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1 Introduction

1.1 Overview

Mobile networks have rapidly become a crucial part of our everyday life and yet their
significance to us will increase in the future. Already seven billion mobile phones have
been subscribed globally while the majority (65 %) of new mobile phones sold are
smart phones [1]. The growth is expected to be even larger in the future. Especially
mobile data traffic (downlink) is expected to explode compared with the current
situation. [1][2][3]

Growing complexity of telecommunication networks requires more automation from
the network management layer. Currently researched and gradually standardized
technology in telecommunication field is Self-Organizing Networks (SON) which
already solves automatically some management tasks in a limited context. In addition
to the SON technology, there is also effort to create fully automated management
systems (autonomic computing systems) where human intervention is minimized
[3][4][5].

As the complexity and level of automation rises in network management systems, they
will also become less understandable to human. However, it is crucial that human
operator monitors and controls the system behaviour even though the autonomic
system could solve the majority of management tasks. The human operator is needed
for example to verify the functionality and handle fault situations of the system.
Thus, an autonomic computing system needs special attention on a user interface
construction because the complex functionality of the system needs to be transparent
to the user. [6]

1.2 Motivation

This thesis will be part of a project which aims to improve automation in a mobile
network management system by using statistical relational learning [7]. Implementa-
tion is done with Markov Logic Network (MLN) [8] which has a weighted rule base
for modelling the uncertainty and logical relations of a mobile (cellular) network.
With respect to network performance measurements, an MLN reasoner is used to
infer optimal configurations to cells and to learn better weights in the rule base.

Besides the MLN reasoning system, an important aspect in this project is to demon-
strate the behaviour of the reasoner to a human user. First, it is important that
another researcher or developer learns and understands how the reasoner works in
order to enhance the functionality of the reasoner. Second, the automated manage-
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ment system should be under human control and thus the human operator should
also understand how the reasoner behaves.

The thesis focuses on creating a case study about the demonstrator. More precisely,
the case study is about building a semantic search interface which provides interactive
information exploration for the user. The search interface is built with faceted
browsing activities and with visualization methods which support user’s information
exploration. Data management in this case study is handled with Semantic Web
technologies to provide flexible facet creation and representation of relational data
(network- and MLN-related data).

Case study is based on five research questions which relate to the functionality of
the semantic search interface:

1. What information is needed?

2. Which visualization methods support the information need?

3. Which facets support the information need?

4. What other functionality supports the information need?

5. How to provide scalability for the search interface?

The first research question, the information need, is analysed before the following three
questions (visualization methods, facets, and other functionality) can be examined.
The final research question, scalability, relates to data model design which enables
the extension and modification of the demonstrator.

1.3 Outline

This thesis is divided into following parts: background, design and preliminaries,
implementation, and discussion. Background part (I) introduces relevant background
information for the case study, such as telecommunication network technologies
(including automated management systems), knowledge engineering, and user-centric
information exploration.

Design and preliminaries part (II) describes the system design including the underlying
MLN reasoning system and the design of the demonstrator. Moreover, this part
analyses some tools and libraries that can be used in the data management and in
the GUI.
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Implementation part (III) presents the application by first presenting data processing
methods in the demonstrator and then describing the graphical user interface with
practical examples.

Finally, discussion part (IV) evaluates the implementation with respect to research
questions and then summarises the case study.
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2 Telecommunication Network Technologies

This section gives an overview to mobile network technologies. First, the notion of
the mobile network is presented by describing its basic components, introducing the
Long Term Evolution (LTE) standard and explaining the process in mobile network
management. Second, an automation technology for mobile network management,
Self-Organizing Network (SON), is introduced. Finally, there is a discussion about
future trends in SON and generally in automatic mobile network management.

2.1 Overview

2.1.1 Mobile Network

A mobile network is run by a network operator and it is used for a wireless com-
munication between user equipments (UE) such as mobile phones and tablets. A
connection from a UE to a mobile network is enabled with Base Transceiver Stations
(BTS) which operator has located densely in order to provide better coverage areas for
customers. The coverage areas that a BTS creates are called cells. Basically, cells are
generated with BTS antennas and thus the shape and size of cell areas are dependent
on (directional) antenna parameters such as tilt (antenna angle), transmission power,
and beam width. [9]

A UE is typically connected to one cell at a time. By default, it is connected to
a cell with the highest signal to noise ratio (SNR). Whenever SNR is decreasing
under some threshold value, for example when a user is moving to the edge of a cell
area, the connection is transferred to a neighbouring cell with higher SNR. [9] This
action is called handover and it is provided by allowing neighbouring cells to have
overlapping areas. Figure 1 illustrates a simple case in which a UE is moving away
from the cell it is connected to (Cell1) and finally does a handover (to Cell2) at the
overlapping area of the two cells.

Figure 1: UE handover when moving from one cell area to another
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2.1.2 Long Term Evolution (LTE)

LTE is a 4G communication standard and the latest standard for a radio access
network. It is evolved from the 3G technology, Universal Mobile Telecommunications
System (UMTS). Compared with UMTS, LTE offers features such as a higher data
rate, lower transmission latency, lower cost per bit, simplified network architecture,
and packet optimized radio access networks [3][10]. Unlike UMTS, LTE does not
support a circuit-switched domain but instead uses a packet-switched domain also
for voice calls (voice over IP). [9][10]

In figure 2 can be seen a simplified LTE network architecture. As discussed in the
previous section, UEs are interacting with base stations which are called eNodeBs or
eNBs in LTE network. eNBs are communicating with X2 interface with each other
and together they are forming a network called Evolved Universal Terrestrial Radio
Access Network (E-UTRAN). An S1 interface connects eNBs to an IP-based core
network, Evolved Packet Core (EPC). An EPC contains components for UE-related
data handling such as authentication and IP address allocation. [10] [11]

Figure 2: LTE network architecture [11]

2.1.3 Network Management

Management in a mobile network is handled with an architecture called operation,
administration and maintenance architecture (OAM) which is used to control network
behaviour. OAM can be divided into two levels: a domain management system
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(DMS) and network management system (NMS). A DMS monitors the states of the
vendor-specific network elements (eNBs and EPC components) and controls their
configurations, such as tilt angles, transmission powers, and beam widths. Although
eNBs can communicate with each other directly via X2 interface, DMS can control
only network elements under its own domain. [3]

An NMS is an integration of various vendor-specific DMSs and with the NMS it is
possible to control network elements in multiple domains. In figure 3 is shown the
OAM architecture with interfaces between DMS and NMS (ltf-N) and between DMS
and network elements (ltf-S). [3]

Figure 3: OAM architecture [3]

Data produced by network elements can be divided into performance- , fault- and
configuration management data (PM, FM, and CM). PM is used in monitoring
and analysing the performance of network elements such as signal quality, energy
consumption, and handover performance. FM is operating with network problems
including alarms and faults. CM provides data about configurations and it enables
remote configuration to network element parameters. [3]

Measuring and analysing the network performance is a complex task as there is
huge amount of data and correlations with other data elements. Therefore, PM
data is usually processed with algorithms to more informative measurements. These
measurements are called key performance indicators (KPIs) which give an overview
of cell states. For example, one KPI describes number of radio link failures (RLF)
per interval and another KPI describes channel quality (CQI) for a cell. [3] Both
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CQI and RLF are used in this project for network performance analysis.

2.2 Self-Organizing Network (SON)

Along with LTE, Self-Organizing Network (SON) is a new standard which defines
automation for network management. SON aims to reduce operating expenses by
automating management tasks. [12] Also, the benefits of SON is improvement in
network performance by having proactive actions and faster reactions to incidents.
[13]

This section introduces the SON concepts by first giving an overview of the technology
and then more detailed description of three different categories of SON functions.
Finally, there is a description of SON coordination which is a technology and research
topic examining the coordination of SON functions.

2.2.1 SON Overview

SON is designed as a set of functions which solve some tasks in the network.
The functions are related to configurations (self-configuration), optimizations (self-
optimization), and failure recoveries (self-healing). [3] Self-configuration functions
are used when new network elements (eNBs) are deployed to the network. Self-
optimization functions are used in monitoring the network and improving network
performance with respect to some criteria, for example energy saving or cell load
balancing. Self-healing functions aims to detect, diagnose, and recover from failure
situations.

SON functions are located in several places in the network, for example in NMSs,
DMSs, and eNBs. SON architecture is called centralized if SON functions are located
in management layers (DMS and NMS) and distributed if they are in eNBs and
EPC components. However, a practical solution is a hybrid architecture in which
centralized and distributed SON functions run simultaneously. [12][3]

2.2.2 Self-configuration

Self-configuration contains automatic processes for network element deployment
with a plug-and-play behaviour. When an eNB is powered up, auto-connectivity
and auto-commissioning functions will provide an automatic IP address allocation,
authentication, and configuration with the OAM system. Moreover, the functions
provide a connection establishment with the EPC layer and with other eNBs. [3]
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After eNB is successfully installed, new cells need to be linked to adjacent cells
with neighbor relations. Automated Neighbor Relation (ANR) function is used to
detect and update neighbour cells with respect to UE measurements. The inner
logic of ANR function depends on vendor, as every vendor has their own local ANR
implementation inside their domain network. [14]

2.2.3 Self-optimization

The mobile network requires continuous monitoring and parameter reconfiguration as
the environment is constantly changing. Self-optimization functions solve proactively
potential incidents and other cases in the network. For example, rapidly changing
traffic load might require reconfiguration in cell parameters in order to have better
coverage areas, handover success ratios and channel qualities. [3] ANR is also used in
self-optimization because coverage areas and handover behaviour may change during
run time and therefore relevant neighbour relations need to be maintained. [15]

One important SON function in optimization is Coverage and Capacity Optimization
(CCO) which optimizes cell coverage areas. Basically, it adjusts the antenna tilts and
transmission powers so that gaps in coverage areas are avoided. [15] However, too
much overlap between cells leads to interference and thus CCO has to find optimal
solution between ideal coverage area and minimal interference. [3]

Mobility Robustness Optimization (MRO) and Mobility Load Balancing (MLB) func-
tions optimize handover functionality between cells. The MRO optimizes handover
parameters by minimizing call drops and radio link failures but avoiding unnecessary
handovers such as the ping-pong effect (where a UE is frequently having handovers
between a cell pair). The MLB function balances cell loads by enabling handovers in
cell boarders from an overloaded cell to a cell with free space. As well as the MRO,
also the MLB configures handover parameters to provide its functionality. [3]

Yet another important optimization function is energy saving function which is used
to save overall energy consumption and operating expenses in the mobile network
by switching some cells on and others off. However, while minimizing the energy
consumption, the energy saving function has to avoid holes in coverage areas and
consider quality of service (user satisfaction). [3] Energy saving function is suitable
in time periods when overall traffic is known to be slight for example at night time.

2.2.4 Self-healing

Failures in network elements are found with an alarm system where KPIs are
monitored and alarms are raised if KPIs have abnormal values. Self-healing functions
can resolve incidents related to network failures. When a self-healing function is
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implemented for a specific alarm, it is possible to recover from that without manual
work. [16]

One use case for self-healing is cell outage management, which includes functionality
for detecting, recovering and compensating cell outage. After an outage is detected
with alarms or KPI measurements, the first action is to try recovery actions such as
software restart or re-configuration. If cell outage persists even after recovery actions,
compensation is needed. The objective of compensation is to minimize degradation
in network performance by adapting the parameters of neighbour cells so that they
fill the hole in coverage area caused by the defective cell. [17]

Another use case for self-healing is the self-recovery of a network element software.
In this use case, a software failure is detected in a cell and it can be healed by loading
either the latest backup or initial status of the software. Action results are verified
and if the problem still occurs, incident is further escalated to the operator. [16]

2.2.5 Coordination and Co-design of SON Functions

Using SON functions in the network system helps in automating some tasks. However,
there can be situations where several SON functions act concurrently, which might
lead to unwanted results. For example, some anomaly can be caused by several reasons
and thus it might also trigger several SON functions as a solution [3]. Although
individual SON functions improve the network performance, the impact might be
opposite when they are running concurrently.

One aspect in conflict prevention is to have co-design between SON functions. Co-
design aims at disjoint SON functions by minimizing the number of shared parameters
and having policies of how to co-operate with other SON functions. For example,
SON functions could be designed so that only one SON function can be triggered
with respect to a specific network state. However, as the number of SON functions
increases, it becomes difficult to avoid all possible conflicts with a proactive design.
[3]

In practice, conflicts can not be fully avoided with co-design and therefore automatic
conflict detection and resolution is needed in the run-time environment. [3] SON
coordinator is a technology which tries to solve these issues. The coordinator detects
conflicts by monitoring network parameters and configuring and controlling SON
function activities. SON function monitoring may include KPI measurements of cells
that are influenced in a given impact time and impact area. The coordinator can
also give priority values for SON functions to solve which function is executed in a
conflict. [3][18]

In addition to the network configuration, the SON coordinator has an interface to
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a network operator to enable a human user to define high-level objectives for the
coordinator. A policy function is used to convert high-level objectives to specific
parameters which the SON coordinator is in turn using to define SON function
activities. Figure 4 shows an overview of the SON coordinator and its interfaces to
the network configuration and operator. [18]

Figure 4: SON coordinator architecture [18]

2.3 SON Evolution

2.3.1 Challenges in SON

Currently, SON functions and the SON coordinator are forming a system which
has capabilities to automatically maintain the mobile network in limited situations.
However, the human operator still has a significant amount of domain knowledge
which neither SON functions nor the SON coordinator can access. Thus, a crucial
part in SON evolution would be knowledge acquisition from the operator to the
system. [3]

In addition to knowledge acquisition, the current system has limitations in the
expressiveness of knowledge representation. To provide more complex concepts,
knowledge should be represented with a formal knowledge model such as an ontology.
[3]
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A practical challenge in SON is also the current multi-vendor system which operator
handles with the NMS. Although SON functions have been standardized, every
vendor has its own implementations of SON functions which adds complexity to
network operations.

2.3.2 SON Future

The effort in network operation has been in the development of an autonomous
closed-loop SON system in which human is not involved in the network configuration.
Closed-loop system requires some high-level goals of the operator which can be
translated into SON parameters and further to network actions. [17][19][20]

Besides high-level goals, a decision support system (DSS) has been envisioned which
would assist the operator in making decisions related to network planning. With
respect to the network status, the system could recommend new locations for base
stations and calculate resource costs for quality of service. [19]

Adaption of machine learning techniques and knowledge engineering to SON functions
have also been studied in research literature. For example, a future self-configuration
function could deploy a cell to the network with parameter values that have been
learned from a similar context. [3]

In addition to machine learning, a semantic knowledge model would provide a
better understanding for the system about the context. If the network (elements,
objectives and actions) were semantically defined, it would enable the system to infer
relationships and to make decisions with respect to the semantic relations. [3]

2.3.3 Vision of Cognitive Network

The basic idea of cognitive network management architecture is related to IBM’s
general vision of autonomic computing [4]. The idea is the same with mobile network
management: user-defined high-level goals are input to a closed-loop management
system. [3] This vision without SON functions is also researched in telecommuni-
cation projects [21][22] and books [3]. These projects suggest that instead of SON
functions, the management system will make dynamic configurations directly to
network elements. Generally, these architectural visions include components for
network data processing, data analysis, high-level goals, a knowledge base, and
reasoning tasks. [3][21][22]
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3 Knowledge Engineering

As this thesis aims to build a semantic search interface which demonstrates behaviour
of a statistical reasoner, some background about knowledge engineering is presented.
This section introduces some concepts related to knowledge representation, Semantic
Web technologies, and statistical reasoning. After that, there is discussion about LTE-
and SON-related research projects which use some knowledge engineering techniques
in their systems.

3.1 Methodology

3.1.1 Knowledge Representation

Knowledge representation (KR) is a subfield of artificial intelligence (AI) and it is a
paradigm for making a formal and structured representation for collected information.
With a formal representation of knowledge it is possible to express deeper meanings of
concepts, for example by adding logical relationships between concepts with semantics.
[23]

KR can also be described with five distinct roles which characterize KR from different
views [24]:

• Surrogate, meaning that KR is a substitute of a real world object. However,
it is always an incomplete description of the real object. [24]

• Set of ontological commitments, meaning that the description of a concept
should be focused on relevant aspects with respect to the domain. [24]

• Fragmentary theory of intelligent reasoning, which is defined with three
parts: 1) how reasoning is defined in its context 2) what can be reasoned and
3) what reasoning tasks are recommended. [24]

• Medium for efficient computation, meaning that knowledge should be orga-
nized in a way that relevant (recommended) reasoning will be efficient. [24]

• Medium for human expression, meaning that KR acts as a communication
tool which human uses to express knowledge to computer. [24]

As reasoning is an important part of knowledge representation, it has a relation to
formal logic systems, for example to first-order logic (FOL) which is a formal and
compact way to describe logical relations. [23] Another family of logic systems is
description logics (DL) which are fragments of FOL. [25]
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3.1.2 Ontology

Ontology in computer science means a formal description of domain knowledge.
In ontology, concepts are organized into a structure with relationships such as
hierarchies of classes, value restrictions, disjointness statements, and specification of
logical relationships. [26]

An ontology described in DL can be divided into two parts: terminological (TBox)
part and assertion (ABox) part. TBox defines concepts and relationships (axioms and
properties) between concepts. Thus, TBox contains the structural design and rules
of concepts. For example, TBox in a mobile network ontology could have a concept
Cell which has subclasses Macrocell, Microcell, and Picocell with respect to
the cell type. Moreover, some properties can be defined to concepts, for example
Cell can be defined to belong to only one base station.

ABox completes the ontology by defining instances of the TBox concepts. Example
above could have instances Microcell1234 which belongs to a base station eNB5678.

3.2 Semantic Web

The Semantic Web uses knowledge representation in order to describe resources
and their relationships on the web. This subsection gives first an overview of the
Semantic Web and after that the most significant parts are presented.

3.2.1 Semantic Web Overview

The Semantic Web is a vision of a more intelligent Internet where machines can have
more detailed understanding about contents on the web. Technologies and standards
related to the Semantic Web are developed by A World Wide Web Consortium
(W3C). [26]

W3C defines Semantic Web technologies which enable knowledge representation
and reasoning for web resources. Resources are defined using Uniform Resource
Identifiers (URIs) which define resources globally. Resource Description Framework
(RDF), RDF Schema (RDFS), and Web Ontology Language (OWL) are the core
of knowledge representation on the Semantic Web and they are discussed in more
detail in following sections. [26]
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3.2.2 RDF and RDFS

RDF is a data model for defining relations between data resources in the web. An
RDF statement includes three components: subject, predicate, and object. Subject
is the resource to be defined, predicate is its property, and object is a value of a
property. A simple example of an RDF statement is described below. The statement
describes two cell instances and a neighbor relation between them.

PREFIX: c: <http://.../cell-ontology#> .
PREFIX: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
c:C1 rdf:type c:Cell .
c:C2 rdf:type c:Cell .
c:hasNeighbor rdf:type rdf:Property .
c:C1 c:hasNeighbor c:C2 .

From the example can be seen that all triple components are globally unique as
they are defined with namespaces: cell-related components belong to a namespace
http://.../cell-ontology# and RDF-related components to
http://www.w3.org/1999/02/22-rdf-syntax-ns#.

RDF has semantic limitations because it provides semantics only for simple triple
statements. However, with RDFS it is possible to increase its expressive power with
constructs such as classes, hierarchical properties and value restrictions. The example
below shows how cells and neighbor relations between cells can be defined together
with RDF and RDFS. As an addition to the statement above, hasNeighbor property
has domain and range types specified.

c:Cell rdf:type rdfs:Class .
c:hasNeighbor rdf:type rdf:Property .
c:hasNeighbor rdfs:domain c:Cell .
c:hasNeighbor rdfs:range c:Cell .
c:C1 hasNeighbor c:C2 .

The example above misses statements of what type of classes c1 and c2 are. However,
because of RDFS definitions about hasNeighbor property (domain and range),
instances c:C1 and c:C2 can be reasoned to be cells (c:Cell).

3.2.3 OWL

OWL provides more expressive formal definitions for classes and relations, for example
equality, disjointness, and cardinality. By using OWL, one can express characteristics
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of relation properties such as functionality, symmetricity, and transitivity. These
characteristics help to make more reasoning in an incomplete ontology. [27]

The example below shows how OWL can enrich the previous examples (presented
in section 3.2.2) by adding semantics to property characteristics. In addition to
earlier statements, a machine can now infer that C2 is also neighbor of C1. Moreover,
functional property for belongsToEnb indicates that a cell can belong to only one
eNB. Therefore, if there is a relation from one cell to two eNBs, the reasoner either
marks the eNBs equivalent or raises an error due to a conflict.

c:hasNeighbor rdf:type owl:SymmetricProperty .
c:ENB rdf:type rdfs:class .
c:belongsToEnb rdf:type owl:FunctionalProperty .
c:belongsToEnb rdfs:domain c:Cell .
c:belongsToEnb rdfs:range c:ENB .

OWL originally had three sublanguages defined: OWL Full, OWL DL and OWL
Lite. OWL Full is the widest language with respect to the expressive power but it
is not logically decidable. OWL DL has a correspondence to a description logic. It
has the same elements as OWL Full but restricts the usage of the elements making
it decidable and compatible with DL reasoning. OWL Lite is a subset of OWL DL
which provides easy but constrained usage of OWL DL. [27]

The current OWL specification, OWL 2, has been published in 2009 and it is slightly
enhancing the expressivity of the original OWL. For example, property chaining and
new property characteristics (such as asymmetricity, reflexivity, and disjointness)
are available in OWL 2. Moreover, OWL 2 DL is divided into three sublanguages:
EL, QL and RL. Each of the sublanguages emphasise different aspects in logical
reasoning. [28]

3.2.4 SKOS

Simple Knowledge Organisation System (SKOS) is a vocabulary (less formal ontology)
used for representing concepts with simple taxonomic properties. SKOS properties
enable designing simple hierarchical structures to the ontology. [29] The example
below defines hierarchical structure for concepts Cell and MicroCell which both
belong to scheme MobileNetwork.

c:MobileNetwork a skos:ConceptScheme .
c:Cell a skos:Concept .
c:MicroCell a skos:Concept .
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c:Cell skos:inScheme c:MobileNetwork .
c:MicroCell skos:inScheme c:MobileNetwork .
c:Cell skos:narrower c:MicroCell .
c:MicroCell skos:broader c:Cell .

Similar structure, as example above shows, can be achieved with OWL but SKOS
might be more suitable in situations where a lightweight solution is desired and where
complex reasoning tasks are not needed.

3.2.5 SPARQL

SPARQL is a query language used for RDF data and it is an effective tool for
retrieving subgraphs from an ontology or combining data from multiple ontologies.
[30] Following example shows a simple SPARQL query. First, ontology namespace is
defined as a prefix and then query requests all instances having Cell type.

PREFIX c: <http://example.com/>
SELECT ?cell
WHERE {
?cell rdf:type c:Cell .
}

3.3 Markov Logic Network

The Markov Logic Network (MLN) is a model that combines the FOL from logic
and the Markov network from probability theory. With the MLN, uncertain and
contradictory information can be represented by adding numerical weights to FOL
clauses to indicate their priority in a rule base. MLN provides statistical inference
and it is suitable in contexts where conflicting rules exist. For example, in a mobile
network might be a conflict in which SON functions have contradictory goals such
as energy saving and quality of service. With statistical reasoning these situations
might be possible to resolve and produce an optimal (or balanced) outcome. [8]

The MLN knowledge base is constructed as pairs of (F, w) where F is a FOL statement
and w its numerical weight. [8] Equation 1 shows a simple example of representing
an MLN statement. The statement indicates that if a cell has low channel quality
(CQI), transmission power (Txp) should be increased. The weight for this statement
is 0.9.

(∀cell(Cqi(cell, low) =⇒ Txp(cell, increase)), 0.9) (1)
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The MLN rule base allows also certain rules to be inserted. These rules can be used
as axioms for the uncertain rules. The example above could have the axiom that Txp
cannot be increased and decreased at the same time, as the equation below shows.

!Txp(cell, decrease) ∨ !Txp(cell, increase) . (2)

When the MLN reasoner gets evidence data from the environment (CQI values
for cells in this case), it can do the reasoning and produce action probabilities for
individual cells. With respect to evidence data, an MLN can also learn better weights
for the rules in the rule base.

3.4 Knowledge Systems in Telecommunication Field

This subsection introduces research projects which utilize knowledge engineering
methods presented earlier such as ontology development, OWL-DL reasoning, and
MLN reasoning.

3.4.1 RDF Dataset for Mobile Network

OpenMobileNetwork1 is a research project where WiFi-, cell-, and UE-related data is
collected into an ontology and published with the Linked Open Data (LOD) principles.
Data is gathered from smart phones, WiFi access points, and from other open source
projects such as OpenCellID2. The data is then converted into RDF triples and
published for open use. [31]

OpenMobileNetwork aims to give another aspect to network management by having
cell-related data open and integrated into the LOD cloud datasets [32]. Thus, several
other datasets can be utilized among it, for example DBpedia3 or LinkedGeoData4

for location data. Moreover, a research paper [31] presents an event-related power
management scenario where a machine can query and predict peaks in data traffic
by examining events linked to locations. For example, if machine queries an event in
a certain location, transmission power could be automatically increased for nearby
cells in that place at the right time. [31]

1http://datahub.io/dataset/openmobilenetwork
2http://opencellid.org/
3http://dbpedia.org/about
4http://linkedgeodata.org/
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3.4.2 OWL Reasoner for SON Conflict Analysis

Improvement for conflict analysis in SON coordination with OWL-DL reasoning is
researched in [33]. This approach presents a semantic description for SON functions
and network elements. The objective of the approach is to use a DL reasoner in
detecting logical conflicts between active SON functions. [33]

Semantic modelling provides the detection of indirect logical conflicts. For example, if
the actions of two SON functions are not conflicting by default but their combination
causes an unwanted result to network performance, semantic reasoner might be able
to discover this conflict by understanding the logical relationships in the context.

The knowledge base for conflict detection contains a static SON function ontology
including basic function information about its type, input, and output. In run-time,
dynamic data about function locations and impact areas are aggregated with the
ontology and a rule base is then used to identify whether there is a conflict between
functions in the network. [33]

3.4.3 MLN Reasoner in SON Verification

Markov Logic Network is researched and adapted in SONVer which is a demonstration
system for verifying configuration changes made by SON functions. By monitoring
KPIs and configuration history, SONVer detects and diagnoses anomalies in the
network. MLN is utilized in diagnosis phase by investigating if an abnormal value in
a cell is caused by a configuration change. [34]
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4 Visualization and Interaction Methods

This section gives a literature review to visualization and interaction technologies
which are relevant to this thesis. First, visualization techniques and guidelines
are introduced. Second, there is discussion about the exploratory search paradigm
which aims to support user’s knowledge acquisition with a functional search interface.
Finally, a practical implementation of exploratory search, faceted search, is presented.

4.1 Visualization Techniques

Information visualization is an effective way to present a large set of information. A
proper visualization helps the user in making decisions and it prevents misinterpreta-
tions from the data or information set. [35] Shneiderman [36] has divided visualization
techniques into to seven types: 1-dimensional, 2-dimensional, 3-dimensional, multi-
dimensional, temporal, tree and network. However, these are just guidelines and in
reality one can use a combination of several types such as a network graph where
nodes are positioned by coordinates and coloured by their type.

In [36] a guideline for visual exploration is defined. The guideline advices to consider
different phases in visual exploration:

• Overview

• Zoom-in and filter

• Details-on-demand

Overview is considered as a starting point for the user and it gives a general view
of the collection. In the overview visualization, items can be grouped to achieve
a compact representation of the collection. With zooming and filtering user can
investigate particular areas for more detailed information. The details of items should
be available (for example as a pop-up window) to provide a detailed description of
an item. [36]

4.2 Exploratory Search

4.2.1 Overview

Exploratory search is a combination of focused search (executing queries) and brows-
ing. It can be seen as an attempt to first maximize the amount of relevant search



21

results (recall) and then browse through the result set to find interesting things.
However, traditional search engines are focusing on providing only small amount of
relevant documents as they are trying to minimize irrelevant documents (precision).
Thus, exploratory search has different goals in search activities as what traditional
search engines have. [37][38]

Exploratory search is useful when a user has an information need for one or several
of the following tasks [37]:

• Define the goal of retrieval task

• Define ways to achieve the goal

• Familiarize with the domain

Exploratory search benefits a user who is unsure about the goal and wants to define
her information need better. Also, the user might know what to look for but need to
explore ways to achieve the goal. Finally, if the user knows the goal and methods to
achieve it, she still might need to familiarize herself with the topic to be able to get
right answers. [37]

Visualization and interaction are important supporting actions in the search process
as they help users to understand the information and to discover relevant aspects
and relations. Moreover, a system can interact with user for example by helping in
making better queries (for instance by recommending search terms [39]), offering
result filtering or by grouping results into meaningful categories. [37]

Exploratory search behaviour depends highly on the context where it is used. For
example, in general web search (searching with a search engine) query recommendation
and query correction are important aspects. However, search scenarios related to
network management rather need effective result filtering to get a heterogeneous
dataset reduced into relevant items.

4.2.2 Search Activities

Generally, a search process can be divided into three classes [38]:

• Lookup

• Learn

• Investigate
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The latter two, learn and investigate, are considered as exploratory search activities
whereas lookup is considered as a traditional search activity. Lookup aims to give
precise results to a well-specified query such as database queries or text search inside
a document. [38]

The second activity, learning search, is an iterative search process where the user
makes several queries and compares the results to learn different aspects of the
domain. In learning search the user not only executes queries but uses browsing
activities to learn related things in the collection and thus gets deeper understanding
with respect to her information need. [38]

Investigative search is a long-term search activity which can last for several weeks.
In this activity, the user aims to make deductions and conclusions from the retrieved
information over time. For instance, in investigative search the user can fill her
knowledge gaps with new relations or she can make forecasts from the gathered
information. [38]

4.3 Faceted Search

4.3.1 Overview

The faceted search is a technology which supports the goals of exploratory search.
[37] Basic idea in faceted search is in filtering search results with some criteria in
order to investigate characteristics of the result items. Facets are chosen from the
available metadata and are utilized by grouping attributes to disjoint groups. Each
group can have either a hierarchical or a flat structure. For example, event instances
could have a time-related hierarchical facet with values month, week, day, and hour.
[40] Facet values can be defined to be either disjunctive (allowing multiple selections)
or conjunctive (allowing one selection). [41] For example, the event facet could be
designed as disjunctive to allow events to last several hours.

In figure 5 faceted search is demonstrated with Amazon’s5 product search. Search
results is first retrieved with keyword Faceted and after that the collection is reduced
by selecting Books category. Items can be further reduced by choosing any of the
visible facets which are listed in the left column. Amazon’s search interface hides
facets with no results and shows the amount of items for available facets.

5http://www.amazon.com/
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Figure 5: The faceted search interface of Amazon.com with results for keyword
Faceted and for selecting category Books

4.3.2 Determination of Facets

In order to avoid information overload, the number of facets should be reduced to
only those which are the most relevant to user. Some useful aspects (with respect to
the result set) to be considered in extracting the relevant facets are listed below [41]:

• High coverage

• High entropy

• Aggregation of similar facets

High coverage ensures that facet information is available for the majority of items on
the result set. High entropy means that facet values should be uniformly distributed
or at least so that one facet value does not contain the majority of the results. The
aggregation of similar facets is useful when two or more facets are mainly sharing
the same results and thus they can be combined as one facet.

A more user-centric method for facet design is card sorting which can be used to
define relevant facets with respect to end-user behaviour. In card sorting, test users
are given the result set as a pile of cards where every card defines an item with a
title and description. Test users are asked to group the items as they like either by
freely defining categories for them (open card sorting) or by setting the items into
predefined categories (closed card sorting). [42][43]
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4.3.3 Semantic Faceted Search

Semantic faceted search is a faceted search interface which utilizes Semantic Web
technologies in the search interface construction. Thus, an ontology is used for a
data model and SPARQL for query processing. [44] By means of Semantic Web
technologies, the interface construction can be simplified with respect to the facet
architecture and result set processing. [45] Moreover, OWL axioms [27] and semantic
reasoning eases the maintenance of frequently updated dataset as reasoner can
enhance the quality of an incomplete dataset. Moreover, with semantic classification
vocabularies (such as OWL and SKOS) facets can be easily designed to have a desired
structure. [45]

In semantic faceted search, SPARQL is a natural way to process queries. With
given constraints it is rather straightforward to dynamically construct a query which
processes desired result set. As an example scenario, the user may look for cells
that have been configured recently and that have many neighbors. User selects from
time facet cells with configuration time smaller than one hour ago and then reduces
results to cells which have many neighbors. In SPARQL, this search task can be
processed with the query shown below. Conditions (facet selections) can be added
and removed inside WHERE clause every time a facet value is selected or deselected.

PREFIX c: <http://example.com/cell_ontology/>
SELECT ?cell
WHERE {

?cell c:latestConfTime ?conf .
FILTER (?time > "2015-04-30T00:00")

?cell c:amountOfNeighbors ?amount .
FILTER (?amount > 6)

}

4.3.4 Fuzzy Faceted Search

In uncertain contexts or in contexts where a non-numerical simplification for facet
value representation is needed, a fuzzy or crisp set can be used instead. With fuzzy
logic, elements are defined to have a grade of membership to every facet value. The
numerical values of elements are transformed into fuzzy set grades with membership
functions. [46] For example, facet values for cell neighbor amount could be defined
with fuzzy sets few, average and many. If a cell has six neighbors, the amount
of neighbors could be transformed with membership functions into fuzzy values:
fF EW (6) = 0, fAV G(6) = 0.7, and fMANY (6) = 0.3. Now, the facet system can
retrieve items which match best to the criteria (such as to selection average) and
rank the results with respect to membership grades.
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A special case (and simplification) of fuzzy sets are crisp sets in which class boundaries
are strict. Elements in crisp sets are allowed to belong to only one class without a
grade of membership. [44]

Naturally, a mapping from numerical values to fuzzy or crisp values has to be designed
by an expert to prevent misinterpretation by the end-user. The example shown in
section 4.3.3 can be converted into a SPARQL query with crisp values as shown in
the example below.

PREFIX c: <http://example.com/cell_ontology/>
SELECT ?cell
WHERE {

?cell c:latestConfTime c:Recently .
?cell c:amountOfNeighbors c:Many .

}
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Part II

Design and Preliminaries
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5 System Design

This section describes the underlying system as well as the design plan for the
demonstrator. The whole system (including the system architecture, its components
and main functionality) is introduced briefly to give an overview of this project. After
that, the underlying statistical reasoner, Markov Logic Network (MLN) reasoner, is
explained. With respect to the reasoner functionality, some use cases are analysed for
the demonstrator and after that, the architecture of the demonstrator is described.
Finally, components of the demonstrator is explained by introducing a plan for the
presentation layer (data representation in the graphical user interface) and for the
data access layer (ontology design for the network- MLN- and facet-related data).

5.1 System Description

The main idea of the MLN reasoning system is to provide more effective network
management. As the real SON functions can neither handle uncertain information
nor make logical inferences, this project presents a statistical reasoner, MLN reasoner,
which can assist SON functions in making optimal decisions.

Figure 6 shows the system architecture defining the communication between sys-
tem components. The reasoning system is considered a combination of a custom
SON function and the MLN reasoner. The reasoning system reads performance
management (PM) data and configuration management (CM) data from the LTE
simulator. The reasoning system uses this data to produce action proposals and to
learn better weights for the rules in the rule base. The proposed actions are sent
to the SON function which in turn transforms proposals with high probability into
network configurations.

The demonstrator has an interface with the reasoning system where it receives the
rule base, action proposals, and the same network data that the reasoner uses in
its functionality. The demonstrator can manipulate the rule base and send updated
rules back to the reasoner.

5.2 MLN Reasoner

As described in section 3.3, the Markov Logic Network (MLN) reasoner uses proba-
bilistic logic to infer actions needed in the network. Rules in this system are defined
to have a specific structure which is represented in equation 3.
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Figure 6: System architecture

w Context =⇒ (Objective ⇐⇒ Action) (3)

Every rule clause consists of three classes: context, objective and action. Context
defines the current network state, including network topology (neighbor relations
between cells) and crisp values for key performance indicators (KPIs). Action is a
configuration change and objective desired change for a KPI value. All three parts
can include several predicates which need to be satisfied.

Equation 4 describes an example rule. The rule states that when cell c has a low
Cqi, its Txp power and remote electrical tilt (Ret) angle should be increased in order
to achieve increment in the Cqi. Priority (weight) for this rule is set to 0.3.

0.3 I(t, c, Cqi, Low) =⇒ [O(t, c, Cqi, Inc) ⇐⇒ (A(t, c, Txp, Inc)∧A(t, c, Ret, Inc))]
(4)

The MLN reasoner is executed regularly and weights are updated after every reasoning
round. As a reasoning output, it calculates action proposals for every individual cell.
The example below shows the proposed actions and their probability for cell 5.

A(5,Ret,Inc) 0.391011
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A(5,Ret,Dec) 0.339016
A(5,Txp,Inc) 0.887961
A(5,Txp,Dec) 0.0610439

5.3 Use Case Analysis

With respect to the logic of the MLN reasoning system, some use cases need to be
examined for the demonstrator. The demonstrator is targeted especially for research
and development purposes. However, this system can also be considered as a potential
product in the future network management and thus, the design should also help a
human operator to understand the behaviour of the MLN reasoning system.

Figure 7 describes a use case diagram for the demonstrator. Use cases can be divided
into two groups: knowledge acquisition (Acquire knowledge) and knowledge transfer
(Update knowledge model). In knowledge acquisition, all the relevant information is
related to the behaviour of the reasoner. This includes understanding the content and
structure of the rules to see which rules are emphasized in the network after weight
learning. One important aspect is to investigate relations between current cell states
(input) and action proposals (output) which reveal the causes and consequences
for the reasoning outcome. Moreover, the user should be allowed to evaluate how
successful proposed actions have been in the network (output and impact). Thus, the
user needs to explore anomalous events in KPIs and their relation to configurations.

In addition to knowledge acquisition, the user should have tools to interact with
the MLN reasoner in order to understand the behaviour better. Therefore, there
are use cases for updating the MLN model. First, the user can change rule weight
to denote the significance or insignificance of a rule. The demonstrator should also
allow creation, modification, and removal of the rules.

Figure 7: Use case diagram for the demonstrator
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5.4 Demonstrator Architecture

This subsection gives a brief overview of the architectural design aspects of the
demonstrator.

5.4.1 Overview

The demonstrator allows the user to explore and control the functionality of the
MLN reasoning system and it is designed with respect to use cases discussed earlier.
To provide knowledge acquisition, a graphical user interface (GUI) is designed to
assist user with visualisation and interaction methods. The GUI is implemented as a
HTML 5 application.

The explorative search paradigm is considered to answer the information need of
the user. A practical implementation of the explorative search is a faceted search
interface which is adapted to the demonstrator. Faceted browsing enables the user
to explore available information and to gain more knowledge from the context. With
respect to the use case analysis, the demonstrator is designed to have separate facet
views for every knowledge acquisition use case. Different facet views provides more
freedom and different perspectives for the user in information exploration.

For data management, the demonstrator uses an ontology for the knowledge base
and SPARQL for querying it. As the objective is to explore relations from MLN-
and network-related data, Semantic Web technologies provide a natural way for link
creation between concepts and terms [26], too. The semantic approach simplifies
the development and maintenance of multiple facet views [44]. In addition, a Java
application is implemented to retrieve and process the data into the ontology.

5.4.2 Architecture

Figure 8 describes the components of the demonstrator. Three facet views are defined
as cell states, cell events, and MLN rules. By default, every facet view is visualized
as a table view. However, optional visualizations are available to provide deeper
understanding about the data. For example, cell states could have a network graph
and cell events a timeline. In addition to facet views, GUI has a view for MLN rule
modification which is implemented as a form.

Views interact with an ontology which stores data as RDF. The ontology has a
SPARQL engine as an interface for GUI and REST interface for the reasoning system.
The REST component retrieves the relevant reasoner- and network-related data.
Data is then processed into the ontology which GUI components can query to get
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the facet-, cell- and MLN-related data.

Figure 8: UI Design Architecture

5.5 Demonstrator Views

The following subsections describe the views of the GUI. With respect to the
knowledge acquisition use cases (analysed in 5.3), a view for every case is designed:
cell status view describes the input and output of the MLN reasoner, cell event view
describes the output and its impact to the network, and rule view describes the
structure of the uncertain rules in the MLN rule base. Every view description is
divided into data representation, visualization, and facets. However, this section
contains only design aspects concerning the demonstrator views. The implementation
of the views (such as the actual visualizations) is presented later in section 7.

5.5.1 Cell Status View

The cell status view is designed to illustrate the relation between the input (perfor-
mance data) and the output (action proposals) of the MLN reasoner. Thus, this
view should provide a visualization and a faceted search functionality which sup-
port interactive searching with respect to the cell-related measurements and action
proposals.
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Data Representation

A cell state includes attributes such as amount of neighbors, KPIs (monitored by
the MLN reasoning system), and MLN action proposals.

Cell-related measurements are simplified by grouping values into crisp sets. For
example, KPI values are grouped into poor, medium and good, and the thresholds
for the crisp sets correspond to values used in the MLN reasoner. A parameter-
specific action proposal is represented by a combination of action direction (increase
or decrease) and action probability. The amount of neighbors is represented as a
numerical value.

Visualization

The view for cell states is designed to have two visualizations: table and network
graph. The example below shows how the table view is constructed. A table row
represents information about cell attributes with one column for the amount of
neighbors, one for every KPI value and one for every action proposal.

Cell(NeighborAmount,KPI_0,KPI_1,...,Action_0,Action_1,...)

The network graph is provided as an alternative visualization: the network topology
can be observed from a graph visualization. The graph represents nodes as cells
and neighbor relations as links. Node color indicates value for a KPI and node size
indicates the probability of an action proposal.

Facets

Cell facets are generated from every KPI represented in the view. Crisp KPI values
are used as facet values (such as low, medium, and high). KPIs are intuitive for
facets as they are relevant part of the network status and also part of the MLN
reasoner input.

In addition to KPIs, neighbor amount is used as a facet. Neighbor amount is
considered to give user a perspective to network topology and it might be useful to
examine cell characteristics also from this point of view.
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5.5.2 Cell Event View

The cell event view aims to demonstrate what impact does the action proposals,
which is turned into network configurations, have to the network performance. This
can be done by investigating the relation between cell events which are defined here
either as a parameter configuration or as an anomaly in the network performance.

Data Representation

A cell event defined with attributes time, type (identifier for a parameter or indicator),
direction of change, amplitude of change, previous value, and current value. Time
attribute corresponds to the timestamp of the simulator meaning the latest monitoring
time. In simulation time, the interval of monitoring is 15 minutes. Therefore, the
event time can be interpreted as: "happened inside 15 minutes before the timestamp".

In event data, crisp values are used for the direction of change and amplitude of
change. The direction is defined either as a decrease or increase and amplitudes are
defined as low, medium, or high. Crisp values for amplitudes are set manually to
every event object as they behave differently. The idea is that an expert could later
configure the thresholds to correspond crisp sets more accurately.

Visualization

As in the cell status view, the event view is designed to have two visualizations: table
and timeline. A table row indicates an event with attributes shown in the example
below.

Event(Time,Parameter,Indicator,Impact,Amplitude,PrevVal,CurrentVal)

Event objects are divided into separate columns with respect to their type (parameter
or indicator). The direction of change can be visualized with an icon and amplitude
either with an icon or with a numerical value (in percentages).

Timeline visualization provides investigation of interesting events that have temporal
relation. For example, the user might discover that a particular configuration is a
root cause for KPI anomalies. On the other hand, visualization might also reveal
which KPI anomaly has triggered a configuration.
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Facets

Event facets are generated from time and impact. Both of the facets are constructed as
hierarchical facets. Time has three stages: day, hour and minute. Impact is structured
as direction (increase or decrease) and amplitude (low, medium or high).

5.5.3 Rule View

The rule view demonstrates the content of MLN reasoner. Therefore, the uncertain
rules, which are the body of the MLN rule base, are represented in this view.

Data Representation

The third view represents the uncertain rules of the MLN reasoner with respect to
the structure explained in section 5.2. Thus, a rule is divided into context with KPIs
and their values (low/high), actions with parameters and their change (dec or inc)
and objectives with KPIs and their desired change (dec or inc). Also, rule weight is
represented to user.

Visualization

Rules are designed to be visualized only in a table view as no alternative visualization
was found to enhance user’s information exploration. The table view is represented
with a following structure:

Rule(Context,Objectives,Actions,Weight)

In the rule table, every column indicates one rule class. As one rule class might
contain several predicates, these are listed inside a table cell.

Facets

Facets are generated from rule classes and from their parameter or indicator combina-
tion. For instance, context would have distinct facets for KPIs with crisp values high
and low. Objective facets are generated for KPIs with crisp impact values decrease
and increase. Similarly, for actions there are facets for every parameter with crisp
impact values.
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5.5.4 MLN Rule Updates

After user has examined faceted search views described above, she might come up
with new rules or with new ideas to modify existing rules. Rule update is implemented
with a form structure so that user does not have to learn specific syntax to express
first-order logic (FOL). However, expert users are allowed to create a rule with MLN
syntax. Thus, a validation for processing an MLN rule is needed.

The system assists user in filling the form by utilizing the facet selections she has
made. For example, if user has selected low Cqi value as facet value in cell status view,
the system prefills this selection to the context part of the rule (I(t, c, Cqi, low)).

5.6 Demonstrator Ontology

This subsection explains the ontology used as a data model for the GUI. The ontology
is stored as a whole but logically it can be split into three sub-ontologies: network,
MLN reasoner, and facet ontologies. The ontology is also introduced in these parts.
Each sub-ontology has a description and examples of the TBox (rules and structure)
and ABox (instances) of the content.

5.6.1 Network Ontology

Network ontology describes the network context with respect to network data retrieved
from the background system. The ontology aims to model the network data so that
it is both logical (the structure is understandable to a domain expert) and functional
for the application (the structure and properties support faceted browsing). The
network ontology is built as an OWL 2 ontology.

TBox

Figure 9 gives an overview of how network-related classes are represented in the
ontology. The most fundamental class in the ontology is Cell which have a symmetric
neighbor property (cellHasNeighbor property between Cell instances) and proper-
ties to different types of Parameter and Indicator classes. Subclasses of Parameter
and Indicator are bound to Cell with subproperties of cellHasParameter and
cellHasIndicator.

Indicator and Parameter can have relation to Event which describes a change in
the object. Event has a relation to Impact which indicates the direction (Increase
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or Decrease) and magnitude of the change.

Figure 9: TBox example of network ontology

Figure 9 describes object properties only between instances. Classes have data
properties such as hasValue to define numerical values for certain objects. The
mostly used object property axioms are domain, range and functional relations.
Functional relations are defined in case the domain is restricted to have only one
such relation such as Event class has functional properties eventBelongsTo (inverse
of hasEvent) and eventHasImpact. Defining axioms for object properties might not
directly improve the current use (faceted search) of the demonstrator but they enable
OWL 2 DL reasoning and more versatile use of the ontology in later projects.

ABox

Figure 10 demonstrates how instances are represented in the ABox part of the network
ontology. The example focuses on representing cell element Cell12 and relevant
object properties to it. The red color is used in the graph to separate instances from
classes (which are colored as grey). All cell instances in the ontology have relation to
the same indicators (Cqi and Rlf) and to parameters Txp and Ret (remote electrical
tilt). Instances Cqi12 and Txp12 have relations to Event instances which both have
decreasing impacts on their objects.

5.6.2 MLN Ontology

The MLN ontology is an OWL 2 model representing the content of the MLN reasoner.
Moreover, this ontology is built using properties which bind MLN-related classes to
network-related classes.
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Figure 10: ABox example of the network ontology

TBox

Figure 11 describes the TBox of the MLN ontology. As the figure shows, TBox has two
main classes: MLNRule (rule base) and ActionProposal (reasoner outcome). MLNRule
can further be divided into rule classes with types of MLNContext, MLNAction, and
MLNObjective (corresponding to the structure and formula 3 described in 5.2).

The figure also describes the most relevant object properties between classes. As it can
be seen, MLN classes are bound to network classes such as Parameter, Impact, and
Indicator. For example, MLNAction class has relation to Parameter and Impact to
define the content of an action predicate. Similarly, MLNObjective has relation to
Indicator and Impact. MLNContext has relation to Indicator but the magnitude
of the KPI value (Indicator) is described with a fuzzy value (High or Low).

Figure 11: TBox example of the MLN ontology
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ABox

The MLN rule presented in equation 4 can be described in the MLN ontology
as figure 12 shows. The MLNRule instance Rule192 has four parts: one Context
(Rule192IndicatorCqiLow), one Objective (Rule192ObjectiveCqiInc) and two
Action instances (Rule192ActionTxpInc and Rule192ActionRetInc). As it can be
seen, property values for these instances are network-related classes such as Ret, Txp,
Increase, and Cqi. Rule weight is defined as a data property value for MLNRule
instance.

Figure 12: ABox example of a rule in the MLN ontology

Figure 13 shows an ABox example of an action proposal. Like the rule classes, action
proposals are also described with property relations to the subclasses of Indicator
and Parameter. Moreover, as an action is proposed for an individual cell, the cell
instance and action instance are bound to each other with cellHasActionProposal
property.

Figure 13: ABox example of an action proposal
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5.6.3 Facet Ontologies

The facet system is built using SKOS vocabulary [29], because it provides a simple
vocabulary to describe hierarchical structures. This way facet-related semantics is
separated from other parts of the ontology and it is easier to design SPARQL queries
related to facets.

TBox

Figure 14 demonstrates how SKOS elements skos:ConceptScheme and skos:Concept
define facets and facet values and how SKOS property skos:inScheme describes
their relation. Also, SKOS properties skos:broader and skos:narrower describe
hierarchical relations inside a facet (between facet values).

Some concepts use data properties fuzzyMin and fuzzyMax to define numerical
ranges for crisp terms. For example, the indicator- and impact-related facets use
numerical ranges which are predefined into the ontology.

ABox

In figure 14 is presented one facet from every view: current CQI value from cell
states, event time from cell events, and the objective of a CQI value from rules.

Figure 14: The facet ontology with an example facet from every facet view

Every skos:Concept has an object property which binds the facet instance to an
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ontology instance. For example, cell instance c:Cell27 can be bound to an RLF
facet value with the following statement:

c:Cell27 c:facetRlf c:HighRlf

Similarly, hierarchical facet values are bound to ontology instances with separate
properties. For example, an event instance has three facet values with respect to
event time:

c:Event123 c:facetDay t25
c:Event123 c:facetHour t25_12
c:Event123 c:facetMinute t25_12_05
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6 Tools and Libraries for the Demonstrator

The earlier section defined the requirements and abstract design of the demonstrator.
This section discusses about tools and libraries that can be used in the implementation.
The examined components is divided into ontology- and GUI-related sections.

6.1 Ontology Management

6.1.1 SPARQL Engine

To handle ontology data, the demonstrator needs a triple store and SPARQL engine
which supports both SPARQL queries (for facets) and SPARQL updates (for rule
updates). One solution for a SPARQL engine is Fuseki which is part of Apache Jena
framework 6. It provides SPARQL endpoints for querying and updating RDF data
over HTTP protocol. [47]

Another SPARQL server is NanoSparqlServer7 which is built on top of a Blazegraph
graph database8. As Fuseki, also NanoSparqlServer offers SPARQL endpoints that
can be queried over HTTP and that support both SPARQL queries and SPARQL
updates. [48]

6.1.2 DL Reasoners for OWL 2 Ontology

Because the OWL 2 ontology instances are frequently updated, there is a need for an
OWL 2 description logic (DL) reasoner to check whether the ontology is consistent
with respect to the axioms (TBox). Although the facet system might work correctly
even though the ontology would be inconsistent, it is desirable to keep the ontology
consistent to enable use of OWL 2 DL reasoning tasks in later projects. For example,
a DL reasoner can be used to infer new assertions (such as missing object properties)
to the ontology.

A requirement for the DL reasoner is that it should be open source and usable in
Java applications as the backend is implemented with Java. Two well-known DL
reasoners which fulfils these conditions are HermIT9 and Pellet10.

6https://jena.apache.org/index.html
7http://wiki.bigdata.com/wiki/index.php/NanoSparqlServer#REST_API
8http://www.blazegraph.com/
9http://hermit-reasoner.com/

10https://github.com/Complexible/pellet
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Performance of the reasoners has been researched in [49] where their suitability
are tested for several OWL ontologies and for different inference tasks. Although
benchmarking is done for OWL and not for OWL 2, it gives an overview how well
the reasoners perform in different contexts. Comparing Pellet with HermIT, HermIT
seems to be a very fast reasoner generally but slower in loading the ontology and
in checking the consistency. However, Pellet is slightly faster in ontology loading
and consistency checks but it has variance in general reasoning performance with
different ontologies. Especially ABoxes with large sizes can be challenging for Pellet.
[49]

6.2 Graphical User Interface

The GUI is implemented as an HTML5 application and therefore Javascript is used to
program GUI functionality. This section examines some Javascript tools for different
purposes such as table sorting, network graph functionality, timeline functionality
and facet browsing.

6.2.1 Sortable Table

In a table view, it is intuitive to offer column-specific sorting functionality. Ta-
blesorter11 is a jQuery plugin which offers sorting functionality. Plugin detects
automatically many data types (such as strings, numbers, and dates) and sorts
them correctly without extra definitions. However, the plugin allows custom sorting
functions which are needed in this project because some data might be represented
differently as they should be sorted. For instance, fuzzy values should not be sorted
in lexicographical order but with some other criteria.

6.2.2 Network Graph

In addition to table view, the cell network is visualized as an interactive network graph.
Network graph should allow interactive functionality such as facet selections (node
filtering). It should also provide some other interaction defined in Schneiderman’s
guidelines [36] (section 4.1), for example zooming and details-on-demand (clicking a
node). Moreover, graph layout should be customizable as different colors and sizes
are used to describe indicators and MLN action proposals.

Force Layout12 is a D3.js package which generates a force-directed graph structure
11http://tablesorter.com/docs/
12https://github.com/mbostock/d3/wiki/Force-Layout
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from given JSON file. The graph structure is then mapped to SVG elements
(nodes as circles and links as lines) for final visualization. [50] D3.js does not offer
interaction functions but with other plugins and custom work some interaction can
be implemented into the graph.

Vis.js has a graph component which has basic functionality for graph drawing and
interaction. [51] The library is easy to use and it has several tutorial examples which
can be utilized in other projects. For a large network (many thousand edges) the
graph becomes slow but with a smaller graph it works well.

Sigma.js13 is a Javascript library which is focused on robust graph drawing. It
offers basic interaction tools such as zoom-in, details and node filtering. [52] For a
more complex interaction it needs additional plugins or custom implementation. By
default, Sigma.js does not offer any layout (such as force-directed layout) or clustering
features but some plugins are implemented also for these purposes. However, due
to its efficient graph rendering, Sigma.js is stated to be suitable for projects which
require basic interaction and dynamic rendering. [53]

Cytospace.js14 is another graph visualization tool for Javascript. Its advantage
is compatibility with jQuery and diverse assortment of interaction tools such as
box selection, panning and pinch-to-zoom. [53][54] It also provides an API with
graph theory functions. Therefore, Cytospace does not only have network graph
rendering but it also has graph analysis and algorithms such as breadth-first search
and PageRank [54] implemented as Javascript functions.

6.2.3 Timeline

The main purpose of the timeline is to visualize KPI anomalies and configurations and
temporal relations between them. As the cell states are monitored frequently (every
15 minutes in simulation time), time should be represented at least in minute detail.
Moreover, timeline layout should be horizontal and it must provide representation of
concurrent events as the events from one simulation round have the same timestamp.

Vis.js has a timeline component which provides interactivity, concurrent events, and
scalable time representation (from years to fractions of a second). Moreover, timeline
area can be divided into subgroups and therefore different anomaly types (as decrease
and increase) and configurations can be separated in the timeline. [51] The timeline
component of Vis.js has the same advantage as the network graph component: the
ease of use and amount of useful examples which can be utilized.

Although D3.js does not have any interaction tools by default, there are some timeline
13https://github.com/jacomyal/sigma.js
14https://github.com/cytoscape/cytoscape.js
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examples15 which can be adapted to this purpose. However, these timeline examples
seem to need custom work for adapting to this context. For example, none of the
timelines have a view for events with minute detail.

One popular timeline16 library is TimelineJS (used by several newspapers). It has
dynamic scaling for events and has much interactivity for event details. TimelineJS
emphasizes event descriptions whereas the timeline itself is shown rather small below
the description. Therefore, this component is suitable especially for contexts where
user wants to focus on details of individual events more than investigate the timeline
itself.

6.2.4 Faceted Browsing

Facets need to be implemented with Javascript functions which query and process
the SPARQL statements into HTML select boxes. Some Javascript/CSS tool could
be utilized to style select boxes and some tool could be used to add functionality to
the select boxes, for example real-time text search.

Chosen17 is a jQuery plugin which provides select box styling. It adds text search
functionality which filters option values in real time with respect to text input. It
also provides functionality for handling multiple selections: every selected value is
presented to user and selection can be removed by clicking it.

15https://github.com/mbostock/d3/wiki/Gallery
16https://github.com/NUKnightLab/TimelineJS
17https://github.com/harvesthq/chosen
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Part III

Implementation
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7 Graphical User Interface

The graphical user interface (GUI) is implemented with respect to the design of the
demonstrator views described in section 5.5. This section presents first the structure
of the GUI to give an overview of the application. After that, the implementation of
three facet views (cell states, cell events, and MLN rules) is introduced. Every facet
view section includes use case tests as practical examples of their functionality.

7.1 GUI Overview

Figure 15: GUI overview (numbered parts are explained below)

Figure 15 depicts the main parts of the GUI:

1. First level navigation

2. Second level navigation

3. Content

4. Facet settings
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5. View settings

With first level navigation the user can navigate between different faceted search
views. Each view has a second level navigation which is implemented inside every
view as a single page application (inside the same HTML page with dynamic content
updates). Content visualizes the view-specific information (in the figure can be seen
information about cell states) with a visualization selected from the second level
navigation.

In facet settings user can select facet values to give filtering conditions for the
result set. After every facet value selection, the content part is updated dynamically.
Below facet settings there are view settings that are used if the content visualization
provides some alternative options.

For an end-user this GUI structure provides an intuitive use of the application as the
GUI has a layout similar to a traditional web page: navigation can be found from the
header, additional information (such as facets and view settings) from the sidebar,
and the content is located in the middle of the page. This also helps the end-user to
understand the content of the application. For example, a new user can observe from
the navigation bar what are the main parts of the GUI (status, events, and rules).

7.2 Cell States

7.2.1 Description

The cell status view is the default view in the GUI and it provides information about
the input (cell states) and output (action proposals) of the MLN reasoning system.
As defined in 5.5.1, this view has two visualizations: table and network graph. Also,
the view has facets for neighbor amount and for every indicator monitored by the
MLN reasoning system (currently there is only RLF and CQI).

The table view for cell states can be seen in figure 15. Action proposals are defined with
numeric values for probabilities and arrow icons for action directions. Indicator value
is presented with an icon corresponding to fuzzy values undefined, low, medium,
and high. Cell ID and the amount of neighbors are defined with numeric values.

Figure 16 shows a graph visualization for cell states. The graph visualizes cells as
nodes and neighbor relations as edges. Nodes are located with respect to their eNB
coordinates to illustrate their actual positions. The node color indicates an intra cell
group (belonging to the same eNB) or an action proposal for a parameter. Action
proposals are color-coded as red (decrease), green (increase) or grey (no action). The
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node size indicates magnitude of an indicator value or the amount of neighbors. Both
the node color and size can be changed to another from the view settings.

Figure 16: Network graph for cell states

Rule creation is handled with a form shown in figure 17. With the form, the user
can create rules with respect to the defined rule structure (5.2). Form selections are
transformed into MLN syntax and presented in a text field (as the figure shows). An
expert user can modify the text field in order to create more expressive rules.

7.2.2 Use Case: Selecting Facets

A use case for the cell status view consists of following phases:

• Select values from facets

• Verify the result set in the table and graph

• Verify prefilled predicates in the rule creation form

Selected facet values are chosen as: low Cqi, high Rlf and average amount of
neighbors. These selections reduce the result set from 32 cells to five cells. Visual-
izations of the result set as table and graph can be seen in figure 18.
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Figure 17: Rule creation form with prefilled facet selections

Facet selections low Cqi and high Rlf are mapped to values in the rule creation
form, as it can be seen in figure 17.

Rule creation functionality is the same in the cell status and rule view. The rule
creation form is available A use case for rule creation is described later in section
7.4.3.
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(a) Table after facet selections

(b) Graph after facet selections

Figure 18: Result set after facet selections visualized as a table and graph
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7.3 Cell Events

7.3.1 Description

The cell event view describes configurations and anomalies monitored from the
network. This view attempts to enable user to investigate relation between the
output of the reasoner (configurations) and its impact to the network (anomalies in
the network performance). Figure 19 shows network events listed in a table. First
column indicates the time and date when the event is monitored. Event object type
can be read either from Parameter or Indicator column which contain the object
type type (Txp or RET for a parameter and CQI or RLF for an indicator) and cell
ID to which the object belongs to.

The direction of an event is visualized with a colored arrow (up or down) which
indicates increasing or decreasing (down) impact. In last three columns there is
numeric data about relative impact magnitude (measured in percentages), previous
object value, and current object value.

Figure 19: Table for events

The timeline visualizes events as nodes with the same colored arrow icons described
in the table view. The timeline is organized into parts to separate object types
from each other. Furthermore, parameters and indicators are grouped with distinct
background colors. In figure 20 can be seen a timeline visualization from the same
data presented in figure 19 in table view.
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Figure 20: Timeline for events

7.3.2 Use Case: Selecting Facets

A facet selection use case for event view has two phases:

• Select values from facets

• Verify the result set in the table and timeline

Facets are chosen as: 07.07.2015 10 : 30 and Decrease. As it can be seen in figure
21, three events fulfil these conditions: one Txp event and two Cqi events.
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(a) Table after facet selections

(b) Timeline after facet selections

Figure 21: Result set after facet selections visualized as a table and timeline
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7.4 Rules

7.4.1 Description

The rule view provides faceted search interface and modification for the uncertain
rules of the MLN reasoner. Thus, the user can investigate the structure of the rules
and manipulate the rule base in order to learn its logic.

Facets are generated from rule classes so that every class combined with its parameters
or indicators are presented as facets. Facet selections are bound to corresponding
values in the rule creation form.

The table is the only visualization of the rule items. As it can be seen in figure 22,
the table columns are formed from the rule weight and from the rule classes (context,
objective and action). Rule classes are further divided into individual predicates
which are listed inside the rule class field.

Figure 22 shows that above the table is presented an option to remove a set of rules
with respect to current facet selections. There are also two buttons after every rule
item: one for changing rule weight and another for removing the rule.

Figure 22: Rules visualized as a table

7.4.2 Use Case: Selecting Facets

A facet selection use case for the rules has three phases:
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• Select values from facets

• Verify results in the table

• Verify the prefilled rule creation form

Facets are chosen as high Cqi and high Rlf for context, decrease Cqi and decrease
Rlf for objective, and increase Ret and decrease Txp for action. Facet selections
reduce the result set from over 1000 items to eight items. However, figure 23 illustrates
an issue concerning rule facets: a rule might have two facet values inside the same
facet which causes an incorrect facet count in the facet box. For example, when
choosing a facet value high Cqi, the result set is correctly filtered to items having
predicate I(t, c, Cqi, High) or I(t, c′, Cqi, High)). However, a rule can contain both
I(t, c′, Cqi, Low)) and I(t, c, Cqi, High) (marked with red box inside the table), which
causes this issue. The figure also shows the incorrect facet count (marked with another
red box inside facet settings) which is a consequence of this issue. The incorrect facet
count indicates that although the result set is filtered with respect to the selection
high Cqi, there are still items also with facet value low Cqi.

Figure 23: Defect in facet selection: facet values do not have a distinct count

Figure 24 verifies that facet selections made in the rule view are bound to the rule
creation form values. Moreover, the figure shows that the MLN rule text field above
the form is automatically filled with respect to the form values.

7.4.3 Use Case: Creating a Rule

A use case for creating a rule has following actions:

• Select values from the rule creation form
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• Modify the input field and submit the rule

• Verify the result

Figure 25 verifies that after a valid MLN rule is submitted to the server and the page
is reloaded, the new rule appears in the table view. If the user creates an invalid
MLN rule, it causes a SPARQL update error which is shown to user with a popup
box.

One defect in the rule creation is that the SPARQL update script, which creates a
new rule, do not create facet values for the rule. Thus, the rule is present in the
default view (no facet selections) but it disappears if any facet is selected (as it does
not contain any facet information).

7.4.4 Use Case: Updating Weights

One use case for the rule view is updating a weight for an individual rule. This use
case consists of two phases described below.

• Update weight value for a rule

• Verify the result

Figure 24: Prefilled form with respect to facet selections
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(a) Form before creation

(b) Table after creation

Figure 25: Rule creation form and table view after creation

Weight is updated for the uppermost rule in figure 26. Weight value is set from 1.17
to 2.5. As figure 26 shows, the value is correctly updated to the rule table.

7.4.5 Use Case: Removing Individual Rules

Removing an individual rule consists of two actions:

• Remove a specific rule

• Verify the result
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(a) Before update

(b) After update

Figure 26: Table view before and after submitting new weight for a rule

Figure 27 shows that after confirmation is done to rule removal, rule is vanished
from the view.

7.4.6 Use Case: Removing a Set of Rules

Removing a set of rules is based on the current facet selections which define the
conditions for the rule set. This use case has three phases:

• Select a facet value

• Remove rules with respect to facet condition

• Verify the result

Figure 28 illustrates how a set of rules is removed. Facet value increase Txp is
selected and this selection is visualized above the rule table. After clicking the
Remove rules button and confirming the action, rules are removed from the ontology
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(a) Before removal

(b) After removal

Figure 27: Table view before and after removing a rule

and from the result set. Also, all the facet selections are automatically cleared after
removal. The figure illustrates that after the action, no facet selection for increase
Txp exists as every rule that contains this value has been removed.

7.5 Plugins for the GUI

This application has several Javascript/jQuery plugins adapted for different purposes.
Suitable plugins were presented and analyzed in section 6.2. From those alternatives,
following plugins were adapted to the GUI:

For select boxes and table sorting, no alternative plugins were introduced as their
functionalities are rather simple. Also, chosen.js and tablesorter.js were consid-
ered suitable because they are jQuery plugins, easy to use, and have the required
functionality.

For visualization plugins, there were some alternatives for both the network graph and
timeline. For both visualizations, vis.js plugin was chosen to simplify implementation
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(a) Before removal

(b) After removal

Figure 28: Table view before and after removing a set of rules

Table 1: Plugins for the GUI

Purpose Tool
Facets (select boxes) chosen.js
Table (sort by column) tablesorter.js
Network graph (visualization) vis.js
Timeline (visualization) vis.js

and to unify the visual look in the GUI. The plugin provides the same data model
and data processing methods for network graph and timeline visualization.
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8 Data Management

This section presents the implementation of the data management. First section
gives an overview of the data sequence in the demonstrator. After that, subsections
describe the implementation of how the network- and MLN-related data is processed
into the ontology, how the ontology is kept consistent, and how it is queried.

8.1 Data Sequence Diagram

The demonstrator gets both network- and MLN-related data from the MLN reasoning
system. Figure 29 explains the data sequence of the demonstrator starting from data
retrieval (from the MLN reasoning system) and ending in a rule update (from the
user interface). A Java component, named here as the Ontology Processor, retrieves
the data from the MLN reasoning system in four phases as PM (sendPM), CM
(sendCM), MLN rules (sendRules) and reasoning outcome (sendActionProposals)
are sent separately. The Ontology Processor parses (with methods PMtoRDF, CMtoRDF,
rulesToRDF and actionsToRDF) retrieved data objects into an OWL 2 ontology
(Network- and MLN sub-ontologies). When all four data objects are retrieved and
parsed into the ontology, a reasoner checks the consistency of the current ontology.

The ontology is sent to a SPARQL server (updateOntology) which re-creates facets
(generateFacets) with respect to the new ontology. Finally, updated ontology can
be queried by the UI (for example getItems and getFacets). As user modifies the
rule base a SPARQL update is sent to SPARQL server (updateRuleBase) in order
to save changes into the ontology. Moreover, MLN reasoning system can execute
SPARQL queries to retrieve the updated rule base (with a method getRuleBase).

8.2 Input Data to RDF

Network-related performance and configuration data (PM and CM) are retrieved as
two separate JSON objects. The Ontology Processor parses JSON objects to OWL
2 ontology instances (ABox) which are appended to the predefined TBox ontology.
Following example summarises the JSON input for the PM data. The input consists
of an array of cells defined with and id ("key"). Every cell has KPI values, such as
"throughput","rlf", "cqi", and "load".
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Figure 29: Data sequence in the demonstrator
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[ {
"key" : 12,
"value" : {

"throughput" : 10388140,
"rlf" : 114,
"cqi" : 0.7,
"load": 0.8,

...

An example below gives an insight of the CM data retrieved as JSON. Again, the
input file contains an array of cells. Every cell contains configuration data as "tilt",
"txPower", and "beamSteer". Moreover, every cell contains an array defining its
current cell neighbors.

[ {
"key" : 21,
"value" : {

"tilt" : 1.0,
"txPower" : 46.0,
"beamSteer" : 0.0,
"neighbors" : [ {

"id" : 22
}, {

"id" : 6
}, {

"id" : 23
...

The MLN files parsed in the demonstrator consist of the rule base and reasoning out-
come (action proposals). An example of the rule base is described below. As it can be
seen, the file contains predicate definitions (for example A(time,cell,param,delta)),
certain rules (for example !O(a1,a2,a3,Dec) v !O(a1,a2,a3,Inc).), and uncer-
tain rules (for example 0.158837 (I(t,c,Cqi,High)) => [(O(t,c,Cqi,Inc)) <=>
(A(t,c,Txp,Inc))]). The rule base contains approximately 1300 uncertain rules.

//predicate declarations
A(time,cell,param,delta)
E(time,cell,param,extremum)
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I(time,cell,kpi,level)
N(cell,cell,neighborship)
O(time,cell,kpi,delta)

!E(a1,a2,a3,Min) v !E(a1,a2,a3,Max).

!A(a1,a2,a3,Dec) v !E(a1,a2,a3,Min).

!A(a1,a2,a3,Inc) v !E(a1,a2,a3,Max).

!A(a1,a2,a3,Dec) v !A(a1,a2,a3,Inc).

!O(a1,a2,a3,Dec) v !O(a1,a2,a3,Inc).

!N(a1,a1,a2).

!N(a1,a2,Inter) v !N(a1,a2,Intra).

N(a1,a2,a3) v !N(a2,a1,a3).

0.158837 (I(t,c,Cqi,High)) => [(O(t,c,Cqi,Inc)) <=> (A(t,c,Txp,Inc))]

0.267003 (I(t,c,Cqi,High)) => [(O(t,c,Cqi,Inc)) <=> (A(t,c,Txp,Dec))]

0.0499781 (I(t,c,Cqi,High)) => [(O(t,c,Cqi,Inc)) <=> (A(t,c,Ret,Inc))]

0.123257 (I(t,c,Cqi,High)) => [(O(t,c,Cqi,Inc)) <=> (A(t,c,Ret,Dec))]

....

The MLN reasoning outcome is retrieved as an other file which is described below.
The file contains action proposal probability for every cell and for every action. In
the current system there are four possible actions for every cell: increase or decrease
the remote electrical tilt (RET) or the transmission power (Txp).

A(1,Ret,Inc) 0.40401
A(1,Ret,Dec) 0.364014
A(1,Txp,Inc) 0.359014
A(1,Txp,Dec) 0.362014
A(2,Ret,Inc) 0.364014
A(2,Ret,Dec) 0.380012
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8.3 Consistency Checking of the Ontology

To ensure that the ontology stays consistent after updates, an OWL 2 DL reasoner
is executed after the ontology is reloaded with new instances. Pellet18 is adapted
to the system for this purpose because it has functionality to check the ontology
consistency and to give an explanation for inconsistencies. The example below shows
the explanation which Pellet reasoner gives for an inconsistency when Indicator and
Parameter are defined to be disjoint but they are sharing (rdfs:range) an object
property (hasEvent). The consistency report is logged to a file and expert user can
investigate the report in order to analyse if the TBox need modification.

c:EventRlf52015-06-27_19_04_40_242 c:eventBelongsToIndicator c:Rlf5 .

[] a owl:AllDisjointClasses ;
owl:members (c:Cell c:Event c:Impact c:Indicator c:Parameter c:Value) .

c:eventBelongsToIndicator rdfs:range c:Indicator .

c:Rlf5 c:hasEvent c:EventRlf52015-06-27_19_04_40_242 .

c:eventHasEffect rdfs:range c:Parameter ;
owl:inversOf c:hasEvent .

8.4 SPARQL Server

After data is processed to the ontology and consistency is checked, the ontology is
uploaded to Fuseki server. From the two SPARQL engines discussed in section 6.1.1,
Fuseki is chosen for this system. The main reason for selecting Fuseki is the earlier
experience of using it and thus its suitability for this purpose is already known in
practice.

8.5 Creating Facets

After a new ontology is uploaded to the SPARQL server, SPARQL update scripts
are automatically executed to create new facets and facet values from the uploaded
ontology. Every facet has two SPARQL update queries. The first query is generating
ConceptScheme, Concept (related to ConceptScheme), and facet properties (related
to Concept instances). The second query binds ontology instances to Concept
instances.

18https://github.com/complexible/pellet
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Appendix A shows how facets, facet values, and facet properties are generated for
every indicator facet. For example, the query generates a ConceptScheme instance
c:StatusCqi which has Concept instances c:HighCqi and c:LowCqi. Along with
c:HighCqi and c:LowCqi a facet property c:facetCqi is generated.

Appendix B shows how the generated facet values are bound to cell instances. DELETE
statement is not needed in SPARQL updates as new ABox always replaces the earlier
in the SPARQL server. Thus, earlier facet data is cleared when ontology is re-uploaded
to the server.

8.6 SPARQL Patterns for the GUI

SPARQL server is queried by the user to retrieve the view- and facet-specific data
and the server is updated with modified rules every time user manipulates the rules.
This section first describes the general structure of SPARQL query patterns (result
set query and facet query) and then explains how modifications to the rule base are
done with SPARQL update statements.

8.6.1 Result Set

The basic idea of retrieving result sets for every view is defined below. The example
is describing the result set query for cell status view but by replacing c:Cell (first
line in SELECT statement) with c:Event or c:MLNRule and c:facetCellProperty
(third line) with c:facetEventProperty or c:facetRuleProperty one can retrieve
result sets also for cell events and MLN rules. The last two lines inside the statement
indicate that user has made facet selections for low CQI and high RLF. These
selections filter the results to only those fulfilling the conditions.

SELECT ?label ?predLabel ?objLabel
{
?s a c:Cell .
?s skos:prefLabel ?label .
?predLabel rdfs:subPropertyOf c:facetCellProperty .
?s ?predLabel ?facetval .
?facetval skos:prefLabel ?objLabel .
?s <http://www...#facetCqi> <http://...#LowCqi> .
?s <http://www...#facetRlf> <http://...#HighRlf> .
}
ORDER BY ?label
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The statement above returns facet information for table view: ?label defines the
object (cell, event or MLNRule), ?predLabel the column title (facet property), and
?objLabel the column value (facet value). In addition to facet information, every
view needs extra information for example action proposals for cell states. Thus, this
SPARQL query pattern needs to be filled with additional data for every table view.

8.6.2 Facets

Facets and facet values are queried with another SPARQL query pattern as the exam-
ple below describes. The example is for facets in the cell status view but it can be mod-
ified to match with events and rules by changing c:facetCellProperty (fourth line
in Select statement) to either c:facetEventProperty or c:facetRuleProperty.
The query has low Cqi selected as a facet value and thus facet-related data is filtered
with this condition.

SELECT parameters return facet values as ?facet, facet labels as ?facetLabel, facet
scheme as ?scheme and the number of occurrences for a facet value as ?count. ?prop
value is a facet property, for example c:facetRlf.

SELECT ?facet ?facetLabel ?scheme ?prop ?order (count(?facet) as ?count)
WHERE {

?facet skos:inScheme ?conScheme .
?conScheme skos:prefLabel ?scheme .
?facet c:facetOrder ?order .
?prop rdfs:subPropertyOf c:facetCellProperty .
?s ?prop ?facet .
?facet skos:prefLabel ?facetLabel .
?s <http://www...#facetCqi> <http://www...#LowCqi> .

}
group by ?facet ?facetLabel ?altLabel ?scheme ?prop ?min
order by ?scheme ?order

8.6.3 Rule Updates

Rule updates are done with SPARQL update statements which have the following
functionality:

• Create rule

• Update rule weight
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• Remove a rule

• Remove set of rules

Rule creation differs from the other rule modification tasks because the input needs
to be parsed from MLN syntax to RDF triples. Parsing and validation are done
with the same string parser which is used for rule parsing in the Ontology Processor.
After an MLN rule is parsed to triples, it is inserted into the server with a statement
described in appendix C.

Functionalities for latter rule modification tasks are more straightforward as user
actions can be mapped straight to RDF triples. Appendix D shows examples of how
a rule weight is updated, single rule is removed and set of rules is removed.
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Part IV

Discussion
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9 Evaluation

This section evaluates the implementation described in sections 8 and 7. The
evaluation is based on the research questions defined in the introduction section:

• What information is needed?

• Which visualization methods support the information need?

• Which facets support the information need?

• What other functionality supports the information need?

• How to provide scalability for the search interface?

Evaluation of every topic is divided into implementation and deficiencies parts.
Implementation sections focus on discussing the positive and negative aspects of the
demonstrator with respect to the research questions. Deficiencies sections discuss
issues which are missing from the demonstrator.

9.1 Information Quality

Information offered in the demonstrator can be divided into three abstract types:
the input and output of the MLN reasoner (cell states and action proposals), the
impacts of the reasoner output (configurations and anomalies) and content of the
rule base. These three information types are presented in separate faceted search
views to bring diverse perspectives to explore the reasoning system.

9.1.1 Implementation

The cell status view describes the cell states and action proposals of the reasoner.
Section 7.2 clarifies that this information is available in the view as the latest MLN-
monitored KPI values and action proposals are available. In addition to KPIs and
action proposals, the amount of neighbors and neighbor relations are presented to
provide additional information about cell characteristics. Although neighbor relation
might not be relevant information in the demonstration, it is still considered as an
informative aspect in describing cell states. For example, the amount of neighbors
might reveal some pattern which occurs only with cells with many (or few) neighbors.
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The cell event view provides user verification for the causes and consequences of
configurations made by the reasoning system. As section 7.3 describes, current imple-
mentation is revealing temporal relationships between configurations and anomalies.
However, in order to make investigations related to the reasoning system, the user
needs to assume that all configurations are actually executed by the reasoning system
(no manual or SON function configuration). This is because the demonstrator does
not recognize the type of the configuration (who or what has made it).

In the rule base representation, clauses for uncertain rules are split into rule classes,
as shown in MLN ontology description 5.6.2 and in view description 7.4. The current
representation of the rule base can be seen sufficient because it is not seen reasonable
to split or hide rule parts any further without losing relevant information.

9.1.2 Deficiencies

In the cell event view, historical action proposals should be presented and there
should be a relation between action proposals and configurations. This relation
would provide the user information about action proposals (type and probability)
that causes successful or unsuccessful configurations. As it can be seen from the data
sequence diagram (figure 29), this approach would need changes to data processing,
as the current system is not collecting historical data from action proposals.

Another issue in the cell event view is that the user might be interested to see
information about cell neighbor relations (without changing to the cell status view)
to verify relations between configurations and anomalies. The use case in section 7.3.2
shows that configuration in cell 24 most probably affects to its own Cqi value but
possibly also to Cqi value of cell 17. Knowing that cell 17 and 24 are not neighbors
reveals that cell 17 is not likely affected by this configuration.

An information gap in the demonstrator is that MLN reasoner-related information
is not provided about certain rules or settings data (thresholds, KPIs, parameters,
etc.). Both of these would be helpful for the user to get better understanding about
the rule base.

9.2 Facets

9.2.1 Implementation

The use case for cell states 7.2.2 shows that especially KPI-related facets demonstrate
well the relationship between action proposals and cell states. Moreover, the use
case shows that KPI facets support rule creation as they are bound to Context fields
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in the rule creation form (figure 17). As discussed earlier, information about the
amount of neighbors is not seen as an important aspect here and therefore the facet
might be unnecessary in this context.

The use case 7.3.2 for cell events shows that relations between configurations and
anomalies can be revealed with time and impact facets. For example, in the use case
the user can verify that Txp for cell 24 decreases its own Cqi. However, a minor issue
with the time facet is that there are no facet values for months. In the current system
the issue can be avoided by keeping the simulation inside a month (simulation time
can be manipulated to start at the beginning of a month). However, with respect to
a more consistent system and longer simulations, also months and years should be
included in the time facet.

In the rule view, facets are chosen as a combination of rule classes (context, objectives
and actions) and their objects (Cqi, Rlf , Txp, and Ret). As the structure of the
rules is fixed, these facets support well browsing activities for the rule base. The use
case 7.4.2 shows that all the facets in this view support binding to the rule creation
form which eases user’s work load in rule creation.

However, rule facets might encounter an issue as the use case 7.4.2 demonstrates.
System produces incorrect facet information when rule includes cell or time variables
with opposite facet values (as there is low and high Cqi values for MLNContextCqi
in the use case). Disjointness could be solved by adding facet information about
different cell and time values or by limiting facet values to match only cell variables
which indicate the cell itself (c) and not its neighbors (c′).

9.2.2 Deficiencies

Cell states should have facets for action proposals as the objective of the view is to
demonstrate relation between the input and output of the reasoner. Therefore, the
demonstrator should also enable user to explore items with respect to output values.

In addition to time and impact facets in the cell event view, there should be an
object facet. User might want to filter result set with respect to different object
types such as parameter or indicator or with their subtypes as Txp, Ret, Cqi or Rlf .
For example, a facet structure with two levels could be useful: the first level for the
object type (parameter or indicator) and the second for their subtypes (Txp, Ret,
Cqi, and Rlf).

In the rule view, a facet for weight values should be available. Weights could be
grouped to crisp values low, medium, and high.
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9.3 Visualization Methods

9.3.1 Implementation

A network graph was chosen as an alternative visualization for cell states. As figures
16 and 18 show, network graph visualization supports relationship discovery between
cell states and action proposals. Figure 18 also shows that user can investigate the
network topology after facet selections which might reveal new aspects from MLN
reasoning system. Also, the observation of the cell table content has been simplified
as KPI values and action proposals are visualized as icons instead of numerical values.

In cell events, the advantage of the timeline visualization is shown in figures 20 and
21 where causes and consequences can be easily observed from the timeline. In the
event table, impacts are visualized with icons which again eases the information
exploration.

Rules are visualized only as a table because no alternative visualization is considered
to give any advantage to the rule base exploration. In the table visualization, the
rules are easily observable as the rule content is grouped into rule classes (see figure
22).

9.3.2 Deficiencies

The network graph visualization already gives the relative positions of the nodes.
However, the visualization could be enriched with spatial information so that nodes
are rendered on a map. This might help user to understand why cells (and eNBs)
are located in certain places.

In the timeline visualization, increasing and decreasing impacts are separated with
arrows and colors (figure 20). However, there are no colors to indicate if the impact is
good or poor for the system. For example, an increase in Cqi is generally considered as
good impact but an increase in Rlf as poor. Categorization of impacts is problematic
as there is no information available about impact qualities (need to be set manually).

9.4 Other Functionality

9.4.1 Implementation

Other functionality includes components which support user’s information exploration.
These components include rule base manipulation tasks such as creating a rule,



76

updating a rule weight, removing a single rule, and removing a set of rules. These
actions are successfully implemented into the system as it can be seen in use cases
7.4.3, 7.4.4, 7.4.5, and 7.4.6. After MLN reasoning system retrieves the updated
rules and uses them in the reasoning, user can then investigate what effects did the
changes have to the reasoning results.

As mentioned in the rule creation use case (section 7.4.3), one minor defect is the
missing facet information for the created rule. The demonstrator should bind new
instances to facet values and therefore some improvement to the current SPARQL
update script is needed.

9.4.2 Deficiencies

Use case analysis in the system design (section 5.3) stated that the system should
allow modification of an existing rule. However, the current system does not have
modification action implemented. Naturally, modification can already be achieved
by deleting a rule and creating a new rule with desired changes.

Another functional deficiency is that the user should be able to modify the thresholds
of crisp values. The MLN reasoning system could then retrieve the modified threshold
values from the ontology and change its own threshold values to the reasoning system.
This way user would have more tools to modify the behaviour of the reasoning system
and investigate what impact the threshold values have to the reasoning output.

9.5 Scalability

9.5.1 Implementation

The scalability of the system is ensured with the architectural design described in
section 5.6 and with the implementation of data management explained in section
8. Sections 8.1 and 8.2 explain briefly how the network- and MLN- related data
are aggregated and published as an OWL 2 ontology. The advantage of using an
ontology as a data model is that the ontology can then be queried with SPARQL
queries and be modified with SPARQL updates (section 8.6). Also, query patterns
described in 8.6.1 and 8.6.2 simplify the development of the faceted search view, as
patterns can be reused in the development.

Another advantage of the ontological approach is the possibility to use a semantic
reasoner (such as OWL 2 DL reasoner) for consistency checks and for relationship
discovery. Currently, Pellet reasoner is adapted to the system and it makes a
consistency report which is logged to a file (section 8.3). A reasoning task for missing
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properties is not yet adapted to the system as it is not seen to bring benefit for
the current implementation. However, in further projects reasoner could be used to
produce new properties to the ontology.

9.5.2 Deficiencies

One issue related to scalability is that the ontology needs some view-specific enrich-
ment in order to generalize the view representation in the demonstrator. As described
in the query design of SPARQL result sets (section 8.6.1), only semantics that is
common between the views is based on facet properties. With the view-specific
enrichment, SPARQL queries could be reformulated with a more general property
structure which would define view-specific attributes (columns and column values)
and would make the query pattern more usable.
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10 Conclusion

This section concludes this thesis by first discussing about possible follow-up projects
and then by summarising the thesis.

10.1 Future Work

Two possible future works are presented in this subsection. First is discussed how
high-level goals could be adapted to the demonstrator for better human-reasoner
interaction. Second topic discusses how open data can be utilized in this project.

10.1.1 System Management with High-level Goals

The current implementation could be enhanced by creating high-level goals which the
user can use to modify the behaviour of the reasoning system. As it is discussed in
sections 2.3.2 and 2.3.3, user-defined high-level goals have been seen as a crucial aspect
in the future SON architecture and generally in the automatic network management.
Similarly, it would be interesting to examine how the MLN reasoning system could
be controlled with high-level goals.

A high-level goal can be used to define active KPIs and dynamic threshold values
for the active KPIs. For example, an energy-saving goal could be mapped to KPIs
Capacity and Cqi. Threshold values for these KPIs can be scaled so that lower
Cqi value is still satisfiable whereas Capacity value should be higher than usual.
Naturally, this approach assumes that the reasoning system has a larger collection of
KPIs and that the rule base can be dynamically modified by eliminating rules with
irrelevant KPIs.

10.1.2 Utilizing Linked Data in Reasoning

Another research direction for this work could be examining how linked data, such as
RDF-modelled linked open data (LOD), can be used to extend the MLN reasoning
to other aspects which might affect the network performance. For example, weather
and event data might be relevant information with respect to quality and capacity
issues.

An approach that uses LOD in network management was mentioned in section
3.4.1. This project introduced a LOD dataset utilizing event-related data. Similarly,
the reasoning system could also be bound to other datasets by aggregating data
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from different SPARQL or REST endpoints. However, it is likely that processing
heterogeneous data into reasoner data (with crisp classification, rule structure, etc.)
needs plenty of planning and implementation. Moreover, LTE simulator data and
other datasets would not have real correlation which of course complicates the
evaluation of the system.

10.2 Summary

An objective of this thesis was to create a case study which examines how a semantic
search interface demonstrates the behaviour of an automated network management
system. The underlying network management system consisted of a Self-Organizing
Network (SON) function and a Markov Logic Network (MLN) reasoner with statistical
and logical reasoning capabilities.

The search interface was implemented as a faceted search interface with an ontology
as a data storage and a SPARQL engine as a query tool. The case study has five
research questions (described in section 1.2) which defines the main focus of the
implementation. The objective is to find user’s information need, useful visualization
methods, relevant facets, supporting functionality (in addition to faceted browsing),
and a data architecture which is scalable for later projects.

The scope of this thesis includes both data architecture (ontology and data flow)
design as well as graphical user interface (visualization and interaction) design. With
respect to the research questions, the implementation has two significant aspects.
First, the implementation aims to show that the design plan works in practice.
Second, the evaluation of the demonstrator produces new answers and thoughts to
the research questions.

Considering the objective of the thesis, the evaluation of the demonstrator is rather
critical in order to reveal the relevant aspects which answer the research questions.
Section 9 gives a rather accurate evaluation of the positive, negative, and the missing
aspects of the current demonstrator. Therefore, the thesis can be seen to provide
an encompassing case study for semantic search interface implementation in this
context.

Moreover, as the search interface enables the user to acquire knowledge from the
reasoning system, the user might discover new ideas and enhancements for the
reasoning system itself. As section 10.1 shows, some new interesting research topics
have already come up from this case study.
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A Appendix SPARQL Update Generating Indica-
tor Facets

INSERT {
?schemeUri a skos:ConceptScheme .
?schemeUri skos:prefLabel ?prefLabel .
?schemeUri a owl:namedIndividual .

?conceptUri a skos:Concept .
?conceptUri skos:inScheme ?schemeUri .
?conceptUri skos:prefLabel ?label .
?conceptUri skos:altLabel ?label .
?conceptUri c:facetOrder ?order .
?conceptUri c:fuzzyMin ?min .
?conceptUri c:fuzzyMax ?max .

?facetPropUri a owl:FunctionalProperty ,
owl:ObjectProperty ;

rdfs:domain c:Cell ;
rdfs:range ?range ;
rdfs:subPropertyOf c:facetCellProperty ;

c:propertyRelationTo ?y .

}
WHERE {
?y rdfs:subPropertyOf c:cellHasIndicator
?y rdfs:range ?range .
?y skos:prefLabel ?prefLabel .
BIND (URI(CONCAT("http://...#","Status",?prefLabel)) AS ?schemeUri)
?x rdfs:subClassOf c:FuzzyValue .

?indType rdfs:subClassOf c:FuzzyValueForIndicator .
?ind a ?indType .
?ind skos:prefLabel ?label .
?ind c:fuzzyMin ?min .
?ind c:fuzzyMax ?max .

BIND((round(?min*100)) AS ?order)
BIND (URI(CONCAT("http://...#",?label,?prefLabel)) AS ?conceptUri)
BIND (URI(CONCAT("http://...#","facet",?prefLabel)) AS ?facetPropUri)
FILTER (contains(str(?ind),?prefLabel))
}
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B Appendix SPARQL Update Generating Relations
Between Facet Values and Instances

INSERT {
?cell ?facetProp ?facet .

}
WHERE {
?prop rdfs:subPropertyOf c:hasIndicator .

?cell ?prop ?ind .
?prop skos:prefLabel ?lab .
BIND (URI(CONCAT("...","facet",?lab)) AS ?facetProp)
BIND (URI(CONCAT("...","Status",?lab)) AS ?scheme)

?ind c:numericValue ?val .
?facet skos:inScheme ?scheme .

?facet c:fuzzyMin ?min .
?facet c:fuzzyMax ?max .
FILTER( ?min < ?val) .
FILTER( ?max >= ?val) .
}

C Appendix SPARQL Update for Creating a New
Rule

INSERT {

<http://www...#RuleContextCqiHigh1234>
a <http://www...#MLNContext> ;
<http://www...#ruleClause>

"I(t,c,Cqi,High))" ;
<http://www...#ruleIndicator>

<http://www...#Cqi> ;
<http://www...#ruleMagnitude>

<http://www...#HighValue> .

<http://www...#RuleObjectiveCqiDecrease1234>
a <http://www...#MLNObjective> ;
<http://www...#ruleClause>

"O(t,c,Cqi,Dec))" ;
<http://www...#ruleImpact>
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<http://www...#Decrease> ;
<http://www...#ruleIndicator>

<http://www...#Cqi> .

<http://www...#RuleActionTxpDecrease1234>
a <http://www...#MLNAction>;
<http://www...#ruleClause>

"A(t,c,Txp,Dec))]" ;
<http://www...#ruleImpact>

<http://www...#Decrease> ;
<http://www...#ruleParameter>

<http://www...#Txp> .

<http://www...#Rule1234>
a <http://www...#MLNRule> ;
<http://www...#ruleAction>

<http://www...#RuleActionTxpDecrease1234> ;
<http://www...#ruleClause>

"(I(t,c,Cqi,High)) => [(O(t,c,Cqi,Dec)) <=> (A(t,c,Txp,Dec))]" ;
<http://www...#ruleContext>

<http://www...#RuleContextCqiHigh1234> ;
<http://www...#ruleObjective>

<http://www...#RuleObjectiveCqiDecrease1234> ;
<http://www...#ruleWeight>

"0.5"^^xsd:double .

}
WHERE {
}

D Appendix SPARQL Updates for Modifying and
Removing Rules

Updating a Weight

DELETE
{
c:Rule1234 c:ruleWeight ?weight .
}
INSERT {
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c:Rule1234 c:ruleWeight "1.97"^^xsd:double .
}
WHERE {
c:Rule1234 c:ruleWeight ?weight .
}

Removing a Rule

DELETE
{
c:Rule1234 ?p ?o .
?o ?p2 ?o2 .
}
INSERT {
}
WHERE {
c:Rule1234 ?p ?o .
OPTIONAL
{?o ?p2 ?o2 . ?p2 rdfs:subPropertyOf c:RuleProperties . }
}

Removing a Set of Rules

DELETE
{
?s ?p ?o .
?o ?p2 ?o2 .
}
INSERT {

}
WHERE {

?s <http://www...#facetMLNActionRet> <http://www...#MLNActionRetIncrease> .
?s ?p ?o .
OPTIONAL {?o ?p2 ?o2 . ?p2 rdfs:subPropertyOf c:RuleProperties .}

}
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