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Abstract 
The mammalian visual system is a dynamic and efficient data processing framework. 
Specifically, the cerebral cortex which is a structured network of cells benefits from an efficient  
information transmission coding. This thesis presents a model-based exploration of visual 
cortex in order to expand our current knowledge about brain mechanisms; specifically, the 
mechanism of information coding behind visual interactions. 
In the first study, we designed a functional magnetic resonance imaging (fMRI) experiment 
to explore a possible link between contextual modulation and efficient macroscopic spatial 
response coding in the visual cortex. The results imply that visual interactions were best 
explained with a decorrelation model which predicts average modulation strength by fully 
decorating the spatial fMRI signals.  
In the second study, we reviewed a potential approach to relate fMRI activation patterns to 
neural population activity. We went over existing knowledge about neurovascular coupling as 
a key point in predicting fMRI signal based on a neural network simulation and provided a 
sketch which covered practical steps to bridge the gap between mathematical modeling of 
single neuron responses to neuroimaging data with a mesoscopic biomimetic neural network. 
The proposed biomimetic neural network provides insight into data processing in cortical 
neural networks. 
In the third study, we designed an fMRI experiment and based on the blueprint of the second 
study simulated a simplified neural network representing the visual cortex. Then, we tried to 
replicate the experimental fMRI signal by means of this biophysically plausible neural network 
simulator. Our results highlight the role of dendritic structure of neurons to be able to repeat 
the experimental fMRI signals with high fidelity. 
In the fourth study, we used similar simulator as in the third study and tried to replicate 
expected neural activation pattern based on a well know contextual modulation (area 
summation function) in primary visual cortex. We anticipated that by getting closer to an 
activation pattern driven by area summation function, the efficiency of the neural network 
would be increased. Our results show that spiking frequency, entropy per spike and sparseness 
(as measures of network efficiency) are all associated with the natural area summation 
function.  
In summary, results of this thesis suggest that contextual modulation is related to efficiency 
of the visual system. In addition, it is possible to predict fMRI and expected area summation 
activation pattern by a mesoscopic neural network, however compartmental neurons have a 
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1. Introduction 

Anatomical and physiological studies of the mammalian brain show that the 
cerebral cortex is a structured network of cells. Specifically, in the visual cortex 
while stimuli are presented to this network of cells, the cells interact to pro-
duce the cortical activation. This interaction happens at multiple levels of cor-
tical processing hierarchy. As a result of the neural interactions, the neural 
response to a specific stimulus is dependent on the context in which the stimu-
lus is presented. This well-known phenomenon is called contextual modula-
tion of neural responses. The network mechanisms behind contextual modula-
tion have been accounted for using physiologically plausible models (Somers 
et al., 1998, Schwabe et al., 2006, Schwabe et al., 2010). For each cell, these 
models consider a large region of information access in the visual field via 
feedforward-feedback neural connections. In the primary visual cortex, con-
textual modulation has been associated with more efficient information 
transmission (Vinje and Gallant, 2000, 2002). In addition, there is some evi-
dence that statistical dependencies between neural units are related to contex-
tual modulation (Muller et al., 1999, Felsen et al., 2005).  
 
In addition to the studies at the individual cell level, contextual modulation of 
macroscopic neural responses has been studied as well (Williams et al., 2003, 
Tajima et al., 2010, Vanni and Rosenström, 2011). However, some key ques-
tions about contextual modulation remain unsolved: (i) Similar to single-cell 
studies, can we expect an increase of neural network efficiency (see Section 
1.3) at system-level as a result of contextual modulation? (ii) Is it possible to 
develop a computational neural network model to predict system-level cortical 
activations based on the single cell responses? (iii) Is it possible to identify the 
components of the neural network that have a key role in predicting the con-
textual modulation of responses? (iv) In the first question, we look for experi-
mental system-level efficiency of contextual modulation, but can the computa-
tional neural network model quantitatively confirm the efficiency of contextual 
modulation?  
 
In this thesis, we designed functional magnetic resonance imaging (fMRI, see 
Section 1.2) experiments to investigate whether the observed increase of effi-
ciency in the single cell contextual modulation can be generalized to neuroim-
aging data. To address question (i), we explored how spatial correlations be-
tween cortical signals to center-and-surround stimuli are related to interac-
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tions between the two cortical activations and studied such contextual effects 
in different visual areas and eccentricities (see Section 2.1). To answer ques-
tion (ii), we reviewed the potentials and concerns of relating theoretical indi-
vidual neural models (Hodgkin and Huxley, 1952, Fourcaud-Trocme et al., 
2003, Burkitt, 2006b, Brunel and van Rossum, 2007) to macroscopic neu-
roimaging data (see Section 2.2). To tackle question (iii), we then developed a 
computational neural network and generalized the response of single neurons 
to a population of neurons in a neural network, in order to predict system-level 
activation patterns. We tried to optimize the open parameters of the model to 
best predict the fMRI and theoretical contextual modulation data. Therefore, 
we could investigate which parameters are more important in predicting the 
system-level contextual modulation responses (see Section 2.3). Finally, to 
confront question (iv) based on this neural network simulation, we tried to 
find the link between area summation function (contextual modulation as re-
flected in single cell receptive field) and efficiency of the visual system neural 
responses (see Section 2.4). 

1.1. The visual system

The visual system is an important part of central nervous system as more than 
25% of the primate cerebral cortex is directly involved in visual system, and it 
has been studied more extensively than compared to any other sensory system.  
 

1.1.1. The retina

The first component of the visual system, retina, is a neural network with light-
sensitive receptor cells located in the inner surface of the eye (for a review see 
(Wassle and Boycott, 1991)). The visual processing starts by conversion of light 
into an electrical signal, phototransduction, accomplished by photoreceptors 
in the retina. In the human eye, rods and cones are the most important 
photoreceptors (Yau, 1994) with major difference in functionality (for a review 
see (Burns and Lamb, 2004)). First, there are about 20 times more rods than 
cones in the human retina. Second, rods are triggered by much lower levels of 
light than cones and thus in usual day-light conditions cones mediate our 
vision. In addition, rods are not sensitive to colors and are more widely 
distributed across the retina than cones. The second step of retinal processing 
happens in bipolar cells (for review see (Nelson and Kolb, 2004, Euler et al., 
2014)), which send signals from either a cone or a rod to ganglion cells. 
However, some of the bipolar cells receive signals from horizontal cells or send 
the signals to amacrine cells. The horizontal and amacrine cells introduce 
lateral inhibition. The bipolar cells can be either on- or off-center cells which 
contain inhibitory or excitatory synaptic connections, respectively. Ganglion 
cells are the last building blocks of the retina, and are considered as the output 
neurons of the retina (for a review see (Martin and Grünert, 2004)). In 
general, ganglion cells transform current into spike frequency and have center 
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and surround receptive fields (Kuffler, 1953). Parasol and Midget cells with 
different morphology of their dendrite arbours are the main types of the 
ganglion cells. The spatial distribution of Parasol and Midget cells varies 
across the retinal eccentricity (Dacey, 1993, Field and Chichilnisky, 2007). In 
the initial stage, the information from the Midget and Parasol cells transmit by 
two separate pathways which are termed parvocellular and magnocellular 
pathways, respectively. 
 

1.1.2. Lateral Geniculate Nucleus 

Almost 90% of the output of the retina is passed to Lateral Geniculate Nucleus 
(LGN) in the thalamus (Callaway, 2005). The LGN neurons have center-and-
surround receptive fields, which helps to keep the cells sensitive for a wide 
dynamic range by avoiding the saturation. The main pathways in LGN are the 
magnocellular and parvocellular pathways (for a review see (Lennie and 
Movshon, 2005)). The cells corresponding to parvocellular pathway have a 
small receptive field. They are sensitive to high spatial frequencies and have 
low contrast sensitivity. The cells corresponding to magnocellular pathway 
have low spatial resolution but high contrast sensitivity (Livingstone and 
Hubel, 1988, Kaplan, 2004). These pathways project to different layers of 
primary visual cortex (Livingstone and Hubel, 1988). The LGN receives several 
feedback connections (almost 95% of the LGN input) from the visual cortex, 
superior colliculus, pretectum, thalamic reticular nuclei, and local LGN 
interneurons. Therefore, it has been suggested that LGN has an important role 
in modulating the information flow to the cortex using these feedbacks 
(McAlonan et al., 2008, Saalmann and Kastner, 2009). 

1.1.3. The Visual Cortex 

The main part of visual processing happens in the visual cortex located 
primarily in the occipital lobe. The visual cortex is a structural network of 
neurons that communicate by lateral, feedforward and feedback connections. 
The circuitry in visual cortex is formed the by anatomical connections (such as 
synaptic connections) between neurons and neurotransmitter receptor 
(functional mediators) systems (Rivadulla et al., 2001). 
 
The visual cortex consists of the striate cortex (primary visual cortex, V1), 
extrastriate cortex (V2, V3, V4 and V5) and more than 20 other different 
cortical areas. These visual areas are defined based on their architecture, 
connectivity, visual topography, and functional characteristics. There are 
different definitions of these areas because of individual variability.  
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1.1.4. The Primary Visual Cortex 

The primary visual cortex (V1) is the first level in the cortical visual system 
hierarchy. Like many other cortical arease, it has columnar functional 
organization (group of neurons with almost similar receptive fields (Rakic, 
2008)) and also comprises six layers, numbered as 1 to 6 from the pial surface 
of the cortex towards white matter. Each layer has a distinct set of 
characteristics, such as neural connectivity, cell types, and possibly different 
data processing roles. The primary visual cortex has a clear and continuous 
retinotopy (for a review see (Ringach, 2004)). This means that almost every 
point in the visual field can be directly mapped by a simple mathematical 
formula (Schwartz, 1994) to the V1 neurons. The V1 neurons are tuned for 
basic stimulus features such as orientation (Hubel and Wiesel, 1959, 1962, 
Campbell et al., 1966), spatial frequency (Campbell et al., 1969) and direction 
of motion (Hubel and Wiesel, 1959, 1968). The primary visual cortex provides 
a good platform for studies of cortical circuits and computational models as it 
can be easily stimulated and its physical location in the cortex makes 
considerable part of it accessible by multiple experimental methods.  
 
In a feedforward flow: (i) V1 mainly receives visual input from LGN to its 
Layer 4. (ii) V1 also receives input from some other brain regions as well 
(Orban, 2008) to its Layer 4. (iii) V1 sends feedforward output mainly from 
Layer 2 and Layer 3 to higher visual areas (Felleman and Van Essen, 1991a). 
However, the feedforward input from LGN comprise only about 2% of 
synapses to V1 and most of the rest originate from the recurrent local synaptic 
circuitry (Markov et al., 2011). In addition to the feedforward connection, V1 
receives feedback mostly to its superficial layers from higher visual areas and 
sends feedback to LGN and thalamic reticular nucleus (Reich et al., 2001, 
Alitto and Usrey, 2003). 
  

1.1.5. Other visual cortical areas 

In addition to V1, V2 and V3 are also categorized as lower-order cortical areas 
as they are involved in processing of low-level visual features (Grill-Spector 
and Malach, 2004). V2 and V3 comprise two asymmetric, physically separated 
subdivisions. These sub-regions are named dorsal V2 and ventral V2, and 
dorsal V3 and ventral V3, respectively. In general, in addition to some 
similarities to V1, V2 and V3 neurons are also modulated by more complex 
visual characteristics of the stimuli (Van Essen et al., 1986, Boynton and 
Hegde, 2004). Higher-order visual areas include a large number of cortical 
regions (such as V4, V5, V6 and etc.). They are usually involved in more 
advanced data processing than lower-order cortical areas, such as motion and 
attention-controlled processing, for a review see (Orban, 2008). 
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important role in understanding the visual cortical processing. For example, 
there is a very minor subcortical input, high local connectivity and low long-
range corticocortical connectivity (Markov et al., 2011). 

1.2. fMRI 

Electrophysiological, optical, and anatomical in vitro methods are common 
ways to study animal brains. While these methods provide good spatial and 
temporal resolutions, they are invasive and offer limited possibilities to access 
multiple brain areas simultaneously. Functional Magnetic Resonance Imaging 
(fMRI) is a noninvasive imaging method which has a very high spatial 
resolution, while its temporal resolution is limited by the sluggish 
hemodynamic response. The hemodynamic fMRI signal has an indirect and 
complex association to actual neural activity through neurovascular coupling 
(for a review see (Huettel et al., 2004)).  
 

1.2.1. Principles of MRI

In most medical applications of Magnetic Resonance Imaging (MRI) an image 
of the tissue is created based on a signal related to the protons in the water 
molecules. The protons have a property called nuclear spin and an associated  
magnetic moment which usually is oriented randomly. An MRI device 
provides both a strong and uniform magnetic field (B0 field, typically between 
1.5-7 T), fields oscillating at radio frequencies (RF field), as well as magnetic 
field gradients. In the B0 field the nuclear magnetic moments form a net 
magnetization vector which orients itself to the direction of the B0 field and 
precess around the direction of the field with a specific frequency. This 
precession frequency is the frequency in which nuclear magnetic moment can 
efficiently absorb energy. This resonance frequency in rad/s is proportional to 
the B0 field: = B0, where the nucleus-specific constant proportionality is 
called the gyromagnetic ratio.  For a proton /2 = 42.576 MHz/T (Huettel et 
al., 2004). 
 
Next, to create the Magnetic Resonance (MR) signal, a brief RF pulse is 
applied. The RF pulse oscillates at the precession frequency to provide efficient 
absorb of energy. This pulse turns the net magnetic moment away from the 
direction of B0. As a result, the longitudinal component of the net 
magnetization decreases, and in addition, the RF pulse introduces a 
measurable transverse component to the net magnetization (MR signal). 
When the RF field is switched off the magnetic moments relax back original 
state and emit energy that can be detected as an RF signal. There are two time 
constants involved in the two simultaneous relaxation processes. The T1 
relaxation time describes the rate the longitudinal magnetization is recovered 
while T2 relaxation is related to the decay of the transverse magnetization.  
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As mentioned before, the resonance frequency is proportional to magnetic 
field, which provides a basis for spatial encoding in MRI. This signal encoding 
is done with three spatially orthogonal magnetic field gradients. A specific slice 
is selected by applying a linear magnetic field gradient, and then, two 
orthogonal magnetic field gradients are used to encode spatial locations within 
one slice. The frequency and bandwidth of the RF pulse together with strength 
of the gradient magnetic fields determine the spatial resolution and encoding 
of the location (Huettel et al., 2004). 
 

1.2.2. Functional MRI 

The most common signal used in fMRI originates from the difference in 
magnetic properties of deoxygenated and oxygenated hemoglobin. 
Deoxygenated hemoglobin is paramagnetic whereas oxygenated hemoglobin is 
diamagnetic. Therefore, decreased density of deoxyhemoglobin causes an 
increase of MR signal. This fMRI method is called Blood Oxygen Level 
Dependent (BOLD) contrast imaging (Ogawa et al., 1990). In the brain, higher 
neural activity in a specific region usually associates with increased amount of 
oxygen consumption and consequently increased Cortical Blood Flow (CBF) to 
provide energy to the neurons by glucose oxidation (Raichle and Mintun, 
2006) in that region. More specifically, active neurons release 
neurotransmitters during neural activity. Astrocytes recycle these 
neurotransmitters back to the neurons. The blood flow appears to be directly 
linked with the signaling between active neurons and astrocytes. For a review, 
see (Haydon and Carmignoto, 2006).  
 
The BOLD signal emerges from a combination of three factors: (i) oxygen 
consumption which locally increases deoxyhemoglobin resulting in reduction 
of the BOLD signal. (ii) The change in cerebral blood flow which is more than 
the oxygen consumption and cause reduction of deoxygenated hemoglobin. 
Thus, it results in positive BOLD signal. (iii) The change in cerebral blood 
volume due to increase of the blood flow and vessel wall capacitance in the 
small veins which cause increase in deoxyhemoglobin concentration and 
subsequently non-linearly decrease of the BOLD signal. In addition, earlier 
studies show that positive BOLD signal is correlated with both the Multi-Unit 
Activity (MUA) and the Local Field Potentials (LFP), and the LFP seems to be 
better linked to the BOLD than MUA (Magri et al., 2011). 
 
Due to slow blood flow response, BOLD signal shows a temporal dynamic. This 
temporal dynamic is termed Hemodynamic Response Function (HRF). After 
neural activation the signal starts to increase from its baseline about 2 s after 
the stimulus onset. Next, the BOLD signal rises to its maximum level about 
five seconds from the start of stimulus. Later, signal drops quickly a bit under 
its baseline and then returns to the baseline almost after 16 s from the 
stimulus onset (Figure 1.2). Many studies have also reported an initial dip 



18 

before t
between
Howeve
et al., 19
 

Figure 1.

 

1.2.3. f

fMRI h
function
stimulu
(althoug
have th
single c
anatom
differen
group o
number
represen
(Mount
ultra-hi
parallel 
 
Recent 
Koopma
able to
supragr
3, 4 and
study i
develop

the increase
n neurovasc
er, there is i
998). 

.2. Hemodyna

fMRI as a b

has several 
nal map of 

us. With pr
gh 2 mm3 i

he potential
cortical colu

mical or fun
nt neural pr
of about 104

r of neuron
nts a funct

tcastle, 1997
igh field MR
 excitation a

fMRI stud
ans et al., 2

o separate 
ranular, gra
d 5-6 respe
intra-cortic

pment is nec

e of signal a
cular coupl
individual v

amic response

brain resea

application
the cortex,

resent fMRI
s a more ty
l of increas
umn (Logo
nctional co
roperties (R
4 neighbori
ns usually c
tional unit,
7). To achie
RI scanner,
are probabl

dies (Goen
2010, Polim

activation 
anular and i
ectively. Thi
cal function
cessary to b

and tried to
ling and ne
variability i

 function. Das

arch tool11

ns. In som
, i.e., to rela
I methods 
ypical resol
ing the spa

othetis, 200
olumnarity, 
Rakic, 2008
ng neurons
covers 0.3-
 with parti

eve the reso
, a large nu
ly necessary

nse and Lo
meni et al., 

strengths 
infragranula
is spatial re
nal organi
e able to seg

o use it for 
eural activit
in the meas

shed line show

me studies 
ate activate
a resolutio

lution). Ho
atial resolut
08). A cort

which cou
8). Function
s with simil
-0.4 mm2 o
icular conn

olution of a
umber of re
y (Logotheti

ogothetis, 2
2010, Goen
at three 

ar, correspo
esolution p
ization. Ho
gregate all c

providing a
ty (Hu and 
sured HRF 

ws the baselin

the aim is
ed cortical a
on of 1 mm
owever, BOL
tion even t
tical colum
uld be def
nal column
lar tuning p

of the corti
nectivity to 
a single cort
eceiving coi
is, 2008). 

2006, Ress
nse et al., 2
different la
onding roug
rovides the

owever, fu
cortical laye

a better link
Yacoub, 20

as well (Agu

 
e.

 to establi
areas to a g

m3 is achiev
LD fMRI m
o the level 
n may refe
fined based

is defined 
properties. 
cal surface 
other colu

tical column
il elements,

s et al., 2
2012) have b
aminar dep
ghly to laye

e opportuni
rther tech
ers. 

k be-
012). 
uirre 

ish a 
given 
vable 

might 
of a 

er to 
d on 

as a 
This 
 and 

umns 
n, an 
, and 

2007, 
been 
pths: 
ers 1-
ity to 

hnical 



Introduction

19 

  

1.2.4. fMRI challenges 

The baseline concentration of deoxyhemoglobin depends on many factors. For 
example, different brain areas, individuals and physiological states result in 
varying deoxyhemoglobin concentration. To address this problem, usually the 
mean signal is subtracted in fMRI analysis. Another problem is that  density of 
vasculature varies between cortical areas which affects the BOLD signal 
change as a function of neural activity (Reina-De La Torre et al., 1998). To 
overcome this problem, when comparing different brain areas arterial spin 
labelling technique (which allows the weighting of the MRI signal by cerebral 
blood flow) provide a better estimate of the absolute value of blood flow 
changes compared to direct compare of the signal (Calamante et al., 1999).  
 
One of the most important challenges of interpreting the fMRI signal arises in 
studies interested in the quantity of BOLD signal. Specifically, in case of 
having negative BOLD signal, it is important to know to what extent the BOLD 
signal nonlinearities might be explained by hemodynamic redistribution of 
blood known as vascular stealing. Systematic changes in visual parameters 
showed that the nonlinearity has a strong neural origin (Pihlaja et al., 2008). 
In addition, negative BOLD response has been associated with reduction of 
neural activity (Shmuel et al., 2006, Boorman et al., 2010) and cerebral 
metabolic rate of oxygen consumption (Devor et al., 2005, Pasley et al., 2007). 
Moreover, hyperpolarization of the neuronal membrane potential has been 
correlated with negative BOLD signal (Devor et al., 2007). These findings 
confirm that the blood stealing cannot explain the reduction of BOLD signal 
during negative BOLD response. In addition, the positive and negative BOLD 
responses show different behavior in increase and decrease of cortical blood 
flow and volume in different cortical layers. This suggests distinct mechanisms 
of neurovascular coupling for positive and negative BOLD responses (Goense 
et al., 2012). 
 
Another important challenge in fMRI studies is dealing with the noise caused 
by the head motion (Friston et al., 1996, Andersson et al., 2001). The most 
common anatomical procedure to deal with this problem is the co-registration 
of the functional volumes to a reference volume. However, due to interactions 
between the head movement and head-induced inhomogeneity of the 
magnetic field, residual motion-related variance may still remain (Andersson 
et al., 2001). Therefore, estimation of the motion parameters from the co-
registration and using the in signal analysis might help to exclude the residual 
variance. 
 

1.3. Efficiency in a network

The brain, as a network of interconnected neurons, is very efficient in 
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processing of natural data. In a neural network, one measure of efficiency is 
coding efficiency. The amount of information that can be transmitted with one 
unit of energy could be defined as coding efficiency. Reduction of redundancy 
in a response output of a neural network has been linked to coding efficacy 
(Barlow, 1961, Barlow and Földiak, 1989) as it increases the efficiency of 
information transmission. In addition, sparse coding can increase network 
coding efficiency. Sparsely coded network is usually defined as a pattern in 
which a small fraction of the neurons encode the signal and the rest remain 
relatively silent. 
 
In a natural environment, input data (for example visual stimulus) contains a 
set of statistical dependencies delivered to the sensory information flow. For a 
statistically optimized representation of the sensory information brain works 
as a multivariate system. In this multivariate system a set of basis functions 
provide learning by simplifying and sampling new sensory inputs (Rao and 
Ballard, 1999). This means that in the process of learning the error between 
the input and the learned basis vector is propagated to the next hierarchical 
level and the prediction based on the basis vectors is back propagated to the 
previous hierarchical level. Based on the information theory, to achieve the 
largest capacity of information transmission with given number of units, a 
message should comprise equal probability of activation in each unit 
(Shannon, 1948). In the learning process redundant data is important until it 
signals to higher order structure of network and updates the basis functions. 
After that adaptation to these statistical regularities is important to avoid 
redundancy and have an efficient sensory signal processing (Field, 1987, Rao 
and Ballard, 1999, Simoncelli and Olshausen, 2001, Friston, 2010).  
 
It has been suggested that coding efficacy is achieved with decorrelation of 
correlated neural responses (Barlow and Földiak, 1989). If neural patterns are 
independent, they are necessarily also uncorrelated. Therefore, decorrelation 
might be a valid substitute for independence in neural networks. However, 
decorrelation might be a separate process from the sparse and independent 
coding, although it is a common preprocessing step in computational 
algorithms which aim to find sparse and independent components (Olshausen 
and Field, 1996, Hyvärinen et al., 2009).  
 
There are two types or correlation in neural responses: (i) Noise correlations, 
indicating the dependencies between trial-to-trial variability of neural 
responses. This means that for each stimulus the population activities are 
correlated. (ii) Signal correlations, which is the relationship between mean 
firing rates across of neurons with similar tuning functions. For example, cells 
with overlapping receptive fields produce signal-correlated outputs. To reduce 
signal correlations, it is not efficient to learn regularities during one sensory 
event and have a fixed structure for decorrelation because each sensory event 
has particular dependencies which cause new correlations in the spatial 
activation patterns. Therefore to maximize information transmission capacity, 
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it is necessary to have a neural code which rapidly adapts to the statistics of the 
sensory environment (Laughlin, 1981, Muller et al., 1999, Brenner et al., 2000, 
Fairhall et al., 2001, Vinje and Gallant, 2002, Sharpee et al., 2006). This 
adaptation can happen for example by shifting in the sensitivity of a neuron 
according to continuous stimuli in time or place. This has been shown both for 
low-level parameters in simple systems, such as contrast in insect compound 
eye (Laughlin, 1981), and also for more complex regularities in complex 
systems, such as orientation tuning in mammalian primary visual cortex 
(Gilbert and Wiesel, 1990, Muller et al., 1999, Felsen et al., 2005).  
 
Recent studies suggest that even the macroscopic activation patterns carry 
significant information about underlying neural network (Haxby et al., 2001, 
Kay et al., 2008, Mitchell et al., 2008). Moreover, the information in 
macroscopic activation patterns has been successfully used for multivariate 
pattern classification and prediction of the activation patterns. Therefore, 
efficiency of a neural network is expected to be accessible already in the 
macroscopic (for example fMRI) population activity and not only at local 
intravoxel population. 
 

1.4. Neural interaction models

1.4.1. Contextual modulation 

In the visual system, the neural response to a separately presented visual 
stimulus might not be equal to the neural response to that stimulus, while it is 
surrounded with another stimulus: the response to a stimulus depends on the 
context in which it is presented. This well-known phenomenon is named 
contextual modulation. Contextual modulation suggests that local and 
feedback information (Angelucci et al., 2002), or even information from other 
sources than visual sensory system affect the processing of a given stimulus. 
Contextual modulation has been observed and studied in different levels of the 
visual system using several methods, for example in behavioral (Cannon and 
Fullenkamp, 1993, Xing and Heeger, 2001, Nurminen et al., 2010), single 
neuron (Levitt and Lund, 1997, Ichida et al., 2007), and system-level (Williams 
et al., 2003, McDonald et al., 2009, Wade and Rowland, 2010, Vanni and 
Rosenstrom, 2011). In general, context can reduce or increase the neural 
response; the former is called suppression and the latter facilitation, 
respectively.  
 
At the single-cell level, contextual modulation has been widely studied in both 
spatial and temporal (for example, adaptation) dimensions. From intracellular 
properties of neurons, we know that despite sharp input tuning of the action 
potential, output of a single neuron is affected with very distant stimuli. 
Specifically, spatial contextual modulation of V1 neurons suggests that 
surround stimulus outside the classical receptive field can non-linearly 
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modulate responses of V1 neurons. Usually, stimulation of the extra-classical 
receptive field reduce firing rate evoked by stimulus inside the classical 
receptive field (Solomon et al., 2006). However, increase of the firing rate 
could be expected as well (Levitt and Lund, 1997, Ichida et al., 2007). In 
spatial contextual modulation the level of interaction is affected by the 
surround distance: the closer stimuli usually have a stronger modulation effect 
(Cannon and Fullenkamp, 1991, Levitt and Lund, 2002). In addition, the 
contextual interactions are affected by spatial frequency and orientation 
differences between the center and surround stimuli. Usually, having the 
center and surround at the same spatiotemporal frequency (Webb et al., 2005) 
or orientation (Cavanaugh et al., 2002) leads to a very strong modulation. In 
addition, in most of the cases surround in relation to center stimuli contrast is 
an important factor in determining the modulation strength. Usually, higher 
contrast of surround leads to suppressive effect (Chubb et al., 1989, Snowden 
and Hammett, 1998, Olzak and Laurinen, 1999). Contrast facilitation is 
sometimes observed when the surround has a lower contrast than the center 
(Xing and Heeger, 2001).  
  
Many theoretical and experimental studies show that processing and coding of 
sensory information is affected by the statistical regularities of the 
environment (Barlow, 1961, Olshausen and Field, 1996, Hyvärinen et al., 
2009). Therefore, in addition to spatial contextual modulation, the neural 
response to visual stimuli might be modulated by non-spatial contexts such as 
attention, adaptation and learning.  
 
Contextual modulation has been also reported in system-level studies 
(Williams et al., 2003, McDonald et al., 2009, Wade and Rowland, 2010). For 
example, in fMRI studies spatial context affects the BOLD responses in the 
early visual cortices of humans (Dumoulin and Hess, 2006). In addition to 
system-level spatial contextual modulation, early fMRI studies of temporal 
contextual modulation show that repeating the same stimulus leads to 
reduction of the BOLD signal (Grill-Spector et al., 1999, Grill-Spector and 
Malach, 2001).  
 
Several experimental and theoretical studies aimed to model the network 
mechanisms behind contextual modulation with physiological models. 
Specifically, Schwabe et al. (2006) tried to explain how the excitation and 
inhibition are linked. They suggested a network of lateral, feedforward and 
feedback connections, to model contextual modulation with surround 
suppression and facilitation. In their model feedback comes from higher- to 
lower-order areas and excitatory feedback connections can suppress responses 
via inhibitory interneurons. In addition, another network model (Tsodyks et 
al., 1997) suggests that recurrent excitation and feedback inhibition are always 
present in the system and suppression is associated with withdrawal of 
recurrent excitation (Ozeki et al., 2009).  
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shapes of the area summation function, and correspondingly, these Gaussian 
functions, are dependent on the stimulus parameters in the classical and extra-
classical receptive field. For example, relative orientation or contrast of center 
and surround modulate the shape of the ASF (Knierim and van Essen, 1992, 
Levitt and Lund, 1997). However, previous studies of ASF do not mention why 
such non-linear area summation is useful for biological visual signal 
processing. For example, it is not known how this non-linear ASF could be 
related to an improvement of visual system efficiency. 
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2. Specific studies 

2.1. Study I: Visual interactions conform to pattern decorrelation in 
multiple cortical areas 

Contextual modulation (see Section 1.4.1) is an extensively-studied, robust 
phenomenon (Maffei and Fiorentini, 1976, Gulyas et al., 1987, Knierim and 
van Essen, 1992, Levitt and Lund, 1997, Sceniak et al., 1999, Li et al., 2000, 
Angelucci et al., 2002, Cavanaugh et al., 2002, Felsen et al., 2005, Ichida et al., 
2007) which affects dependencies between neurons (Muller et al., 1999, Felsen 
et al., 2005) and has been associated with efficient information transmission 
in the primary visual cortex (Vinje and Gallant, 2000, 2002). Recent work 
(Vanni and Rosenstrom, 2011) suggested that contextual modulation relates to 
decorrelation, and interaction in functional magnetic resonance imaging data 
can be modeled with a simple cortical decorrelation model. They proposed that 
the average suppression and facilitation of the activation pattern nonlinearly 
links to decorrelation of the mean responses. Such decorrelation would cause 
reduction in redundant responses across cerebral cortex. This in practice cause 
independence in statistical properties of the activation patterns for two 
different stimuli. 
 
In this study, we designed an fMRI experiment to explore how BOLD signal 
strength, sign, and spread in the visual cortex are associated with contextual 
suppression and facilitation. In particular, we studied how the correlation 
between spatial activation patterns of visual stimuli is related to average 
contextual modulation across voxel population in different parts of the visual 
cortex. In other words, in spatial domain, we studied how similarities of the 
mean blood oxygenation level dependent signal between cortical responses are 
related to suppression and facilitation. We investigated contextual modulation 
with different eccentricities of the stimuli in different visual cortical areas. 
 

2.1.1. Methods

We studied fifteen adult subjects (age 20-44 years, 12 males), with normal or 
corrected-to-normal vision. The subjects were presented with five different 
stimuli with sinusoidal pattern and 0.5 c/deg spatial frequencies. Center, near 
and far surround stimuli were presented sequentially, or simultaneously 
(Figure 2.1). The contrast of the stimuli was 15%, with 40 cd/m2 mean display 
luminance. All the stimuli were generated with MatlabTM (Mathworks, Natick, 
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channels. The acquisition volume consisted of a 64*64 matrix, covering 18 cm 
field of view, and 29 slices, with 2.8 mm thickness. For each subject, we ran 
five Echo Planar Imaging (EPI) acquisitions with 30 ms echo time, and 60 
degrees flip angle. Each acquisition had 158 time points with Repetition Time 
(TR) = 1.8 s. In addition, we had a functional localizer acquisition with similar 
acquisition parameters, but 164 time points. All subjects also participated in a 
separate fMRI session for mapping of lower-order retinotopic areas 
(Henriksson et al., 2012), ventral stream areas and V5. The cortical mapping 
together with functional localizer run could localize the active areas by each 
stimuli ring in different cortical areas (Figure 2.2). 
 
After data collection, the fMRI data were preprocessed by converting them to 
NIFTI format, slice time correction, and realignment with reslicing (Friston et 
al., 2007). We followed the standard segmentation procedure, and an expert 
evaluated the quality of segmentation of each subject during and after the 
segmentation. 
 
We defined the functional response in visual cortex to presenting center alone 
as C, and surround alone as S (SN: Near surround and SF: Far surround). 
While both center and surround stimuli are presented simultaneously, we 
assumed that the component responses become decorrelated, and denoted the 
decorrelated response for center as C’, and that for surround as S’, 
respectively. Naturally, C’ and S’ cannot be measured separately, but we can 
only measure their sum, which is denoted m(C,S), a measured function of 
original component responses. We assumed a linear summation of the 
components: m(C,S) = C’+S’ . If C is larger than C’, surround suppressed the 
center and if C is smaller than C’, surround caused facilitation in the center. 
The same applies to S, respectively. 
 
We defined d for each voxel as a suppression index of contextual modulation, d 
might be theoretical d (dT, defined later) or measured d (dM):  
 
 S)+(C / S)m(C,-1=dM     (2.1) 

 
We know the C, S, and m(C,S) responses from the fMRI measurement for each 
voxel and could thus compute dM for each voxel separately. 
 
Next, dM was compared to a d-value which would optimally decorrelate the 
vectors C and S. Vanni and Rosenstrom (2011) showed that C’ and S’ become 
fully decorrelated by a simple function of C, S and d: 
 

C*d-S=S'
S*d-C=C'

     (2.2) 

      
This was done as follow: First, a vector of BOLD responses for C and S stimuli 
in a single set of Voxels Of Interest (VOI) were placed in Equation 2.2. Next, 
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with appropriate selection of a scalar d-coefficient for all the voxels, Equation 
2.2 can fully decorrelate the two vectors (Vanni and Rosenstrom, 2011). Here, 
the d is a real number between -1 and 1. The appropriate fully decorrelating, d-
coefficient was termed theoretical d-coefficient (dT), and was calculated from 
the spatial correlation of voxel activation patterns C and S. While calculating 
dT, we set zero covariance between C’ and S’ and then dT came as a root of a 
quadratic equation. After solving Equation 2.2 for d, we had fully decorrelating 
d-coefficient (dT) (see (Vanni and Rosenstrom, 2011) Supplementary equations 
for details). This dT was compared to mean of voxel-wise determined dM across 
the same voxel population. 
 

2.1.2. Results

Subtracting C+S, from m(C,S) show that the activation for simultaneous 
presentation of C and S is not a linear sum of the components (Figure 2.3). The 
result of this subtraction can be either positive or negative, which indicate 
suppression and facilitation of center activation, respectively. Our results show 
that, in V1, V2 and V3, the near surround clearly caused more suppression 
than the far surround (Kolmogorov-Smirnov test, p <0.005).  
 
In addition, we analyzed how correlation between center and surround mean 
response patterns relates to suppression and facilitation. For both near and far 
surround, Figure 2.4 shows the average measured d-coefficient (dM, mean 
suppression index across voxels, Equation 2.1), against signal correlation (C,S). 
Each point indicates average dM of active voxels within VOIc (which includes 
voxels which are active for center stimuli), for one subject. The mean d-
coefficient for each subject clusters close to the prediction (dT, solid curve), for 
both near and far surround conditions. In line with the cortical decorrelation 
model (Vanni, 2012) both near and far surround conditions show that 
suppression strength is linked to signal correlation between responses. 
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predict the probability distributions of neural firing rates and avoid detailed 
simulations of single neurons (for review see (Deco et al., 2008, Pinotsis and 
Friston, 2011)). By avoiding the details, but keeping the essential features, 
mesoscopic models reduce the computational costs compared to simulation of 
every single neuron. In addition, the number of more effective parameters 
decreases by a huge factor compared to detailed models. A comprehensive 
mesoscopic model of the cortex has the potential for many applications in both 
basic and clinical neurosciences. In addition, it might significantly increase our 
understanding of biological information processing.  
 
In this review, we analyzed the requirements for providing a mesoscopic 
biomimetic models which enable system-level simulations of neural mass 
action on the basis of fMRI data. We used the neural network term for this 
mesoscopic biomimetic model of neural population. 
 

2.2.1. Functional magnetic resonance imaging complements 
electrophysiology 

To understand the functions of a cortical area, e.g., the primary visual cortex 
(Olshausen and Field, 1996), it is necessary to have a fair sample of all types of 
neurons in different cortical layers. In addition, it is crucial to have access to 
the responses of all these neurons simultaneously. This makes it possible to 
come up with a realistic prediction of the population response.  
 
A lot of the information about the structure and function of neural systems 
comes from cellular, anatomical and physiological studies. However, many of 
the methods employed in these studies lack the ability to monitor the activities 
of a very large ensemble of neurons. Macroscopic imaging methods like fMRI 
have the ability to sample the aggregate response of all types of neuron at the 
same time. However, studies aiming at proper understanding of neural 
function generally require methods with better spatial resolutions than fMRI. 
Furthermore, fMRI is not sensitive to the data processing inside a neuron. 
Information about single cell processing is necessary as this processing affects 
the input signals before they reach the axon’s initial segment (Poirazi et al., 
2003, Sidiropoulou et al., 2006, Jia et al., 2010). Moreover, the fMRI response 
is an indirect measure of the neural activity and can only sample neural 
activation coupled to vascular responses. Therefore, fMRI can complement but 
not replace anatomical and physiological data.  
 

2.2.2. Bridging neural activation to fMRI data 

The first issue to bridge the neural-level activation to fMRI signal is to find a 
proper biological model for the neurons located in the computational neural 
network. All these neurons need to be distributed on a realistic location. Next, 
the neurons need to interact to each other by different types of connections. By 



32 

existing technology, it is almost impossible to have a computational neural 
network comparable to the size of realistic neural network. Therefore, it is 
necessary to come up with a computationally feasible scale of the network to 
be able to do the simulation. Finally, this computational neural network needs 
to be evaluated in respect to measured BOLD signals. 
 
Biophysical Models of Neurons  
Biological neural models provide mathematical explanation of signal 
processing in neural-level. The important factors to choose a proper biological 
neuron model are: (i) robustness of the model (this means that small errors in 
initial parameter assignment should not ruin the functionality of the model), 
and (ii) efficiency (as in a computational neural network there are huge 
amount of neurons).  
 
The most popular and well-known biological neuron model is integrate-and-
firing (IF) model (based on Lapique’s work 1907, translated in (Brunel and van 
Rossum, 2007) and for a review see also (Burkitt, 2006a)). However, this early 
IF model was not complete and failed in reflecting the physiological reality. 
Later, many other extensions of the IF model were introduced (for a review see 
(Burkitt, 2006a)) to make the model more accurate and try to describe 
different types of neurons. 
 
Extended versions of IF model have the ability to reasonably predict the 
output of a single neuron. However, while vast number of studies reported the 
complex and diverse roles of information processing within dendritic 
structures (Spruston et al., 1994, Poirazi et al., 2003, Polsky et al., 2004, 
Sidiropoulou et al., 2006, Sjöstrom et al., 2008, Spruston, 2008, Gollo et al., 
2009, Branco and Hausser, 2010), it is customary to make gross 
simplifications when constructing larger scale network models by considers a 
neuron as a single compartment. In addition, as it has been explained in 
Section 1.2, fMRI signal associates best with input of neurons. Therefore, in a 
computational neural network which aims to predict the BOLD signal, we 
would need to extend the IF model to include the difference between neural 
inputs and outputs. 
 
In summary, the IF models are computationally cheap and have the capability 
to be upgraded in order to include dendritic dynamic. In addition, the IF 
model can be expanded to include multiple neuron types in the network (Naud 
et al., 2008).  
 
The neural network structure and interactions 
In a computational neural network, the response of a single neuron in an 
isolated area is not interesting. Rather, the response of a neuron while 
communicating to a mass of neurons originates the output of the network. In 
such a neural network, the spatial position of each neuron, type and strength 
of the connections between the neurons makes the body of the network. In a 
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simplified neural network, the connections between the neurons could either 
be the connections between different neurons or the connections between 
different cortical areas (for review see (Deco et al., 2008, Pinotsis and Friston, 
2011, Pinotsis et al., 2012)).  
 
Neurons interact with inhibitory and excitatory synaptic connections. The 
human cortex contains approximately 3×1010 neurons, with a ratio of 20-80 
between inhibitory and excitatory neurons (Nieuwenhuys, 1994). These 
inhibitory and excitatory neurons might have different distribution, types, 
connections, and even different number of inhibitory and excitatory synapses 
(Bernander et al., 1994, Megias et al., 2001) with different roles in cortical 
information processing. Inhibitory connections are necessary to have an 
efficient network. In a completely efficient neural network neurons are 
mutually independent and have identical response probability profiles 
(Shannon, 1948). However, the exact mechanism of these interactions is still 
unknown.  
   
Simulation and evaluation of a computational neural network 
About 1.5x108 of the approximately 3×1010 neurons in the human brain belong 
to primary visual area in each hemisphere (Leuba and Kraftsik, 1994). This 
translates to almost 104 neurons in a 0.4 cm2 of cortex. One way to decrease 
the complexity of the computational neural network is to simulate each 
cortical column with a single representative neuron. The number of neurons in 
the simulation thus becomes equal to the number of cortical columns in the 
simulated functional area. Another benefit of having columnar resolution is 
the compatibility with potential spatial resolution of fMRI, which can 
approach the size of a cortical column, see Section 1.2. However, this 
simplification leads to intra-columnar details getting lost and thus might result 
in underestimation of local connections roles. 
 
In order to compare the response of the computational neural network to 
fMRI signal, it is necessary to take neurovascular coupling into account. From 
the neural network simulation, we would have the action potential frequency 
which can be averaged to yield simulated multiunit activity. As explained in 
Section 1.2, Magri et al. (2011) suggested a direct relationship between BOLD 
and MUA. In addition, fMRI signal has been reported to correspond better 
with LFP rather than action potentials (Logothetis et al., 2001, Nir et al., 
2007). These suggest that the BOLD signal would primarily reflect synaptic 
signaling and thus neural input. In neurovascular coupling the role of 
astrocytes has recently been emphasized (Zonta et al., 2003, Koehler et al., 
2009). This means that the fMRI signal can be explained by astrocytic 
signaling mechanisms (Lin et al., 2010). 
 
Such a mesoscopic neural network, together with the theoretical basis of 
systems neuroscience, brings a very strong explanatory power and might help 
to have a better understanding of biological data processing. In addition, as 
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the mammalian brain is very efficient, and a mesoscopic neural network in-
inspired by biology might suggest efficient information processing 
mechanisms with industrial applications. 
 

2.3. Study III: Feedback to distal dendrites links blood oxygenation 
level dependent signals to neural receptive fields in a spiking 
network model of the visual cortex 

In this study, we investigated the spatial extent of the BOLD responses in the 
primary visual cortex. In several studies, it has been reported that the BOLD 
responses spread over much longer distances (Zuiderbaan et al., 2012, 
Sharifian et al., 2013) than what the small receptive fields of individual 
neurons could predict (Cavanaugh et al., 2002). Although BOLD response  and 
local neuronal activity in the brain are closely linked (Logothetis et al., 2001, 
Goense and Logothetis, 2008, Rauch et al., 2008, Attwell et al., 2010), the 
local neural activity and the spatial extent of the BOLD response are 
inconsistent. 
 
We simulated the BOLD response in a spiking neural network. As explained in 
previous chapters, the BOLD mostly reflects the synaptic input than to output 
of neurons as it is more strongly linked to the local field potentials compared 
to spiking activity (Logothetis et al., 2001, Goense and Logothetis, 2008, Nir et 
al., 2008). Moreover, the well-known role of astrocytes and correspondingly 
glutamate in neurovascular coupling (Iadecola and Nedergaard, 2007, Koehler 
et al., 2009, Attwell et al., 2010, Petzold and Murthy, 2011) makes it plausible 
that the fMRI is more sensitive to the input of the neurons than their output.  
 
In this study, we created a two-dimensional spiking network model of the 
visual cortex. Then, we compared the simulated network with both BOLD 
response and the estimated mean action potential outputs of the V1 neurons. 
Our model highlights the role of compartmental neurons to explain the 
observed spread of the BOLD response from the measurements. 
 

2.3.1. Methods

The methods of this study include two parts: (i) fMRI experiment, and (ii) 
spiking neural network.  

fMRI experiment 
We conducted an fMRI experiment with sixteen subjects with normal or 
corrected-to-normal vision. Each session of the experiment contained 12 main 
and 3 multifocal localizer runs. The subjects were presented with wedge-
shaped sinusoidal grating stimuli (Figure 2.5) presented at 43 cm distance on a 
back projection screen. The contrast and spatial frequency of the stimuli were 
80% or 10%, and 0.5 or 2 cycles per degree, respectively. The data from the 
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excitatory neuron was calculated as the mean glutamatergic conductance dur-
ing stimulation, minus the baseline. The number of spikes was counted as the 
mean spike count during the stimulation. The time step for the simulation was 
0.1 ms.  
 
The simulation was validated by two measures: (i) we modeled the area sum-
mation function in V1 to estimate the spike output pattern to our stimulus (see 
section 2.4). In this way, we obtained predicted spiking responses of the V1 
neurons to the stimulus. The spike response of excitatory neurons in V1 was 
compared to the estimated spiking output of V1 neurons. (ii) In the second 
measure, the excitatory synaptic conductance mediated by glutamate release 
in the presynaptic terminals of V1 excitatory neurons was compared to esti-
mated blood flow signal from measured fMRI data. We used the Mean 
Squared Error (MSE) over the N samples in the 2mm x 2mm grid as:  
 

i

iettCBFielge

i

iettspkielspk
tot N

RR
N

RRMSE
2

,arg,,mod,
2

,arg,,mod, )()(

      (2.4) 
 
where, for sample i, Rspk,model,i is the normalized mean spike count, Rspk,target,i is 
the area summation target (see section 2.4), Rge,model,i is the mean change in the 
excitatory conductance for the V1 excitatory neurons, and RCBFe,target, is the es-
timated cortical blood flow from the fMRI measurement. We used logarithm of 
the normalized original responses to reduce the noise contribution. 
 
For the open parameters of the simulation, we chose parameter combinations 
with reasonably good output and dynamic range to have a better search of the 
parameter space. Then, we tried to search for the optimum value for two pa-
rameters: (i) number of connections to and from the extrastriate cortex and 
(ii) number of lateral connections on V1 to and from the inhibitory cells.  
 
We run the simulation for two methods: (i) SOMA model: all inhibitory and 
excitatory synapses were connected to the soma of V1 excitatory neurons. 
However, the dendrites were still attached to the cell. (ii) DENDRITE model: 
the synapses were connected to the dendritic compartments. The feedforward 
and local connections were connected to the proximal dendritic compart-
ments. The feedbacks were organized in one of the following structures: (i) 
distal: large distribution of feedback synapses to the distal compartments, (ii) 
middle: equal distribution to all apical compartments, or (iii) proximal: large 
distribution of synapses to the proximal compartments. In searching through 
the parameter space, we had 2 open parameters: number of connections to 
and from the extrastriate cortex and number of lateral connections on V1 to 
and from the inhibitory cells. In addition to these two open parameters, we 
searched through these feedback distributions as the third independent varia-
ble in our simulations.  
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response was best predicted by widely tuned feedback from the extrastriate 
cortex arriving to the distal dendrites for both high and the low contrast stimu-
li. Overall MSEtot was 40% lower for DENDRITE, compared to SOMA model. 
The landscapes of the goodness measure (MSEtot, Figure 2.7 d,e, showing the 
high and low-contrast data, respectively) show that the SOMA model is more 
unstable with changes of the parameters and has a narrower land of minimum 
MSEtot, compared to DENDRITE model. The goodness of fit decreased sharply 
by changing the distribution of feedback synapses from distal towards proxi-
mal compartments and finally to the SOMA model.  
 

2.4. Study IV: Contextual modulation of receptive field increases 
efficiency in modelled visual cortex 

Contextual modulation is a well-known phenomenon (Maffei and Fiorentini, 
1976, Knierim and van Essen, 1992, Levitt and Lund, 1997, Sceniak et al., 1999, 
Li et al., 2000, Felsen et al., 2005). In the primary visual cortex, area summa-
tion function (Sceniak et al., 1999, Angelucci et al., 2002, Cavanaugh et al., 
2002) is an expression of contextual modulation at single-cell level. Earlier 
studies associated contextual modulation with efficient coding, such as in-
crease of population sparseness and decorrelation of neural responses in the 
V1 (Vinje and Gallant, 2000). Therefore, in this study we wanted to see if there 
is a link between the ASF and coding efficiency in visually responsive neurons. 
We used the quantitative data from macaque cortex and a mathematical de-
scription of the ASF (Cavanaugh et al., 2002) together with a the biomimetic 
spiking neural network simulator of the primary visual cortex (see section 2.3) 
to quantitatively see the relation between the ASF and three coding efficiency 
metrics: (i) number of spikes, (ii) entropy per spike and (iii) population 
sparseness. We simulated the response of the primary visual cortex to natural 
stimuli and compared it to a predicted spike output in the visual cortex, calcu-
lated from the existing ASF data of primate V1 neurons (Cavanaugh et al., 
2002), in relation to the three efficiency metrics. 
 

2.4.1. Methods

For single neuron in a specific eccentricity, Cavanaugh et al. (2002) measured 
the (i) grating summation field, (ii) surround diameter and (iii) suppression 
levels in a typical ASF response curve (see section 1.4.2). In the estimation of 
the area summation target, we used a linear regression to the measured values 
in order to model each parameter as a function of eccentricity. In addition, we 
used mathematical modeling provided by Cavanaugh et al. (2002) for the neu-
ral response R(x):  
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where x is the diameter of circular stimulus, and Lc and Ls are the summed 
squared activations of the center and surround mechanisms, respectively. Fur-
thermore, [kc, ks] and [wc, ws] are the gain and spatial extent coefficients for 
the center and surround components, respectively.  
 
In our simulations to predict R(x) for each neuron in the primary visual cortex, 
we used the Nelder-Mead simplex optimization algorithm (Lagarias et al., 
1998) to estimate kc, ks, wc and ws in Equation 2.5. We then used R(x) to figure 
out the expected neural responses for any input stimuli. In this study, specifi-
cally, we used 20 grayscale natural images from an image set provided by van 
Hateren and van der Schaaf (1998). For this purpose, we first convert the gray-
scale images to contrast stimuli to obtain the spatial structure of contrast en-
ergy by filtering the natural gray-scale images. In this filter, we used five dif-
ferent Gabor filter frequencies including 1, 2, 4, 8 and 16 cycles per 5° field of 
view, eight orientations, each with 0° and 90° offset phases (Kay et al., 2008).  
 
Equation 2.5 gives the response for sum of all inputs. Therefore, if we assume 
a homogeneous distribution of the pixels in the visual field for a pixel at loca-
tion (u,v) and distance r, the response function f(u,v) can be obtain from the 
derivative of R(x): 
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For each location (u,v), the f(u,v) was calculated with respect to its distance 
from the receptive field center of the cell; and then, multiplied with the image 
contrast. Finally all the responses were summed over a 7° diameter area sur-
rounding the receptive field center of each neuron. This process was repeated 
for each neuron to be able to obtain the target neural activation pattern of the 
primary visual cortex. These target patterns were then compared to the model 
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simulation outputs. We also created two artificial ASFs, to control how the 
amount of suppression and size of the summation field are related to the net-
work efficiency. One of the artificial ASFs had larger grating summation field 
and no suppression, and the other one had a smaller summation field and 
stronger suppression compared to natural ASF. 
 
We divided the input stimuli into two groups based on the distribution of their 
spatial frequencies to control how different properties of input stimuli might 
affect our results. The 20 gray-scale natural images where then assigned into 
two groups based on the frequency histograms using a k-means clustering ap-
proach. Each group contained ten gray-scale images, one with predominantly 
low spatial frequencies and the other group with mixed frequencies images. 
 
The natural images were filtered through a retina model before using them as 
the input to our simulator. This retina model consisted of midget cells covering 
0.5° to 27° eccentricities of the visual field. The density of the filter was com-
parable with the midget cell density in human retina (Dacey, 1993). In a con-
trol simulation we used a 1/5 lower density of midget cells.  
 
We used the simulator described in Section 2.3. In our simulation, the simula-
tion time was 500 ms with 200 ms baseline followed by 300 ms of stimulation. 
We repeated the simulation for 20 retina-filtered grayscale natural images. For 
each image, the numbers of local and feedback connections in the network 
were varied to produce outputs with variable levels of biological realism result-
ing in 625 different simulations, similar to section 2.3. The simulated response 
patterns were then compared to the corresponding area summation target pat-
tern. In each response pattern, we used the absolute distance between the 
simulated and target responses. Then, we summed them across all neurons 
(Distance to Area Summation, DAS). We used energy consumption, entropy 
per spike, and population sparseness as the efficiency measures for the simula-
tion output patterns.  
 
We defined energy consumption based on dephosphorylation of adenosine 
triphosphate (ATP) molecules usage. Based on a previous study (Attwell and 
Laughlin, 2001, Howarth et al., 2012) the total number of spike counts is line-
arly related to energy consumption of the neuron (plus a baseline) and can be 
a good measure of energy consumption. 
 
To calculate the entropy per spike, we calculated the probability distribution 
(q) of the spike outputs from a histogram with 256 bins: 
 

qq=E
N

EES
s

2log
   (2.7) 

 
where E, ES and Ns are entropy, entropy per spike and total number of spikes, 
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between entropy per spike of the simulated output patterns and DAS, with the same simulation 

output data and color coding as in panel a. c) The relationship between neural population 

sparseness (0 is minimum and 1 is maximum sparseness) of simulated output patterns and 

DAS, with the same simulation output data and color coding as panel a.  

 
We divided the input stimuli into two sets, one including the images with 
stronger low frequencies and the other including the images with even 
distribution of spatial frequencies. The relationship between total number of 
spikes, entropy per spike, and population sparseness versus DAS show that the 
target ASF in our simulations is associated more strongly with efficient 
representation for the images containing primarily low frequency information. 
In our model, for simplicity we ignored the variability of receptive field 
parameters among neurons in similar eccentricities. The variability of the 
receptive field parameters might help capture a wider range of spatial 
frequencies in natural images and as a result reduce the variation in efficiency 
versus DAS between different stimuli.  
 
In addition, in another analysis, we excluded the activation patterns which had 
very high or very low number of spikes (15% from top and bottom of the dy-
namic range of the total number of spikes) to avoid the parameter combina-
tions that lead to unnatural saturated or low-responding activation patterns. 
By this exclusion, our results show a better association between the firing rate 
and entropy per spike versus DAS. 
 
Then, we did two sets of control simulations. In the first, we decreased the 
resolution of the retina input to 1/5 of the original one. In this way, we had 
spatially larger filters, which probably cause a shift in the filter sensitivity to-
wards lower spatial frequencies. The results show almost the same link be-
tween DAS and the efficiency measures compared to full-resolution retina. In 
the second set of control simulations, we replaced the compartmental neurons 
of excitatory V1 neurons with pointwise neurons. The results show that the 
compartmental neurons provide a better link between the efficiency of the 
network and DAS (Wilcoxon rank sum test with p<0.05). 
 
Finally, with two artificial area summation functions, we tested if the natural 
ASF is optimized for the network efficiency. If so, we expect loss of efficiency 
by changing the form of ASF. Our results show that with the larger grating 
summation field and no suppression the entropy per spike is less relevant to 
the similarity to DAS compared to natural ASF. However, in case of having the 
smaller summation field and stronger suppression, the dependency between 
entropy per spike and DAS is similar to the natural ASF.  
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3. General discussion  

In this thesis, I studied contextual modulation at macroscopic neural level and 
tried to find its link to efficiency of the neural network. Next, I participated in 
reviewing the challenges of predicting macroscopic neural responses based on 
single neurons. Then, I implemented a computational neural network and 
generalized response of single neurons to a population of neurons based on 
fMRI and theoretical contextual modulation data. Finally, employing this 
computational neural network, I was able to quantitatively establish the rela-
tionship between contextual modulation and efficiency of the neural network.
 
Contextual modulation associates with increased system-level 
neural network efficiency 
In the first study of this thesis, we modulated the visual context around the 
center and measured the response with fMRI experiment. In summary, we 
show that cortical decorrelation model (Vanni and Rosenstrom, 2011) has the 
best explanatory power to predict interaction strength in our experimental 
data compared to other well-known contextual modulation models. In addi-
tion, we showed that in lower-order cortical areas, BOLD signal changes 
spread much further than what has been expected based on average receptive 
field size of the neurons in these areas. Moreover, our results suggest similar 
interaction mechanisms in all visual cortical areas. Finally, our results showed 
less suppression in lower-order cortical areas compared to higher-order areas. 
 
Previous studies provide models of contextual modulation which are mainly 
based on divisive gain control mechanism (Foley, 1994, Sceniak et al., 2001, 
Xing and Heeger, 2001). However, we experimentally showed that in all stud-
ied cortical visual areas contextual modulation in macroscopic level is related 
to decorrelation of the cortical activation (Vanni and Rosenstrom, 2011) and 
subsequently, most likely is related to redundancy reduction in fMRI activa-
tion patterns. Therefore, as the main finding of this study, we claim that con-
textual modulation associates with increased system-level neural network effi-
ciency. This is in line with previous contextual modulation studies (Vinje and 
Gallant, 2002, Felsen et al., 2005) which report a link between contextual 
modulation and decreases of redundancy in neural responses (Vinje and 
Gallant, 2002, Felsen et al., 2005). 
 
The results showed that the contextual effect is present over very long distanc-
es in the visual field. This results in wide–spread BOLD signals; comparable 
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distant modulation has been also reported in earlier studies (Ichida et al., 
2007, Nurminen et al., 2010). However, this spread of the BOLD signal cannot 
be directly explained by the length of horizontal connections in V1 reported in 
earlier anatomical and physiological study (Angelucci et al., 2002). This BOLD 
signal spread might be explained by rapidly conducting feedforward-feedback 
loops between the primary visual cortex and extra-striate areas (Bullier, 2001, 
Schwabe et al., 2006, Schwabe et al., 2010).  
 
The results also confirms previous findings (Kastner et al., 2001, Zenger-
Landolt and Heeger, 2003) that report less suppression in lower-order cortical 
areas compared to higher-order areas. Larger receptive fields of neurons in 
higher-order cortical areas might be the reason for this finding as it causes 
more average activation in the neighborhood of a cortical neuron.  
 
Macroscopic cortical activation could be predicted by a computa-
tional neural network  
In the second study of the present thesis, we reviewed possibilities, challenges 
and critical requirements to be able to model and ideally predict fMRI data. 
Such a modeling possibility comes through existing knowledge about the 
mechanisms of fMRI signal generation together with theoretical and experi-
mental information about the single neuron processing. The ability of fMRI 
signal prediction would provide a significant contribution to better under-
standing of the visual system, with numerous applications in theoretical, ex-
perimental and clinical studies and even industry.  
 
In short, we prepared a blueprint to predict experimental BOLD signal using a 
mesoscopic neural network simulator. Thus, this review confirms the feasibil-
ity of macroscopic cortical activation prediction by a computational neural 
network. Such a mesoscopic model avoids the details of realistic neural net-
work and provides systems-level simulations of neurons. This system-level 
simulation of neuronal population provides a very strong explanatory power to 
understand the principles of biological data processing in a hierarchical net-
work.  
 
However, such a mesoscopic neural network simulation faces many challenges 
due to incomplete current knowledge of the visual system and existing tech-
nical and computational limitations. Among the challenges, an indirect rela-
tionship between neural activity and fMRI signal is the most important source 
of confusion. Based on existing literature (for review see Section 2.2.2) the 
fMRI signal prediction should likely be based on excitatory synaptic input 
(glutamate release). As a consequence, to be able to access tuning properties of 
excitatory synaptic input rather than spiking output, it is necessary to include 
compartmental neurons in mesoscopic neural network simulation for predict-
ing fMRI data. 
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Dendrites have a key role in prediction of the contextual modula-
tion and macroscopic cortical responses 
In the third study of this thesis, we designed a simulation of the visual cortex, 
to predict the fMRI signal. This simulation was based on anatomical and bio-
physical information about realistic neural networks.  One of the main goals of 
this fMRI signal prediction was to explain the spread of the BOLD response 
which could not yet be addressed by narrowly tuned action potentials. The 
BOLD response is better linked to the input of the neurons than the output 
(Iadecola and Nedergaard, 2007, Koehler et al., 2009, Attwell et al., 2010, 
Petzold and Murthy, 2011). Therefore, we hypothesized that the fundamental 
differences in BOLD and electrophysiology data might emerge from signal 
transformations between the input and the output of excitatory cortical neu-
rons. Better fitting of post synaptic potentials rather than spike counts in our 
simulation results to corresponding experimental BOLD signal, provided a 
direct support for this hypothesis. I would like to note that using spin-echo 
fMRI experiment for this purpose was very important as it provided a good 
spatial resolution compared to gradient-echo fMRI sequences.  
 
In addition, the control simulations with feedback only to soma confirm the 
crucial role of dendrites with feedback concentrated in the distal dendritic 
compartments to be able to predict the BOLD signal. This helped to achieve a 
better fit between the data and the model. Therefore, we claim that the point-
like model of the neurons might significantly limit cerebral cortex modelling as 
they do not have a separate tuning function for input and output of the neu-
rons.  
 
In summary, we suggest that dendrites have a key role in prediction of the con-
textual modulation and macroscopic cortical responses. 
 
Computational neural network suggest a strong link between con-
textual modulation and efficiency of the visual system  
In the last study, we aimed to find the relationship between the area summa-
tion function and the efficiency of neural population code using a similar simu-
lator of the visual cortex as in the third study. We showed that the area sum-
mation function (contextual modulation) is closely linked to efficiency of a 
network (specifically, energy consumption, information capacity, and popula-
tion sparseness). This is in line with previous studies which link contextual 
modulation to sparse code representation of the visual input (Vinje and Gal-
lant, 2000) or reduction of dependencies between single cells (Schwartz and 
Simoncelli, 2001). 
 
 In line with my third study, the results emphasized the role of dendritic com-
partment (Williams and Stuart, 2002) of excitatory V1 neurons to have a 
stronger association between area summation and the efficiency of the neural 
network. Moreover, interestingly we found a clear link between horizontal in-
hibitory connectivity and efficiency. This finding is in line with recent litera-
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ture by Nurminen and Angelucci (2014) which claimed that horizontal connec-
tions have a specific role in network efficiency.  
 
As a limitation, in our simulation results the link between efficiency measures 
and area summation was stronger for low-spatial frequencies input stimuli 
than mixed-frequencies stimuli. This might be due to having smaller number 
of cells in this model than a real visual cortex. Another reason might be the 
fact that in estimation of the area summation target, we averaged measured 
area summation function parameters in each eccentricity and the variability of 
the area summation parameters across neural data may help capture a wider 
range of spatial frequencies present in input stimuli.  Moreover, our model is a 
simplification of the primate visual system and for example, our neurons only 
have spatial position but no orientation tuning, while orientation tuning might 
be a necessary feature to maximize the efficiency for image statistics in cortical 
representation of spatially neighboring edges (Geisler et al., 2001).  
 
Future Prospects 
Computational neural network models of the visual cortex provide fairly 
powerful means to analyze the visual system functions, without going to the 
complexity of very detailed simulation (Markram, 2006). However, this 
stimulation can be improved in several ways in future studies. Specifically, (i) 
to avoid the complexity of the network, we used reduced number of units in 
the neural network model, compared to the primate visual cortex. For example, 
we used one neuron representing 104 neuros in the cortex; this simplification 
might result in underestimation of local connections (although we tried to 
control it with stronger neural auto-feedback) roles and emphasizing the role 
of long distance connections in fMRI responses. Beside a closer number of 
neurons to biological reality, including biological diversity in the inhibitory 
neurons with different roles in cortical information processing would bring a 
considerable improvement in computing power.  (ii) In the simulations, we 
only used one higher cortical visual area and ignored corticothalamic feedback. 
This would result in refusing many useful higher-order source of information 
such as attention, adaptation and learning. (iii) We ignored the layered 
structure of the primate cerebral cortex and modeled all neural activation with 
one layer. However, each cortical layer has a preferable set of neuron types and 
neural connectivity (Nieuwenhuys, 1994, Douglas and Martin, 2004) and thus 
might contribute to different data processing roles (Grossberg, 2007). (iv) The 
neural network model has no orientation, speed, disparity, spatial frequency, 
ocular dominance or wavelength tuning of the neurons, which might result in 
missing affective neural features in efficient neural coding.  
 
In general, a more realistic model would help us to have a better understand-
ing of how the visual system processes information at different level of details. 
Such a model would also have many clinical applications as it might help us to 
figure out the origins of the visual system disorders by providing better under-
standing of brain functions associated with normal and abnormal vision. 
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4. Conclusion  

In conclusion, in this PhD study, I investigated system-level contextual 
modulation in human visual system. I used both experimental and theoretical 
approaches to find the mechanism underlying contextual modulation. The 
results of this study highlight the role of contextual modulation to achieve 
efficiency in a neural network. In addition, the results of the present study 
suggest that contextual modulation affects the information transmission 
efficiency; this change is observable even in macroscopic population response 
of neurons. In addition, using only point-like model of the neurons in cortical 
simulations might be a significant limitation. 
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