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Automated storage and retrieval systems (AS/RS) are popular for storing semi-fast 
moving items in distribution centers. They are costly systems whose design involves 
many critical decisions, which affect the overall performance of the system.  

This work is focused on the crane control policies of a double-deep dual-shuttle 
AS/RS. The goal of the thesis is to find out how operating performance of a crane can 
be improved with storage location assignment, dwell-point positioning and request 
sequencing.  

Alternative control rules were developed based on AS/RS literature and tested against 
those implemented by the supplier of the system. The comparison was carried out with 
a discrete-event simulation tool, which was built as a part of the thesis. The system 
was simulated under two different workload scenarios and rack fill levels.  

The simulation results indicate that sequencing and cycle formation algorithms can 
have a significant effect on system throughput in periods of high utilization. The effect 
was found larger with the lower 70 % fill level. The linear programming sequencing 
algorithm developed in this thesis was found to reduce the average cycle time by 5.3 
% compared to the algorithm used by the supplier.  

In the on-shift scenario, the optimal dwell point strategy could reduce the average 
crane response time by 10 % compared to the policy used by the supplier. However, 
this difference was not noticeable when the average request turnover time was used as 
a measure. 
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Jakelukeskuksissa yleiset hyllystöhissijärjestelmät ovat kalliita investointeja. Niiden 
keräilytehoa voidaan osaltaan parantaa tehostamalla varastohissin ohjausmenetelmiä.  

Tämän diplomityön tutkimuksen kohteena on hyllystöhissijärjestelmä, jossa on 
tuplasyvät hyllyt sekä hissi, jolla on kahden laatikon kantokapasiteetti. Työn tavoit-
teena oli selvittää, miten järjestelmän suorituskykyä voidaan parantaa hyllypaikkojen 
allokoinnin, hissin odotuspaikan valinnan, sekä hissitehtävien sekvensoinnin avulla.  

Järjestelmätoimittajan ohjausperiaatteiden hyvyyttä arvioitiin vertaamalla niitä kirjal-
lisuuden pohjalta kehitettyihin ohjausmenetelmiin. Ohjausten vertailu tehtiin simu-
lointityökalulla, joka rakennettiin työn aikana. Testiskenaarioissa simuloitiin järjes-
telmää kahdessa eri kuormitustilanteessa ja kahdella eri täyttöasteella. 

Simulointitulosten perusteella sekvensointi- ja syklinmuodostusalgoritmeillä huomat-
tiin olevan merkittävä vaikutus tilanteissa, joissa hissillä on tehtäväjonoja. Vaikutus 
oli suurempi matalammalla 70 % täyttöasteella. Työssä kehitetty sekalukuoptimointiin 
perustuva sekvensointialgoritmi lyhensi keskimääräistä sykliaikaa 5,3 % toimittajan 
käyttämään algoritmiin verrattuna.  

Matalan käyttöasteen skenaariossa optimaalisen odotuspaikan valinta lyhensi hissin 
liikkumisaikaa seuraavan tehtävään 10 %:llä, mutta ero oli käytännössä olematon, kun 
mittarina käytettiin keskimääräistä aikaa tehtävän saapumisesta sen suorittamiseen.  

Avainsanat: automaattivarasto, tapahtumapohjainen simulointi, ohjausalgoritmi, 
optimointi 
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1 Introduction 

1.1 Background 

Automated storage and retrieval systems (AS/RS) have become an increasingly important 
part of material flow handling in distribution centers and flexible manufacturing systems. 
The benefits of AS/R systems include high storage density, fast and reliable storing and 
retrieving with minimal human intervention, and real time inventory tracking. These 
characteristics lead to direct advantages over non-automated systems, including savings 
in labor costs and floor space and reduced error rates. [1] The main drawbacks of AS/R 
systems include high investment costs, inflexible layout, and limited capacity. [1][2] 

The early applications of AS/RSs mostly involved unit-load cranes, which were used to 
handle heavy pallets of finished goods, weighing 1000-3000 kg [3, p.648]. The design of 
these systems was mainly concerned with storage space, only little attention was given to 
the effectiveness of system operation. Since then, developments such as the strong 
development of e-commerce, have brought more focus on the design and management of 
order picking systems. Short and precise delivery times according to customer needs 
necessitate higher throughput and faster response times. This is particularly important in 
E-fulfillment warehouses where thousands of business-to-consumer orders with small 
quantities have to be processed daily. [4] 

The technology of AS/R systems has also advanced a lot in the past few decades. Current 
designs allow crane-based miniload machines to operate reliably at speeds up to 350 
m/min with accelerations and decelerations up to 0.8 g [3, p.644]. Miniload systems are 
used for storing and retrieving small items, e.g. consumer electronics or food. The items 
are stored in totes, which can be subdivided into compartments, each containing one 
product. Due to their high operating speeds and handling capacity, miniloads are well 
suited for automated distribution and manufacturing processes.  

The high cost of AS/R systems makes it important to put effort into maximizing system 
productivity in order to increase the return of the investment. When an AS/R system is 
designed, one has to address many issues related to physical design and control. Both can 
have a significant effect on operating performance. This work is concerned with the crane 
control policies of the system. Control in this case means the logic, which governs the 
movements of a storage and retrieval machine. Although AS/R systems have been 
seemingly thoroughly studied over the past few decades, a majority of these studies has 
focused on the basic system type, the unit-load AS/RS [1][5].  

Discrete-event simulation has been used in AS/R study for at least three decades [6]. It 
has proven widely useful in verifying analytical models, as well as studying the effects of 
control policies with various AS/RS configurations. The first main benefit of simulation 
is that it makes comparison of different AS/RS configurations effective. With simulation 
it is also possible to separate the effects of physical design and control issues [7]. Finally, 
simulation provides a good means to analyze how the system operates under different 
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rack fill levels and stochastic demand patterns. In a warehouse automation project, 
simulation is often applied in the early stages of the planning phase, when comparing 
different layout and material handling equipment solutions. These models are frequently 
implemented in little time, from nearly scratch. This leads to an abundance of assumptions 
and modeling simplifications. The simplifications are often justified when the scope of 
the models is wide and the results are used for a high level analysis of e.g. a complete 
warehousing system. In this thesis, simulation is used for a detailed analysis of controls 
of one subsystem of an automatic storage system.   

This thesis was conducted at EP-Logistics Ltd. EP-Logistics is a logistics consulting 
company that has been involved in many warehouse automation projects from the early 
planning phase throughout the implementation. The system which is studied in the thesis 
is part of an ongoing automated third-party logistics warehouse project. The automated 
storage system is delivered by a major logistics systems supplier. The AS/RS subsystem 
related to this project will be referred to as the installed system in subsequent chapters. 

1.2 Goals and research questions 

The main goal of the thesis is to develop and test alternative methods to control the crane 
movements of a double-deep, dual-shuttle AS/R system, and to compare the efficiency of 
these methods with those applied in a system which is being implemented in an ongoing 
storage automation project. Another goal is to build a simulation tool, which can be used 
for analyzing the performance of different AS/RS configurations, including the installed 
system type, with a varying set of crane control rules. To that end, both physical design 
issues as well as control methods are parametrized in the tool. In this work, the 
implemented simulation tool is only used for analysis of the installed system. 

The control decisions which are considered in the work are storage location assignment, 
dwell point selection, and request sequencing. Most consideration will be given to request 
sequencing and cycle formation algorithms because their effect can be studied without 
information or assumptions of the SKUs (store keeping unit) that will be stored in the 
system. The research questions that will be answered in the thesis are: 

 What alternative crane control methods could be used to improve those 
implemented by the supplier? 

 How much does the choice of crane controls influence the installed system under 
different rack fill levels and system utilization rates? 

The latter question will be answered by modeling the installed AS/RS and its control 
decisions by means of discrete-event simulation. The simulation model will provide a 
means to quantify the effects of control decisions. The former question will be answered 
by adapting and applying control methods found in AS/RS literature and comparing their 
performance with the controls used by the supplier. The simulation model utilized for the 
comparison. 
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The results of this thesis give insight to how effectively the crane control implemented 
by the supplier functions and how it could be improved. The simulation tool implemented 
in the thesis can be used at EP-Logistics in future projects for analyzing other types of 
AS/RS configurations with little or no modification.  

1.3 Structure of the work 

The rest of this thesis is structured as follows: Chapter 2 will give a brief system 
description of AS/RSs, their operating principles, performance measurement and physical 
design issues. Chapter 3 will present the crane control policies used for AS/RS control. 
Solution algorithms for the sequencing and cycle formation problem will be formulated 
in chapter 4.  

Chapter 5 will present the discrete-event simulation tool, which was built for the purpose 
of evaluating AS/RS design and control decisions. The test scenarios are then formed, 
and the results of the simulation runs presented and analyzed in chapter 6. Finally, the 
thesis is concluded in chapter 7. 
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2 Automated storage and retrieval systems 
This chapter will introduce the basic terminology and operating principles of an AS/RS. 
Performance evaluation will be discussed in final section of the chapter. 

2.1 System description and configurations 

Description 

The function of an AS/RS is to automatically transfer items between high storage racks 
and picking or processing stations. A system, as presented in Figure 1, consists of three 
main components: storage racks, cranes (S/R machine) and I/O points. Cranes are fully 
automated storage and retrieval machines that can autonomously move, pick up and drop 
off totes. They operate in aisles between two storage racks. In most configurations the 
cranes operate in dedicated aisles. The movements of a crane are controlled with an 
industrial PC or PLC (programmable logic controller). Each crane has at least three 
independent frequency-controlled AC drives: one for horizontal movement, one for 
vertical movement, and one for operating the load handling device also known as a shuttle 
[8]. The shuttles can only move complete loads, usually totes or pallets, instead of 
handling single pieces of an item.  

The storage racks are stationary and rectangular. They are located on either side of a 
crane. The storage locations are equally sized. There is an I/O area at the end of each 
aisle, which serves as both the retrieval point for storing tasks and drop off point for 
retrieval tasks. The I/O point is usually located near the lower corner of the rack [9].  

 

Figure 1: An automated storage and retrieval system [10] 

Figure 2 displays a typical parts-to-picker system, commonly found in distribution 

centers. It consists of an 𝑛-aisle AS/RS interfaced to 𝑚 picking stations with a conveyor 
loop. The loop acts as a buffer and decouples the AS/RS from the picking stations. The 
installed system also has this basic structure.  The loop is also connected to an infeed 
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station for replenishing the storage, and an outfeed for empty storage totes. In the installed 
system, there is also a second conveyor loop for order totes, which conveys the picked 
goods to a packing and sorting area.  

 

Figure 2: A parts-to-picker system [11] 

Configurations 

Various AS/RS configurations have been developed for different needs. A representation 
of the most important configuration parameters and their common values is presented in 
Table 1 [9]. These parameters define the system type, which strongly affects the choice 
of control policies.  

Table 1: Typical system configuration parameters of AS/R systems. [9] The values related 
to the installed system are bolded. 
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The installed system has double-deep storage racks. They are commonly used to increase 
the storage capacity of an AS/RS [12]. In a double-deep rack, each storage location has 
the capacity to store two totes, one in front of the other.  In this thesis, the tote places will 
be called the front and back positions. Double-deep storage provides a 50 % saving in 
aisle space compared to single-deep racks. On the other hand, retrieval costs are generally 
higher with double-deep storage due to forced rearrangements [9]. A forced 
rearrangement has to be made whenever a tote is retrieved from the back position and 
there is another tote, which is not currently needed, stored in front of it. The blocking tote 
needs to be moved to another empty location. [12] This rearranging naturally causes extra 
travel for the crane. A higher fill level means less empty spaces and more forced 
rearrangements. Because some locations have to be kept empty for rearrangements, the 
rack fill level should never be too high. The supplier has set an upper limit of 90 % for 
the fill level. Under normal operation, the fill level should be under this limit, but over 50 
% to make use of the storage capacity provided by the extra locations.  

Another method to increase the storage capacity in terms of different SKUs is to use 
compartmented storage totes. This means that multiple SKUs can be stored in one storage 
tote. In the installed system the SKUs are stored in totes with one, two, four or eight 
compartments. The percentage of different types of totes in the system is shown in Table 
2.  

Table 2: Percentage of different storage totes in the system 

 

The number of shuttles on a crane is also an important configuration parameter. Single-
shuttle cranes can handle one tote at a time. To increase handling capacity, multi-shuttle 
cranes have been developed. In general, system throughput increases when more shuttles 
are added on a crane, since the amount of empty travel decreases. However, there is a 
diminishing return on throughput for each additional shuttle because load handling time 
also increases [13]. Additional shuttles also bring on more costs. In practice, single- and 
dual-shuttle systems are common. Triple-shuttle systems rare, and practically no systems 
with more shuttles than three are used. [13] The installed system has dual-shuttle cranes. 
For a multi-shuttle system, it is also important to take into account, whether the shuttles 
can be operated independently. Independent operation means that each shuttle has its own 
AC drive. This enables the crane to perform a swap move, i.e. storing and retrieving 
sequentially from the same rack location. In the installed system the shuttles are operated 
with one shared drive, which means that performing a swap is not possible. This is an 
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important restriction because it means that all storing and retrieving tasks in the same 
cycle need to be executed in different rack locations. 

The position of the I/O point can sometimes be located in another position than the corner 
of the rack. Some experiments have been made, where locating the I/O-point at the middle 
of the aisle has resulted in a higher throughput. It is also possible to have multiple I/O 
points in one aisle, as well as having a separate pickup and deposit location. [1] The 
installed system is a five-aisle AS/RS. There is one dedicated crane operating in each 
aisle. The I/O point is offset from the lower corner by four locations in the vertical axis, 
in location coordinates (0, 4). The configuration parameter values of the installed system 
are bolded in Table 1. In subsequent chapters, the unit-load system will also be mentioned 
several times, because it is the most researched and common system type. The unit-load 
AS/RS is essentially a single-shuttle, single-deep system.  

2.2 Operating principles 

Each crane has two sets of requests to serve: storing and retrieval tasks. The machine 
serves these requests by operating in command cycles. When there are multiple tasks in 
queue, a cycle starts and ends at the I/O point. After performing the last currently known 
request, the crane is driven to its dwell point, where it starts a new cycle upon the arrival 
of new requests. Command cycles can be classified by task type and number of totes 
handled. In a storing or retrieval cycle the crane either handles only one type of request. 
This type of separate cycles are performed when the crane has only a small number of 
tasks in queue, or all of the tasks are of one type. A more common way for the crane to 
operate is to perform combined cycles, where both storing and retrieval is done in the 
same cycle. The dual-shuttle cranes in the installed system can handle up to four totes per 
cycle, two storing tasks and two retrieval tasks. Such a cycle will be called a quadruple 
command cycle (or quadruple cycle) in this work. Because the rack is double-deep, up to 
six rack locations, other than the I/O point, can be visited in one cycle. A quadruple cycle 
with two storing, one rearrangement, and two retrieval tasks, is presented in Figure 3. 
Five different rack locations are visited in the example cycle and the number of crane 
movements is 7.  

The possibility of performing combined cycles depends on the availability of storing and 
retrieval requests. If both types are available, combined cycles give an advantage with 
respect to total travel time because the time for performing a combined cycle is always 
no greater than the sum of single storage and retrieval cycles. [14] In other words, 
operating the crane so that it handles the maximum amount of totes per cycle, whenever 
available, leads to the highest throughput. This operating scheme minimizes empty travel 
of the crane and maximizes its tote handling capacity.  
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Figure 3: Example of a quadruple command cycle in a double-deep rack 

The cycle time consists of two components: travel time and handling time. Travel time is 
the sum of the time it takes for the crane to move the path between all of the rack locations 
in the cycle. Handling time is the time the crane needs for extracting or depositing one or 
two totes. This time depends on the crane’s characteristic and can usually be assumed 
constant. Another constant is the time it takes to accurately position the shuttle in front of 
a storage location after each movement. This time adds to the travel time of each 
movement. [15] The more different locations are visited in a cycle, the higher is the 
proportion of the cycle time which goes to handling the totes. Some additional 
communication time might also be needed for messaging between the WCS (warehouse 
control system) and the cranes. In this work the communication delay is not explicitly 
modeled, but it is taken into account in the allowed calculation times. 

2.3 Physical design 

Typically when designing an AS/RS system, the required number of storage locations 𝐿 
is known beforehand. If the racks are double-deep, as in the installed system, this means 

𝐿 is constant in the equation  

 𝐿 = 4 ∗ 𝑟 ∗ 𝑐 ∗ 𝑛 (1)

, where 𝑛 is the number of aisles, 𝑟 is the number of rows in a rack and 𝑐 the number of 
columns [1]. Choosing more aisles reduces rack length and / or height if the capacity is 
maintained. Shortening or lowering the aisles can reduce storing and retrieving times, 
because the traveling distances are shorter. On the other hand, the cost of the system is 
very sensitive to the number of aisles, since each aisle generally needs its own crane. One 
motivation for designing efficient crane control policies is to enable longer and higher 
aisles while maintaining the required performance. In some cases, efficient crane control 
might make the marginal difference, which could eliminate a whole aisle during the 
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design phase, leading to substantial cost savings. At the same time with the choice of the 
number of aisles, one has to consider the trade-off between rack height and length. These 
are influenced by the dimensions of the warehouse building.  

In this thesis, a constant acceleration/deceleration model is used to approximate the 
kinematics of the crane. This gives two possible speed profiles for any horizontal or 
vertical movement.  

 

Figure 4: Speed profiles of crane movement with constant acceleration [9] 

If the top speed of the crane is 𝑣 and the acceleration 𝑎, then 𝑡𝑠, the time to travel a 

distance 𝑠, can be derived from the laws of constant motion for constant acceleration.  

 

𝑡𝑠 =

⎩{
⎨
{⎧2√𝑠

𝑎
𝑠
𝑣

+ 𝑣
𝑎

, when 𝑠 ≤ 𝑣2

𝑎  

, else 

 

(2)

The upper value corresponds to case a) in Figure 4, where the crane does not reach full 
speed. Respectively, the lower value is equivalent to case b), where the crane reaches full 
speed before decelerating. Usually the horizontal and vertical speeds are different. 
Because the crane moves simultaneously along the x and y axes, the actual travel time 

𝑇  is the maximum of the horizontal and vertical travel times. This is known as the 
Chebyshev distance metric [1]. 

 𝑇 = max(𝑡𝑥, 𝑡𝑦) (3)

A rack where the travel time to the farthest column equals the travel time to the highest 
row is called square-in-time. This is a common configuration since it minimizes the 
expected travel time from the I/O-point to an arbitrary rack location. However, due to 
spatial and mechanical constraints, it is frequently not the chosen design. All racks which 

are not square-in-time are called rectangular. [14] If  𝑡𝑥 is the maximum horizontal travel 

time and 𝑡𝑦 the maximum vertical travel time, then the shape of the rack can be described 

by a “shape factor” 𝑏, which is defined as [14]: 
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 𝑏 = min {𝑡𝑥
𝑇

,
𝑡𝑦

𝑇
} , (0 ≤ 𝑏 ≤ 1) (4)

By choosing 𝑇  =  1, the rack is said to be normalized in time [16]. For example, if 𝑡𝑥 is 

longer than 𝑡𝑦, the normalized horizontal travel time is 1 and the vertical travel time 𝑏. 

When 𝑏 =  1, the rack is square-in-time. The shape factor is a frequently mentioned 
parameter in AS/RS literature. The effects of control policies are commonly discussed 

with respect to different values of 𝑏. The shape factor of the installed system is 0.47, so 
the maximum vertical travel time is just under a half of the maximum horizontal travel 
time.  

2.4 Performance evaluation 

Performance metrics 

In order to evaluate different control rules, it is important to define the performance 
metrics of interest. The most commonly used performance measure of an AS/RS is system 
throughput, which is defined as the number of storage and retrieval requests performed 
by the system per time period [6]. In practice, this means summing up the number of totes 
handled in all cycles performed over a time period. In the system design phase, it is 
important to estimate the maximum system throughput which is influenced by the system 
configuration, the physical design parameters and the crane control policies. 
Experimentally, the maximum throughput can be measured from the total time it takes to 
handle a predefined amount of storage and retrieval requests in queue. The maximum 
throughput for a single aisle is the inverse of the mean expected cycle time [5][16].  

In AS/RS study it is frequently assumed that the maximum system throughput of a multi-
aisle system is a multiple of single aisle throughput [7]. In practice, the system throughput 
also depends on load balancing between the aisles, which is a higher level problem 
managed by the WCS. One main factor in this problem is the allocation of SKUs and their 
stock in different aisles. Methods for load balancing are not studied in the thesis. It is also 
important to note that this work considers AS/RS performance independently from other 
material handling systems and their restrictions. In the whole automatic storage system 
the throughput of the AS/RS is also dependent on the other parts of the installation. If the 
picking stations had a lower throughput and the conveyor loop would be too small to 
compensate for this, then the AS/RS control might have to delay some tasks. Here the 
buffers are assumed large enough so that these external factors can be dismissed from the 
control decisions.  

Another important measure of performance is the request turnaround time, also known 
as the system response time, which is defined as the time lapse between the arrival and 
completion of a request. This includes waiting in queue for the crane to arrive, and travel 
with the crane to the I/O point in case of a retrieval task, or storing location in case of a 
storing task. [13] In addition to the average response time, the maximum or worst case 
response time is often considered. A part of the request turnaround time is the crane 
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response time. This is the time that it takes for the crane to reach the request from its 
current location. Retrieval tasks are usually urgent. They can have strict due times, which 
have to be met. For example a warehouse picking order has a cut-off time, which 
determines whether the order will make it in time for distribution. In flexible 
manufacturing applications a production line could stop, if the right component is not 
retrieved for processing in time. Thus, the earliness or tardiness of performing a request 
can also be a vital performance metric.  

Also an important measure in practice is the number of totes waiting to be stored. If 
storing tasks are not handled effectively enough, the system can become congested. In a 
worst case scenario this could lead to a stop of material flow (deadlock) on the conveyors.  

Evaluation methods 

AS/RS research mainly uses two approaches to evaluate the performance of a given 
system: static travel time models and discrete-event simulation. Static travel time models 
focus on the steady state behavior of an AS/RS. They use pure mathematical analysis to 
compute crane cycle times under very specific conditions. All travel time models apply 
to strictly one system configuration and set of control policies. [5] They normally assume 
one or more of the following simplifications: continuous and/or square-in-time racks, 
FCFS sequencing for both storage and retrieval requests, random storage, idle crane 
positioning at the I/O point. A travel time model also has to use statistics to estimate the 
relative amount of different types of operating cycles.  

Accurate travel time models have been developed for the most common AS/RS 
configurations. There are also at least two standards by FEM (European Federation of 
Material Handling) and MHI (Material Handling Institute) which have been issued for 
calculating cycle times [6][9]. These standards are meant to provide a unified approach 
to obtain approximate cycle times for different system types. They aim to be simple rather 
than accurate because their primary use is in contract negotiations [17]. Thus, they should 
not be compared with more sophisticated travel time models. The research of travel time 
models is far from exhaustive, because there are so many combinations of operating and 
design parameters. 

Real-world systems are often too complex to be evaluated analytically. One reason for 
this is that the design and control decisions in AS/RS are linked to some extent. For 
example, the amount of load handling devices or the depth of the storage rack greatly 
influence the sequencing problem, and the optimal dwell point depends on the rack shape 
and the storage policy. These interactions make it difficult to use an analytical approach 
for evaluation of design and control decisions.  

Simulation is a numerical analysis technique designed to evaluate the responses of 
complex models. It has been used in multiple AS/RS studies over the past 30 years [5] 
[18]. It is mandatory to use simulation to adequately model all operational features of an 
AS/RS in its dynamic environment [8]. In a simulation model, it is possible to change the 
system state and workload of the crane with a set of parameters. Also controls can be 
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parametrized which makes their comparison feasible. The performance evaluation in this 
thesis is carried out with the implemented simulation tool.   
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3 Crane control policies 
When an AS/RS has been physically implemented, the limits of its operating capabilities 
are fixed. However, achieving the full potential of the system depends on the way the 
system is controlled. Crane control policies are the rules which determine the actions 
performed by the cranes of the AS/RS [8]. The operation of the system is governed by a 
coherent set of these control policies, each handling a specific subset of activities [1]. 
Crane control methods try to utilize the available information about current tasks, SKU 
features and estimated tote flow rates to improve performance. The significance of crane 
control is hard to assess without experimentation, because it is unique for each system 
[15].  

Generally AS/RS control problems are difficult because, as with other logistics processes, 
demand is stochastic [19]. Requests are received with short notice, they are hard to 
predict, and the state of the system changes fast. For example the empty locations in the 

rack at time 𝑡0 are influenced by previously performed storing and retrieval tasks. This is 
also true for the set of locations containing a certain product. Partially due to these 
complexities, approaches that focus on formulating robust guidelines are often favored 
instead of methods seeking an optimal solution [17][19]. Other reasons for an AS/RS 
supplier to favor these simple approaches can relate to cost efficiency. It is easier to 
develop and maintain standard control methods using simple heuristics than to develop a 
complex customized control for each unique installation. [20] 

The operation of a crane can involve different objectives and service level constraints. 
Usually the main objectives are to maximize aisle throughput and minimize request 
turnaround times. If there are requests with due dates, then minimizing tardiness of those 
requests should also be taken into account. Sometimes task priorities are also assigned in 
an upper system which adds constraints to the sequence in which the crane tasks should 
be performed. The AS/RS should perform robustly as system state parameters such as 
rack fill level and crane utilization change. This chapter goes over the most important 
crane control decisions. The crane control policies of the installed system will also be 
presented.  

3.1 Storage location assignment 

Storage location assignment is a set of rules that determines where incoming storage totes 
will be located in the storage rack [2]. This is important since storing decisions directly 
affect expected travel times to future retrieval tasks. A shared storage assignment policy 
means that there are multiple allowed options to store incoming totes. Whenever such a 
policy is used, the open location choice is also a part of the cycle formation problem. In 
addition to affecting travel times, a storage assignment policy also has an impact on the 
space requirements of the rack, which indirectly affects cycle times. Three storage 
assignment policies are considered in the following subsections: random storage, full-
turnover storage and class-based storage. Because there was no available information 
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about future SKUs during the making of this thesis, the control rules that are formulated 
in subsequent chapters of this thesis will assume, that the random storage policy is used. 
Nevertheless, the feasibility of alternative policies will be assessed in the following sub-
sections, based on literature and expert interviews.  

Random storage 

The supplier uses the random storage in the installed system. Random storage is a 
completely shared storage policy where all incoming storage totes can be stored in any 
aisle and any open location in the rack. Also, no grouping of totes with the same SKU is 
usually made. This makes random storage the easiest storing strategy to apply, since it 
makes no distinction between storage totes based on SKU features. When a tote is 
retrieved from for picking, it can be returned to a different rack location or even a different 
aisle. [18] Despite its name, the open locations in random storage are chosen according 
to an open location selection rule instead of a random choice. One basic rule is the closest 
open location (COL) heuristic. This means that an incoming tote is stored to the closest 
unoccupied location from the I/O point, with respect to travel time. [18] [21] With double-
deep racks, the COL rule also needs to decide, whether to allow storing totes in front of 
other ones, if there are locations with two open positions available. This decision also 
includes combining two storing tasks in the same double-deep location. Storing totes to 
front positions forces the crane to perform rearranging movements, which increases 
retrieval times. These rearrangements could be avoided up to a 50 % fill level. In this 
thesis only normal production rack fill levels (> 50 %) will be considered, so 
rearrangements won’t be avoided. The COL rule is used in the installed system with some 
additional priority rules. One of these rules is for keeping both rack sides approximately 
equally filled. Another modification is made for very high fill levels (> 85 %) to maintain 
some open locations also in the front of the rack for forced rearrangements. When a shared 
storage policy is used, open location selection is a part of the sequencing and cycle 
formation problem. It will be further discussed in section 3.3.  

Random storage is the most effective policy in terms of rack space utilization. It is 
generally a good choice for double-deep racks, because it is difficult to prevent items 
from mixing due to rearrangements [17]. In the installed system this is emphasized by the 
use of compartmented totes. Ignoring SKU features has been found to increase expected 
tote retrieval times. Thus it is the main drawback of random storage. It is equally likely 
for slow moving items to get stored closer to the I/O point than fast movers. Also, slow 
moving items can end up being stored in front of fast movers. However it is a false 
assumption that storage policies which take SKU features into account, always lead to 
lower expected retrieval times. This topic will be discussed in the following sub-sections.  

Full-turnover storage 

Full-turnover storage exploits the demand frequencies of SKUs in assigning their storage 
locations. The basic idea is to store fast moving items closer to the I/O point to reduce 
crane travel times. The demand frequency, also known as the turnover rate, is defined for 



15 

 
each SKU as the number of transactions, both storing and retrieval, during a time period. 
In full-turnover storage the SKUs are ranked in a descending order according to their 
turnover rates, and assigned sequentially to the locations that have the smallest retrieval 
time cost.  

In a strict version of full-turnover storage, the storage locations are dedicated, meaning 
that each SKU is assigned a number of locations in the rack, where only that SKU can be 
stored. This is referred to as dedicated storage. [21] When dedicated storage is used, the 
COI (cube-per-order index) rule is a well-known ranking method, which takes the space 
requirements of the SKUs into account. The COI is defined as the ratio of the number of 
storage locations assigned (or calculated) to an item, to its turnover rate. With this 
measure, the SKUs with the smallest COI are positioned closest to the I/O point. If each 
SKU is stored in only one location per aisle, the COI is the reciprocal of the turnover rate. 
[21][22] Dedicated storage can be problematic, since the locations need to be allocated 
according to the maximum space requirement of each SKU. The assigned locations need 
to be reserved even when an SKU is out of stock. These requirements increase the needed 
storage space. [1][21] For example, random storage needs about 70 % of the space 
requirement of dedicated storage. This result is based on the assumptions that the changes 
in inventory levels of different SKUs are independent, and most of the time the space 
requirement of an SKU is less than its maximum inventory. [21] Another difficulty with 
dedicated storage is that demand frequencies change constantly as do the SKUs in storage 
[1]. Because of these changes, the storage rack is never in a perfect full-turnover state for 
long, because this would require constant repositioning of SKUs.  

In some applications with double-deep racks, it is possible to decrease the amount of 
rearrangements with dedicated storage by allowing only the same SKU to be stored in 
both front and back positions [20]. In the installed system this strategy could not directly 
be applied because of the compartmented totes. Also it is expected that there will be 
several thousand SKUs in one aisle which makes it very difficult maintain the integrity 
of a dedicated storage location allocation.  

An alternative approach to dedicated storage is to calculate a new full-turnover based 
storage allocation once in a defined time period and to make some healing location 
changes to those SKUs, whose current locations deviate most from the calculated 
allocation [22]. This relaxation also breaks the requirement of dedicated storage. When a 
storage tote is fed into storage, or returns from picking, it is preferably stored to its 
calculated spot, but can also be stored in locations, e.g. the closest open location to its 
calculated place. This strategy could also be applied for double-deep racks. One problem 
in storage healing is that the relocations cause extra crane movement which takes away 
crane capacity from actual production. Especially in periods of high utilization, the crane 
should not be performing any moves which are not related to production [17].  

If the storage rack is single-deep, the retrieval cost of a location is simply the crane travel 
time from the I/O point to the location, which makes it is straight-forward to rank the 
locations. With double-deep racks, the retrieval cost of a back position becomes much 
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higher when another tote is stored in front of it. The cost of rearranging depends on the 
current open locations in the rack. Rearranging requires at least one extra movement and 
load handling time. Hence, it can be faster to retrieve a non-blocked tote from the far end 
of the rack than a blocked tote near the I/O point. In an ideal situation, the full-turnover 
storage with double-deep racks would require that slow moving items were stored in back 
positions and fast moving ones in front of them. This kind of order would be hard to 
achieve and retain because the order in which the storage rack is filled might not be 
possible to choose, and replenishments of SKUs arrive independently. 

Because the whole idea of full-turnover storage is based on the turnover rates of the items, 
there should be a sufficient amount of sales data and forecasts for the SKUs in storage in 
order to achieve the advantages. If the calculated turnover rates are inaccurate or 
unreliable, full-turnover storage should not be considered. [20]  

Class-based storage 

Class-based storage partitions all products into two or more classes and reserves a block 
of storage locations within the rack for each class. The class partition is based on some 
criterion, for example COI, duration of stay or turnover rate. It can also be based on the 
affinity of items, meaning that items which have a higher chance of getting picked in the 
same order get stored close to each other. This can be problematic though, since the items 
for the same order are not necessarily retrieved sequentially [22]. If the turnover rate is 
used, the items with the highest turnover rate are allocated to the class whose storage zone 
is closest to the I/O point. Inside the zone item locations are chosen according to an open 
location selection rule. [4] Thus, class-based storage is a combination of full-turnover and 
random storage policies. The goal of using product classes is to achieve the potential 
effectiveness of full-turnover based storage while maintaining a part of the flexibility of 
random storage [1]. A higher number of classes can potentially yield larger travel time 
savings, but also increases the needed storage space. For a single-deep rack it has been 
studied, that most of the gain from full-turnover storage can be obtained by using a small 
amount of classes. For example 96 % of the potential improvement can be achieved with 
6 classes, and over 99 % with 12 classes [23]. Using many classes can be hard to manage. 
In practice, the number of classes is usually 2 – 3 [18] [21]. After deciding the number of 
classes, there is the problem of deciding, how many and which SKUs belong to which 
classes. Zoning, i.e. the division of the storage rack into different zones, poses three 
further problems: 

 the shape of the zones 

 the size of the zones 

 the location of the zones 

Zone sizing is commonly chosen based on an ABC-analysis. In case of two classes, the 
A class is reserved 20 % and the B class 80 % of rack area. With three classes, the sizes 
for A, B and C classes are 20%, 40% and 40 %, respectively. [2] The classes are usually 
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L-shaped or rectangular. In Figure 5, a typical example of zone division is presented for 

three classes. 

 

Figure 5: A typical zone positioning for three classes in a square-in-time rack (upper part) 
and rectangular rack (lower part)[1] 

With double-deep racks, zoning is not as simple. If the zones were allocated according to 
Figure 5, each zone would require its own rearrangement area. The fill level of each zone 
would need to be controlled so that there would always be a chance to move a tote in an 
allowed location. Even so, the zone positioning of Figure 5 might not work well double-
deep rack. This is due to the previously mentioned issue that the back positions have a 
higher retrieval costs than front positions. Instead of storing fast moving items in front of 
other fast movers, it could be beneficial to have a class of slow moving items stored in 
back positions. Because the order of SKUs arriving to the storage can’t normally be 
controlled, this type of zoning would be difficult to implement and maintain. 

The implementation of a class-based storage policy requires a lot of parameters to make 
all the decisions listed above. The values for these parameters should be carefully chosen 
based on real production data. Otherwise, applying the class-based storing strategy might 
not bring any advantages compared to random storing [17].  

Performance of storage policies  

There are three important factors, which have been found to affect the performance of 
storage assignment strategies: the fill level of the rack, the demand variation of tote flow, 
and the locations-to-product ratio (LTPR). [21][24] The LTPR is defined as the ratio of 
the total number of occupied rack locations to the number of SKUs in storage. A 
particularly low rack fill level can be advantageous to random storage with the COL rule, 
because the COL strategy leads to filling around the I/O point, and empty locations in the 
back, if there is overcapacity in the storage area. However, the AS/R system should be 
dimensioned so that fill level of the system stays relatively high during most of the 
operating time. 

The ABC curve of tote flow can be used to approximately describe the variation in the 
storing and retrieval demands within a group of items. This variation directly influences 
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the effect that different storage policies have on average retrieval times. The ABC curve 
is usually presented with two percentages, e.g. a 20% / 80 % ABC curve means that 20 
% of the stored items account for 80 % of all retrievals. The ABC curve can also be 
defined by the function 

 𝐺(𝑖) = 𝑖𝑠 , 0 < 𝑠 ≤ 1 (5)

, where 𝐺(𝑖) is the ranked cumulative percentage of demand versus the proportion of 

inventoried items 𝑖. [24] 

The demand frequencies 𝑓𝑖 for the items can be calculated with the formula: 

 𝑓𝑖 = 𝑓𝑡𝑜𝑡 [( 𝑖
𝑁

)
𝑠
− (𝑖 − 1

𝑁
)

𝑠
]

(6)

, where 𝑓𝑡𝑜𝑡 is the total demand frequency and 𝑁  is the total number of SKUs [21]. Figure 

6 shows an empirical ABC curve, where 𝑠 =  0.4. This translates to a 20 % / 52 % curve.  

 

Figure 6: An empirical ABC-curve [21] 

Full-turnover dedicated storage has been compared with random storage under different 

values of the fit parameter 𝑠. The conclusion of one study was that full-turnover storage 
has an advantage in retrieval times until the case of approximately a 10% / 33% ABC 

curve, which translates to 𝑠 =  0.5. With a less skewed (more equal) demand 

distribution, i.e.  𝑠 >  0.5, the space reduction associated with random storage was found 
to offset the retrieval time advantage of full-turnover storage leading to both space and 
retrieval cost advantages. The study in question was focused on a single-deep rack. [21] 
Using compartmented totes can make the demand frequency distribution between the 
storage totes more even if multiple low demand SKUs are stored in the same tote. This 
would increase the demand frequency of that tote, possibly equal that of a fast moving 
SKU in a single compartment tote. While the assumption that low demand SKUs get 
stored together is not necessarily true, the use of compartmented totes obscures the 
demand frequencies of the totes making it hard to use a turnover rate based ranking.  
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Another important factor on the effect of a storage policy is the LTPR. When LTPR = 1, 
each product is assigned to only one location in an aisle. Under this assumption, the 
advantage of full-turnover storage and class-based storage to random storage is more 
significant. When the LTPR increases, and an item can always be retrieved from any of 
its locations, the advantage of full-turnover storage is lost. This is significant because 
LTPR > 1 in many real-life applications [20][24]. In fact, the number of locations 
assigned to SKUs often follows an ABC curve similar to the demand curve [15].  

If LTPR > 1 and it is always allowed to choose any tote with the requested SKU, this 
might lead to a situation, where totes at the far end of the rack remain untouched for a 
long time because of higher retrieval times. To avoid this, different prioritizing criteria 
can be applied to determine which tote to retrieve. These may include one or more of the 
following: batch number, earliest expiry date, FIFO (first-in-first-out), smallest number 
of pieces in a tote. The filters in the installed system allocate each retrieval task to exactly 
one storage tote. Consequently, it is assumed in this thesis that a retrieval task is always 
fixed to one rack location. This also means that control-wise the LTPR of the system is 
1, because totes with the same item are regarded as different.  
 

3.2 Dwell point selection 

The dwell point is the position where the crane is placed when becoming idle. A crane 
becomes idle when it has performed all currently known storing and retrieval tasks in 
queue. The idea of dwell point selection is to reduce the expected travel time to the 
position of the next storing or retrieval task after the idle period. This can have an effect 
on the request turnaround times of the system. In studies of dwell point positioning, it is 
usually assumed that no cost occurs for unloaded crane travel to the dwell point during 
the idle period, because this travel is not related to any transaction demand. [26] If the 
energy consumption of the crane is considered, this assumption might have to be 
reevaluated.  

There are four well known strategies for dwell point positioning [25]: 

1. Crane stays at the last point it visits and waits there for the next request 
2. Crane always returns to the I/O location when becomes idle 
3. Crane travels to the gravity center of the rack when it becomes idle. The gravity 

center means the location which minimizes the expected travel time to a retrieval 
task.  

4. Crane travels to the rack location, which minimizes the expected travel time or 
the expected maximum travel time to the next request, which can be either a 
storing task or a retrieval task. This is called the optimal dwell point strategy. 

In this thesis the strategies 1, 2 and 4 will be simulated. Strategy 3 will not be considered 
because it is a simplification of the optimal dwell point strategy 4. The first three are static 
dwell point strategies, where the crane always travels to the same location when becoming 
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idle. These strategies are easy to apply because they don’t take information about the 
request profile or rack filling into account. The supplier uses option 1 for the installed 
system, where the crane stays at its last position if it runs out of tasks. This method is a 
common choice in many installations [17]. The upside of this “do nothing” policy is that 
it causes no additional crane movement that is not directly related to a storing or retrieval 
task.  

The optimal dwell point strategy is a dynamic policy where the dwell point is chosen 
according to the estimated proportions of storing and retrieval tasks [25]. The task 

proportions can be represented by a parameter 𝑝𝑠, whose value is the probability that the 
first task after an idle period is a storing task. The effects of a dynamic dwell point strategy 
can best be exploited in manufacturing applications, where the production schedule is 
known and the retrievals of a certain group of products are expected to be stored or 
retrieved during a time period. In such applications the short term probabilities of a storing 
request can be estimated with help of a production schedule. [27] In distribution center 
projects such as the installed system, it is more difficult to apply a dynamic dwell point 
strategy, since the patterns of production are stochastic. 

Optimal dwell point for random storage 

If random storage is used and it were known that the first transaction after an idle period 

is always a retrieval, i.e. 𝑝𝑠 = 0, then the optimal dwell point would be at the gravity-
center of the rack. It has also been shown that the optimal dwell point is at the I/O point 
if the probability of the next request being a storage is larger than or equal to 0.5. If the 
probability of a storing request is larger than 0 but less than 0.5 the optimal dwell point 
lies somewhere between the I/O point and the gravity center. [28] Closed form solutions 
for optimal dwell point strategies have been developed for square-in-time racks with both 
random and full-turnover dedicated storage policies, and rectangular racks with random 
storage [1]. For a normalized rectangular rack with random storage, the efficient dwell-
line shown in Figure 7 is given by [26]:  

 
𝑦 = {

𝑥

𝑏/2
 

0 ≤ 𝑥 ≤  𝑏/2 

𝑏/2 < 𝑥 ≤  1/2 

(7)

When 𝑝𝑠 is known, the optimal dwell point (𝑥∗, 𝑦∗) is the location on the efficient dwell 
line which satisfies  
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{
⎨
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⎧ 1 − 2𝑝𝑠

2(1 − 𝑝𝑠)
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4(1 − 𝑝𝑠)

0

 

0 ≤ 𝑝𝑠 < 1 − 𝑏
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1 − 𝑏
2 − 𝑏

≤ 𝑝𝑠 < 1/2 

1/2 ≤ 𝑝𝑠 <  1 

(8)

, where  
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 𝑑∗ = max(𝑡𝑥∗ , 𝑡𝑦∗) (9)

In (9) 𝑡𝑥∗  and 𝑡𝑦∗  are the horizontal and vertical travel times from the I/O point to the 

optimal dwell point (𝑥∗, 𝑦∗). These formulas assume that the rack is uniformly 
distributed, i.e. that the probability of a retrieval request is equally large for each storage 
location. They also assume that the I/O point is in the lower corner of the rack at point (0, 
0). [26] The efficient dwell line of a normalized rectangular rack with random storage is 

shown in Figure 7. The gravity-center (1/2, 𝑏/2) corresponds to 𝑝𝑠 = 0, position 

(𝑏/2, 𝑏/2) corresponds to 𝑝𝑠 = 1−𝑏
2−𝑏  , and position (0,0) corresponds to 1/2 ≤ 𝑝𝑠 ≤ 1. 

[28] If a turnover-based storing strategy were used, the optimal dwell point would be 
closer to the I/O point than with random storage because the gravity center of the rack 
would not be at its physical center, but closer to the I/O point. 

 

Figure 7: Optimal dwell point locations for a normalized rectangular rack with random 
storage [28] 

If the rate of retrieval tasks and external storing tasks is assumed to be known, the optimal 
dwell point strategy can be calculated for the installed system. Although this assumption 
would probably not hold in most production situations, it will made so that the potential 
benefit of utilizing the optimal dwell point strategy can be evaluated. Because the storage 
totes recirculate back from the picking stations, the probability of the next crane request 

being a storing task depends on the amount of totes currently in picking. Let 𝑛 be the 
number of totes currently in picking. The picking times can be modeled as independent 

identically Poisson-distributed random variables with the same rates 𝜆𝑝, where 𝜆𝑝 is the 

reciprocal of the expected picking time. Then the returning tote rate at that moment is 

𝑛𝜆𝑝, a multiple of the individual arrival rates. Let the known rates of retrieval tasks and 

external storing tasks be 𝜆𝑟 and 𝜆𝑠, respectively. If there are 𝑛 totes in picking, and 𝑝𝑒 is 
the probability of a storage tote becoming empty during picking, then the probability of 
the next request being a storing task is given by: 
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𝑝𝑠 =

(1 − 𝑝𝑒)𝑛𝜆𝑝 + 𝜆𝑠

(1 − 𝑝𝑒)𝑛𝜆𝑝 + 𝜆𝑠 + 𝜆𝑟

(10)

As the number of totes in picking increases, so does the value of 𝑝𝑠, moving the optimal 
dwell point closer to the I/O point. 

Efficiency of dwell point strategies in literature 

Dwell point strategies for a unit-load system have been researched with simulation 
[25][27]. The average turnover time for a request was used as the performance measure. 
The studies concluded that the optimal dwell point strategy results to the lowest average 
turnover time under almost all circumstances. This result is based on the assumption that 
the probabilities of the type of the next request after an idle period are known. It was also 
found, that the effect of optimizing the dwell point position was higher with full-turnover 
storage than with random storage. When random storage was applied, none of the studied 
methods were dominant compared to the other. [27] The effect of dwell point positioning 

was also found higher for more rectangular racks, i.e. a low shape factor 𝑏.[25] [27]  

As can be expected, the effect of a dwell point strategy was found significant only in 
situations, where the frequency of applying the dwell point strategy is high. This translates 
to a demand profile, where storage and retrieval requests arrive independently in small 
quantities, leaving the crane idle in between. In [25] the authors compared the effect of 
dwell point strategies under varying system utilization and rack shapes. It was concluded 
that under periods of low utilization (30 – 50 %) the difference in average request turnover 
time between the worst and best strategies was around 20 %. During periods of very high 
crane utilization (> 80 %), the effect of a dwell point strategy was found negligible.  

3.3 Request sequencing  

Request sequencing has been identified as a control decision which can potentially 
improve AS/RS throughput in situations, where the crane is at maximum utilization and 
there are many tasks of both type in queue [1][14][24]. There are many possible methods 
for request sequencing, especially when it is coupled with the cycle formation problem. 
Although the sequencing and cycle formation problem is affected by the chosen storing 
strategy, its effect on performance is independent of uncertainties related to SKU 
attributes. No statistical information or prediction methods are needed for making the 
control decisions. The sequencing and cycle formation problem for the installed system 
type can be stated in the following way:  

Given a set of known storing and retrieval requests, form quadruple command 
cycles so that the time to execute all of the cycles is minimized.   

Because the travel time of a combined cycle is always less than the sum of performing its 
tasks in individual cycles, the optimal sequence contains the maximum number of 
combined cycles [29]. Even though storing requests are usually not as urgent as retrieval 
requests, it is a good practice to utilize the maximal handling capacity of the crane to 
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avoid congestion, when there are both types of tasks in queue. The sequencing problem 
is dynamic, because the sets of storage and retrieval requests change over time as new 
requests arrive [15]. The incoming storage totes are queued on an infeed conveyor. 
Consequently, the order of the storing requests can’t be changed, so they need to be 
completed according to the FCFS (first-come-first-serve) principle. On the other hand, 
retrieval tasks are just electronic messages coming from the WCS, so their order can 
easily be manipulated [1][11].  

Breakdown of the sequencing and cycle formation problem 

The form of the sequencing problem changes significantly with the system configuration 
and the storing strategies. A majority of the research in request sequencing has been done 
for the single-deep single-shuttle system [14][15][29]. The addition of double-deep 
storage racks and dual-shuttle cranes brings considerable extensions to the problem, 
which will be discussed in this sub-section. The snapshot sequencing and cycle formation 
problem, as stated above, can be broken down into four sub-problems, which are 
presented below: 

1. For each known storing request, choose an open location in the rack 
2. For each ordered pair of storing requests, choose two retrieval requests to be 

performed in the same quadruple cycle.  
3. For each quadruple cycle, choose the order of the tasks to be performed. This is 

known as the routing problem.  

For double-deep racks, there is an additional sub-problem:  

4. For each blocked retrieval request, choose an open location to move the tote that 
is blocking it.  

The first problem is open location selection, which was mentioned in Section 3.1. Open 
location selection is dependent on the storage assignment policy. In the case of a dedicated 
storage policy, the locations of storing requests are predetermined, which makes the 
choice of storage locations unnecessary. If multiple possible locations exist for the storing 
requests, as in random or class-based storage, open location selection can be included in 
the sequencing and cycle formation problem. For single-shuttle systems it has been shown 
that such an integrated approach can yield a higher increase in throughput compared to 
sequencing with dedicated storage [15]. With double-deep racks, an additional restriction 
in open location selection is to not store a tote in front of a known retrieval task. 

The second problem, where the requests are paired, is called the grouping problem. [30] 

If the amount of storing tasks in queue |𝑆| is larger than the number of retrievals in 

queue |𝑅|, then only |𝑆| − |𝑅| storing requests need to be considered in the problem, 
because S is an ordered set.  In the case of a single-shuttle system, where one storing task 
is paired with one retrieval task, the grouping problem can be formulated as an assignment 
problem. The assignment problem is a well know linear combinatorial problem. With a 
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dual-shuttle system, the grouping problem is intertwined with the third problem, which is 
called the routing problem. The routing problem is like a small traveling salesman 
problem with the limitation, that the crane can only carry as many totes as the number of 
shuttles. In a single-shuttle system, there is only one possibility to route the cycle: first 
store and then retrieve. When performing a quadruple command cycle, the order of the 
tasks can be either: 

 store – store – retrieve – retrieve 

 store – retrieve – store – retrieve 

Other alternatives are not possible since the crane can carry up to two totes. With double-
deep racks, the number of possibilities increase because of rearrangement moves. Each 
quadruple cycle can have 0-2 rearrangement moves which need to be performed before 
the blocked retrieval requests can be handled. Double-deep storage also gives the 
possibility to combine two storing or rearrangement tasks so that they are deposited in the 
same rack location. Combining two tasks is usually profitable because it saves one crane 
movement and one load handling time. This will be considered in the algorithms 
presented in Chapter 4.  

Choosing an open location for the forced rearrangements is another part of the problem. 
This could be done in a manner, which helps minimize the overall cycle times. However, 
this choice would have to be coupled with the choice for the storage locations to avoid 
collisions. Also, it obviously depends on the grouping problem.  

Static and dynamic sequencing 

Two main approaches have been suggested to deal with the dynamic nature of the 
problem: static sequencing and dynamic sequencing. [15][29] Both of these include a 

parameter called the sequencing horizon, ℎ. The sequencing horizon is the amount of 
retrieval and storing tasks which are included in the sequencing problem. The maximum 

size of the sequencing horizon is |𝑅|, the number of retrieval tasks in queue. If ℎ < |𝑅|, 
the requests are sequenced in “blocks” of size ℎ. [29] In static sequencing, all the 
sequenced tasks in a block are performed before considering new tasks. The benefit of 
static sequencing is that it requires less calculation, because the order of already 
sequenced tasks is not changed. Also, because all scheduled requests in the block are 
performed, none of the requests can be bypassed for long. The downside of the approach 
is that new requests which arrive after the sequencing of the block cannot effect the 
sequence. Also, the locations that become empty during the execution of a block cannot 
be taken into account. [29] In dynamic sequencing, a complete block of requests is 
sequenced, but only the first cycle is executed. After the cycle is performed, the status of 
the rack locations is updated and it is checked whether there are more requests waiting. 
If so, the block is updated by adding a storage and retrieval request, after which it is 
resequenced. This dynamic approach can also be generalized by adding a parameter called 

the frozen horizon 𝑓 . The frozen horizon is the number of tasks that will be performed 
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after sequencing before updating the block and resequencing. The value of 𝑓  can range 

from 1 to ℎ. [9] Dynamic sequencing has an advantage to static sequencing in that it 
utilizes the new information that comes from updating the block of requests to be 
sequenced and the set of open locations.  

However, using dynamic sequencing does not guarantee that every request in the 
sequencing queue gets executed in reasonable time. A retrieval request in the far corner 
of the rack could wait for a long time if new incoming requests keep bypassing it. 
Therefore, it might be necessary to employ special rules to ensure that a retrieval at the 
far end of the aisle is not excessively delayed. [8][31] In some situations this can cause a 
tradeoff between maximizing throughput versus minimizing response times.  

In both static and dynamic sequencing, the size of the sequencing horizon is an important 
parameter. Lengthening the sequencing horizon means taking more requests into account, 
thus adding more information to the problem. On the other hand, it also increases the size 
of the problem, which adds computation. For dual-shuttle cranes, it is necessary to have 
an even number as the length of the sequencing horizon so that quadruple cycles can be 
performed.  

In the installed system, the aisle of a storage tote has to be decided well before it reaches 
the infeed conveyor of the first aisle. Including storing tasks in the sequencing problem 
before they arrive at the end of the infeed conveyor could be risky, because a congestion 
in the conveyor loop might hinder the tote temporarily, and the sequence of the totes could 
still change. Thus, the length for the sequencing horizon should be equal or less than the 
capacity of the infeed conveyor and crane pickup location combined. In the installed 
system, the length of the infeed conveyor is roughly 3.35 meters and the totes arrive short 
edge (0.4 m) first, so the capacity is 8 totes. The capacity of the pickup location is two 
totes. Given these physical constraints, the length of the sequencing horizon will be set to 
10 in this work. This means that 5 quadruple cycles can be calculated in one sequencing 
problem.  

Solution methods 

An ideal sequencing algorithm would make all of the decisions of the presented sub-
problems optimally. Additionally, the algorithm should be computationally efficient 
enough, so that computation time wouldn’t cause extra delay in operation.  

There have been various approaches to solve the sequencing problem. Because the 
complexity of the problem varies, so do the suggested solution methods. Most of the 
literature is concerned with the unit-load AS/RS. [14][15][29] Among the multiple  
solution that have been presented for the unit-load system are two greedy heuristics, 
which aim to minimize one or more travel time components of a dual cycle. The nearest-
neighbor (NN) heuristic is a greedy algorithm which tries to minimize the travel-between 
time i.e. the time needed to travel between the storing and retrieval location in a dual 
cycle. The simple NN heuristic been found to perform reasonably well especially with a 
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dedicated storage policy [23]. The slightly more complex total-travel-time (TT) heuristic 
tries to minimize the sum of all three travel components in a dual cycle. [9][24] Both of 
these heuristics can be extended to dual-shuttle systems if routing is fixed or otherwise 
handled in the algorithm. The two heuristics have been extended to the case where a 
shared storage policy is used [15]. In the same study, a linear programming model for 
solving a generalized sequencing problem of unit-load systems was presented. The 
authors conducted a simulation study, where they measured the total time to execute 1200 
dual cycles. They compared their LP formulation with the previously mentioned 
heuristics (NN and TT) and FCFS.  In the study, the LP formulation led up to 45 % saving 
in total travel time compared to the FCFS sequencing rule. The LP model also performed 
more robustly than the heuristics, of which TT was found best. [15]  

In another research paper, the effects of both static and dynamic sequencing of unit-load 
cranes with dedicated storage were studied. [23] The grouping problem was formulated 
an assignment problem which was solved using the Hungarian algorithm. In the related 
simulation study, the static approach with the Hungarian algorithm reduced the travel-
between of the dual cycle up to 45 %, which increased throughput by 9 %. Dynamic 
sequencing methods were found clearly more efficient than static ones, reducing the 
average travel-between time 10 – 20 % more than static approaches. These benefits were 
achieved already with a short (3 – 5) sequencing horizon. In the same study, a heuristic 

method with 𝑂(𝑛) complexity was developed and found to perform nearly as well as the 

Hungarian algorithm, which has a 𝑂(𝑛3) complexity. [23] 

More recently, sequencing of other system configurations have been studied. One of the 
early papers for dual-shuttle sequencing extends the nearest-neighbor heuristic to a 
minimum perimeter heuristic, which tries to minimize the two dimensional distance 
between the four requests in a quadruple cycle. The crane in that study was capable of 
performing a swap, so only three rack locations in addition to the I/O point had to be 
visited in a quadruple cycle. [7]  In another study, the authors compared the efficiency of 
numerous local search algorithms including iterated local search, stochastic hill 
climbing, and random-restart hill climbing, to solve the grouping problem for a dual-
shuttle crane. Dedicated storage was used and the configuration allowed the sequence of 
storing requests to be manipulated. Each of the search algorithms was given a budget of 
100 000 function evaluations. The routing problem was handled separately by looping 
through all the options after grouping was done. [30] Evolutionary algorithms have been 
suggested to solve the sequencing problem for a system with double-deep racks. The 
example case with this approach dealt with very large request blocks (e.g. 100 requests) 
and a relatively small rack size. Also, computation times of several minutes were allowed, 
which suggests that the crane response time was not an important performance indicator. 
[32]  

To the author’s best knowledge, sequencing and cycle formation problem for double-deep 
dual-shuttle cranes hasn’t been studied in literature even though there are many suppliers 
that deliver this system type. The lack of literature could be due to the presumption that 
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the possibilities to shorten cycle times to increase system throughput are more limited 
with this configuration. With fast cranes, relatively long handling times and a short 
optimization horizon, the advantages of more sophisticated sequencing methods might be 
considered too small for the effort. In the next chapter, alternative solution methods for 
the sequencing and cycle formation problem of this system type are formulated.  
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4 Algorithms for sequencing and cycle formation 
In this chapter, three alternative control methods for the sequencing and cycle formation 
problem of the double-deep, dual-shuttle AS/RS will be presented and compared. One of 
these is a replication of the control used by the supplier of the installed system, one is a 
greedy heuristic, and the third one is a mixed integer linear program (MILP). The two 
latter algorithms are adaptations of similar algorithms, which have been suggested for the 
unit-load system. Due to the complexity of the problem and strict calculation time 
constraints, none of the methods combine all of the aspects of the sequencing problem, 
but are combinations of rule-based heuristics and local or global optimization. Globally 
optimizing in this context means optimization over all of the requests which are known 
and included in the sequencing horizon. 

All of the sequencing and cycle formation algorithms have to be computationally 
efficient. The upper bound of the calculation time should be less than the time to perform 
the shortest possible quadruple cycle. This is because the smallest value for the frozen 
horizon is 2 + 2 requests, so the next cycle would in some situations have to be calculated 
while performing the previous one. This calculation time limit is necessary to ensure, that 
the crane doesn’t stand idle, when there are requests in queue.  

The smallest quadruple cycle is such that the crane picks up two totes at the I/O point and 
stores them in the location next to the IO point and retrieves two totes from the opposite 
rack location. Therefore, the lower bound for the quadruple cycle time is:  

 𝑇𝑙𝑏 = 3ℎ + 2𝑝 (11)

, where ℎ is the constant load-handling time and 𝑝 is the crane positioning time which is 

made after each movement. In the installed system 𝑇𝑙𝑏 = 11.7 seconds. Extra time should 
also be reserved for the communication of the calculation result, so the actual calculation 

time should be well under 𝑇𝑙𝑏.  

4.1 Supplier’s algorithm 

The supplier of the installed system uses a combination of the FCFS rule and a nearest-
neighbor heuristic to sequence crane tasks. Cycle routing is performed in a fixed order: 
first store, then make the needed rearrangements, and finally retrieve. The open locations 
for the two storing tasks are chosen according to the following rules:  

1. If there are locations in the rack where there are two open positions, choose the 
one closest to the I/O point 

2. Choose two separate locations, with at least one open position, that are closest to 
the I/O point 

3. If a location with two free positions wasn’t found in 1, or it is faster to store the 
two totes in the separate locations chosen in 2, then the separate locations are 
chosen. Otherwise, both totes are stored in the location found in 1. 
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The retrieval tasks are selected and sequenced as follows:  

1. The algorithm always selects the oldest retrieval task in queue to be performed in 
the next cycle.  

2. The other retrieval task is selected as the closest retrieval to the position, where 
the second of the two totes is stored 

3. The order in which the two retrievals are executed is chosen based on a travel-
time comparison, the fastest sequence is chosen. 

If only one rearrangement needs to be made, then it is done directly before the retrieval. 
If two rearrangements need to be made, then they can be combined. A similar time 
comparison is made as was done with the storing tasks, which follows the steps below:  

1. If there are locations in the rack where there are two open positions, choose the 
one closest to the second retrieval.  

2. Choose two separate locations, the ones closest to the two retrieval tasks 
3. If a location with two free positions wasn’t found, or it is faster to rearrange the 

two totes in the separate locations found in 2, then those locations are chosen. 
Otherwise, both blocking totes are rearranged to the location found in 1.  

The algorithm is applied with the smallest possible frozen horizon (𝑓 = 2), meaning that 
only one cycle will be performed before the queue is updated and resequenced. With this 
approach, it is not even necessary to calculate more than one cycle at a time. As one cycle 
is performed the sets of requests are updated and the next cycle is calculated.  

A benefit of always including the oldest request in the next cycle is that no retrieval tasks 
can get stuck in the sequencing queue for a long time. Another strength is that the 

algorithm is computationally efficient, 𝑂(𝑛) because its implementation doesn’t require 
nested loops. The main weakness of the algorithm is that it forms the cycle in pieces: the 
problems of open location selection, retrieval task selection and rearrangement location 
selection are treated separately. 
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4.2 Total travel time heuristic 

In this section, a greedy heuristic algorithm for solving the sequencing problem is 
formulated. It is an extension of the total-travel-time (TT) heuristic for single-shuttle 
systems[15] [29] so it will be referred to by the same name. This algorithm was chosen 
as an alternative heuristic to the one which the supplier uses. It takes more information 
about the travel time components of a cycle into account in forming locally optimal 
cycles. The single-shuttle version of this heuristic has proven to work well [15].  

The following notation will be used:  

𝑆:  The ordered set including all pairs of storing requests within the sequencing horizon. 

𝑠 ∈ 𝑆 is a pair of two subsequent storing requests.  

𝑅: The set of all retrieval requests within the sequencing horizon, each targeting one 

specific location in the rack. (𝑗, 𝑘) ∈ 𝑅 is an ordered pair of retrieval requests 𝑗 and 𝑘. 

𝑑𝑗: A binary variable with value 1, if retrieval request 𝑗 is blocked by another tote, and 0 

if it is not.  

𝑚𝑗: Rearrangement location for retrieval request 𝑗, if it is blocked. 

𝑞𝑗: The rack location where retrieval request 𝑗 is located.  

𝑃 : The set of rack locations with at least one open position. 𝑝1 ∈ 𝑃  and 𝑝2 ∈ 𝑃  are the 

open location where the first and second tote of storing request pair 𝑠 are stored. All open 
locations are available to all storing requests.  

𝑏: A binary variable that gets the value 0, if storing locations 𝑝1 and 𝑝2 are the same, and 
value 1 otherwise. 

ℎ: Constant load-handling time, which here is equivalent to the average tote depositing 
time of the crane. 

𝐷𝑝1𝑝2𝑗𝑘 : The distance metric used in (12), which consists of all the travel time 

components in a quadruple cycle.  

A simplified pseudo-code version of the TT heuristic is presented in Figure 8. 
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Figure 8: A simplified pseudo-code of the total-travel-time heuristic 

The TT heuristic seeks to minimize a distance metric, which consists of all the travel time 
components in the cycle. The distance metric is: 

𝐷𝑝1𝑝2𝑗𝑘 = 𝑡𝐼𝑂,𝑝1
+ 𝑏(𝑡𝑝1,𝑝2

+ ℎ) + 𝑡𝑝2,𝑗
+ 𝑑𝑗2𝑡𝑗,𝑚𝑗

+ 𝑡𝑗,𝑘 + 𝑑𝑘2𝑡𝑘,𝑚𝑘
+ 𝑡𝑘,𝐼𝑂 (12) 

In (12) the travel time between two locations 𝑖 and 𝑗 is marked with 𝑡𝑖,𝑗. The symbol 𝐼𝑂 

represents the I/O point. As can be seen from the distance metric, the heuristic assumes a 
routing where both storing tasks are made before retrievals, and possible rearrangements 
are made individually right before retrieving the next tote. Because it is a greedy heuristic, 
the TT algorithm forms the cycles sequentially, starting from the fastest quadruple cycle 
that can be formed from the requests in the sequencing horizon. The TT algorithm has a 
larger time complexity than the one used by the supplier. This is because the set of 
retrievals has to be looped twice to go through all the ordered pairs of retrievals, raising 

the number of nested loops to four, thus resulting in a time complexity of 𝑂(𝑛4). Because 
the sequencing horizon is limited, this should not cause computational problems with an 
average PC. 

4.3 Linear programming model 

This section will present a mixed integer linear program (MILP) to solve the sequencing 
problem for the installed system type. It will be called the LP model in the rest of this 
work. This formulation is an extension of a similar algorithm which has been proposed 
for unit-load systems [15]. The LP model is an alternative to the heuristic methods used 
by the supplier and the TT algorithm in that it aims to minimize the joint time to perform 
all of the tasks in the sequencing horizon, instead of choosing many locally optimal cycles 
sequentially.  
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Modeling simplifications 

There are some simplifications in the model. They are made partially, because of the 
difficulty to include all of the sub-problems in the formulation of one optimization 
problem. Attempting this would possibly lead to an obscure objective function or an 
excess number of decision variables. Solving the sub-problems separately is also not a 
good option because they are dependent on each other. Another reason to include 
simplifications is to reduce the size of the problem to keep the calculation time bounded 
and low enough. It should be noted that the LP formulation was developed in this thesis, 
so its computational feasibility was not known beforehand. Computational issues will be 
further discussed in the end of this section, and actual computation times will be shown 
in section 5.1.  

The first simplification in the model is that the storage location for the first storing request 
in each ordered pair is chosen beforehand, according to the following rules:  

1. Find 𝑙1 the closest open location to the I/O point (in travel time). This location 
may have one or two open positions.  

2. If 𝑙1 has only one open position, and there are locations in the rack where there 

are two open positions, find 𝑙2, the one closest to the I/O point.  

3. If 𝑙1 had two open positions, then choose it. If 𝑙1 had one open position and 𝑙2 was 

found, choose 𝑙1 if the sum of the travel time from the I/O point to 𝑙1 and the crane 

handling time is shorter than travel from the I/O point to 𝑙2. Otherwise, choose 𝑙2.  

The extra load handling time is added to the choice of 𝑙1 with one open position because 
the crane needs to visit a second storing location, which adds to the total time of the cycle. 
The choice of the predetermined open location could be made by random, or by some 
other rule. The closest-open-location rule was chosen mainly, because it is simple. 
Choosing the one storing location heuristically greatly reduces the number of decision 

variables. If ℎ is the length of the sequencing horizon, then ℎ/2 locations are reserved 
before each calculation of the sequencing problem. A different rack location is chosen for 
each pair. Those, which have only one available position are reduced from the set of open 
locations.  

Another simplification is that all rearrangement locations for blocked retrieval tasks will 
be chosen in advance. Namely, the closest open location to the retrieval point is chosen 
for each rearrangement move. This simplification is made to reduce the amount of 
decision variables in the problem. These locations are reserved and reduced from the set 
of open locations before sequencing.  

Finally, the order of performing the tasks will be fixed to: store – store – retrieve – 
retrieve. This means that the crane always stores two totes first, either together or 
separately, and only afterwards starts retrievals. If rearrangements need to be made, they 
are made before picking up the tote to be retrieved, after which the crane returns to the 
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retrieval location. The two retrievals can be performed either order. This routing 
simplification is essential to the formulation of the cost vector and objective function of 
the LP model.  

LP model formulation 

The notation used for the LP model mainly follows the notation of section 4.2 with some 
additions. For the sake of clarity, the full notation is listed below:  

𝑆:  The ordered set including all pairs of storing requests within the sequencing horizon. 

𝑠 ∈ 𝑆 is a pair of two subsequent storing requests.  

𝑅: The set of all retrieval requests within the sequencing horizon, each targeting one 

specific location in the rack. (𝑗, 𝑘) ∈ 𝑅 is an ordered pair of retrieval requests 𝑗 and 𝑘. 

𝑑𝑗: A binary variable with value 1, if retrieval request 𝑗 is blocked by another tote, and 0 

if it is not.  

𝑚𝑗: The rearrangement location for retrieval 𝑗, if it is blocked. 

𝑃 : The set of open locations which can be used to store any for storing the second tote in 

a cycle, 𝑝 ∈ 𝑃 . All open locations are available to all storing requests. 

𝑙𝑝: The number of totes that can be stored in open location 𝑝.  𝑙𝑝 = {1,2} for all 𝑝 ∈ 𝑃 . 

𝑜𝑠: The open location which is reserved for the first tote in the storing request pair 𝑠. 

Location 𝑜𝑠 is a member of 𝑃  only if it has a second open position.  

ℎ: Constant crane handling time  

𝑏: A binary variable that gets the value 0, if locations 𝑜𝑠 and 𝑝 are the same and value 1 
otherwise.  

 𝑡𝑠𝑝𝑗𝑘 : The cost vector, which represents the time it takes to complete a quadruple 

command cycle in the following order:  

1. The pair 𝑠 of totes is stored in locations 𝑜s (the pre-selected location) and 𝑝. 

Notice, that the two can also be the same if there are two free positions in 𝑜𝑠. 

Because 𝑜𝑠 is pre-allocated for each storing task pair, it is not considered in the 
objective function. 

2. The ordered pair of retrieval tasks (𝑗, 𝑘) ∈ 𝑅 is retrieved from their locations 
respectively. If rearrangements have to be made, they are made to the closest open 
locations from the retrieval points.  

3. Returning from the second retrieval point to the I/O point.  
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𝑥𝑠𝑝𝑗𝑘: A binary variable that gets the value 1, if ordered storing task pair 𝑠 is combined 

with retrieval requests 𝑗 and 𝑘 to form a quadruple cycle, and the second tote of 𝑠 is stored 

in location 𝑝. 

 

Objective function:  

 𝑥�̂�𝑝𝑗𝑘 = Min ∑∑ ∑ 𝑡𝑠𝑝𝑗𝑘
(𝑗,𝑘)∈𝑅𝑝∈𝑃𝑠∈𝑆

𝑥𝑠𝑝𝑗𝑘 (13)

The objective function (13) minimizes the sum of the travel time to perform all tasks in 

queue. The cost vector 𝑡𝑠𝑝𝑗𝑘 consists of all the travel components of a quadruple command 

cycle. 

Cost vector:  

𝑡𝑠𝑝𝑗𝑘 = 𝑡𝐼𝑂,𝑜𝑠
+ 𝑏(𝑡𝑜𝑠,𝑝 + ℎ) + 𝑡𝑝,𝑗 + 𝑑𝑗2𝑡𝑗,𝑚𝑗

+ 𝑡𝑗,𝑘 + 𝑑𝑘2𝑡𝑘,𝑚𝑘
+ 𝑡𝑘,𝐼𝑂 (14)

The cost vector is practically the same as the distance metric of the TT algorithm. Notice, 

that an extra load handling time ℎ is added to the cost if the two storing locations are 
different. 

The constraints of the problem are listed and explained below. 

Constraints:  

 ∑ ∑ 𝑥𝑠𝑝𝑗𝑘
(𝑗,𝑘)∈𝑅𝑝∈𝑃

= 1 , ∀ 𝑠 ∈ 𝑆 (15)

Each pair of storing requests is in exactly one cycle, and paired with two different retrieval 
requests. 

 ∑∑∑𝑥𝑠𝑝𝑗
𝑗∈𝑅𝑝∈𝑃𝑠∈𝑆

+ ∑ ∑∑𝑥𝑠𝑝𝑘
𝑘∈𝑅𝑝∈𝑃𝑠∈𝑆

= 1 , ∀ 𝑗 ∈ 𝑅 

 , ∀ 𝑘 ∈ 𝑅 

, 𝑗 ≠ 𝑘 

(16)

Each retrieval request is included in exactly one cycle. The request can be either the first 
or the second retrieval in the cycle.  

 ∑ ∑ 𝑥𝑠𝑝𝑗𝑘 ≤ 𝑙𝑝
(𝑗,𝑘)∈𝑅𝑠∈𝑆

, ∀ 𝑝 ∈ 𝑃 (17)
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Each open location is used for equal or less storing tasks than the current capacity of the 

open location 𝑙𝑝 allows. If there are two free positions in the location, then two storage 

tasks can be performed there.  

 𝑥𝑠𝑝𝑗𝑘 ∈ [0,1] (18)

The decision variables are binary. 

An additional constraint is that the same storage location cannot be used for both storing 
and retrieval. This is because the order of the tasks would determine if it is possible. This 
restriction also prevents a storage tote from being stored in front of a known retrieval. 
This can be achieved by removing the retrieval locations from the array of open locations 
before sequencing. The amount of open locations for each pair of storing tasks is always 
1. It is possible to choose that both totes are stored in the pre-reserved location (if it has 
two open positions), but this is not mandatory. 

The main limitation of the LP model is that it is static. This means that all the changes in 
the rack caused by the tasks which are being sequenced are considered to happen 
simultaneously. If for example the storage locations are changed for individual cycles 
after the sequencing problem is solved, the rest of the cycles would have to be checked 
or resequenced. Another limitation is that the formulation requires an equal number of 
storage and retrieval tasks. The length of the sequencing horizon should also be an even 
number to make it possible to form pairs.  

Computational issues 

The formulation of an MILP is perhaps the most important factor in its computational 
efficiency [33]. One important measure in the formulation is the size of the problem. 
Adding more variables increases the solution space and amount of calculation needed. 
The constraints define the feasible region of the solution space. If the size of the solution 
space is too large, then it needs to be reduced by adding more constraints, or by reducing 
the number of decision variables. In the LP model presented above, the number of 
decision variables grows rapidly as the sequencing horizon is lengthened, because the 

number of ordered pairs, given by |𝑅| 𝑛𝑃𝑟 2, increases rapidly. In this work, the 
sequencing horizon is fixed to 10 due to the physical constraints of the installed system.  

Another important factor on the number of decision variables is the set of open locations. 

If ℎ is the length of the sequencing horizon, then then number of decision variables 𝑣 is:  

 𝑣 = ℎ
2

(ℎ 𝑛𝑃𝑟 2) (19)
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Figure 9: Number of decision variables as a function of the number of open locations with 

ℎ =  10 

As presented in Figure 9, the problem size grows fast when more open locations are taken 
into account. This means that the computational performance of the LP model would 
possibly deteriorate when the fill level of the system decreases. To keep the size of the 
problem bounded, an additional parameter will be introduced to limit the number of open 
locations included in the problem. This parameter will be called size of the search 

neighborhood and denoted by 𝑛. For example, 𝑛 =100 means that a maximum of 100 
open locations are included in the problem. The open locations in the search 
neighborhood will be chosen evenly throughout the rack length to give more differing 

options to choose from. All the locations 𝑜𝑠 that were chosen for the first storing task of 
each pair will be included in the search neighborhood, if they have a second open position. 
This is done to assure the possibility of storing two totes in the same location. 
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5 Simulation model 
A simulation tool was built in this thesis to enable an accurate analysis of AS/RS control 
decisions of the implemented system. The model was designed with a generic mindset to 
enable analysis of other system sizes and configurations. The structure of the program is 
modular; the logic for different configurations and control policies is accessible through 
a set of parameters, which can easily be changed between simulation runs. 

5.1 Tools and structure 

The parts of the simulation tool, as well as the information flows between them, are 
presented in Figure 10. The following sub-sections will go through the implementation 
of the different parts. 

Parameters 
(MS Excel)

Simulation Model
(ProModel)

Model Output
(Output Viewer)

Runtime I/O
(.txt files) During simulation

LP sequencing 
algorithm
(DLL)

Before simulation

After simulation

Rack fil ling 
subroutine

(VBA)

 

Figure 10: Parts of the simulation tool 

Simulation model 

The simulation model was implemented using ProModel 2014, an object-oriented 
Windows-based simulation tool. It is the primary simulation tool used at EP-Logistics 
and well suitable for analyzing discrete part production processes. ProModel has built-in 
programmable element types such as locations, entities and resources, which are used to 
create the simulation models. The logic is implemented with a built-in programming 
language. ProModel can read and write information to and from Microsoft Excel and text 
files. [34] All the run-time logic of the simulation model was programmed in ProModel, 
except the LP sequencing algorithm.  

The controls for running the model are in ProModel. The animation can be set on or off 
and the simulation can be paused at any time to check the current state of the parameters 
and arrays in the model. Some parameter values such as the number of tasks in queue, the 
current position of the crane, and number of totes it is carrying, are displayed in the UI 
during runtime. A snapshot of the runtime environment in ProModel is shown in Figure 
10.  
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Figure 11: Snapshot of the ProModel UI 

 

Parameters 

The simulation tool built in this master’s thesis can be used to simulate almost all the 

configurations presented in Table 1. Currently the only limitation is that a crane always 

operates in one dedicated aisle. There can also be only one I/O point in an aisle, but its 
location can be changed. 

The parameters of the simulation model are read from an Excel spreadsheet file upon 
starting the simulation in ProModel. The parameters can’t be changed during the 
simulation run. A comprehensive list of the parameters is presented in Figure 12. The 
parameters can be classified into four groups: tote flow parameters, crane parameters, 
rack parameters and control parameters. The tote flow parameters define the amount of 
storage and retrieval requests arriving into the model. This group also has two picking-
related parameters: average picking time and tote empty probability, which is the 
probability of the tote becoming empty during picking and thus not returning to storage. 
The crane parameters hold all the mechanical parameters for crane operation, such as 
speeds and tote-handling times. The rack parameters define the dimensions of the storage 
area, and the number of locations in the rack.  

The rack filling subroutine is in the same Excel file as the parameters. It only takes one 
parameter, which is the desired filling level. The algorithm is iterative. It uses the Rnd() 
function in Excel to generate random integers between 0 and the depth of the rack, in this 
case, 2. If the rack fill level is too low after the first iteration, the lower bound of every 
other random number is incremented to 1 and the new filling is started from the first 
column. Oppositely, if the fill level is too high, the upper bound of every other random 
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number is lowered to 1 and the new iteration is started from the back of the rack. The goal 
of this algorithm is to generate a near real life situation, where there are a little more 
openings in the back than near the I/O point, but random free locations are available in 
every part of the rack. Also, the algorithm fills both sides of the rack to the same fill level 
within a 1 % accuracy so that special balancing rules do not need to be taken into account.   

The control parameters are the most important ones for this work. They hold all the crane 
control options for sequencing, storage assignment and dwell point positioning. In this 
thesis, only the control parameters and tote flow parameters are studied.  

 

 

Figure 12: Parameters of the simulation model 

LP sequencing algorithm 

The LP sequencing algorithm was programmed with C++ in Visual Studio and compiled 
as a Win32 DLL. The simulation model can call the exported functions in the DLL during 
runtime with the XSUB -function in ProModel. The choice to use an external 
programming language for the optimization problem was made for two reasons: Although 
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ProModel provides a very effective simulation engine and the objects to build the 
simulation logic, it lacks the freedom of using sophisticated data types and structures. 
Practically all of the information in ProModel is assigned to Integer or Real datatypes, 
which can be stored in Arrays. Also, an external programming language enables the use 
of external libraries with preprogrammed solvers for optimization problems, which can 
save a lot of programming time.  

 The optimization library used in this work is Google OR-Tools, which is a set of 
operations research tools written in C++ at Google. OR-Tools is open source and provides 
an interface to several linear programming and mixed integer programming solvers.  [35] 
The solver which was used to solve the problem is CBC. It is an open-source MILP solver 
developed by COIN-OR (Computational Infrastructure for Operations Research). The 
COIN-OR is a project started in 2000, which aims to provide high quality open-source 
software for optimization as well as other problems in operations research. CBC is a 
branch-and-cut algorithm. [36] 

Branch-and-cut methods are common for solving mixed integer programs. They are a 
combination of a branch-and-bound algorithm and cutting plane method. [37] Such 
algorithms work by solving a sequence of linear programming relaxations of the integer 
programming problem. Branch-and-bound algorithms divide the original problem into 
smaller sub-problems, or nodes, which are solved sequentially. The use of bounds for the 
function to be optimized, combined with the value of the current best solution enables the 
algorithm to rule out some parts of the solution space, meaning that they are searched 
only implicitly. [37] Cutting plane methods improve the linear programming relaxation 
of the problem to more closely approximate the integer programming problem. When 
using solution methods which involve branching, there is a chance that the bounding 
aspects are not invoked, which can lead to a huge number of sub-problems. The worst 

case amount of sub-problems for a problem with 𝑛 binary variables is 2𝑛. This 
exponential growth is possible with all solution algorithms for integer programming, 

unless P = N. [33] Solving a mixed integer program is computationally more difficult 
than solving a normal linear program. Depending on the algorithm used, the solution of 
an integer program might require solving thousands of linear programs. Therefore the 
program code used to solve the problem can have a great impact on the calculation time. 
[33] The CBC algorithm was chosen in this work because it was readily accessible in OR-
tools and proved efficient enough for solving the LP model. A summary of average 
calculation times for solving the LP model is presented in Table 3. Based on these 
experimentations, 150 locations was chosen to be the size of the search horizon. 
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Table 3: Calculation times for the LP model with 100 repetitions 

 

5.2 Modeling  

This section will give some details about how the racks, requests and crane movements 
of the AS/RS were modeled in ProModel. 

Routing and processing 

Simulation models in ProModel are built by routing entities through locations where they 
are processed according to a user-defined programmable logic. A simplified flow chart 
describing the routing of the main entity types in the model is presented in Figure 13. 

 

Figure 13: Routing of main entity types in the simulation model 

Storage racks are modeled as three-dimensional arrays. Because there is a rack on both 
sides of an aisle, each storage location in the aisle can be represented by four coordinates 
(side, row, column, depth). In the model, the racks are filled with generic storage totes; 
SKUs are not modeled explicitly. The number of totes (0 – 2) in each location is tracked 
and updated. Each retrieval request can only be fetched from one specific location in the 
aisle. Thus, they are modeled as 4-tuples with the same coordinates as rack locations. This 
is in accordance with the installed system, where the stock of an SKU is filtered according 
to several attributes or rules, including earliest expiry date, batch ID, serial number and 
FIFO. Because random storage is applied for the scenarios in this thesis, the demand 
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frequency of each rack location is assumed the same. This can cause a minor modeling 
error because it is slightly more likely for a request to fall on a location with two totes 
instead of one. However, the effect of multi-compartmented totes might also obscure this. 
The full-turnover storing scheme can be simulated in the model, although it is currently 
implemented without modeling SKUs. Full-turnover storage is mimicked by calculating 
the demand frequency of each storage location based on the two ABC-curve parameters 
and generating retrieval tasks according to the obtained distribution.  

Upon creating retrieval requests, they are assigned coordinates of a rack location that has 
at least one tote. Only one request for each tote position is allowed simultaneously. 
Creating a retrieval request makes a reservation for one tote in the location. Sometimes it 
might happen, that there are two retrieval requests, which have arrived at different times 
for the same location. If these tasks are not in the same sequencing horizon, the one for 
the back position might be executed first. This means the tote in the front position is 
rearranged and the original location is left empty. In this situation, the request for the front 
position will be discarded and regenerated for some other occupied location.   

The retrieval tasks arrive in an infinitely large retrieval queue, from which they are routed 
into the sequencing queue in FCFS order. The amount of requests in the sequencing queue 
is tracked continuously. If it passes a predefined limit, which by default is the length of 
the sequencing horizon, then the requests are sequenced with the chosen algorithm. When 
sequencing is initiated, the algorithm checks if there are any storing tasks on the infeed 
conveyor or the pickup location and includes them in the sequencing problem. 
Sequencing will be done for the retrieval requests even if there are no storing requests in 
the infeed area. If there aren’t enough retrieval tasks for sequencing, they will be 
performed in FCFS sequence, so that the crane doesn’t have to wait.  

All retrieved totes are routed from the outfeed conveyor to a picking location, which is 
infinitely large. Picking is modeled as a stochastic process. Picking time is distributed 
exponentially with a rate that is the inverse of the average picking time. Totes can also 
become empty during picking. Empty totes will disappear from the system after picking 
instead of returning to storage. The probability for a storage tote to become empty is 
included in the parameters.  

New totes can enter the system from an external infeed source. The arrival frequency can 
be set with the tote flow parameter “Number of external storing tasks per hour” All 
arriving storage totes, including the ones that are returning from picking, are first routed 
to an infinitely large storing queue from which they are fed onto the infeed conveyor. If 
a sequencing algorithm hasn’t chosen an open location for a storage tote by the time it is 
picked up by the crane, it will be stored to the closest open location. If a storage location 
does not have another tote stored in it, the incoming tote will always be stored in the back 
position.   
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Crane movement 

Because the two-dimensional animation is from the top-view perspective, only horizontal 
motion is visualized. Vertical travel is modeled as an additional waiting time when 
vertical movement time exceeds horizontal movement time. A constant crane positioning 
time is added to each movement, except when the crane returns to the I/O point. The 
travel times between two arbitrary rack locations, including the I/O point, were calculated 
beforehand according to the constant acceleration model in equation 2. The travel times 

are stored in a matrix 𝑇𝑚𝑛 in which the element 𝑡𝑚𝑛 means the time to travel an offset of 

𝑚 rows and 𝑛 columns. This matrix is kept in the spreadsheet where the parameters are 
stored and it is updated automatically when crane parameters are changed. Travel times 
are assumed to be constant and symmetric. The crane’s pickup and depositing times are 
also assumed constant.  

The crane can perform all types of cycles with 0 – 2 storing tasks and 0 – 2 retrievals. A 
quadruple command cycle is performed whenever there are enough requests available. 
The crane can acknowledge new retrieval requests in the middle of a cycle if it is carrying 
less than two totes. If only one storage tote arrives at the infeed, the tote is not taken to 
storage immediately. Instead, the system waits for a possible second tote to arrive at the 
infeed for a predefined time. The waiting time in the simulation is set to 30 seconds. If a 
retrieval request comes during the waiting time, it will be served before the storing task. 
This value is also used in the installed system.  

The crane becomes idle, if it finishes a cycle and there are no more tasks in either queue. 
Even if there is a single storage tote waiting at the infeed for a possible second tote, the 
crane stays active. If the crane becomes idle, it will always move to the dwell point before 
serving the next request. This can cause minor response time delays, because the crane 
may still be traveling to the dwell point, possibly in the wrong direction, when the next 
request arrives. As a matter of fact, this built-in limitation of ProModel is consistent with 
actual PLC controls, which usually do not incorporate a function to interrupt an ongoing 
command [25]. 

5.3 Verification and validation 

The process of verification and validation is relevant in all modeling projects. Once a 
model is implemented using a selected software tool, it must be debugged to ensure that 
it works correctly. In simulation literature, model verification is the process of 
determining that a model works as specified. [34] Eliminating bugs in a simulation model 
can be very time consuming, especially if it is implemented with a general purpose 
programming language, such as C++. In this work, a specialized simulation language 
(ProModel) was used. Because the structure of the language is limited, it reduces the 
amount of coding errors compared to a general purpose language. Verifying the model 
was done in two phases. In the first phase, the debugging capabilities of ProModel were 
used to find and eliminate the easily noticeable bugs. This was done continuously as the 
model was being built. ProModel provides a trace capability, which enables the user to 
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follow the events of the simulation to see if it is performing the way it should. Screen 
messages and animation were also used in this debugging process. Because the simulation 
model has a lot of decentralized logic, it is important to test various combinations of 
model input. This was done in the second phase of the model verification. Testing all the 
parameter combinations with their allowed ranges would have been too time-consuming 
and partly irrelevant for the purposes of this work. Therefore, most of the verification 
effort was put into the installed system type with different control parameters.   

The process of determining the degree to which a model corresponds to the real system, 
or at least accurately represents its specification, is referred to as model validation. 
Proving absolute validity is a non-attainable goal. So actually validating a model is the 
process of substantiating that the model, within its domain of applicability, is sufficiently 
accurate for the intended application. [34] Validation is an inductive process through 
which the developer draws conclusions about the accuracy of the model based on the 
evidence available. Gathering evidence to determine model validity is largely 
accomplished by examining the model structure (i.e., the algorithms and relationships) to 
see how closely it corresponds to the actual system definition. [34] 

The simulation tool includes some rather complex control logic, so the validation process 
was started with the graphic animation capabilities of ProModel. For example the crane’s 
current location is updated on the screen as well as the number of totes it is carrying. The 
simulation can be paused at any time to check the values of global variables or the data 
in the arrays. The next step was to analyze the recorded output to observe if the results 
appear reasonable. The validation was done first for the simplest controls. For example 
FCFS sequencing was tested before the other algorithms so that they could be compared. 
The LP model was first verified separately after which it was validated with the 
simulation model. To help the validation, the LP model was programmed to log all cycle 
information in plain text, so that solution feasibility could be easily checked. 

During this thesis the simulation model could not be fully validated against the installed 
system, due to a lack of operating data. During the making of the thesis, only a light unit 
test was performed for the system. This was a contractual test implemented according to 
an adaptation of the FEM 9.851 standard. A single preprogrammed test cycle was 
repeated five times by each of the cranes. This data was only helpful although not quite 
sufficient to validate mechanical parameters of the crane. It was the only data from which 
the crane handling time and crane positioning time could be obtained. The measured data 
was compared with the values written in the crane’s technical specification. The average 
values for accelerations and load handling times could be calculated from the data quite 
accurately although there were some irregularities in the test cycle data, which could not 
be fully captured with the constant acceleration model. For example the vertical 
acceleration was found to be slightly higher when the crane was moving downwards, and 
the horizontal travel times were shorter when the crane was traveling away from the I/O 
point. These irregularities could not be explained with the loads the crane was carrying. 
Nevertheless, the calculated average horizontal and vertical accelerations were used 
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because they were significantly lower than the values in the technical specification. The 
maximum vertical and horizontal speeds could not be reliably determined from the data, 
because too few of the crane’s movements were long enough to reach maximum speed. 
Therefore, the maximum speeds from the technical specification were used instead. The 
obtained values for the crane parameters were fed as an input to the simulation model 
where the exact same test cycle was then repeated. Although there were some differences 
in travel times, the total difference between the simulated and average measured cycle 
was less than 1 second. This difference was much less than the values obtained by using 
only the values in the specification. Simulating the test cycle also helped prove that the 
KPIs (key performance indicator), such as crane response time and cycle time, are 
programmed correctly in the model.  

Due to a delay with a related project, production-like operation of the AS/RS could not 
be tested during the making of this thesis. Production testing would’ve provided 
important data for validating the controls of the system which are concerned with 
sequencing and cycle formation. As a consequence of the lack of this data, the supplier’s 
algorithm could only be compared with a technical specification document where it is 
described. Although results obtained in this thesis cannot fully be linked with the installed 
system, the most important features are captured in the model which is enough to carry 
out a comparison of the control methods. As described in earlier chapters the crane control 
always involves a number of rule-based decisions for special situations. Not all of these 
were modeled due to lack of information from the supplier. These unmodeled rules 
include open location selection under a very high rack fill level (near 90 %), and handling 
retrieval requests with different priorities. The simulation scenarios are chosen in a way 
that these unmodeled rules wouldn’t have an effect on the crane’s operation.  

Another validation method for the simulation results is to compare them with literature. 
This could be done only partially, because studies of the exact same system type weren’t 
found. Even so, it was possible to utilize some of the results of other AS/RS studies to 
help with the validation process. 
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6 Experimental design and simulation results 
This chapter will first go through the setup of the simulation runs, including choice of 
parameter values, followed by the simulation results. The test runs were designed in a 
manner which mimics the load variations of distribution center production. Two main 
workload scenarios can be found in almost every distribution center. Here they are called 
beginning of shift and on shift. They are used to measure the effect of two complementary 
control decisions, request sequencing and dwell point positioning, respectively.  

6.1 Beginning of shift 

Description 

The beginning of shift scenario corresponds to a production situation, where a large 
amount of orders have arrived during off-shift and are waiting to be picked at the start of 
the next shift. The work schedule of a distribution center is usually paced according to 
the delivery route schedule. If there is a break in the delivery schedule, e.g. on Sunday, 
there is no use picking orders since they can’t be dispatched. During off-shift, the orders 
are buffered, and when the next shift begins, they are released to picking either all at once, 
or in waves.  

The main target of this scenario is to measure the efficiency of alternative sequencing and 
cycle forming strategies. To get the most accurate result, the scenario was defined so that 
both retrieval and storing queues were initially populated so that sequencing algorithms 
could start working right away without a warmup period. The initial number of retrieval 
requests in queue was set to 500, and the initial storing task queue was 25. The same set 
of randomly generated retrieval tasks was used for each run. No additional retrieval tasks 
or external storing tasks were introduced during the runs. In real production the storing 
task queue would initially be empty, unless a storage replenishment process were started 
immediately at the beginning of the shift. As orders are picked, the return flow of the 
storage totes generates storing tasks. This causes a continuous tote flow in both directions 
until the last retrieval task is executed. The 25 initial storing tasks are enough to start the 
continuous work of the crane and prevent the storing task queue from being exhausted 
during the simulation run. The crane works continuously at full capacity, until all of the 
retrieval tasks are completed. When the crane is working in this state of practically 100 
% utilization, the significance of request sequencing is at its highest.  

 The most important performance indicator of this scenario is system throughput, which 
can here be measured from the total time that it takes to perform all the storing and 
retrieval tasks in queue. The total crane movement time will also be considered separately, 
because the handling time is such a large part of the cycle time. The time that a retrieval 
task spends in the infinitely large retrieval queue is not considered, since the retrieval 
requests are considered to have an equal priority. The time that a retrieval request spends 
in the retrieval sequencing queue is recorded so that possible differences between 
dynamic and static sequencing can be noticed. 
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Rack fill level 

The rack fill level is an important parameter to study in the beginning of shift scenario, 
because it affects the possibilities to choose locations for storing and rearranging totes. In 
the installed system, all the compartmented totes will be stored in the racks even when 
they are empty, because they can’t be stacked or used as order totes like the single-
compartmented totes. The empty compartmented totes also add to the rack fill level, 
because they occupy locations just as filled totes. Additionally, some order totes can also 
be temporarily buffered in the rack if they are waiting for currently unavailable stock, but 
these should be quite scarce. The total portion of compartmented totes in the system is 
21.3 %. In the beginning of shift scenario, two rack fill levels are considered: normal, and 
high. The normal production fill level is chosen to be 70 %. This is close to a desired fill 
level in production, when the compartmented totes are also considered [20]. The high fill 
level is set to 85 %. This leaves some margin to the supplier’s upper bound of 90 %, but 
is considerably higher than the normal fill level. The initial situation of the storage racks 
was generated before simulation with the rack fill subroutine. To make the runs 
comparable, the exact same starting situation was used for all the runs with the same fill 
level. A distribution of the occupied and free storage locations for the two fill levels is 
presented in Figure 14. 

 

Figure 14: Rack location distribution, fill level 70 % (upper chart) and fill level 85 % 
(lower chart) 
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Frozen horizon 

As was previously mentioned, the length of the sequencing horizon was fixed to 10, due 

to the physical restrictions of the system. This means that the frozen horizon 𝑓  can be an 

even number between 2 and 10. Three values of 𝑓  are considered in the runs: 2, 6 and 10. 

𝑓 = 10 is the static sequencing approach which should work well with the LP model. The 

value 𝑓 = 2  is not considered an alternative for the LP model, because it defeats the 
purpose of optimizing over multiple cycles, and causes an excessive amount of 
calculation which would slow down the simulation. The TT heuristic does not optimize 
the cycles jointly as the LP model, but as a greedy heuristic it can still perform well 

with 𝑓 > 2. Therefore, all three values of 𝑓  will be simulated with the TT heuristic. The 

supplier’s algorithm does not try to optimize over multiple cycles, so only 𝑓 = 2 needs 
to be considered for it.  

6.2 On shift 

The on shift production scenario means that the system has handled the task queues from 
the beginning of shift scenario and serves new tasks as they arrive. New tasks can be sent 
in waves or one by one. In the installed system, orders are waved at a higher level by the 
WMS (warehouse management system) are sent to the automatic storage system which 
is controlled by the WCS. The requests are then split to different picking areas including 
the five aisles of the AS/RS. Thus the waves from the WMS are broken down before they 
reach an individual crane. In this scenario the tasks arrive to the crane one by one. The 
arrivals of retrieval tasks and external storage tasks are independent. They are modeled 
as a Poisson process, whose intensity is the expected number of tasks per hour.  

In the on shift scenario the importance of sequencing and dwell point positioning depend 
on the rate of the arriving requests. If the requests were buffered in the WCS and sent to 
the crane in larger waves, then sequencing might be more important. If no queues form 
during the shift, then sequencing will not have an effect on the operation.  

The normal workload for the crane was calculated from the estimated production level 
for the system dimensioning year, which is two years after the completion of the 
installation. The tote flows in Table 4 are calculated for a single aisle. The average picking 
time was obtained from simulation results of the whole automatic warehouse system. The 
time to travel the infeed conveyor is reduced from the picking time, because the tote 
becomes an active storing task as soon as it arrives at the end of the infeed conveyor. 
Order totes are sometimes buffered in the miniload, because they are waiting for goods 
from another area. The leaving order totes are included in the tote empty probability. In 
this scenario the storage tote flow between aisles is assumed to be balanced. Only the 70 
% rack fill level scenario will be simulated for the on shift scenario. The sequencing rule 
for this scenario will be the one used by the supplier. The sequencing rule and rack fill 
level are not expected to have much of an impact in this scenario, because the tote flows 
in Table 4 are considerably lower than the maximum throughput of the system. Thus, the 
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crane will not have a very high utilization rate. The simulation time for the scenario is set 
to 7 hours and there are no breaks during the shift. 

Table 4: Tote flow parameters used in the on shift scenario 

 

With the values from Table 4, the optimal dwell point positions were calculated according 

to formulas (7) – (9). The probabilities of a storing task, 𝑝𝑠 were calculated with equation 
(10). Because the optimal dwell point calculation formulas has not been extended to 
situations where the I/O point is not at the corner of the rack, the row height of the I/O 
point, which is 4 in the installed system, was simply added to the optimal dwell point row. 
This might cause a small deviation to the theoretical optimal dwell point. The calculated 
dwell point values are presented in Table 5. As can be noticed, the optimal dwell point 
shifts closer to the I/O point when the number of tote in picking increases. Already with 

2 totes in picking 𝑝𝑠 > 0.5, which makes the I/O point the optimal dwell point. Thus, the 
values for over 2 totes in picking do not need to be calculated. 

Table 5: Optimal dwell points of the crane 

number of 
totes in picking 

probability of a 

storing task, 𝒑𝒔  

optimal 
dwell point 
row 

optimal dwell 
point column 

0  0.12  15  25 

1  0.47  6  5 

2  0.61  4  0 

 

6.3 Simulation results 

The results for the beginning of shift scenario are presented in tables 6 and 7. It is easy to 
see from the results that the FCFS rule, which is basically a no control scheme, performs 
worse than all of the algorithms with both fill levels. This result is expected, and it also 
supports the hypothesis that the three sequencing algorithms presented in Chapter 4 work 
as intended. The dispersion in average cycle times and total travel times is considerably 
higher in the 70 % fill level scenario. Another noteworthy result is the performance 
change of the algorithms in the different scenarios. The supplier’s algorithm is the least 
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affected by the increase in the fill level. The LP and TT algorithms had a more notable 
performance drop with the higher fill level.  

The 70 % fill level runs show that the sequencing approach used by the supplier results 
in a very high crane travel time. This is expected, since the only travel time that it seeks 
to minimize is the one between the second storing location and the first retrieval location. 
On the other hand the algorithm has a smaller total handling time than the other 
algorithms. This is because it utilizes the locations with two open positions very 
efficiently for storing and rearranging. With 70 % rack fill level, there were plenty of 
locations available for combining two tasks.    

The TT heuristic seems to perform best with the frozen horizon length 6. An interesting 

notice is that the smallest frozen horizon 𝑓 = 2 performs the worst with both rack fill 

levels. Even the static approach with 𝑓 = 10 results in smaller travel times. This gives 
indication that the average cost of the cycle with the lowest cost becomes high, even 
though the rack locations and sets of storing and retrieval tasks are updated after each 

cycle. Overall the TT heuristic slightly outperforms the supplier’s algorithm. With 𝑓 =
6, the TT heuristic gives 2.1 % lower average cycle time than the supplier’s approach.  

The LP model gives the overall best results in average cycle time and total task 

completion time, with both rack fill levels. Even though 𝑓 = 6 surprisingly gave a slightly 

better result in the 70 % fill scenario, the static approach with 𝑓 = 10 is by far more 
consistent, and shall therefore be used for comparison with the other algorithms. In the 
normal fill scenario, the LP model resulted in a 5.3 % lower average cycle time and 4.4 

% lower total time than the supplier’s algorithm. The TT algorithm with 𝑓 = 6 was 
second best, with a 2.1 % improvement in average cycle time compared to the supplier’s 
algorithm. The average cycle time improvement of LP compared to the TT heuristic with 

𝑓 = 6 was 3.1 %.  

Table 6: Simulation results of the beginning of shift scenario with fill level 70 %. 

 

In the 85 % fill scenario, the order of the algorithms remains the same, but the differences 
are much smaller. The average cycle time improvement of LP compared to the supplier’s 

algorithm was 1 %, and for TT with 𝑓 = 6, the improvement was 0.7 %.  
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Table 7: Simulation results of the beginning of shift scenario with fill level 85 %. 

 

Another interesting KPI in the beginning of shift scenario is the time that retrieval tasks 
spend in the sequencing queue. The recorded values for average and maximum stay times 
in the sequencing queue are presented in Table 8. As can be noticed, only the supplier’s 
algorithm and the LP model with frozen horizon 10 can guarantee that all tasks pass the 
sequencing queue in a reasonably short time. Because an urgency rule was not 
incorporated in the TT algorithm, some retrieval tasks in the back of the rack can get 
profoundly delayed in the sequencing queue.  

Table 8: Stay times of retrieval tasks in the sequencing queue. 

 

Figure 15 shows a time series of the tasks performed during the on shift scenario with the 
I/O dwell point strategy. The number of dwell point calls is also plotted in yellow. The 
total amount of dwell point calls during the 7 hour shift was 271. This accounted for 40.9 
% of all the requests during the simulation. The crane utilization rate, which includes all 
operating time and travel to the dwell point, was highest (35.7%) with the I/O point 
strategy. According to previous studies, this should be a low enough utilization to 
determine the potential effect and differences between dwell point policies [25]. 
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Figure 15: Number of totes stored (green), number of totes retrieved (blue), and number 
of dwell point calls (yellow) during the on-shift scenario with the I/O dwell point strategy.  

The results of the on-shift scenario are presented in Table 9. The optimal dwell point 
strategy caused 8 % extra crane travel compared to staying at the last location. For the 
I/O strategy the addition was 9 %. The task arrival rates were so low that the length of 
both task queues peaked at 3 for all of the methods. This means that there was no chance 
to apply sequencing during this operational period, so the crane operated in FCFS mode.  

Table 9: Comparison of dwell point rules in the on-shift scenario. 

 

The optimal strategy resulted in the lowest average crane response time. Compared to the 
optimal strategy, staying at the last location resulted in a 10 % higher average crane 
response time. The I/O point strategy gave the worst result, with a 20.5 % difference to 
the optimal strategy. For average request turnaround time, the maximum difference 
between all the strategies was under 1 %. The maximum request turnaround time was also 
lowest with the optimal strategy. The difference was 3.9 % to the stay-at-last-location 
strategy and 6 % to the I/O point strategy. 
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6.4 Analysis of control decisions 

Main findings  

The sequencing and cycle formation problem proved to be worth studying for the given 
system type. Although handling time accounts for roughly half of the cycle time, the 
impact of sequencing and cycle formation was found significant when there are many 
tasks in queue. The simple FCFS rule took 10 % more time to handle the same tasks as 
the LP model, which was found the most efficient strategy. The difference between the 
three algorithms presented in Chapter 4 was considerably larger when the rack fill level 
was 70%. A lower fill level gives the algorithms more alternatives for open location 
selection and task combination, thus increasing possibilities to save travel time. Another 
interesting notice is that shortening the frozen horizon did not necessarily lead to better 

results with the greedy TT heuristic. The TT algorithm gave best results with 𝑓 = 6. This 

result gives reason to test the other two options (𝑓 = 4 and 𝑓 = 8 ) as well.  

One of the important questions going into the simulation experiments was, whether the 

benefit of optimizing over ℎ2 cycles with the static LP model would be enough to compete 

with the dynamic heuristic algorithms and TT in particular, since it has a similar cost 
function. According to the simulation results, the LP algorithm proves the optimization 
to be advantageous. This can be interpreted so that utilizing the combined information of 
the requests in the sequencing horizon can be more significant than the additional 
information obtained by updating the rack and sequencing queues after performing a part 
of the sequenced cycles.  

The effect of the search neighborhood size of the LP algorithm could have been more 
thoroughly studied. A few experiments with search neighborhood size 100 were 
conducted and found to give practically the same results as 150. A more important factor 
seemed to be the choice of which open locations to include in the search neighborhood. 
Random selection proved to be pretty good, but there might be better options.  

The on-shift scenario gave strong evidence that the dwell point strategy used in the 
installed system works well in comparison to the tested alternatives and also leads to the 
smallest total distance traveled by the crane. Additionally, the simulation results indicate 
that dwell point positioning only has a minor effect on the average request turnaround 
time with the estimated normal workload. Even though the average crane response time 
could be enhanced, the effect was not carried over to turnaround times. An explanation 
for this is that 59 % of the tasks arrived when the crane was active. Another factor which 
raised the average request turnover time is the relatively high (28 %) proportion of 
blocked retrieval tasks. Shortening the crane response time of a blocked retrieval task 
does not reduce its turnover time significantly, because it may still take three other crane 
movements to complete the task. Although the exact task rates were known in this case, 
the optimal dwell point strategy didn’t dominate the other strategies. Only the I/O strategy 
was slightly weaker than the other two, which may be due to the long rectangular shape 

of the rack (𝑏 = 0.47). The evenness of the three strategies is supported by an earlier 
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study where random storage was found to be an equalizing factor [27].  One aspect which 
was bypassed in the found dwell point literature is the effect of the physical 
implementation, including the dimensions of the rack and the accelerations and speeds of 
the crane. If the time to travel the dimensions of the storage rack were very large, 
potentially more time could be saved with dwell point positioning. The earlier dwell point 
studies, in which larger effects were observed, mostly referred to slow moving cranes that 
handle heavy pallets. With fast miniload cranes like the ones in the installed system, at 
least the absolute time savings of dwell-point positioning are understandably smaller. 
Varying the tote-flow rates would of course affect the results. The highest effect of dwell-
point selection, as well as the largest differences between dwell point policies, would be 
achieved with a very low system utilization. On the other hand, lowering system response 
times is generally more important when the system has more workload.   

The on-shift scenario also indicates, that request sequencing won’t have an effect if there 
aren’t any queues and the tasks arrive individually with the simulated rates. In real 
production, the arrival pattern would probably not be as smooth even though the order 
waves from the WMS are broken down. There would probably be some situations where 
the task queues momentarily grow, giving sequencing a possibility to effect the crane 
movements.  

Enhancement ideas 

There are many possibilities to develop and improve the sequencing and cycle formation 
algorithms presented in this work. Some targets for development and ideas are presented 
in the following.  

Open location selection proved to be a vital part of the sequencing and cycle formation 
algorithms. An indication of this is the decrease in performance when the fill level was 
increased. Especially the utilization of locations with two open positions to combine two 
storing or rearranging tasks seems to be important. The supplier’s algorithm utilized these 
possibilities best, which made it perform reasonably well in comparison to the TT and LP 
algorithms. The LP model and TT heuristic lacked the capability to combine two 
rearrangement tasks in the same double-deep location. A modification for doing a double-
rearrangement could be added to the cost functions of the two algorithms similarly as it 
was done with storing tasks. The storing location for the double-rearrangement could be 
chosen heuristically, e.g. the closest one to the second retrieval. This might slightly 
improve the performance of LP and TT, but overall the effect would be rather small, at 
least under a normal rack fill level, where only about 7 % of the cycles included two 
rearrangements. Based on the results with the 70 % fill scenario, it would also seem 
justified to always choose a storing location with two open locations over two separate 
locations. This modification could be easily made in both the TT and LP algorithms. 

One aspect of the cycle formation problem, which was not fully captured by any of the 
methods, is routing with one or two rearrangement moves. As was noticed with 
performing a double storing move, the most potential routing improvements are the ones 
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that combine tasks so that two totes are deposited or picked up from one location. This 
could have been a source for more efficiency. For example, when there is one 
rearrangement task, the crane could combine the second storage task with the 
rearrangement task by depositing the two totes in the same location. This would save one 
crane movement and depositing time. Other routing options than store – store – 
(rearrange) – retrieve – (rearrange) – retrieve could be added to the TT heuristic as 
alternative distance metrics. However, the feasibility of the routing would have to be 
checked individually for each cycle. This would increase the time complexity of the 
heuristic, which is already quite large.  

In real production the prioritization of tasks could be done in an upper system so there 
could be constraints that certain tasks need to be performed before others. These priority 
constraints would be simple to add to the TT heuristic as well as the supplier’s algorithm 
because they form the cycles sequentially. The LP model could not handle different 
priority tasks because it doesn’t control the order of the cycles. 

If the choice of which storage tote to retrieve for each task could be made purely based 
on cycle time optimization, this decision would be worth including in the sequencing and 
cycle formation problem. All of the presented algorithms would have to be extended to 
make this decision. With a large LTPR, this choice could be important in reducing cycle 
times.    

Finally, if the TT algorithm were considered for production use, it should be made sure 
that tasks don’t get excessively delayed in the sequencing queue. This could be achieved 
by adding a simple urgency rule which would function in the following way: After every 
sequencing calculation, the retrieval sequencing queue is checked for tasks which have 
been waiting over a pre-defined maximum time in the sequencing queue. If so, the oldest 
one would be chosen to be performed in next cycle.  
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7 Conclusions 
The purpose of this thesis was to study alternative crane control methods of a double-
deep dual-shuttle automatic storage and retrieval system. The study was focused on an 
AS/RS which is currently being implemented in an ongoing warehouse automation 
project. The goal was to find out, how efficiently the control policies implemented by the 
supplier work, and how they could be improved. Crane control can potentially improve 
the performance of any AS/RS without making mechanical changes to the system. A 
miniload AS/RS in a distribution center can operate every day round-the-clock with 
varying load, which makes even small improvements worth considering. All crane control 
policies essentially try to utilize available information contained in currently known 
storing and retrieval tasks, SKU features, and estimated tote flow rates, to decide where 
and how the crane should move. The control problems are strongly dependent on the 
system type, which means that the results of this thesis can only be connected to the 
studied configuration.  

A discrete-event simulation tool was built so that the effect of various system and control 
parameters could be compared. The simulation model was programmed with ProModel. 
It was designed to enable study of multiple different types of AS/RS. In this work the tool 
was used to study the AS/RS related to the ongoing project. To test the effect of the control 
rules, the system was simulated under two different workload scenarios and rack fill 
levels.  

Storage location assignment is a mandatory crane control decision, which has been shown 
to have a significant effect on expected retrieval times, at least with single-deep racks. 
Deciding on a storage policy should be done based on the availability and level of 
accuracy of SKU information. In this thesis, no information about future SKUs was 
available, so the assessment of the alternative storage policies was done based on 
literature and expert opinions. Random storage, which is used by the system supplier, is 
a good choice when the amount of SKUs is very large and the items in store change often. 
It also works well with double-deep racks, because rearrangements can be performed in 
any open location, which enables combining a rearrangement with a storing task or 
another rearrangement. If accurate and reliable information about the turnover rates for 
SKUs is available, then full-turnover storage or class-based storage can reduce average 
retrieval times compared to random storage. With a turnover-based item ranking, the 
effect of the policy strongly depends on the distribution of the storage tote flow in the 
system. The more skewed it is, the more potential improvement can be achieved 
compared to random storage. Dedicating a storage area to an item or a class of items 
requires extra rack space. Maintaining the integrity of a class-based or full-turnover 
storage policy is more difficult with double-deep racks because of forced rearrangements.  
Fast moving items should not block other fast movers or get blocked by slower moving 
items. Dedicating a zone of locations to an item or a class of items also removes much of 
the benefit of combining two storing or rearrangement tasks in a cycle, since the 
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probability that two sequential totes are allowed to be stored in the same location would 
be very small.  

Three dwell point selection rules for the installed system were compared in this thesis. In 
addition to two static stay-at-last-location and returning to the I/O point rules, an optimal 
dwell point strategy based on expected tote flows was tested. The dwell point-strategies 
were compared with the simulation model in the on shift scenario, which mimics a steady 
production situation with no initial queues. According to the results, the optimal dwell 
point strategy could reduce the average crane response time by 10 % compared to the 
policy used by the supplier. However, the difference was practically non-existent when 
average request turnover time was used as a measure. The optimal strategy also resulted 
in 9 % more crane travel compared to the simple stay-at-last-location method used by the 
supplier. Because the optimal dwell point strategy is based on the assumption that the 
rates of tote flows are known, it would not be a viable option without sufficient 
information about production patterns. 

The sequencing and cycle formation problem was broken down into sub-problems and 
three alternative sequencing algorithms were presented. Trying to optimize a combination 
of all the choices in each sub-problem proved to be too costly in computation time. The 
search space of the problem was reduced by limiting the amount of open locations and by 
making some of the choices heuristically before calculating the actual sequence. The LP 
algorithm developed in the thesis had quite many simplifications and restrictions, but 
treated the problem more comprehensively than the other algorithms. The LP algorithm 
was found computationally feasible in the context of this thesis. Furthermore, it 
outperformed both the TT heuristic and the algorithm used by the supplier. According to 
the simulation results of the beginning of shift scenario with a 70 % fill level, the LP 
algorithm was able to reduce the average cycle time by 5.3 % compared to the algorithm 
used by the supplier.  

Although proven to be a computationally feasible option, implementing the LP algorithm 
in a real system would require a lot of customization and testing, before it could be used. 
Maintainability is an important criterion in control algorithms for warehouse systems 
[17]. Managing the program code of an optimization algorithm is significantly more 
difficult compared to the studied heuristic options. The LP algorithm is also very 
specifically designed for the studied configuration. Slight technical or configurational 
changes, such as adding an I/O point or having two independently operable shuttles on 
the crane, would change the problem, which would require a lot of reprogramming.  

Overall, this thesis succeeded in fulfilling its objectives. Alternative crane control 
methods were studied, algorithms for control decisions were developed, and the 
implemented controls were successfully tested with the simulation model. The available 
information of the system was used for the parametrization and validation of the model. 
Although the validation could not be completed during this thesis, the simulation 
scenarios provided a good quantification of the control effects.  
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Future development 

Validation of the simulation model can be continued when production-like testing is 
carried out with the installed AS/RS. First, more data is needed to validate the kinematics 
of the model. The speeds and accelerations need to be re-evaluated once there is a 
statistically significant amount of operating data. To test the cycle formation capabilities 
and maximum throughput of the system, a test similar to the beginning of shift scenario 
will be conducted. The infeed conveyor will be filled prior to the test and the crane will 
be given a set of equally urgent retrieval tasks to perform. This test can then be recreated 
in the simulation model with precisely the same initial storage rack state and set of 
retrieval tasks. This will help to validate the supplier’s sequencing and cycle formation 
algorithm. 

The simulation tool can be used in the future to analyze other AS/RS types in different 
projects with little or no modification. Modified versions of the control methods used in 
this thesis could prove even more beneficial for other system types. For example the study 
of pallet high-bay storage systems with unit-load AS/RSs could lead to very different 
findings compared to this thesis. An interesting extension to the simulation model would 
be adding SKU information. It could be read from a spreadsheet or database during the 
model initialization logic. This would open possibilities to accurately test class-based or 
full-turnover storage assignment policies.  
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