peak, the total load of four transformers located at two substations is (90×4=) 360% and the 

total capacity of these substations during a transformer contingency would also be (120×3=) 

360%. Table 3‒VIII and 3‒IX show the results and associated costs for a near-peak transformer 

contingency in summer, respectively. In contrast to without neighboring substation situation, 

LOL values in Case 1 for the selected scenarios are high as transformers are highly loaded 

before and during repair time. Therefore, decrease in load during the contingency results into 

relatively superior aging benefits. 

The lifesaving benefits are obtained in all the scenarios of Case 2 and 3, however, the costs of 

load decrease are low only for scenarios a-e in Case 3. In these scenarios, sufficient DR 

capability minimizes or eliminates the activation of costly load curtailment. In scenarios a and b 

of Case 2 and 3, the activation of LC/DR during load transfer to the NSS (requiring 3h for 

manual transfer) generates lifesaving benefit though rest of the transformers are able to take the 

entire disconnected load. 
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TABLE 3-VIII 
LOSS-OF-LIFE COMPARISON FOR CASE STUDIES CONSIDERING CONTINGENCY NEAR-PEAK LOAD (NEIGHBORING 

SUBSTATION CONNECTED) 

Scenario 
Normal peak Loss-of-life (%) Lifesaving (Aging Hours) 

(%) Case 1 Case 2 Case 3 Case 2 Case 3 [Case 2-Case 3] 
a 80 0.0554 0.0545 0.0550 1.6 0.8 0.9 
b 90 0.1503 0.1380 0.1380 22.1 22.1 - 
c 95 0.2450 0.1807 0.1809 115.7 115.4 0.3 
d 98 0.4042 0.2064 0.2076 355.9 353.9 2.1 
e 99 0.5156 0.2151 0.2169 540.8 537.6 3.2 
f 100 0.6855 0.2237 0.2260 831.1 827.0 4.1 
g 105 4.5267 0.2622 0.2713 7676.1 7659.7 16.3 

 

TABLE 3-IX 
LOAD REDUCTION ACTIONS AND ASSOCIATED COST FOR NEAR-PEAK TRANSFORMER CONTINGENCY IN CASE 2 AND 3 

(NEIGHBORING SUBSTATION CONNECTED) 

Scenario 
Load 

curtailed 
(MWh) 

Demand deferred in Case 3 (MWh) Load transferred 
(MWh) 

Cost of load reduction 

(k€) 

# Case2 Case3 1 h 2 h 3 h 4h 5 h Total Case 2 Case 3 Case 2 Case 3 
Case 2 - 
Case 3 

a 4.8 - 1 1.2 1 0.8 0.8 4.8 226.2 228.5 48.08 1.05 47.03 
b 23.4 - 24.3 2.4 3.2 2 1.5 33.5 598.2 621.6 234.07 6.79 227.28 
c 71.5 - 63.1 10.6 10.8 10.9 9.5 104.9 889.5 959.1 715.05 21.07 693.98 
d 131.3 - 166.3 13.1 17.3 19.4 43.7 259.8 1062.9 1181.5 1312.73 52.05 1260.68 
e 163.4 0.2 266.0 16.9 20.2 18.8 59.7 381.7 1113.4 1258.8 1634.23 78.43 1555.80 
f 202.7 7.1 333.6 20 24.7 24.2 73.4 475.9 1159.5 1332.3 2027.81 166.27 1861.54 
g 475.1 193.2 323.8 35.6 40.5 49.7 149.9 599.4 1354.8 1575.5 4751.15 2051.97 2699.18 

 

Fig. 3.7 presents the load, temperature, and aging rate curves for scenario c. In Case 1, load on 

the transformer is higher than the limit for ten hours at various instances and the transformer 

observe the peak load of 59.95 MW (Fig. 3.7a). This peak occurs at hour 3 where load transfer 

to the neighboring substation is being initiated. The corresponding ambient temperature, HST, 

and aging acceleration rate are 10 °C, 151 °C and 44, respectively (Fig. 3.7b). In Case 2, LC of 

71.55 MWh (cost 715.05 k€) delivers the lifesaving benefit of 115.7 aging hours. Case 3 

provides gain of 115.4 aging hours during transformer contingency operation by postponing 

104.9 MWh of demand (cost 21.07 k€). The maximum HST and consistent aging acceleration 

rates in Case 3 are 129 °C and 6, respectively. 

Scenario d (98% normal loading) corresponds to maximum transformers’ capacity utilization 

where load is decreased to the set limit (120%) without curtailing any part of critical load in 

Case 3. It designates that the utilization of all the transformers can be increased by 8% in normal 

conditions by deploying DR as a solution of decreasing load during contingencies. Thus, the 

total utilization increase of four transformers would be (8×4=) 32%. 
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Fig.  3.7. Load, temperature and aging acceleration factor curves for near-peak contingency in scenario c 

(neighboring substation connected). 

Winter Contingencies 

Table 3‒X and 3‒XI list the results of case studies for near-peak load contingency in winter 

when the neighboring substation support is absent and available, respectively. The ambient 

temperature varies between -28 °C and 1 °C during the repair of the transformers. The 

lifesaving benefits are also attained here and its trend with growth in load is the same as of 

summer contingencies. However, the scale of the benefit is less in winter. These lower gains are 

due to very low ambient temperatures that creates trivial aging of transformers even in Case 1. 

Thus, the decrease of load in Case 2 and 3 by LC/DR yields a slighter effect on aging of 

transformers. 

In Case 3-scenario 4, peak clipping reduces the HST from 126 °C (Case 1) to 92 °C that results 

into lifesaving benefit of 16.3 aging hours. Similarly, Case 3-scenario d produces 34.8 aging 

hours benefit and corresponding change in HST is from 132 °C (Case 1) to 93 °C. The ambient 

temperature at these HST peaks is -8 °C. 

TABLE 3-X 
LOSS-OF-LIFE COMPARISON FOR CASE STUDIES CONSIDERING CONTINGENCY NEAR-PEAK LOAD IN WINTER. 

Scenario Normal peak Loss-of-life (%) Lifesaving (Aging Hours) 
# (%) Case 1 Case 2 Case 3 Case 2 Case 3 [Case 2-Case 3] 
1 60 0.0002 0.0002 0.0002 - - - 
2 65 0.0010 0.0006 0.0007 0.6 0.5 0.1 
3 70 0.0040 0.0014 0.0018 4.6 4.0 0.6 
4 74 0.0122 0.0024 0.0031 17.7 16.3 1.4 
5 75 0.0161 0.0027 0.0036 24.2 22.6 1.7 
6 80 0.0643 0.0048 0.0068 107.1 103.5 3.6 
7 90 0.9344 0.0137 0.0180 1657.2 1649.5 7.7 
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TABLE 3-XI 
LOSS-OF-LIFE COMPARISON FOR CASE STUDIES CONSIDERING CONTINGENCY NEAR-PEAK LOAD IN WINTER 

(NEIGHBORING SUBSTATION CONNECTED) 

Scenario 
Normal peak Loss-of-life (%) Lifesaving (Aging Hours) 

(%) Case 1 Case 2 Case 3 Case 2 Case 3 [Case 2-Case 3] 
a 80 0.0049 0.0048 0.0048 0.2 0.1 0.1 
b 90 0.0142 0.0137 0.0137 0.9 0.9 - 
c 95 0.0232 0.0184 0.0185 8.6 8.5 0.1 
d 98 0.0411 0.0215 0.0218 35.3 34.8 0.5 
e 99 0.0552 0.0225 0.0229 58.8 58.1 0.7 
f 100 0.0781 0.0236 0.0240 98.2 97.3 0.8 
g 105 0.7472 0.0285 0.0302 1293.6 1290.6 3.1 

 

The following inferences can be drawn from the case study results: 

 The LOL of healthy transformers can be decreased in a substation using DR following a 

contingency. 

 The capacity utilization efficiency of transformers can be significantly enhanced by 

deploying DR as a load amendment tool to limit peak load on healthy transformers during 

emergencies. This utilization gain can help in postponing or entirely eliminating the 

transformer investment cost required to counter load growth. 

 The lifesaving benefits of peak clipping using DR are ample in a highly utilized system. 

 The transformers’ aging reduction by peak trimming depends on the ambient conditions. 

These reductions are superior in warm ambient conditions. 

 Load decrease by DR is not always a feasible option as rebound load may create new 

spikes resulting into series of DR actions to eliminate the new spikes. Thus, for the best 

result, selection of optimal combination among available choices is crucial. 

 

3.4 Demand Response Benefit for Transformers during Contingencies 

(Based on Dynamic Ratings) 
The preceding section described the method of transformer life extension and capacity 

utilization improvement by limiting the peak load to the predefined level during contingencies. 

This section proposes a DR and DTR based optimization model for efficient capacity utilization 

and life management of transformers during contingencies while maintaining the winding HST 

within a definite limit. The model elects for the optimal combination of corrective actions 

among LC, DR, and shifting load to an adjacent substation. Simulations performed on a typical 

Finnish two-transformer primary distribution substation indicate the worth of the proposed 

model. 
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3.4.1 Proposed Optimization Model 

The flow diagram of the proposed algorithm for making HST based optimal decisions to 

alleviate the overload state of transformers during contingencies is exhibited in Fig. 3.8. The 

graph consists of the following nine modules. 

 Module 1: At first, system related data is obtained. The data is composed of information such 

as transformers type, rating, HST limit, interconnection, fault rates, repair times, 

configuration, and load. 

 Module 2: This block initializes the hour counter t  which is used to investigate the likely 

contingencies at each hour of the year. 

 Module 3: A transformer contingency event in a multi-transformer substation is introduced 

at this stage. 

 Module 4: At this step, a new demand profile is formed by shifting load of the faulty 

transformer to the healthy transformer (s). Then, thermal and aging values are estimated for 

the new profile using (1) - (8). 

 Module 5: Here, the decision of carrying load modification actions is taken by comparing the 

HST of the healthy transformer and its maximum permissible limit. 

 

 
Fig.  3.8. Flow diagram of the proposed algorithm. 

 

 Module 6: The healthy transformer load can be reduced to bound HST using three ways; DR 

activation, LC, and relocating load to an adjacent substation. Following optimization model 

determines a suitable combination of load reduction options. 

The objective is to minimize the total cost of load reduction during repair duration as formulated 

below. 

Module 1 
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Module 8 
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HST based optimal 
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End 
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Thermal calculations 

Module 9 
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, ´

1 1 ´
Min 

r rT T
t t t
LC LC SW DR DR

t t t
f L c b c L c  (18) 

Where, 

t  and ´t  are indices of time interval. 

rT  is repair duration of transformers. 
t
LCL  is a linear variable for amount of critical load curtailed at time t . 

LCc  represents the unit load curtailment cost. 

b  is a binary variable that represents the transfer of load to a neighboring substation. 

SWc  denotes the cost of load shifting to a neighboring substation. 
, ´t t

DRL  is linear variable representing load deferred from one time t  to a later time 't . 

DRc  denotes the unit incentive paid to the customer for using their DR flexibility. 

The optimization objective is subject to the following constraints. 

´́ , , ´

´́ ´
   t t t t t t t t

tot DR C DR DR LC NSS
t t

P P P L L L b P t  (19) 

,    H t H t  (20) 

, ´ ´́ ,

´ ´́
0    t t t t t t t

LC DR C DR DR
t t

L P P L L t  (21) 

, ´ , ´ max

´ ´
   ´ {1,2,3,..., }t t t t

DR DR DR
t t

L P t T  (22) 

Where, 

t , ´t , and ´́t  are indices of time interval. 
t

totP is modified load profile at time t  after DR activation. 
t

DRP  and t
CP  are available flexible and critical loads at time t , respectively. 

NSSP  represents the neighboring substation load receiving capacity. 
, ´t t

DRL  and , ´t t
DRP are linear variable for load deferred from time t  to later time 't and its peak 

bound, respectively. 
´́ ,t t
DRL  represents load deferred to t  in prior times ''t  (DR load recovery) linear variable. 

,H t  and H are linear variable for HST at time t  and its peak bound, respectively. 

max
DRT  denotes the maximum time for which a load can be deferred. 

The modified load profile is determined by (19) which depend upon available flexible load, 

critical load, load deferred in prior times, load postponed to later times, load curtailed, and load 

shifted to the neighboring substation. Constraint (20) bounds the HST of the healthy 

transformer. The upper limit of LC is defined by (21). (22) ensures that the demand postponed 

at any time is not more than the overall DR capacity of load at that time. 
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The altered demand profile, the required remedial actions taken, and the consistent cost of load 

alteration are the yield of the optimization. 

 Module 7: In this step, HST and aging calculation are performed using modified load profile. 

 Module 8: Steps of Modules 3 - 7 are revisited 8760 times to cover a whole year. 

 Module 9: In the end, all the results are gathered for investigation and reporting. 

3.4.2 Case Studies and Results 

The test system of Section 3.3.2 consisting of a typical Finnish two-transformer primary 

substation is also used here. Simulations are performed for gradually increasing load for the 

following case studies assuming a transformer contingency. The maximum allowable HST of 

the transformer is set as 130 °C. 

 Case 1: In the base case, load is considered firm. To bound the HST, the only option 

accessible is to shift load to the NSS otherwise transformers are allowed to surpass the 

HST limit set by the network operators. This case sets the benchmark for LOL comparison. 

 Case 2: LC is also included as a choice to maintain HST of transformers. This case gives 

the cost of limiting HST without DR. 

 Case 3: Functional DR is also considered in this case. Transformer operation within HST 

limit is guaranteed by choosing an optimal combination of load transfer, LC, and DR. 

The results of above case studies are demonstrated for winter and summer contingencies in two 

situations; neighboring substation support absent and available. With reference to Case 3, 

scenarios are deliberately nominated for explanation of the results. These scenarios are for rated 

load established on static rating (S#1/S#a), acceptable load based on HST bound without 

triggering DR (S#2), arbitrary load level with DR needed to fulfill HST limit (S#3/S#b), 

maximum load increase that can be managed by available DR (S#4/S#c), and LC also required 

along with other choices to satisfy the HST condition (S#5/S#d and S#6/S#e). 

Neighboring Substation Support: Absent 

Table 3‒XII and 3‒XIII provide the results of a near-peak transformer contingency in winter 

and summer respectively, when support from the neighboring substation is not available. The 

ranges of ambient temperature during contingencies in winter and summer are from -28 °C to 1 

°C and from -3 °C and 18 °C, respectively. For loading beyond S#2, transformer HST is above 

130 °C in Case 1, LC in Case 2 and optimal combination of corrective actions in Case 3 are able 

to decrease the HST to the defined limit by reducing the observed peak load. The cost of 

limiting HST is higher in Case 2 due to LC while use of optimal combinations in Case 3 makes 

it less expensive. 
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TABLE 3-XII 
CASE STUDIES’ RESULTS FOR NEAR-PEAK LOAD TRANSFORMER CONTINGENCY IN WINTER (NEIGHBORING SUBSTATION 

SUPPORT: ABSENT) 

S# 
Normal 

Peak 

Case 1 Case 2 Case 3 Lifesavings Cost 
HST 
max 

LOL 
HST 
max 

LOL Cost 
HST 
max 

LOL Cost 
Case 

2 
Case 

3 
Case Case 
2-3 2-3 

(p.u.) (°C) (h) (°C) (h) (k€) (°C) (h) (k€) (h) (h) (h) (k€) 
1 0.6 93 0.69 93 0.69 - 93 0.69 - - - - - 
2 0.7 129 21 129 21 - 129 21 - - - - - 
3 0.75 149 118 130 62 93.22 130 68 2.37 56 50 6 91 
4 0.85 193 3173 130 219 886.2 130 264 46.1 2954 2909 46 840 
5 0.86 197 4360 130 242 1043 130 290 87.85 4118 4070 49 955 
6 0.9 217 15185 130 354 1829 130 438 342 14831 14747 84 1487 

 

TABLE 3-XIII 
CASE STUDIES’ RESULTS FOR TRANSFORMER CONTINGENCY IN SUMMER (NEIGHBORING SUBSTATION SUPPORT: ABSENT) 

S# 
Normal 

peak (%) 
Loss-of-life (h) Lifesavings (h) 

Case 1 Case 2 Case 3 Case 2 Case 3 Case 2-3 
1 0.6 7 7 7 - - - 
2 0.65 32 32 32 - - - 
3 0.7 149 87 93 62 56 7 
4 0.78 1707 226 274 1481 1433 48 
5 0.79 2306 252 308 2054 1998 56 
6 0.85 13575 443 581 13132 12994 139 

 

Fig. 3.9 demonstrates the loading and consistent HST for all the cases of S#5 (86% normal 

peak) in winter. The HST above 130 °C occurs for 28 hours at different instances in Case 1. The 

HST bound is fulfilled in Case 2 by LC of 104.3 MWh at cost of 1043 k€. For the same HST 

condition, LC of 3.69 MWh and demand rescheduling of 254.65 MWh at total cost of 87.85 k€ 

are required in Case 3. At hour 48, a small volume of load is curtailed even in the existence of 

adequate DR because demand postponement at this hour results into higher cost of load 

modification for forthcoming hours. Similarly, DR is triggered during hour 52 and 53 in order to 

eliminate formation of a new peak. LOL during contingency operation is decreased from 4360 

aging hour (Case 1) to 290 aging hours in Case 3. 

In winter, the maximum use of transformers without using LC while satisfying the HST limit is 

85% (in Case 3-S#4). This points out that the extra 25% capacity of each transformer can be 

used in normal circumstances by using only DR in contingencies. At the same time, the 

lifesaving advantage for this scenario has also significantly large value (2909 aging hours). In 

summer, significant lifesaving of 1433 aging hours is also acquired in Case 3 for S#4 (agreeing 

the condition that only DR along with DTR is activated). Here, corresponding utilization 

improvement per transformer is 18% which is lesser than the winter contingencies due to higher 

ambient temperatures in summer. The higher ambient temperature produces HST close to the 

defined limit at lower level of loads. 



58 
 

 

 
Fig.  3.9. Load, temperature, and HST limiting actions for contingency in S#5 (Winter). 

 

Neighboring Substation Support: Available 

Here, it is assumed that the load can be transferred to a NSS of equal capacity during 

contingencies if free capacity is available there. The results of near-peak transformer 

contingency in winter and summer are listed in Table 3‒XIV and 3‒XV, respectively. The 

results show that lifesaving gains are achieved by keeping the HST to 130 °C in the scenarios 

(S#b - S#e) of Case 2 and Case 3. The cost of corrective actions and aging gains are directly 

related to the level of loading. These gains are superior to the benefits of cases without NSS 

support. 

 

TABLE 3-XIV 
CASE STUDIES’ RESULTS FOR NEAR-PEAK LOAD TRANSFORMER CONTINGENCY IN WINTER (NEIGHBORING SUBSTATION 

SUPPORT: AVAILABLE) 

S# 
Normal 

Peak 

Case 1 Case 2 Case 3 Lifesavings Cost 
HST 
max 

LOL 
HST 
max 

LOL Cost 
HST 
max 

LOL Cost 
Case 

2 
Case 

3 
Case Case 
2-3 2-3 

(p.u.) (°C) (h) (°C) (h) (k€) (°C) (h) (k€) (h) (h) (h) (k€) 
a 0.9 130 478 130 478 0.09 130 478 0.09 - - - - 
b 0.95 147 830 130 764 61.59 130 790 1.32 66 40 26 60.3 
c 1.04 205 11692 130 1178 1952 130 1284 94.3 10514 10408 106 1857.8 
d 1.05 215 21240 130 1212 2480 130 1328 235.7 20028 19912 116 2244.4 
e 1.07 235 70192 130 1300 3780 130 1408 842.3 68892 68784 108 2937.8 
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TABLE 3-XV 
CASE STUDIES’ RESULTS FOR TRANSFORMER CONTINGENCY IN SUMMER (NEIGHBORING SUBSTATION SUPPORT: 

AVAILABLE) 

S# Normal peak (p.u.) 
Loss-of-life (h) Lifesaving (h) 

Case 1 Case 2 Case 3 Case 2 Case 3 Case 2-3 
a 0.9 1100 910 936 190 164 26 
b 0.95 1646 1146 1206 500 440 60 
c 1.01 11366 1364 1444 10002 9922 80 
d 1.02 18050 1412 1486 16638 16564 74 
e 1.04 49414 1484 1588 47930 47826 104 

 

In winter, only DR is adequate to uphold the HST limit for normal peak load up to 104% (Case 

3-S#c). The amount of demand postponed and transferred to the adjacent substation for this 

scenario are 1168 MWh and 471 MWh, respectively at total cost of 94 k€. Beyond this load 

level, price of LC makes the utilization improvement costly. The lifesaving benefit for this 

scenario is also noticeably large (10408 aging hours). Owing to the results, 14% of utilization 

enhancement per transformer at both substations can be achieved. 

Like the results of the situation without adjacent substation support, summer near-peak load 

contingency results (Table 3‒XIII) indicate overall lesser utilization increase per transformer 

compared to winter contingencies without using LC (11% for Case 3-S#c). The warmer ambient 

condition is the cause of this comparatively lower benefit. However, the lifesaving gain is 

sizable here as well (9922 aging hours). It is worth mentioning that for S#a in Case 2 and Case 

3, lifesaving benefits are obtained due to demand reduction during the immediate hours 

following the contingency when load transferring actions are being originated. 

The above analysis provides the following inferences: 

 DR can be utilized for transformers’ lifesaving and utilization improvements during 

contingencies. 

 The proposed HST limit based model is applicable for lifesaving of transformers for all 

type of ambient conditions because DR decisions are based on HST which integrally 

considers outdoor temperature. 

 Utilization gain above static limit is greater for transformers installed in cooler climatic 

areas. 

 The selection of optimal combination of load modifying techniques is crucial to evade 

excess costs that may appear in order to alleviate peak rebounds of DR. 

3.5 Conclusion 
Transformers’ capacity utilization improvement and lifesavings are vital for cost-effective 

power distribution system. This chapter presented a comprehensives study on the use of DR for 
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utilization improvement and lifesaving of transformers in normal conditions and during 

contingencies. Firstly, appropriate optimization models were proposed to investigate the 

intended benefits. Then, simulations were performed based on the models considering typical 

Finnish systems. The results of the study indicated that significant benefits in terms of lifesaving 

and capacity utilization improvement can be obtained by employing DR and optimal decisions 

of DR activation are vital to obtain these benefits with least cost. The utilities can use the 

proposed model to measure the worth of DR before making the real implementations. 
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4 Demand Response and Transformers’ Capacity Planning 
 

 

 

Chapter 3 focused on the management of transformer capacity and life during operational 

stages. This chapter addresses the planning of transformer capacities in substations over long-

run (Task 2). After the introduction and literature review section, an optimization tool is devised 

for capacity planning of transformers. Next, the optimization model of the tool is reformed to 

add the features of DR and network automation. Both the developed tools are used for 

substation capacity planning in various situations encountered by utilities with in their 

respective sections. 

4.1 Introduction and Literature Review 
The effective planning of substation transformers’ capacity is crucial for an economical power 

system [2]. The nature of the capacity planning of transformers is long-term due to their 

immense investment, operational, and reliability cost, long expected life, and requirements to 

meet demand growth [72] - [74]. An ideal planning tool balances the contradicting objects of 

higher utilization and lower cost of losses, unsupplied load, and aging rate [75]. The outputs of 

such a planning tool are selection of transformer sizes from available contenders, their level of 

loading, maintenance plan, and years of replacement or capacity addition [72], [74] - [77]. 

Several researchers have addressed the issue of transformer capacity management [74] - [85]; 

yet, a comprehensive optimization solution is missing. The comprehensive solution should 

provide least cost answer while integrating increase of failure rate of transformers with age [86], 

their salvage value based on loss-of-life (LOL), and replacements according to economic 

criteria all of these at the same time. 

The loadability of transformers beyond nameplate ratings and its effects of accelerated aging 

have been well studied [48] [49]; yet this effect has not been incorporated in the planning. 

References [78] and [79] proposed optimization methods for determining peak load of 

transformers; however, they did not perform economic analysis. The method of optimal 

transformer loading for maximum net benefit [80] did not consider rise in losses cost due to 

overloading. Only reliability cost was analyzed in [81] for decisions of optimal loading level of 

transformers. Reference [75] proposed a method to determine the total owning cost of 

transformers in which increasing failure rate of transformers along with age was included, 

however, it did not optimize the total cost and costs due to transformer failures. In [82] - [85], 
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the distribution system design included substation capacity planning as well. The exceeding 

failure rate of transformers with age and their salvage value were not considered in [82]. 

References [83] - [85] assumed transformers life as a fixed value and also did not assess the 

reliability cost due to contingencies. 

Demand response (DR) offers the benefit of cost savings in transformer capacity planning by 

improving the utilization efficiency over entire lifetime. This can be validated by the European 

Directive 2003/54/EC [87] stressing that the DR should be incorporated during planning stage 

of the distribution system capacity. As existing load transferring switch types (e.g., manual and 

remote) can have an important impact on DR based planning solution [2], [8], [88], therefore, 

DR and the employed switching type for load transfer to neighboring substations (NSS) should 

be considered abreast in the planning. The reason behind it is that the DR cannot bring load 

decrease for extended time as responsive appliances cannot be postponed for many hours [89] 

and after some time DR rebound load must be supplied. 

The impact of DR in network and substation planning has not been assessed well in the 

literature. The focus has been on the operational planning of distribution system and transformer 

capacity [31], [42], [90]. The benefit of DR for reliability enhancement of distribution systems 

was evaluated in [29], [31], [42], [91]. Reference [92] assessed the effect of DR and automation 

on distribution system reliability cost. Research of [93] and [94] advocated the decrease of 

investment cost in transmission network capacity by employing DR at planning phases. In [95], 

the substation capacity planning was in combination with distribution system expansion in 

presence of DR, however, it did not consider transformer maintenance planning, growing failure 

rate with age, salvage value based on insulation loss-of-life (LOL), and load transfer to NSS 

during contingencies. 

The above reviewed literature indicates that appropriate tools for transformer capacity planning 

and quantification of DR benefits in planning are needed. 

4.2 Optimal Capacity Planning of Transformers 
This section develops an optimization tool for capacity management of primary substation 

transformers over long-run. The tool determines the optimal choice of transformers’ sizes, their 

maintenance stages, and year of transformers replacements in the planning horizon in order to 

minimize the present worth of total cost to supply the given load. The total cost includes costs of 

investment, losses, maintenance, reliability, and the salvage value of transformers. In the 

optimization model, rising failure rate of transformers due to aging is incorporated and the 

cumulative LOL of transformers is utilized in estimating their salvage value. The developed tool 

is applied for planning and management of transformer capacities for a typical Finnish 
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residential two-transformer primary distribution substation over a period of forty years. The 

simulations are conducted for four different case studies representing the situations encountered 

by utilities. A broad sensitivity analysis is also performed based on various the system 

parameters. The numerical results indicate the significance of inclusion of variable failure rate 

and LOL of transformers in their capacity planning. The details of optimization model and case 

studies are given in the subsequent subsections. 

4.2.1 Problem Formulation 

Let a transformer can be installed on each transformer site at a substation from available 

candidates in the beginning of planning period. A new transformer from available candidates 

can replace the initial transformer at a later year on each site. Moreover, 

maintenance/refurbishment actions can be executed to reduce the failure rate of transformers. 

The aim is to find a set of decision variables representing transformers’ selection of size, year of 

maintenance, and stage of replacements in the planning horizon such that the total cost is 

minimized for the transformers. The total cost of transformers in a substation is sum of present 

worth of the investment cost, the losses cost, the maintenance cost, and the 

interruption/reliability cost minus salvage value of investments. The optimization model is 

formulated as follows. 

1
Minimize ( )

A a a a a
Inv Loss Mai Int Sal

a
PWC PWC PWC PWC PWC PWC    (23) 

Where, 

a  and A  are index of year and its maximum value, respectively. 

PWC  is total cost of transformers in a substation. 
a
InvPWC  denotes present worth of the investment cost at a . 
a
LossPWC  is present worth of losses cost at a . 
a
MaiPWC  represents present worth of maintenance cost at a . 

a
IntPWC  is present value of interruption/reliability cost at a . 

SalPWC  denotes present worth of salvage value of investments. 

The details of each cost element are explained in the following. 

Investment Cost: 

The investment cost of transformers is their procurement cost that depends on their internal 

design and ratings. In this thesis, installation and decommissioning costs are also included in it. 

The investment cost of initial and replacement transformers is given by the following 

expressions. 
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,( )   1a ini
Inv Inv i i j

j i
PWC C C fb a  (24) 

,( )   2,...,a rep a a
Inv Inv i i j

j i
PWC C PW C b a A  (25) 

11/ (1 )     a aPW d a  (26) 
Where, 

i , j , and a  are the indices of transformer size, transformer location, and planning year, 

respectively. 

iC  refers to the procurement cost of transformer size i . 

ini
InvC  and rep

InvC  represent the cost of initial and replacement transformers, respectively. 

,i jfb  and ,
a
i jb are binary decision variables denoting the selection of a particular size 

transformer at each location as initial and replacement installations, respectively. 
aPW  is the present worth factor. 

d  denotes the discount rate (which is based on inflation and interest rates). 

Losses Cost: 

Transformers’ load and no-load losses depend on the material used for winding conductors and 

the core. The load loss is proportional to the square of transformer loading, whereas, no-load 

loss remains the same at all the load levels. Following equations are used to determine the losses 

cost. 

2
,

,

( )    
a a a

a a j LL j j
Loss a

j LL LL Eng LL

I r NLPWC PW t
D P

 (27) 

, ,( )   j ini i i j
i

fb j  (28) 

, ,
2

( )   
A a

j rep i i j
a i

b j  (29) 

, ,( )   2,...,
j j

a a a
j j ini j rep a A  (30) 

1
1 ,0   2,...,  and a a a a a

ij j j j i jb a A b b  (31) 
1 0   2,..., 1a a

j j a A  (32) 

1   1,...,a a
j j a A  (33) 

Where, 

i , j , a , and LL  are the indices of transformer size, transformer location, planning year, 

and load level, respectively. 
a
LossPWC  is present worth of losses cost at a . 

,
a
j LLI  is current of transformer at location j , load level LL , and year a . 

a
jr  denotes loss equivalent resistance of transformer on j  at a . 

a
jNL  represents no-load loss of transformer on j  at a . 

LLD is duration of load level LL . 
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,
a

Eng LLP indicates energy price at LL  and a . 

,i jfb  and ,
a
i jb are binary decision variables denoting the selection of a particular size 

transformer. 

i , ,j ini , and ,j rep  are symbols representing the parameters (capacity, cost, resistance, and 

no-load of loss) of location i , initial, and replacement transformers at j . 
a
j  and a

j  are dependent binary variables; unity value of these indicates the replacement 

and initial installation of a transformer as in-service, respectively. 

Equation (27) is for present worth cost of transformer losses. (28) - (33) are used to determine 

the parametric values of resistance and no-load loss. These values are then utilized in (27). (28) 

and (29) finds the values of parameters for initial and replacement transformers, respectively. 

The parameters of initial transformer selections are the values at the first year; however, either 

initial or replacement transformer can be present at later years. Therefore, (30) - (33) are utilized 

in order to determine the parameters of transformer installations for year 2 or later. Equations 

(31) - (33) guarantee that once an initial transformer is replaced by a new transformer at a 

location then unity value is allotted to a
j  for all the future years. 

Maintenance Cost: 

Normally, the cost of maintenance activities is low [72]; however, main overhauls are of 

considerable cost. In this dissertation, maintenance refers to these main overhauls actions that 

decrease the failure rate of the transformers and is given below. 

( )    a a a a
Mai j j

j
PWC PW mc a   (34) 

Where, 
a
MaiPWC  represents present worth of maintenance cost at year a . 

a
j  is binary decision variables denoting the refurbishment of transformer at j  and year a . 

a
jmc  denotes maintenance cost of transformer at j  and year a . 

Interruption/Reliability Cost: 

The expected annual cost of interruptions is estimated by considering contingencies of 

transformers at each location and each load level in a year. Then, calculating the interruption 

cost for each contingency by multiplying the failure rate, probability of load level, value of lost 

load, duration of load level, and unsupplied load. The formulation of interruption cost 

calculation is given below. 

,(     a a a a
Int j LL LL j LL

j LL
PWC PW p VOLL D LNS a  (35) 
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, ,( )    , ,a a a a
j LL LL j j LLLNS L TEC a a j LL  (36) 

,( ) ( )   , ,a a a a a
LL j j LL LL jL TEC a L TEC a j LL  (37) 

' '', ',
', '

( )    ,
j j

a a a
j j ini j rep

j j j
TEC Cap Cap ER a j (38) 

' ' ' ' ' '

' 1 ' 1
( ) ( ) ,

a aa a a a a a a a a
j j j j j j j j j

a a
Ag y y a j    (39) 

( ) 0.001exp(0.0944 ) 0.0169   ,a a a
j j jf Ag Ag a j    (40) [96] 

 

Where, 
a
IntPWC  is present value of interruption/reliability cost at a . 

a
j  represents outage rate of transformer at location j and year a . 

LLp  denotes probability of load level LL . 

LLD expresses duration of load level LL . 

VOLL is value of lost load. 

,
a
j LLLNS  represents load not supplied for transformer failure at location j , load level LL , and 

year a . 
a
LLL  is load of the substation at load level LL  and year a . 

a
jTEC  denotes emergency capacity of healthy transformers during contingency of 

transformer at location j  and year a . 

,
a
j LLa  are binary variable. 

',j iniCap , ',j repCap  are capacity of initial and replacement transformers at location 'j . 

ER  is the emergency rating multiplier of transformers 
a
jAg  represents age of transformer at location j  and year a . 

y  denotes the decrease in the equivalent age of transformer due to a maintenance action. 

Equation (35) sums the interruption costs of all the transformer contingencies at each load level 

and weights it with the present worth factor. (36) - (38) determine the load unsupplied for 

transformer contingencies at each location, load level, and year. The binary variables in (36) - 

(37) ensure that only positive values of unsupplied load are added in the calculations. (39) and 

(40) find the years conceded since transformers’ installation and their failure rates based on the 

age, respectively. The first and second summation terms in (39) are used in aging calculation of 

in-service transformer as initial and replacement transformer, respectively. The second term in 

each summation signifies the decrease in the equivalent age of transformer due to maintenance 

actions. 
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Salvage Value: 

The salvage value of a transformer is its residual worth at the time of replacement/retirement or 

at the end of study period. It depends upon remaining life of the transformer and is calculated by 

the following equations. 

, ,
2

(1 )

         (1 )

A a a
Sal j j ini j ini

a j
a

j j
j

PWC PW b C TLOL

PW C TLOL
 (41) 

, , ,( )
j

a a
j ini i j j ini

a i
TLOL fb LOL  (42) 

,, ,
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( )
i j

A a a
j rep j rep

a i
TLOL LOL  (43) 

1
, , , 0   2,..., ; ,a a a

i j i j i jb a A j i  (44) 
1

, , 0   2,..., 1; ,a a
i j i j a A j i  (45) 

, ,(1 )   , ,a a
i j i j a j i  (46) 

Where, 

SalPWC  is present worth of salvage value of investments. 

,j iniC  and jC denote the investment cost of the initially selected transformer and the one 

existing at the end of the planning period at location j , respectively. 

,j iniTLOL , ,j repTLOL , and jTLOL  are the total accumulated loss-of-life over entire planning 

duration of transformer installations selected as initial, replacement, and the ones existing at 

the end of the study period, respectively. 

,
a
j iniLOL  and ,

a
j repLOL  represent loss-of-life of initial and replacement transformer at location 

j  and year a , respectively. 

,
a
i j  and ,

a
i j  are dependent binary variables. 

The first and second terms in (41) calculate the remaining life of the initial transformer 

installations and the ones existing at the end of study period, respectively. Clause 5 and 7 

methods of [48] are employed for determining LOL of a transformer during each year a  that is 

subsequently utilized in determining accumulated LOL of transformer in (42) - (43). Similar to 

(31) - (33), (44) - (46) assign the value to intermediate binary variables in order to find total 

LOL of optimally selected transformers. 

The nonlinearities in the calculations of interruption cost and salvage value are present due to 

multiplication of variables and presence of exponential function. The nonlinearity of 

exponential function (40) is eliminated by piecewise linear approximation. And, nonlinearities 

due to product of variables are removed by introducing intermediate variables [97]. 
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In addition to (31) - (33), (37), (44) - (46), and expressions for eliminating nonlinearities, the 

objective function (23) is subjected to the following constraints. 

, 1        i j
i

fb j  (47) 

, 1         j iniTLOL j  (48) 

, 1         j repTLOL j  (49) 

0   ,a
jAg a j     (50) 

 
Constraint (47) ensures that only one transformer can be selected for each site at a time. (48) 

and (49) limit the total LOL of initial and replacement transformers to unity. Equation (50) 

restricts the value of age from becoming negative due to refurbishment actions. 

4.2.2 Case Studies and Results 

Two-transformer site (locations) residential load dominant primary distribution substation (110 

kV/20 kV) of Fig. 4.1 is considered as the test system. The transformers installed on these 

locations act as backup to each other during contingencies. The load profile of the substation is 

constructed from one year hourly measured automatic meter reading data from 1600 residential 

consumers from central Finland. The present peak load at the substation is assumed to be 12 

MVA. 

110 kV

20 kV

j= 1 j=2

Load  

Fig.  4.1. Test system showing the location of transformers in the substation. 

 

The load levels, their probability, and corresponding energy prices for losses and interruption 

cost calculations are listed in Table 4‒I. Table 4‒II provides the input data for similar thermal 

design candidate transformers. Hottest-spot rise over ambient temperature, top-oil rise, oil time 

constant, winding time constant, and cooling mode are 80 °C, 45 °C, 75 min, 5 min, and ONAF, 

respectively. Planning period is considered to be 40 years. During the whole planning horizon, 

load growth and discount rates values are considered to be 2.6% and 5%, respectively. The 

losses cost is based on the hourly electricity price data for Finland of year 2011 [98]. The 

average penalty of unsupplied load (VOLL) of 10 €/kWh is considered. The mixed integer 

linear optimization problem formulated in Section 4.2.1 is solved via the general algebraic 

modelling system (GAMS) environment. 
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TABLE 4-I 
LOAD LEVELS AND CORRESPONDING ENERGY PRICE 

Sr. # Load Level (p.u.) Probability Energy Price (€/MWh) 
1 1 0.0018 100 
2 0.9 0.0061 89 
3 0.8 0.0231 80 
4 0.7 0.0918 68 
5 0.6 0.8769 46 

 

TABLE 4-II 
PARAMETERS OF CANDIDATE TRANSFORMERS 

Parameter Transformer #1 (T1) Transformer #2 (T2) Transformer #3 (T3) 
Nameplate ratings (MVA) 10 16 20 
Investment cost (k€) 247 339 355 
Maintenance cost (k€) 49 68 71 
No-load loss (kW) 14.80 21.92 25.20 
Load loss equivalent resistance at110 kV (Ω) 1.660 0.939 0.673 
Emergency ratings (%) 120 120 120 

 

Simulations are performed for the following case studies representing various situations 

encountered by utilities using the developed optimization tool. 

 Case 1: Both locations have old initial transformers and sizes of transformers are known. 

This case designates the situation in which replacement and/or refurbishment stages of 

transformers are to be found while other equipment in the substation restricts the size of 

new transformers. 

 Case 2: New transformers of specific ratings are installed in the beginning of the planning 

period and these can be replaced by new transformers of known sizes during the planning 

period. This case represents the planning situation where in-service transformers are 

completely aged and current transformer connected equipment restrains the rating of new 

transformers. 

 Case 3: A transformer at one site in the substation is old while the other one is new. The 

ratings of the initial and replacement transformers are known. This case symbolizes the 

addition of a new transformer in a substation while one transformer has already been in 

service. 

 Case 4: In this case, transformers are optimally chosen from available contenders for initial 

and replacement installations in the planning horizon. This condition denotes the situation 

of a new substation planning in which multiple transformer sizes are available and other 

equipment ratings will be selected based on the transformer decisions. 

Besides above defined cases, a broad sensitivity analysis is also conducted for the following 

scenarios to examine the effect of several parameters on the results. 
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- Scenario 1: It is the base scenario whose results are acquired based on the input data 

presented in beginning of this section. 

- Scenario 2: Rather than increasing failure rate with age of the transformers, constant failure 

rate of 0.023 [99] occurrences per year is assumed. 

- Scenario 3: A variable failure rate of transformers with half the value relative to the base 

scenario is considered in this scenario. 

- Scenario 4: A double failure rate value is assumed relative to the base scenario. 

- Scenario 5: In this scenario, reduced load growth rate of 1% per year is assumed. 

- Scenario 6: Relative to the base scenario, lower refurbishment impact (y=5 years) is 

considered here. 

- Scenario 7: Lower penalty of unsupplied load (VOLL= 5 €/kWh) is considered. 

- Scenario 8: In this scenario, the salvage value is incorporated only for in-service 

transformers at the end of the planning horizon. This scenario designates the circumstances 

in which transformers being replaced cannot be used at any other substation. 

Case 1: Both initial transformers are old 

It is assumed that the current transformers at both transformer locations (j1 and j2) in the 

substation are 20 years old with an expected remaining life of 50%. The ratings of the initial and 

replacement transformers are 10 MVA and 16 MVA, respectively. Table 4‒III lists the optimal 

schedule of transformer replacements, maintenance years, and transformers’ related costs. The 

optimal years of replacing initial transformers are year 13 and 16 for sites j1 and j2, 

respectively. Location j2 initial and replacement transformers observe normal peak loads of 0.86 

p.u. and 1.02 p.u., respectively. The results of both locations are exchangeable because their size 

and loading are identical. 

TABLE 4-III 
RESULTS OF CASE 1 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables 
Transformer location 

Total 
(j1) (j2) 

Net cost (k€) 762 742 1504 
Investment cost (k€) 312 287 599 
Loss cost (k€) 388 394 782 
Maintenance cost (k€) 13 13 26 
Interruption cost (k€) 168 158 326 
Salvage value (k€) 119 110 229 
Replacement stage (yr.) 13 16 13/16 
Maintenance stage (yr.) 35 35 35/35 

 

The total net present value of costs is €1504k, the share of investment cost, loss cost, 

maintenance cost, interruption cost and salvage values are €599k, €782k, €26k, €326k, and 

€229k, respectively. Though the failure rate of old transformers (initially in-service) is high, still 
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overhaul is not conducted on them because of the low shortage of capacity along with small 

probability of transformer failure at peak load level that does not create major outage cost. The 

capacity shortfall during a transformer contingency at the substation at year 12 for peak load is 

3.915 MW. On the other hand, the optimal year of refurbishment for the replacement 

transformers is year 35. The execution of these maintenances is due to substantial outage cost 

owing to high failure rate along with greater transformer capacity deficit during contingencies. 

The failure rate of transformers on j1 and j2 at year 34 are 0.0258 occurrence/year and 0.0235 

occurrence /year, respectively. The capacity shortage during a transformer outage at the 

substation at year 39 for peak level of load is 12.626 MW. 

Table 4‒IV and Fig. 4.2 display the results of the sensitivity analysis. In scenarios of constant 

and decreased failure rates (S#1-2 and S#1-3), the renovation of transformers is not conducted 

because of its relatively higher cost than the saving in outage cost. The deferral in one of the 

transformer replacements (from year 13 to 16 in S#1-2 and to 22 in S#1-3) is also suggested in 

the optimal solution. The total net cost decreases in these scenarios because of low overall 

reliability cost and delayed transformer replacement. For the scenario of increased failure rate 

(S#1-4), the replacement is postponed to attain the benefit of lower failure rate near the end of 

the planning horizon when transformer capacity shortfall is greater. Here, the total net cost 

(€1640k) is higher compared to base scenario (S#1-1) due to overall high outage cost. 

Peak load does not increase to higher points (maximum 8.845 MW per transformer at year 40) 

in lower load growth scenario (S#1-5); therefore, the initial transformers can support the load. 

Thus, replacement of the transformers is only desirable at the last year of the study. The 

refurbishments of transformers are performed (on stage 29 for j1 and 33 for j2) to decrease the 

failure rate of the transformers due to aging. The refurbishments decrease the failure rates of the 

transformer at j1 from 0.135 to 0.061 occurrence /year and from 0.193 to 0.082 occurrence /year 

for the transformer at j2. 

In scenario of reduced effectiveness of maintenance (S#1-6), the refurbishment of transformers 

is not performed as its cost is higher than the associated savings in the reliability cost. Similarly, 

for the lower penalty of unsupplied load (S#1-7), the cost of interruption is smaller, so, 

refurbishment is not required and also initial transformers can supply the load for a longer time. 

In circumstances for which a retiring transformer cannot be used at other places (S#1-8), 

transformer replacements are postponed for their maximum utilization till capacity shortfall 

impact during contingencies surpasses the benefits of use of the old transformers. 

In this case, the average portions of the costs of investment (minus salvage value), losses, 

maintenance, and reliability towards the total net cost are 24%, 55%, 1%, and 20% respectively. 
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TABLE 4-IV 
SENSITIVITY ANALYSIS RESULTS FOR CASE 1 

Scenario 
Replacement stage (yr.) Maintenance stage (yr.) 

j1 j2 j1 j2 
S# 1-1: Base scenario 13 16 35 35 
S# 1-2: Constant failure rate 16 16 - - 
S# 1-3: Reduced failure rate 16 22 - - 
S# 1-4: Increased failure rate 15 19 35 35 
S# 1-5: Reduced load growth 40 40 29 33 
S# 1-6: Reduced maintenance impact 16 17 - - 
S# 1-7: Decreased VOLL 16 20 - - 
S# 1-8: Salvage of only last transformer 16 19 35 38 

 

 
Fig.  4.2. Sensitivity analysis results for Case 1. 

 

Case 2: Both initial transformers are new 

In this case, similar ratings 10 MVA new transformers are installed at both locations (j1 and j2) 

in the substation at the start of the study period. Transformers of capacity 16 MVA can replace 

these transformers at later years. Table 4‒V lists the results for this case. 

TABLE 4-V 
RESULTS OF CASE 2 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables Transformer location Total 
(j1) (j2) 

Net cost (k€) 806 810 1617 
Investment cost (k€) 410 418 828 
Loss cost (k€) 394 392 786 
Maintenance cost (k€) 13 13 26 
Interruption cost (k€) 158 162 320 
Salvage value (k€) 169 175 343 
Replacement stage (yr.) 16 15 16/15 
Maintenance stage (yr.) 35 35 35/35 

 

Relative to Case 1, the replacement of a transformer is a bit delayed (2 years, from stage 13 to 

15) due to new initial transformers. However, lower failure rate of new transformers does not 
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have a noteworthy influence on the replacement stage as the shortfall of capacity (>9 MW) 

during transformer contingencies rises to a higher level after year 16. Though the reliability cost 

is less in this case (€320k) as compared to Case 1 (€326k), still overall cost is higher (€1504k 

for Case 1 and €1617k for Case 2) due to expensive new initial transformers. 

Table 4‒VI and Fig. 4.3 show the trend in the sensitivity study outcomes. The trend is similar to 

that of Case 1 for the increased failure rate (S#2-4), decreased impact of maintenance (S#2-6), 

and limited salvage value consideration (S#2-8). In constant failure rate scenario (S#2-2), 

transformer replacements are preponed to stages 11 and 13 for optimal cost and refurbishment is 

not required. For reduced failure rate (S#2-3), replacement plan is same but maintenance is also 

needed. 

TABLE 4-VI 
SENSITIVITY ANALYSIS RESULTS FOR CASE 2 

Scenario 
Replacement stage (yr.) Maintenance stage (yr.) 

j1 j2 j1 j2 
S# 2-1 16 15 35 35 
S# 2-2 11 13 - - 
S# 2-3 16 15 - 37 
S# 2-4 17 16 35 35 
S# 2-5 37 37 - - 
S# 2-6 16 16 - - 
S# 2-7 12 16 37 - 
S# 2-8 16 19 35 35 

 

 
Fig.  4.3. Sensitivity analysis results for Case 2. 

 

In case of the low load growth scenario (S#2-5), both the transformers are replaced near the end 

years, however, refurbishment of transformers are not recommended in the optimal solution as 

initial transformers were new. Furthermore, contrary to Case 1 scenario of reduced VOLL (S#1-

7), one of the transformer replacements is preponed from year 15 to 12 and its overhaul is 

deferred from stage 35 to 37 in order to acquire the optimal economic result. 
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Average shares of the costs of investment (minus salvage value), losses, maintenance, and 

reliability in the total net cost of this case are 33%, 49%, 1%, and 17% respectively. Compared 

to Case 1, the percentage of investment cost is greater here due to higher cost of a new initial 

transformer and reliability cost is a bit lesser because of smaller failure rate of new transformers. 

Case 3: One of the initial transformers is old 

Here, initial transformers of capacity 10 MVA each at location j1 and j2 in the substation can be 

substituted by 16 MVA transformers. The transformer at location j1 is 20 years old with 

remaining life of 50% whereas rest of the transformers is new. The results of this scenario are 

presented in Table 4‒VII. 

The present value of total cost in this case is €1555k, the share of cost at location j1 (€739k) is 

less than at j2 (€816k) due to old (lower investment cost) initial transformer installation at j1. 

The optimal replacement years of transformers at locations j1 and j2 are 17 and 14, respectively. 

The higher rating replacement transformer at j2 permits the delay of replacement at j1 because 

during contingencies of the transformer at j1, the capacity of j2 transformer is sufficient to 

supply the entire load of the substation. The refurbishment of the replacement transformers at 

stage 35 is performed to reduce the interruption cost value by decreasing failure rates of 

transformers. The key difference between total net cost of this case with Cases 1 and 2 is due to 

difference in investment cost of initial transformers due to their age. 

TABLE 4-VII 
RESULTS OF CASE 3 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables 
Transformer location 

Total 
(j1) (j2) 

Net cost (k€) 739 816 1555 
Investment cost (k€) 279 426 705 
Loss cost (k€) 396 390 786 
Maintenance cost (k€) 13 13 26 
Interruption cost (k€) 157 168 326 
Salvage value (k€) 107 181 288 
Replacement stage (yr.) 17 14 17/14 
Maintenance stage (yr.) 35 35 35/35 

 

Table 4‒VIII and Fig. 4.4 present the results of the sensitivity analysis. Because of reduced 

failure rate in scenario S#3-3, the replacement of the old transformer at j1 and refurbishment of 

the transformer at j2 are postponed to stages 19 and 37, respectively. In order to keep the new 

transformer (at j2) for an extended duration in scenario of no salvage value of retiring 

transformer (S#3-8), the old transformer (at j1) replacement with a higher rating transformer (16 

MVA) is preponed so that capacity deficits during j2 contingencies is smaller. The trend in 

results for the other scenarios (S#3-2, S#3-4, S#3-5, S#3-6, S#3-7) are similar to as in Case 2. 
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In this Case, the average segments of cost of investment (minus salvage value), losses, 

maintenance, and interruption in the total net cost of this case are 29%, 52%, 1%, and 18% 

respectively, which are in between the results of Case 1 and Case 2. 

TABLE 4-VIII 
SENSITIVITY ANALYSIS RESULTS FOR CASE 3 

Scenario 
Replacement stage (yr.) Maintenance stage (yr.) 

j1 j2 j1 j2 
S# 3-1 17 14 35 35 
S# 3-2 13 16 - - 
S# 3-3 19 14 - 37 
S# 3-4 17 15 35 35 
S# 3-5 27 37 - - 
S# 3-6 17 16 - - 
S# 3-7 16 13 - 37 
S# 3-8 13 18 32 37 

 

 
Fig.  4.4. Sensitivity analysis results for Case 3. 

 

Case 4: Optimal selection of all transformer installations 

In this case, the optimal size selection of initial and replacement (if needed) transformers for 

both the sites (j1 and j2) from available contenders are found. The choices of transformers sizes, 

their replacement years, maintenance stages, and associated costs determined by the model of 

Section 4.2.1 are given in Table 4‒IX. 

It is cost effective to install 10 MVA transformers at both the locations at start of planning and 

replace them with 20 MVA transformers at year 12. These decisions are such that the 

interruption cost is small (€5k). The major share of investment cost (€909k) is recovered in form 

of salvage value (€394k) as the load on the transformers remains moderate (maximum 0.78 p.u. 

for 10 MVA transformers and 0.82 p.u. for 20 MVA transformers) resulting into insignificant 

LOL of transformers. The losses cost (€714k) constitutes a major share of total cost (€1234k). 

The transformers at each location create equal slice towards the total net cost. 
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TABLE 4-IX 
RESULTS OF CASE 4 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables 
Transformer location 

Total 
(j1) (j2) 

Rating of initial transformer (MVA) 10 10 10/10 
Rating of replacement transformer (MVA) 20 20 20/20 
Net cost (k€) 617 617 1234 
Investment cost (k€) 454.5 454.5 909 
Loss cost (k€) 357 357 714 
Maintenance cost (k€) - - - 
Interruption cost (k€) 2.5 2.5 5 
Salvage value (k€) 197 197 394 
Replacement stage (yr.) 12 12 12/12 
Maintenance stage (yr.) - - - 

 

Table 4‒X and Fig. 4.5 exhibit the sensitivity study results. The variations of failure rate, impact 

of maintenance, and VOLL (S#4-2, 4-3, 4-4, 4-6, and 4-7) do not alter the decisions of 

transformer sizes and schedules because of low outage cost due to specific optimal decisions of 

transformer sizes and their replacement. In the scenario of lower load growth (S#4-5), 10 MVA 

transformers operation for a longer duration (till year 24) and a smaller size (16 MVA) for the 

replacement at j1 are recommended due to overall low demand peaks. It is advantageous to 

choose the higher rating (20 MVA) initial transformers in S#4-8, so that the replacement 

transformer is not required. Also overhaul of transformers (for j1 at stage 15 and j2 at stage 22) 

is needed to decrease the failure rate of the transformers due to aging. 

Average percentages of the costs of investment (minus salvage value), losses, maintenance, and 

reliability in the total net cost of this case are 42%, 57%, 0.6%, and 0.4%, respectively. Here, 

the part of reliability cost is very low because all transformer sizes along with their replacement 

stages are optimally selected. 

TABLE 4-X 
SENSITIVITY ANALYSIS RESULTS FOR CASE 4 

Scenario 
Replacement stage 

(yr.) 
Maintenance stage 

(yr.) 

Initial  
transformer 

(MVA) 

Replacement transformer 
(MVA) 

j1 j2 j1 j2 j1 j2 j1 j2 
S# 4-1 12 12 - - 10 10 20 20 
S# 4-2 12 12 - - 10 10 20 20 
S# 4-3 12 12 - - 10 10 20 20 
S# 4-4 12 12 - - 10 10 20 20 
S# 4-5 24 24 - - 10 10 16 20 
S# 4-6 12 12 - - 10 10 20 20 
S# 4-7 12 12 - - 10 10 20 20 
S# 4-8 - - 15 22 20 20 - - 
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Fig.  4.5. Sensitivity analysis results for Case 4. 

 

4.3 Demand Response Benefit for Capacity Planning of Transformers 
In the preceding section, a transformer optimal capacity planning tool was developed. This 

section modifies that tool to add the features of DR and NSS capacity support. The optimization 

model of the tool incorporates the DR as a resource to reduce the outage cost during 

contingencies while considering existing switching types for load transfer between substations.  

Like the tool of the previous section, this model yields the optimal selection and scheduling of 

multistage transformer installations and their overhauls by considering all the costs related to 

them including investment, losses, maintenance, reliability, and the salvage value. For 

quantification of DR benefits, the numerical value of the savings in transformers’ cost by DR is 

calculated for a typical Finnish two-transformer primary distribution substation planning over a 

period of forty years. Case studies are conducted based on situations encountered by utilities 

and type of load transfer switching (manual and remote) between substations. A sensitivity 

analysis based on DR penetration and load curtailment (LC) cost is also executed. The results 

exhibit the worth of DR and network automation in optimal substation transformer capacity 

planning. 

4.3.1 Problem Formulation 

The goal of the revised tool is also to determine a set of decision variables designating 

transformers’ selection of ratings and stage of maintenance and replacements in the planning 

horizon such that the total cost is optimal for the transformers. The optimization model for the 

modified tool is same as of the basic tool except the difference in the interruption/reliability cost 

formulation. During the contingencies of transformers, overload on healthy transformers can be 

relieved by optimally activating DR, shifting load to NSS (if there is free capacity), and/or LC. 

The formulation devised in Section 4.2.1 for objective function, investment cost, losses cost, 

maintenance cost, and salvage value are applicable here as well. The following subsection 

presents only the modified interruption cost formulation in order to incorporate DR and network 

automation feature in the model. 
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Interruption/Reliability Cost: 

The present worth of expected interruption cost depends upon transformers’ instance of failure, 

failure rate, load curtailed, and DR activated. It is calculated by considering contingencies of 

transformers at each location in a year and by adding the costs of load curtailment and DR 

actions. The formulation comprises of the following expressions. 
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Where, 

j  and 'j  are the indices of transformer location. 

h , z , ´z , and ´́z  are the indices of the hour in a year. 

a  and 'a  are the indices of year. 
a
IntPWC  is present value of interruption/reliability cost at a . 

aPW  is the present worth factor. 
a
j  represents the outage rate of a transformer at location j and year a . 

rT  is repair duration for transformers. 

LCc  represents the unit load curtailment cost. 

DRc  denotes the unit incentive paid to the customer for using their DR flexibility. 

, ,
z
j a hLC  is a linear variable for load curtailment. 

, ,
z
j a hDR  represents a linear variable for demand deferred. 

, ,
z
j a hP  is modified load profile after overload relieving actions. 
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a
jTEC  denotes the emergency capacity of healthy transformers during a contingency of 

transformer at location j  and year a . 
aNSS  is neighboring substation capacity at year a . 

swh  is switch time parameter whose value depends upon the type of load transfer (i.e., 

manual or remote) between substations. 

'
a
j  and '

a
j  are dependent binary variables; unity value of these indicates the replacement 

and initial installation of a transformer as in-service, respectively. 

',j iniCap , ',j repCap are the capacity of initial and replacement transformers at location 'j . 

ER  is the emergency rating multiplier of transformers. 
´́ ,
, ,

z z
j a hDR  represents load deferred to z  in prior times ´́z  (DR load recovery) linear variable. 

, ´
, ,

z z
j a hDR  and , , ´a z z

DRP  are linear variable for load deferred from hour z  to later hour 'z and its 

peak bound, respectively. 
max

DRT  denotes the maximum time for which a load can be deferred. 
a
jAg  represents age of transformer at location j  and year a . 

Equation (51) calculates the expected interruption cost of transformers by considering each 

location transformer failure at each hour of the year and summing the multiplications of unit LC 

cost with the amount of demand curtailed and unit DR activation cost with the amount of 

demand delayed during repair time of the transformer. The cost is subsequently weighted by the 

probability of outage of the transformer at the given hour of the year and present worth factor. 

(52) - (58) determine the decision variables of LC and DR activation. The constraints (52) and 

(53) limit the modified load profile post LC and DR activation to be within the defined capacity 

bounds. During switching (52), only available transformers’ capacity is emergency load 

carrying capacity of healthy transformers in the substation. Whereas, NSS capacity is also 

accessible to supply the load after switching times (53). Equation (54) finds the total emergency 

capacity of the same substation which is the product of emergency rating multiplier of 

transformers and sum of capacity of healthy transformers. The modified load profile during a 

contingency found by (55) is the sum of available flexible load, critical load, load deferred in 

prior times minus load curtailed and load deferred to later times. Constraint (56) bounds the LC 

value. (57) limits the DR activation to the power available under DR contract. Equation (58) 

calculates the total load deferred under DR by adding the loads postponed to all possible future 

hours. (59) and (60) are for computing age and failure rates of transformers, respectively, like 

(39) and (40). 

In order to keep the optimization problem to mixed integer quadratic programming problem, the 

nonlinearity of exponential function (60) is removed by piecewise linear approximation. And, 
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higher order nonlinearity due to products of binary variables in (59) are removed by introducing 

intermediate variables [97]. 

4.3.2 Case Studies and Results 

The two transformer location substation as used in Section 4.2.3 is also considered as the test 

system here, with the following difference/additional information. The substation is supplying 

power to an area mix of residential and commercial load and current peak demand is about 14 

MVA. The neighboring substation support of 6 MW is also available that requires 3h and 1h for 

load transfer by manual and remote switching, respectively. The average penalty of LC for 

critical load and cost of load adjustment under DR are assumed to be 15 €/kWh [100] and 0.20 

€/kWh, respectively. 

To demonstrate the application of the developed tool in quantification of the DR benefits and 

automation impact on substation transformers capacity planning, results for the following case 

studies are described. 

 Case 1: Initial transformers at both locations in the substation are old. Also, the sizes of 

initial and replacement transformers are known. This case characterizes the typical 

situation confronted by utilities in which replacement and/or refurbishment years of 

transformers are to be decided while other equipments in the substation restrict the size of 

replacement transformer. Load relocation to NSS during contingencies by manual switches 

is supposed here. 

 Case 2: All the settings are same as that of Case 1 except that the load shifting to NSS is 

accomplished by remotely controlled switches. 

 Case 3: In this case, all transformer sizes are optimally chosen from available candidates 

for initial and subsequent installations in the planning horizon. This condition represents 

the situation of a new substation planning in which a number of transformers are available 

and other equipment ratings will be decided based on the transformer choices. Here, it is 

considered that the load shifting to NSS during outages is performed by manual switches. 

 Case 4: All the settings are the same as Case 3 except that the load transfer to NSS is 

achieved via remote controlled switches. 

Additionally, a sensitivity study is also conducted for the following scenarios to examine the 

effect of penetration of DR technology and price of LC on the results of the case studies. 

- Scenario 1: This is the base scenario whose results are obtained by using input data presented 

in the beginning of this subsection and assuming 100% DR penetration (all the flexible 

customers are responsive). 

- Scenario 2: DR penetration is assumed to be 50% (only 50% of the flexible customers are 
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responsive) in this scenario. 

- Scenario 3: Here, load is considered unresponsive. This case renders the base for comparison 

of the DR benefit. 

- Scenario 4: The decreased penalty of LC (7.5 €/kWh) is assumed in this scenario. 

- Scenario 5: In this scenario, double LC penalty (30 €/kWh) as compared to the base scenario 

is considered. 

Case 1: Old initial transformers and manual switching 

It is assumed that the initial transformers (10 MVA each) at both transformer locations (j1 and 

j2) in the substation are 20 years old with an expected remaining life of 50%. A new 

replacement transformer of size 16 MVA is to be installed at each location in the study period. It 

is considered that all the flexible customers are responsive (100% DR penetration) and 

switching of load transfer to NSS is manual. The optimum schedule of transformer 

replacements, refurbishment years, and transformers’ related costs computed by the proposed 

tool are presented in Table 4‒XI. 

TABLE 4-XI 
RESULTS OF CASE 1 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables 
Transformer location 

Total (j1) (j2) 
Net cost (k€) 824.8 829.8 1654.6 
Investment cost (k€) 278.7 294.7 573.4 
Loss cost (k€) 582.6 572.9 1155.5 
Maintenance cost (k€) - - - 
Interruption cost (k€) 70.3 74.8 145.1 
Salvage value (k€) 106.8 112.6 219.4 
Replacement stage (yr.) 17 15 17/15 
Maintenance stage (yr.) - - -/- 

 

The optimal years of replacing old transformers are years 17 and 15 for locations j1 and j2, 

respectively. The peak demands observed by initial and replacement transformers for normal 

conditions on location j1 are 1.08 p.u. and 1.19 p.u., respectively. The total net present value of 

costs is €1654.6k, out of which the percentages of investment minus salvage, loss, maintenance, 

and reliability costs are around 21%, 70%, 0%, and 9%, respectively. 

Though the failure rate of initial transformer is high, yet maintenance is not performed on them 

because compound impact of small probability of transformer failure at peak load and activation 

of DR retains the interruption cost to a low level. The capacity shortfalls during peak load 

transformer outage at year 14 before and after load shifting to NSS with manual switches are 7.5 

MW and 1.5 MW, respectively. The LC and DR needed to maintain the load within transformer 

limits for a contingency at this level are 16 MWh and 25 MWh, respectively. The probable 
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interruption cost (probability of transformer failure is 0.00029) at this peak load is €72 which is 

very low. The low interruption cost compared to the total cost is because of activation of DR. 

The low interruption cost also evades the refurbishments of replacement transformers, even 

though capacity shortage for peak load contingency at year 39 is substantial (18 MW). 

Table 4‒XII and Fig. 4.6 provide the sensitivity assessment results. The replacement and 

maintenance program do not change for 50% DR penetration (S#1-2); however, rise in 

interruption cost is due to greater requirement of LC because of reduced DR capability. 

Nonexistence of DR in S#1-3, prepones the schedule of replacements (to years 16 and 13) and 

involves refurbishment of transformer of j1 at year 34 for the best solution. In this scenario, the 

total cost is higher relative to DR scenarios. In scenario of reduced LC penalty (S#1-4), total 

cost decreases due to decline in reliability cost, however, replacement years remain same as of 

S#1-1. For increased LC penalty (S#1-5), one of the transformers replacement is preponed 

(from year 15 to 12 at j2) and both replacements require maintenance (at year 33) to provide 

optimal economic solution by retaining the reliability cost at a reasonable level. 

 

TABLE 4-XII 
SENSITIVITY ANALYSIS RESULTS FOR CASE 1 

Scenario 
Replacement stage (yr.) Maintenance stage (yr.) 

j1 j2 j1 j2 
S# 1-1: Base scenario 17 15 - - 
S# 1-2: 50% DR penetration 17 15 - - 
S# 1-3: No DR 16 13 34 - 
S# 1-4: Decreased LC penalty 17 15 - - 
S# 1-5: Increased LC penalty 17 12 33 33 

 

 
Fig.  4.6. Sensitivity analysis results for Case 1. 
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Case 2: Old initial transformers and remote switching 

All the conditions are considered same as of Case 1 in here except that remote controlled 

switches are available for load transfer between substations. Table 4‒XIII shows the results for 

this case. 

TABLE 4-XIII 
RESULTS OF CASE 2 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables 
Transformer location 

Total 
(j1) (j2) 

Net cost (k€) 810.9 811.8 1622.7 
Investment cost (k€) 271.3 278.7 550 
Loss cost (k€) 587.6 582.6 1170.2 
Maintenance cost (k€) - - - 
Interruption cost (k€) 56.1 57.3 113.4 
Salvage value (k€) 104.1 106.8 210.9 
Replacement stage (yr.) 18 17 18/17 
Maintenance stage (yr.) - - -/- 

 

The total net present value of costs is €1622.7k, out of which the shares of investment cost 

minus salvage, loss cost, maintenance cost, and reliability cost are 21%, 72%, 0%, and 7%, 

respectively. Here, the interruption cost part is a bit lower than that of Case 1 due to quick 

shifting of load to NSS. Therefore in the result, the replacement schedule is a bit deferred (for j1 

from year 17 to 18 and for j2 from year 15 to 17) as compared to Case 1. DR and LC 

requirements for peak demand contingency at year 14 are 4 MW and 36 MW, respectively. 

Probable reliability cost (probability of transformer contingency is 0.00029) at this level is €18 

which is comparatively lesser than that of Case 1. 

Table 4‒XIV and Fig. 4.7 display the similar trend in sensitivity study for this case as of Case 1. 

In lower DR penetration scenarios (S#2-2 and S#2-3), one of the transformer replacements is 

preponed and total cost is higher due to increased reliability cost. The least overall cost in S#2-4 

is due to the lowest LC penalty. For higher LC penalty (S#2-5), replacement times are 

unchanged, however, transformer overhauls are also needed to reduce the interruption cost close 

to end years. 

TABLE 4-XIV 
SENSITIVITY ANALYSIS RESULTS FOR CASE 2 

Scenario 
Replacement stage (yr.) Maintenance stage (yr.) 

j1 j2 j1 j2 
S# 2-1 18 17 - - 
S# 2-2 17 16 - - 
S# 2-3 17 15 - - 
S# 2-4 17 17 - - 
S# 2-5 18 17 34 34 
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Fig.  4.7. Sensitivity analysis results for Case 2. 

 

Case 3: Optimal selection and manual switching 

This case selects all the transformer ratings from available candidates by using the developed 

tool. Full DR penetration and manual transfer of load between substations are considered here. 

Table 4‒XV lists the results of transformer ratings, their replacement years, maintenance 

schedules, and associated costs. The optimal size of initial and replacement transformers are 10 

MVA and 20 MVA, respectively. The corresponding replacement year is 6. The share in costs 

by transformers at both locations is the same. The fragments of the costs of investment (minus 

salvage value), losses, maintenance, and reliability in the total cost (€1525.2k) are 

approximately 36%, 62%, 0%, and 2%, respectively. The selection of transformers and their 

replacement plan is such that the total interruption cost is very low (€27k) with the backing of 

DR. The normal peak demands supplied by initial and replacement transformers (0.78 p.u. for 

10 MVA transformers and 0.95 p.u. for 20 MVA transformers) are also rational. 

TABLE 4-XV 
RESULTS OF CASE 3 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables 
Transformer location 

Total 
(j1) (j2) 

Rating of initial transformer (MVA) 10 10 10/10 
Rating of replacement transformer (MVA) 20 20 20/20 
Net cost (k€) 762.6 762.6 1525.2 
Investment cost (k€) 525 525 1050 
Loss cost (k€) 470 470 940 
Maintenance cost (k€) - - - 
Interruption cost (k€) 13.5 13.5 27 
Salvage value (k€) 245.9 245.9 491.8 
Replacement stage (yr.) 6 6 6/6 
Maintenance stage (yr.) - - -/- 

 

The results of the sensitivity inquiry are exhibited in Table 4‒XVI and Fig. 4.8. In scenarios of 

reduced DR penetration and increased LC penalty (S#3-2, S#3-3, and S#3-5), it is advantageous 

to install higher rating transformers (20 MVA) initially to achieve best solution. In these 
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scenarios, larger transformer sizes enable the deferment of replacements. Here, total cost is 

higher than that of base scenario. In order to reduce the reliability cost for DR less scenario 

(S#3-3), overhauls of transformers are also needed at year 11. Transformer choices are same in 

reduced LC penalty (S#3-4); however, replacements are preponed by one year for optimal 

economical cost. 

TABLE 4-XVI 
SENSITIVITY ANALYSIS RESULTS FOR CASE 3 

Scenario 
Replacement stage 

(yr.) 
Maintenance stage 

(yr.) 

Initial  
transformer 

(MVA) 

Replacement transformer 
(MVA) 

j1 j2 j1 j2 j1 j2 j1 j2 
S# 3-1 6 6 - - 10 10 20 20 
S# 3-2 29 2 - - 20 20 20 20 
S# 3-3 13 13 11 11 20 20 20 20 
S# 3-4 5 5 - - 10 10 20 20 
S# 3-5 7 7 - - 20 20 20 20 
 

 
Fig.  4.8. Sensitivity analysis results for Case 3. 

 

Case 4: Optimal selection and remote switching 

The sole difference in this case compared to Case 3 is the remote switches instead of manual 

ones for load shifting among substation during contingencies. The investigation of results 

(Table 4‒XVII) indicates that the transformer ratings and their replacement schedule are same 

as of Case 3; however, small decrease in overall cost is due to reduction in interruption cost due 

to faster switches. The portions of cost of investment (minus salvage value), losses, 

maintenance, and reliability in the total net cost of this case are around 37%, 62%, 0%, and 1%, 

respectively. 

Table 4‒XVIII and Fig. 4.9 demonstrate the sensitivity study results. In this case, the selection 

of transformers is identical to that of Case 3. However, slight postponement in replacement of 
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transformers in S#4-2 and S#4-5 is due to small load transfer switching times that result into 

lower reliability costs. 

TABLE 4-XVII 
RESULTS OF CASE 4 OBTAINED FROM PROPOSED OPTIMIZATION MODEL 

Variables 
Transformer location 

Total 
(j1) (j2) 

Rating of initial transformer (MVA) 10 10 10/10 
Rating of replacement transformer (MVA) 20 20 20/20 
Net cost (k€) 758.8 758.8 1517.6 
Investment cost (k€) 525 525 1050 
Loss cost (k€) 470 470 940 
Maintenance cost (k€) - - - 
Interruption cost (k€) 9.7 9.7 19.4 
Salvage value (k€) 245.9 245.9 491.8 
Replacement stage (yr.) 6 6 6/6 
Maintenance stage (yr.) - - -/- 

 

TABLE 4-XVIII 
SENSITIVITY ANALYSIS RESULTS FOR CASE 4 

Scenario 
Replacement stage 

(yr.) 
Maintenance stage 

(yr.) 

Initial  
transformer 

(MVA) 

Replacement transformer 
(MVA) 

j1 j2 j1 j2 j1 j2 j1 j2 
S# 4-1 6 6 - - 10 10 20 20 
S# 4-2 35 2 - - 20 20 20 20 
S# 4-3 13 13 11 11 20 20 20 20 
S# 4-4 5 5 - - 10 10 20 20 
S# 4-5 8 8 - - 20 20 20 20 
 

 
Fig.  4.9. Sensitivity analysis results for Case 4. 

Table 4‒XIX summarizes the comparison of total cost between Scenarios 1 and 3 for all the 

cases. It is convenient in evaluating the benefit of DR in transformer capacity planning. The 

gains of DR for Cases 1, 2, 3 and 4 are €38.6k, €40.5k, €98.6k, and €101.3k, respectively. The 

DR benefit is comparatively superior for cases in which load to NSS is shifted by remote 

switching than the cases of manual shifting. This difference in benefit based on type of switches 
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would be greater for systems in which manual shifting takes longer times. The main decrease in 

load using DR is required immediately following a contingency while load shifting to NSS is 

being organized. DR is needed for short times in Case 2 and Case 4 owing to remote switching, 

consequently, higher load reduction can be achieved. Whereas in Case 1 and Case 3, DR is 

required for longer duration because of manual switches. The load payback phenomenon 

declines the load reduction ability in these cases. Therefore, the use of DR is relatively more 

advantageous for cases of load transfer to NSS via remote switches. 

 

TABLE 4-XIX 
DR BENEFIT COMPARISON FOR CASE STUDIES 

Case 
Total cost (k€) DR benefit 

Scenario 1: 100% DR Scenario 3: No DR (k€) 
Case 1 1654.6 1693.2 38.6 
Case 2 1622.7 1663.2 40.5 
Case 3 1525.2 1623.8 98.6 
Case 4 1517.6 1618.9 101.3 

 

4.4 Conclusion 
The proficient capacity management of transformers in substations is critical for an economic 

power system due to their high cost. This chapter devised the tools for capacity management of 

transformers in a primary distribution substation. At first, an optimization tool was developed 

for transformer capacity planning for long-run considering the all the associated costs and 

features of growing failure rate and salvage value. Secondly, a modified tool was created to add 

the feature of DR. Using both the tools, transformer capacity management problem was solved 

for various situations faced by utilities in planning a typical Finnish primary substation. Broad 

sensitivity analyses were also conducted to demonstrate the influence of various parameters on 

the results. The results of studies indicated the value of the tools in transformer capacity 

management. The investigation revealed that DR can offer considerable economic benefits in 

transformer capacity planning and these benefits are superior for systems in which remote 

switches are used for load transfer between substations. The utilities can utilize these tools for 

planning of transformer ratings, their replacement and maintenance scheduling, and decisions of 

DR deployments. 
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5 Demand Response Benefit for Sub-transmission Networks 
 

 

 

The last two chapters studied the benefits of demand response (DR) for transformers only. This 

chapter evaluates the potential of DR for redundancy mitigation in sub-transmission networks 

(considering lines, transformers, and busbars). After an introductory section, system Markov 

models for contingencies of various components of sub-transmission systems are developed. 

Afterwards, an evaluation framework is presented for calculating the outage cost. Then, case 

studies are presented for a typical Finnish system to assess the DR benefits. Conclusion of the 

chapter follows at the end. 

5.1 Introduction and Literature Review 
Sub-transmission networks are the important link between transmission and distribution 

systems. Their sufficient capacity and efficient utilization is vital for an economic and reliable 

delivery of supply. Random failures in networks produce outage cost losses that are inversely 

dependent upon redundancy design. Most utilities design their network to a definite contingency 

level, e.g., N-1, which specifies no loss of supply due to lack of capacity following single 

contingency [101]. The design logic of N-1 or higher contingencies might lead to 

overinvestments as load factor of demand is usually low and contingencies are not frequent 

[102]. Furthermore, owing to load growth, limited available capacity, and costly and tedious 

nature of sub-transmission system expansions, novel solutions are required by utilities to supply 

the load efficiently. DR can offer the savings in sub-transmission network capacity by providing 

support during contingencies, thus, releasing the redundant capacity that can be used for normal 

operations. 

Despite a rigorous research on DR benefits for distribution networks, its influence on sub-

transmission networks has not been studied well. The focus has been on the distribution system 

[29], [31], [34], [42], [90], [92], [95]. References [93] and [94] proposed the models for 

assessment of price-based and event-based DR benefits in transmission network planning, 

respectively. In [102], the benefit of curtailable load for network investment was determined by 

comparing the annuitized present worth of future network investment, with and without 

curtailable load, to supply the load during network failures. However, it did not carry out the 

probabilistic reliability analysis for network failures. 
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In the following, the potential of DR in alleviating the redundancy requirements of sub-

transmission system is evaluated by considering DR as a redundancy substitute which is 

triggered by network contingencies. The comparison of outage cost for future demand is 

adopted as an evaluation methodology; this comparison is between non-investing in the network 

and use of DR as a redundancy resource. In order to find the outage cost, novel Markov models 

are developed for system states during various components’ contingencies (lines, transformers, 

and busbars) in presence of DR. Using the developed models and an outage cost comparison 

methodology, DR benefit assessment is performed for a typical Finnish sub-transmission 

network. 

5.2 System Models for Components’ Faults 
This section proposes system Markov models for contingencies of considered components. The 

components considered are HV lines, HV busbars and HV/MV transformers. 

Markov models portraying states of a system for a contingency can be simply comprised of two 

[103] or three states [104] - [107]. These states characterize the operations of normal working 

(up) and failure/down (switching and restoration). The detailed modelling of switching and 

restoration actions requires n+2 state Markov model as proposed in [108] where failure (down) 

state is divided into multiple states. In [108], the transition rate from any down state to up state 

is assumed constant; which can only be true if switching rates for transferable loads are very 

small compared to repair time of the considered component. This is not always valid, e.g., 

shifting of load to a neighboring substation involves switching re-arrangement which may take 

significant time. Another weakness of the model is that it does not fulfill the following 

condition; for a certain load and capacity of network, if the system has to enter a specific down 

state then the transition rate from all earlier down states to up state should be zero. 

Another generalized n+2 state Markov model for a station oriented reliability assessment was 

proposed in [109] and [110]. Where switching actions at a station are distributed into multiple 

steps, such that restoration of each line or feeder is denoted by a different state. That model is 

not valid in circumstances where repair of defective component and switching actions to restore 

disconnected load are performed at the same time (independent but non-mutually exclusive). 

Here [VI], novel pseudo-Markov models are developed to increase the accuracy of reliability 

indices for sub-transmission contingencies and to incorporate DR. At first, models are 

developed without considering DR, and then they are modified to include DR impact. These 

models imitate real operational features and produce improved results for situations where 

switching times are not very short, and repair and switching may be non-mutually exclusive. In 

proposed pseudo-Markov models transition times between states are acquired by manipulating 

mean repair and switching times and it is supposed that calculated transition times between 
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states are distributed exponentially thus obey the Markovian property (transition rate 

independent of time) [111] - [112]. 

Proposed Basic Models: Without DR 

Firstly, the basic system state models are drawn for the faults of components without 

considering DR. 

A) HV lines: 

Basic system state model for HV line faults is shown in Fig. 5.1. The details of the states are 

given in the following. 

Line Up Line
Failed

Load
Curtailment

λC

μ10

μ12μ20

State:0 State:1

State:2

 
Fig.  5.1. Basic system state model for HV line faults. 

 

State 0: Up state denotes that all segments are working. 

State 1: Failed state indicates that one of the line sections is in a failed state. Transition from 

state ‘0’ to state ‘1’ depends on fault rate ( c ) of lines. Sufficient capacity of remaining network 

results into transition back to up state after repair. 

State 2: Load curtailment (LC) state. A shortage of remaining network capacity during 

contingency leads to this state. During transition to this state, healthy lines are permitted to carry 

load up to short-term emergency rating in state ‘1’. 

The transition rates between states are conditional and equal to reciprocal of transition times as 

given below.  

10
1    If LC not needed.
0        else

rT
  (61) 

12
1    If LC needed.
0          else

LCT
  (62) 

20 1 ( )r LCT T   (63) 
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Where, 

uv  represents transition rate from state u  to v . 

rT  is time required to repair and re-connect component (including detection and isolation). 

LCT  denotes load curtailment time. 

B) HV/MV transformers: 

For a HV/MV transformer contingency, the reserve capacity may be available in the same or in 

a neighboring substation (NSS). In case reserve capacity of transformer in the same substation is 

not adequate to supply the entire demand then after switching re-arrangement partial load can be 

transferred to a neighboring substation transformer. Fig. 5.2 depicts the system model for a 

transformer contingency where reserve capacity is available in ‘n’ places. 

Component
UP

Component
Failed

λC

Reserve 1
R1

Reserve 2
R2

Reserve 3
R3

Reserve n
Rn

μ12μ20

μ30μ40μ(n+1)0

μ23μ34μn(n+1)

State:0 State:1

State:2State:3State:4State:n+1

μ10

 

Fig.  5.2. Basic system model for HV/MV transformer fault. 

 

State 0: Up state denotes a working transformer. 

State 1: Fail state shows the faulty transformer in the system. The load connected to the faulty 

transformer will be out of supply in this state. If the system does not contain reserve transformer 

capacity then the transition from here to the up state requires repair time. 

State 2: It is the first reserve state in which supply to the disconnected load is restored. The 

transition to this state depends on first reserve transformer switching time. If capacity of this 

reserve transformer is sufficient to supply the entire disconnected demand then system remains 

in this state until repair is accomplished. Otherwise, partial load will remain unsupplied in this 

state; therefore, transition to next reserve is needed. 

State 3: It is a second reserve state in which supply to un-energized load of state 2 is connected. 

Transition rate from state ‘2’ to state ‘3’ is proportional to the second reserve transformer 



93 
 

switching time. The next reserve state is only visited if even second reserve is not adequate for 

the load. 

Similarly, State ‘4’ and ‘n+1’ are the third and last reserve state, respectively. 

The transition rates uv  between states are a function of transition time, the number of reserves 

available, and the amount of load disconnected. These rates are conditional. The number of 

reserves and load disconnected determine either rate is zero or a certain value. 

C) HV busbars: 

The configuration of HV busbars can be among single bus, sectionalized single bus, breaker-

and-a-half, double breaker-double bus, and ring bus [113] [114]. The configuration determines 

the design of the model for busbars. Model for the single or sectionalized single bus are similar 

to that of HV/MV transformers, whereas, other configurations follow the model of HV lines. 

Proposed Modified Models: With DR 

The decrease in load due to DR depends on DR capacity, demand postponement time, load at 

load point, and duration for which load is higher than capacity. The mathematical expression is 

shown below. 

        If 

   else
DR req DR

DR
DR DR req

C L t T
L

C L T t
  (64) 

Where, 

DRL  is decrease in load due to demand response. 

DRC  denotes demand response capacity of load (in %). 

L  is load demand in kW. 

DRT  represents demand deferment time without interruption cost (h/day). 

reqt  is time for which load is higher than capacity (h). 

Equation (64) indicates that if reqt  is less than or equal to the demand postponement time then 

the entire DR resource can be used at same time. Otherwise, DR resources are activated 

sequentially in form of groups to make sure load demand is reduced for the required duration. 

Following are the modified models incorporating DR. 

A) HV lines: 

Fig. 5.3 displays the modified model for an HV (Sub-transmission) lines fault. 
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Fig.  5.3. Modified system model for HV line fault. 

 

State 0: Up state denotes that all the line sections are working. 

State 1: Failed state shows that one of the sub-transmission segments is in a failed state, before 

load curtailment or DR activation. A remaining network capacity enough to supply the entire 

load keeps the system in this state until repair is complete. Otherwise, the network can be loaded 

up to short-term emergency loading capacity in this state before transition to next state. 

State 2: DR state is reached from state ‘1’ in case DR action reduces the LC requirement. If LC 

is not required post DR activation then system will move to state ‘0’ by completion of repair, 

otherwise, state ‘3’ will be visited. 

State 3: This is load curtailment state that can be reached from state ‘2’ or directly from state 

‘1’. The direct transition from state ‘1’ to ‘3’ occurs in case DR does not reduce LC 

requirement. After repair, the up state is always reached from here. 

The transition rates for various states are given in the following equations that are self-

explanatory. 

10
1    If LC and DR not required.
0        else

rT
  (65) 

12
1    If DR reduces LC.
0          else

DRt
  (66) 

20
1 (T )  If LC not needed after DR.
0                 else

r DRt
  (67) 

13
1    If DR doesn't reduce LC.
0          else

LCT
  (68) 

23
1    If LC needed after DR.
0          else

LCT
  (69) 
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30
1 (T )  If  doesn't reduce LC.
1 (T )   else

r LC

r LC DR

T DR
T t

  (70) 

Where, 

uv  represents transition rate from state u  to v . 

rT  is time required to repair and re-connect component (including detection and isolation). 

DRt  denotes DR activation time. 

LCT  is load curtailment time. 

B) HV/MV transformer: 

For simplicity, it is assumed that the reserve capacity for a transformer may be available in two 

other transformers, one in same substation and the other in a NSS. Fig. 5.4 shows the modified 

system model for an HV/MV transformer contingency. 

Transformer
UP

Transformer
Failed

λC

Reserve 1
R1

Stage 1

Reserve 1
R1

Stage 2

Reserve 2
R2

μ12

μ20

μ40μ60

μ23μ34μ46

State:0 State:1

State:2State:3State:4State:6

R1

DR

R2

DR

State:5

μ25

μ50

μ54

μ10

 

Fig.  5.4. Modified system model for HV/MV transformer fault. 

 

State 0: Up state represents working transformer. 

State 1: Fail state designates a faulty transformer. If reserve and DR are not present then system 

will persist in this state up till completion of the repair. 

10
1    If DR and reservenot available.
0        else

rT
  (71) 

State 2: Stage 1 of the first reserve state. After breaker switching time, disconnected feeders are 

connected to the reserve transformer in the same substation. It is ensured that transformer short-

term emergency rating limit is complied. Transition to further reserve or DR state is needed only 

in case the long-term emergency capacity of the first reserve transformer is not enough to accept 

the entire load. 
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12 1 CBt   (72) 

1
20

1 (T )  If DR & LC not needed (R ).
0                 else

r CBt
  (73) 

Where, 

CBt  denotes circuit breaker switching time, including fault detection. 

1R  represents reserve state 1. 

State 3: Stage 2 of the first reserve state. If DR is not able to reduce LC required quantity of first 

stage in reserve 1 then after load curtailment time this state is visited. In this state, transformer is 

not loaded more than long-term emergency load rating. As load is disconnected partially in this 

state, therefore, the passing to second reserve state will always happen. 

1
23

1 T  If DR not but LC needed (R ).
0        else

LC   (74) 

State 5: The first reserve with demand response state is succeeded if DR activation is able to 

reduce LC in reserve 1. Here, the transformer long-term emergency load rating is not violated. If 

DR eradicates the LC need, then after DR activation time state ‘5’ is visited and state ‘0’ is 

attained after completion of repair. Otherwise, this transition (from state ‘2’ to state ‘5’) needs 

sum of DR activation and load curtailment time; and state ‘4’ is visited after it. 

1

25 1

1  If DR needed but not LC (R ).
1 (T )  If DR and LC needed (R ).
0        else

DR

LC DR

t
t   (75) 

50
1 (T )  If DR eliminates LC.
0     else

r CB DRt t
  (76) 

State 4: This is the second reserve state that corresponds to the transformer in a neighboring 

substation. The power to load is connected here that was un-energized in reserve 1. This state is 

achieved after network re-arrangement time either from state ‘3’ or from state ‘5’. If the long-

term emergency capacity of the second reserve transformer is adequate to supply the balance 

load or DR activation does not decrease LC requirement in reserve 2, then system will persist in 

this state till repair of fault. If DR activation is also needed, then short-term emergency loading 

can be applied on this transformer as well. 

34 1 swh   (77) 

1
54

1  If DR and LC needed (R ).
0          else

swh
  (78) 

4 sw LC CBt h T t   (79) 
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4 1 2

1
40 4

2

1 (T )  If DR not needed (R  and R ).
If DR needed (R ) and 

1 (T )  
 DR not needed (R ).

0        else

r

r DR

t

t t   (80) 

Where, 

swh  is time required to transfer load to a neighboring substation. 

2R  represents reserve state 2. 

4t  is time required to reach state ‘4’ from state ‘1’ through state ‘3’. 

State 6: The second reserve with DR state. This state is reached from state ‘4’ if DR activation 

is able to decrease LC in reserve 2. From here, transition will always be towards the up state. 

2
46

1  If DR needed (R ).
0        else

DRt
  (81) 

4 1
60

4

1 (T )  If DR not needed (R ).
1 (T 2 )  else

r DR

r DR

t t
t t

  (82) 

C) HV busbars: 

Depending on configuration, HV busbar contingency models are similar to the ones presented 

for lines and transformers. 

5.3 Outage Cost Evaluation Framework 
Fig. 5.5 shows the flow diagram for computing the outage costs of an HV network that contains 

the following eight modules. 

 Module 1: The first step is to obtain data related to the network. The data may include the 

information of electrical components type, rating, interconnection, fault rates, repair time, 

operation procedures, network configuration, and load point. 

 Module 2: This module initializes the hour counter h  which is used to consider the likely 

contingencies at each hour of the year. 

 Module 3: Contingency counter c  is initialized in this block. It is needed in order to 

compute total outage cost due to all the contingencies. 

 Module 4: This module determines the amount of load to be disconnected due to a 

contingency, before and after the activation of DR or switching to the reserve. This block is 

re-examined until all contingencies have been reflected. 

 Module 5: The model for all the network contingencies at hour h  is created in this module. 

This model is a combination of system state models for each contingency designed in 

preceding section. 



98 
 

Start

h=1

c=1

Evalute load point to be
disconnected due to

contingency

All contingencies
considered?

c = c+1

Form Markov Model

Evaluate each sate; visit frequency,
duration of visit and load point

diconnected

Calculate outage frequency, duration
and cost for fault at hour ’h’

t > 8760 ?

Calculate total outage frequency,
duration and cost

End

h =h+1

No

No

Yes

Yes

Module 1

Module 2

Module 3

Module 4

Module 5

Module 6

Module 7

Module 8

 

Fig.  5.5. Flow diagram for calculating the outage costs due to HV faults. 

 

Mathematically, the Markov model is presented as an ' 1 1'r r  transition rate matrix 

(83) and steady state probability of system of a state is calculated solving (84) - (86). 

00 01 0

10 11 1

0 1

000

1

r

r

r r rr

a a a
a a a

TM

a a a

  (83) [111] 

0P TM   (84) [111] 

0
1r

uu
P   (85) [111] 

0 1 rP P P PPrrPr      (86) [111] 

Where, 
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TM  is transition rate matrix. 

  uuva v  represents transition rate from state u  to state v  ( uua  is such that the sum of all 

the elements in a row is zero). 

1r  is equal to number of states in the model. 

P  represents probability matrix. 

uP  denotes steady state probability of system in state u . 

 Module 6: This module determines the visit frequency and the mean durations of visit of 

each state using (87) and (88). Load points disconnected in each state are also calculated in 

here. 

0,
r

v s svs s v
P a   (87) [111] 

v v vP   (88) [111] 

Where, 

,s v  are the indices of the states. 

v  represents the visit frequency of state v . 

v  denotes the visit duration of state v . 

 Module 7: In this module, the outage cost for faults at each hour is calculated by (89). 

1

2

(

)

u u
x x

h u
u x x

OP OF CIC
ECOST

OD CIC
  (89) 

Where, 

x  is load point index. 
u
xOP  is outage power (kW) at load point x  in state u . 

u
xOF  is outage frequency of load point x  in state u . Its value is u  if load is disconnected, 

zero otherwise. For a particular contingency it is considered only once. 
u
x uOD  is outage duration (h) of load point x  in state u , if load is disconnected in that 

state. 

1CIC  is customer interruption cost parameter related to frequency of interruptions 

(€/kW/fault). 

2CIC  is customer interruption cost parameter related to duration of interruptions (€/kWh). 

hECOST  is the expected outage cost considering faults at hour h . It is the sum of the outage 

costs in all states, at all load points. 
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The steps from module 3 to module 7 are reiterated 8760 times to a cover a full year. 

-Module 8: The results of prior modules are summed to calculate annual expected outage cost 

for the entire network. 

8760
1 hh

ECOST ECOST   (90) 

Where, 

ECOST  is the expected annual outage cost for the entire network. 

5.4 Case Studies and Results 
A typical Finnish sub-transmission (110kV) network, as drawn in Fig. 5.6, is considered as the 

test system (detailed information related to test system can be found in [VI]). The network 

consists of 12 line segments supplying power to two primary substations; namely SS1 and SS2. 

Each substation connects MV feeders of load via two primary transformers (110/20kV). A 

normally open back-up connection between substations is also available to provide support 

during contingencies. SS1 contains transformers T1 and T2 that supply power to a commercial 

area where consumers are office, shops, and district/oil heated houses. As displayed in Fig. 5.7a, 

load peaks are wider at this substation and difference between summer and winter load is small. 

SS2 comprises of transformers T3 and T4 that supply power to an area where consumers are 

combination two types of houses, with electric and district/oil heating. Demand peaks are 

narrow at this substation and difference between summer and winter load is significant, Fig. 

5.7b. The present peak load at each substation, average load at SS1, and average load at SS2 are 

38 MW, 19 MW, and 15 MW, respectively. 

 

 

Fig.  5.6.  Single-line diagram of typical Finnish sub-transmission network. 
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Fig.  5.7. Load profile of specific weeks at (a) SS1 and (b) SS2. 

 

Fig. 5.8 demonstrates the DR capacity available at evening peak and at night for SS1 and SS2. 

In the evening (6pm), 30% load can be postponed for 15min or up to 7% load can be postponed 

for 300min, at SS1. For longer time only few loads can provide DR or load is decreased by 

curtailing load in small groups. At the same substation, DR potential at night (1am) is low due 

to less activity of consumers. As shown in Fig. 5.8b, in the evening (6pm), 41% load can be 

delayed for 15min or up to 11% load can be postponed for 300min at SS2. At this substation, 

DR potential at night (1am) is higher due to action of storage heaters. DR capacity at SS1 is 

lower than at SS2 because SS1 area is district/oil heated, whereas, in SS2 area around half of 

houses are electrically heated. Based on width of near peak load, optimal DR values are used in 

the case study; 7% demand postponement for 5h at SS1 and 17% demand delay for 3h at SS1. 

 

 

Fig.  5.8. DR capacity available at (a) SS1 and (b) SS2 
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Simulations are performed for the following case studies assuming scenarios of load growth up 

to 25%. 

 Case1: In this base case, the network capacities are unchanged. 

 Case2: This ideal case assumes that the network capacities are proportionally increased 

along with load growth. 

 Case3: Functional DR is considered in this case, while keeping network capacities same as 

of Case 1. 

Table 5‒I lists the outage cost due to network contingencies for the above defined cases. At 

present, outage cost is same for all the cases because capacity shortage is not observed. Low 

outage cost in this scenario results from time required to connect reserve connection following 

contingencies at transformers and busbar 7. 

TABLE 5-I 
EXPECTED ANNUAL OUTAGE COST FOR CASE STUDIES. 

Load Growth 
ECOST 

Case 1 [p] Case 2[q] Case 3 [g] Reduction [p-g]/ [p-q] 
(%) (€/a) (€/a) (€/a) (%) 

Present 822 822 822 - 
5 7 195 863 863 100 
10 45 315 904 4 497 92 
15 132 874 945 35 435 74 
20 283 070 986 107 021 62 
25 507 941 1 027 225 705 56 

 

Case 1: Base Case 

For increased load without upgrading network, contingencies near peak demand (in winter) 

result into capacity deficiency. The cost is higher for higher load growth. The outage cost in this 

case is due to following reasons: 

- Load is required to be shed during HV line contingencies near peak load. 

- Certain time is needed to transfer the load to the neighboring substation during contingencies 

of transformers and busbar 7 because reserve in same substation can only accept partial load. 

Fig. 5.9 displays the share of each substation and each contingency type towards the outage 

cost. The portion of SS1 is higher owing to its wider near peak load and higher average load, 

Fig 5.9a. The highest share of HV line contingencies (Fig. 5.9b) is caused by lack of reserve 

during line faults. The presence of reserves for transformers and busbars make their share lower 

in the outage cost. 
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Fig.  5.9. The share in outage cost (case1) (a) substation-wise and (b) contingency type wise. 

 

Case 2: Ideal Case 

The interruption frequency and duration of the load does not change in case capacity of the 

components is consistently increased along with the load growth. However, small increase in 

outage cost compared to present value is caused by higher load values. 

Case 3: Demand Response Case 

In this case, DR activation after detecting a capacity shortage reduces or eliminates the load 

curtailment need. Fig. 5.10 depicts the decrease in outage cost at each substation. For 5% load 

growth, sufficient DR at both substations reduces the load during contingencies such that outage 

cost is identical to that of the ideal case. For load growth of 10% or more, DR capacity at SS1 

(7%) is not adequate to remove capacity deficiency during near peak contingencies. Sufficient 

DR capacity at SS2 (17%) can handle contingencies in load growth scenarios of 10% and 15%, 

which is demonstrated by 100% ECOST  decrease at SS2. Even for higher load growth, the 

reduction in outage cost at this substation is above 90%. This high decrease in outage cost at 

SS2 is due to certain load shape, with narrow winter peaks and high DR capacity. The 

investigation of substation-wise results indicates that higher DR capacity available at SS2 is 

able to manage higher capacity shortages during contingencies, while lower DR capacity 

available at SS1 is able to compensate lower load growth capacity deficiencies. The overall drop 

in outage cost is dominated by SS1 because of its high average load. 

Fig. 5.11 exhibits the results of contingency wise outage cost reduction. The decrease in cost for 

transformer contingency is higher compared to line contingencies thanks to shorter duration 

(load transfer to the neighboring substation) for which DR activation is only needed. 
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Fig.  5.10. Percentage reduction in expected annual outage cost at each substation (case 3). 

 

 

Fig.  5.11. Contingency wise reduction in expected annual outage cost at substation 1 (case 3). 

 

The following inferences can be drawn from the results of case studies: 

 DR is able to mitigate the redundancy capacity requirements of components proportional to 

its capability. 

 DR benefits at a substation depend upon its load shape and DR capability. 

 DR benefit also depends on the contingency type. 

5.5 Conclusion 
This chapter investigated the prospect of DR as a network redundancy alternative. The novel 

reliability models developed were used to estimate the outage cost for the comparative study. 

The case study results for a typical Finnish system indicated that redundant capacity of network 

components proportional to DR ability can be mitigated. The benefit of DR depends on the 

contingency type. Moreover, near peak load shape and DR capability influence the results. The 

utilities can use such an investigation to decide about the DR employments in order to obtain the 

benefits of network efficiencies improvements and delayed/avoided investments. 
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6 Conclusions and Future Works 
 

 

 

6.1 Conclusions 
The high utilization efficiency and the adequate capacity of high voltage (HV) systems are 

crucial elements for a reliable and an economical delivery of power supply. Novel solutions are 

required to deal with load growth, aging infrastructure, and high reliability needs in combination 

with low load factors of the demand. The main objective of this dissertation was to assess the 

potential benefits of demand response (DR) for capacity utilization improvement and lifesavings 

for the major assets of HV distribution system. The HV components considered in this study 

were HV/MV transformers, HV line/cables, and busbars. The transformers were given a 

particular importance due to their significant individual cost and critical position in the system. 

The dissertation objective was divided into three key tasks that were presented in separate 

chapters. The first task, Chapter 3, focused on the capacity and lifesaving benefits of DR for 

transformers during operational stages. This task was further divided into three subtasks. In the 

first subtask, an optimization model was developed for utilization improvement of transformers 

using DR during normal operations without considering contingencies. The second subtask 

proposed static rating limit based DR optimization model for operational life extension and 

efficient capacity utilization of transformers during contingencies. The third subtask offered a 

hottest-spot-temperature (HST) based optimization model by which efficient utilization of 

transformers and lifesaving benefits can be achieved irrespective of ambient conditions. In the 

proposed models, DR was optimally activated to obtain the intended benefits. For each model, 

simulations were performed for typical Finnish systems’ case studies. The results of the case 

studies indicated that substantial benefits in terms of lifesaving and capacity utilization 

improvement can be gained by employing DR in both normal and contingency operations. The 

cost of these benefits would be minimal only if load modifying decisions are optimally selected. 

These models/assessments can be used by utilities before making any real implementations of 

DR. 

The second task, Chapter 4, dealt the problem of optimal capacity planning of power 

transformers in primary substations over long-run. This task was also further divided into two 

subtasks. In the first subtask, an optimization tool was devised for capacity planning of 

transformers (without considering DR) in which all the costs related to transformers, their 

failure rate increase with age, and their salvage value based on loss-of-life (LOL) were 
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appropriately incorporated. In the second subtask, this tool was modified to include the features 

of DR and type of available load transfer switches (i.e. manual or remote) for load transfer 

between neighboring substations (NSS). In order to showcase the application of the developed 

tools, case studies and sensitivity analyses were presented for planning of a typical Finnish two-

transformer substation capacity in various situations faced by utilities. The numerical results 

indicated the worth of the tools. The investigation revealed that the DR offers significant 

benefits in transformer capacity planning and these benefits are superior for systems in which 

remote switches are installed for load transfer between substations. The utilities can utilize these 

tools for planning of transformer ratings, their replacement and maintenance scheduling, and 

decisions of DR deployments. 

Third task, Chapter 5, assessed the possibility of reserve capacity mitigation of HV network 

components (lines/cables. Transformers, and busbars) using DR as a redundancy resource 

activated by contingencies. This assessment was made by comparing outage cost of network 

contingencies with and without considering DR. In order to find the outage cost, novel Markov 

models were developed that imitate the various system states during faults. The case study 

results for a typical Finnish system showed that the redundant capacity of network components 

proportional to DR capability can be mitigated. The benefits of the DR depend upon the load 

shape as well as the contingency type. This assessment is useful for DR realization decisions in 

order to obtain the network efficiency improvement and delay/avoid investments. 

6.2 Future works 
There are several exciting research directions directly emerging from this dissertation, some of 

which are introduced in the below. 

 Higher proliferation of distributed generations is contemplated in coming years that 

need different set of asset planning and management strategies. The models of this 

dissertation can be modified to incorporate the impact of distributed generations. 

 High penetration of electric vehicles (EV) is anticipated in the future and its integration 

is an active field of research. EV poses challenges of peak load and also provides 

opportunities of DR and storage. This analysis can be extended to integrate the impact 

of EV on various levels of the distribution system. 

 The availability of flexible loads for response depends on customers’ acceptance. Also, 

some level of customer comfort is compromised with these interruptions. In future, the 

analysis may be improved by considering the uncertainties associated with the flexible 

loads. 
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 Besides capacity and lifesaving gains evaluated in this dissertation, DR also offers other 

advantages to various players of the power system industry. The optimal division of DR 

among different players/benefits can be an interesting work in the future. 

 This dissertation assessed the potential benefits of DR for HV system for capacity 

utilization improvement and lifesaving. Despite that this study was essential for 

obtaining the DR benefits, still its realization in practical systems needs enabling tools 

and strategies. The development of the enabling tools and strategies can be an 

interesting research direction. 
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