
"I am an old man now, and when I die 
and go to heaven there are two matters 
on which I hope for enlightenment. One 
is quantum electrodynamics, and the 
other is the turbulent motion of fluids. 
And about the former I am rather 
optimistic." 
  
-Horace Lamb (1849-1934) 
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1. Introduction

1.1 Turbulence

The vast majority of fluid flows in nature and engineering have turbu-

lent characteristics. Turbulent flows in engineering can be observed in a

variety of industrial scales such as chemical and metallurgical processes,

ventilation systems and aerodynamics. The analysis of natural phenom-

ena such as sea currents, tornadoes and motion of clouds in the atmo-

sphere deals with an in-depth study of turbulence. There is no clear and

exact definition of turbulence to date, although, there is a general defini-

tion based on some universal behavior of turbulent flows [1]. Unsteady,

irregular and inherently chaotic motions in turbulent flows distinguish

such flows from laminar flows. From the mathematical point of view, the

appearance of non-linear terms in the Navier-Stokes equations of fluid

dynamics produces a level of complexity in the flow field. Highly diffu-

sive and dissipative natures are the two main features of turbulent flows

which create a strong mixing, causing transportation of heat and mass

in the medium. Turbulent structures can be maintained if there is an

energy production mechanism in the system. This energy production pro-

cess can be injected into the system by an external source or by various

mechanisms, working inside the flow domain, such as velocity gradient,

rotational motion or density gradient, which leads to the energy cascade

through all scales.

An early understanding of turbulence was mostly based on experiments

and observations in various common processes found in nature. The math-

ematical expressions of Reynolds [2] for turbulent motion were among the

most influential systematic scientific efforts in this field. After the works

of Reynolds, there were a few attempts to describe the mechanism of tur-
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Introduction

bulence. One of the earliest explanations was presented by Richardson

[3], who suggested that there is a spectrum of energy ranging from large

scales to small scales, and the energy cascade process links all eddies

with intermediate sizes. This theory indicated that the kinetic energy of

turbulent flows is carried within eddies of various sizes. Based on this

idea, Kolmogorov [4] expanded the turbulence theory to the next level by

proposing three hypotheses on local isotropy and similarities which ex-

plained the underlying mechanism of turbulent structures ranging from

the large to the smallest scales. His picture of the turbulence mechanism

is the most accurate and universal one to date.

The theory explains that a turbulent flow consists of a wide spectrum of

eddy scales and the energy is transferred from larger eddies (structures)

to the smaller ones. The similarity hypothesis dictates that the statistics

of the small eddies are universal and they are not dependent on properties

of the fluid while the large-scale structures are directly affected by the

geometry and the boundary conditions. Based on this theory, the size of

the smallest scale, the rate of energy transfer between scales, and the rate

of dissipation of energy at various scales can be computed.

The Navier-Stokes equations describe the flow field in terms of various

physical quantities such as velocity and pressure. All the mechanisms in

contributing and creating a turbulent flow are embedded in these equa-

tions through various terms. For an incompressible flow with no body

forces, the continuity and Navier-Stokes equations read as:

∂ui
∂xi

= 0 (1.1)

and
∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

(1.2)

These equations contain significant variables in determining the flow be-

havior such as the pressure (p), the velocity vector (ui), the fluid density

(ρ) and the kinematic viscosity (ν). As mentioned earlier, the presence of

non–linear terms in the equations makes it a challenging task to provide a

general analytical solution (except for some simple flows such as Couette

flow). Considering this fact, the numerical procedure should be sought as

an alternative in order to find answers for complex flow systems.
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Introduction

1.2 Turbulence simulation

As mentioned in the previous section, analytical approaches are very com-

plicated to employ for complex flow systems or even in a case of a lami-

nar flow. Therefore, with the development in computers and availability

of more computational resources, a numerical simulation of fluid flows

has proven itself as an alternative and effective approach to tackling the

problems in turbulent flows. Over past decades, three main simulation

strategies have emerged, namely Direct Numerical Simulation (DNS),

Reynolds-Averaged-Navier-Stokes (RANS) and Large eddy simulation (LES).

However, there are other methods which are a combination and/or deriva-

tive of these three approaches, i.e., Detached Eddy Simulation (DES).

These three strategies are briefly discussed in the following sections, how-

ever the emphasis is mainly given to an LES which is the targeted topic

of this study.

1.2.1 Direct numerical simulation

The most accurate approach in simulating turbulence is the direct nu-

merical simulation (DNS) in which all scales of the flow domain are re-

solved by solving the Navier–Stokes equations. As the Reynolds number

increases, the range of existing eddy scales also gets larger and the need

for more grid numbers is inevitable in order to resolve all the scales in the

flow field, especially the smallest scales.

In order to get an expression about the size of the smallest scale at which

the energy is dissipated, a definition for length scale based on the dissi-

pation rate and viscosity has been devised:

η =

(
ν3

ε

) 1
4

(1.3)

where ε is the dissipation rate and ν is the viscosity. This length scale is

Kolmogorov scale and is the smallest scale presented in turbulent flows.

The relationship between the required nodes and the Reynolds number

is roughly about Re
9
4 . This limitation and the present status of compu-

tational resources make DNS impractical for the majority of engineering

fluid flow problems which deal with high Reynolds numbers. For exam-

ple, simulating a car with Re = 106 with a characteristic velocity of 10

m/s requires about 1014 nodes. However, during the last 15 years, there

have been some efforts to compute simple cases such as channel flow and

backward-facing step flows, which provide valuable information on the

17



Introduction

nature of turbulent flows.

1.2.2 Reynolds Averaged Navier-Stokes (RANS)

Two of the most important characteristics of turbulent flows are irreg-

ularity and chaotic motions. Considering the nature of turbulence, the

observations reveal that, at a given point (or location) in the flow domain

a distinguished pattern is repeated more or less regularly in time. Due to

this fact, it is possible to extract the average values of the flow variables

such as velocity and pressure in time and space. As the behavior of small

scales (fluctuations) is not the subject of interest in some engineering ap-

plications, these small motions can be ignored over a range of specific

time. Based on this assumption, Osborn Reynolds in 1895 suggested a

decomposition based on mean and fluctuating parameters:

φ = φ̄+ φ
′

(1.4)

where φ can be any quantity related to flow field, (" .̄ ") identifies the mean

(averaged) component and ("′") denotes the fluctuation part. Considering

the time averaging for a given time T acting on a quantity φ yields:

φ̄(x, t) =
1

T

∫ t+T

t
φ(x, t)dt (1.5)

Embedding this decomposition with the Navier-Stokes equations, the Reynolds

equations for an incompressible Newtonian can be obtained as:

∂ūj
∂t

+ ūi
∂ūj
∂xi

= −1

ρ

∂p̄

∂xj
+

∂

∂xi

(
ν
∂ūj
∂xi

− u′iu′j

)
(1.6)

The last term on the right hand side of Equation (1.6) is the Reynolds

stress tensor. This term represents the effect of fluctuating components on

the mean flow. In order to get a closed system of equations, the Reynolds

stress tensor should be modeled. Boussinesq [5] developed a mathemat-

ical model for Reynolds stresses by defining the eddy-viscosity concept

through an analogy between turbulence transport and the process of mo-

mentum transport via the molecular diffusion. In other words, the eddy-

viscosity quantity (νt) connects the Reynolds stresses to the mean strain

rate by:

u′iu′j = −2νtS̄ij +
1

3
u′ku

′
kδij (1.7)

To calculate the eddy viscosity term, a number of models have been in-

troduced such as the Prandtl mixing model [6] and algebraic models of

Baldwin-Lomax [7] and Cebeci-Smith [8]. One equation models are an-

other alternative to model eddy viscosity through solving a transport equa-

tion for νt (Spalart-Allmaras [9]) or an undamped eddy viscosity (R = k2

ε )
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(Rahman et al. [10]). Kolmogorov [11] developed the first "complete"

model of turbulence since it needs no prior information on turbulence

characteristics. Kolmogorov’s k-ω model requires the solution of two dif-

ferential equations for kinetic energy (k) and specific dissipation rate (ω).

Subsequently, Wilcox [12] introduced some modifications and improve-

ments to Kolmogorov’s k-ω model. Another version of the two equation

model was developed by Jones and Launder [13] known as the k-ε model.

Apart from solving the k transport equation, this model also solves an

equation for a dissipation rate ε. Launder and Sharma [14] developed a

low-Reynolds version of the k-ε model. There are also other versions of

the k-ε model (such as the model of Yakhot et al. [15]) but these are not

within the scope of the current study.

1.2.3 Large Eddy Simulation (LES)

In the fluid flow, large eddies (or scales) are the main transporter of mo-

mentum and energy. In an LES the large structures of turbulence are

resolved and the effect of small scales on the main flow can be modeled

through the so-called subgrid-scale model (SGS) [16]. LES benefits from

a decomposition similar to RANS in which the resolved and fluctuating

components are separated through a "filtering" process:

ui = ūi + u′i (1.8)

The filtered part belongs to the resolved field and the fluctuating part is

associated with the small eddies that are unresolved. The spatial filtering

operation which is denoted as a bar (̄.) can be expressed as:

ū(x, t) =

∫
G(y;x)u(x, y)dy (1.9)

where G is a smoothing kernel acting in three dimensional space on the

velocity (or pressure) field. The filter width Δ can be considered as a

length scale which is not a fixed parameter. Applying the above filter-

ing operation to instantaneous continuity and momentum equations, and

considering the commutative properties, the resolved equation for an LES

can be obtained as:
∂ūi
∂xi

= 0 (1.10)

∂ūi
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂x2j

(1.11)

The non-linear term on the left-hand side of Equation (1.11) contains both

the filtered and fluctuating components. The term uiuj can be decomposed
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and rewritten as:

uiuj = ūiūj + (uiuj − ūiūj) (1.12)

The term in parentheses is called the SGS stress tensor τij . Consider-

ing this fact, Equation (1.11) for an incompressible LES equation can be

rewritten as:
∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂x2j

− ∂τij
∂xj

(1.13)

The SGS stress tensor is responsible for the effect of unresolved scales

on the main flow field. Turbulence modeling in LES tries to offer a so-

lution for this unknown term. The term τij is typically replaced by an

SGS model, accounting for the effects of small unresolved scales into the

governing equations.

LES borrows its methodology from Kolmogorov’s [11] self–similarity hy-

pothesis that the large scales are dependent on the flow topology and prop-

erties which should be resolved separately for each flow case, while small

scales represent universal characteristics that are common in many types

of turbulent flows. The mechanism of LES in dealing with distinguished

scales in turbulent flows enables it to provide a good compromise between

DNS and RANS, since it does not need any heavy computational expenses

of DNS; on the other hand, it produces more accurate results compared to

the RANS. Nevertheless, one should be careful of not falling from an LES

into the DNS because as the grid resolution in an LES increases, it tends

to resolve all scales of turbulence exactly similar to the DNS.

The modeling of small (unresolved) eddies represents the core subject of

LES turbulence modeling which was initiated by Smagorinsky [17] and

continues up to this day. Since the introduction of the first SGS model by

Smagorinsky [17], a few other SGS models have been proposed which are

discussed in subsequent chapters. The current work also deals with the

development and formulation of new SGS models.
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2. Subgrid-Scale Modeling in LES

2.1 The Smagorinsky Model

LES can be divided into three distinguished categories or approaches in

the context of sub-grid scale (SGS) modeling, namely, the eddy-viscosity

model, similarity model and mixed model where the last one is a combina-

tion of the former two models. The main goal in all these three approaches

is to provide and implement an effective model to account for the major-

ity of unresolved scales in the turbulent flow. Eddy viscosity models are

more popular than other available models in the LES. This model is based

on the Boussinesq [5] assumption in bridging the turbulent and molecu-

lar transports through a so called turbulent or eddy-viscosity which is an

artificial viscosity. Considering this fact, the SGS stress tensor can be

defined as:

τij = −2νtS̄ij +
1

3
τkkδij (2.1)

where νt represents the sub-grid scale eddy viscosity and S̄ij is the re-

solved strain-rate tensor:

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.2)

The first SGS model or LES was proposed by Smagorinsky [17] based on

the idea that the energy produced in resolved scales is equal to the energy

dissipation on unresolved/small scales. The mechanism is such that the

large eddies carrying the major fraction of turbulent energy transfers this

energy to smaller scales. There is no doubt that physically, the viscous

action is associated with the energy dissipation process. Since in an LES

formulation the larger scales are resolved, it appears that the turbulent

SGS stresses are smaller than their counterpart in RANS. The point is

how much burden could be put on the SGS modeling that determines the
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key success to the LES. This aspect should be taken into account regard-

less of the energy transfer.

In the Smagorinsky model the turbulent eddy viscosity is related to the

grid filter width and strain-rate:

νt = (CsΔ̄)2|S̄| (2.3)

where the velocity scale is proportional to the modulus of filtered strain

rate tensor:

|S̄| =
√
2S̄ijS̄ij (2.4)

Cs is the Smagorinsky constant. The filter width Δ can be computed as

the size of mesh spacing in the x-, y- and z- directions [18]:

Δ̄ = (ΔxΔyΔz)
1
3 (2.5)

The Smagorinsky constant can be varied from one flow case to another

flow case and also depends on the Reynolds number of the flow. Several

studies reported that Cs can take different values (0.05 < Cs < 0.5) for

different flow settings [18, 19, 20, 21].

In order to obtain the correct behavior close to the walls, a Van Driest

type [22] damping function is introduced near the solid boundaries that

accounts for the reduction of small fluctuations at those locations. This

damping function is defined as:(
1− exp

(−z+

25

))
(2.6)

where z+ is the dimensionless distance from the wall. Thus, the full eddy

viscosity term in the Smagorinsky model takes the form:

νt =

[
CsΔ̄

(
1− exp

(−z+

25

))]2
|S̄| (2.7)

The Smagorinsky model is a popular SGS model due to its simplicity, ro-

bustness and its ability to reproduce the global energy flux from the re-

solved to small scales [23]. However, it suffers from a few shortcomings,

firstly because of the Smagorinsky constant in the viscosity term, requir-

ing a priori information on the flow topology (which varies for different

flow problems). This issue can create an excessive dissipation in certain

types of flow. Another issue is that it needs an ad-hoc wall damping near

the solid walls to correct the near-wall behavior of the model [24].
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2.2 The dynamic Smagorinsky model (DSM)

Germano et al. [25] proposed a modified version of the Smagorinsky model

(SM) in which the constant Cs is computed dynamically varying in time

and space. Like the SM, the DSM also benefits from the Boussinesq [5] ap-

proximation for the stress tensor term. In order to dynamically compute

the eddy viscosity term, the DSM applies (along with the grid filter) an

additional explicit secondary filter called the "test filter". The grid scale

of this test-filter is denoted by Δ̃ = αΔ̄; the test-filter width Δ̃ must be

greater than the grid-filter width Δ̄, i.e., α > 1. Applying the test filter

result in the Germano identity requiring:

Lij = Tij − τ̃ij = ũiuj − ˜̄ui ˜̄uj −
(
ũiuj − ˜̄uiūj) = ˜̄uiūj − ˜̄ui ˜̄uj (2.8)

where Tij is the SGS stress on the test–filter level. The stress components

Lij can be interpreted as the stress associated with the smallest resolved

scales between the test–filter scale (Δ̃) and the grid–filter scale (Δ̄). The

stress tensor Lij is called the Leonard stress and can be directly computed

from the resolved scales.

If C̄s is assumed not to change significantly from the grid–filter to the

test–filter scales, the error generated by using the Smagorinsky model in

the Germano identity is:

Eij = Lij − δij
3
Lkk − C̄sMij , Mij = 2Δ̄2

( ˜|S̄|S̄ij − α2η| ˜̄S| ˜̄Sij

)
(2.9)

with η = C̃s/C̄s. Generally α = 2 and the scale variance (η = 1) is as-

sumed. Following Lilly’s idea [26], the model coefficient C̄s is obtained

by seeking a value for C̄s which minimizes the square of the error E2.

Therefore, taking ∂E2/∂C̄s and setting it to zero gives

C̄s =
Lij Mij

Mij Mij
(2.10)

The model coefficient C̄s, thus obtained is a local quantity, varying in time

and space in a fairly wide range having positive and negative values. Al-

though a negative C̄s (and therefore a negative νT ) is often interpreted as

the flow of energy from the sub–grid scale eddies to the resolved eddies

(referred to as "back–scatter") and regarded as a desirable attribute of

the dynamic model; too large a negative νT causes numerical instability,

which lead to divergence of the numerical solution. To avoid this, C̄s is

simply clipped at zero.
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2.3 Wall-Adapting Local Eddy-Viscosity (WALE) model

The WALE model is devised by Nicoud and Ducros [27] based on the

square of the velocity gradient tensor; the spatial operator OP = (Sd
ijS

d
ij)

consists of a mixing of both the local strain and rotation rates. Unlike the

Smagorinsky model, this model accounts for both strain and rotational

rate. Thus, all the turbulence structures relevant for the kinetic energy

dissipation are detected by the model; the eddy-viscosity goes naturally

to zero in the vicinity of a wall so that neither (dynamic) constant adjust-

ment nor damping function is required to compute wall bounded flows.

The model produces a zero eddy viscosity in the case of a pure shear.

Thus, it is possible to reproduce the laminar to turbulent transition pro-

cess through the growth of linear unstable modes. The eddy-viscosity in

the Wale model is obtained from:

νt = (CwΔ)2
(Sd

ijS
d
ij)

3
2

(S̄ijS̄ij)
5
2 + (Sd

ijS
d
ij)

5
4

(2.11)

Where Sd
ij is traceless symmetric part of the square of the velocity gradi-

ent tensor:

Sd
ij =

1

2
(ḡikḡkj + ḡjkḡki)− 1

3
δij(ḡkk)

2 (2.12)

where ḡij denotes the velocity gradient tensor. Like the Smagorinsky con-

stant Cs, Cw can take different values depending on the nature of the

flows, but the Cw values are usually between 0.3 and 0.6.

2.4 Vreman model

Vreman [28] devised an SGS model in 2004. The turbulent viscosity in

the Vreman model is defined as:

νt = CV

√
ββ̄

ᾱijᾱij
(2.13)

where ᾱij indicates the derivatives of the filtered velocity ū

ᾱij =
∂ūj
∂xi

(2.14)

Tensor β is related to the gradient model [29, 30] in its general anisotropic

form and it is positive semidefinite (ββ̄ ≥ 0). ββ̄ is an invariant of the

matrix β:

ββ̄ = β̄11β̄22 + β̄11β̄33 + β̄22β̄33 − β̄2
12 − β̄2

13 − β̄2
23, β̄ij = Δ2

mᾱmiᾱmj (2.15)
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In Equation (2.13), CV is the model constant and is related to the Smagorin-

sky constant with approximately CV = 2.5Cs for an isotropic turbulence.

Δm is the grid filter width. The Vreman model satisfies the realizability

conditions and it requires a single filter (grid filter) and the first-order

derivatives of the velocity field.

2.5 Scale-similarity model

Scale-similarity or similarity models are based on the assumption that

flow fields at scales of consecutive sizes have some similarity. This means

that the Leonard stress, Lij produced by filtering at the test-filter level

plays as a principal model for the SGS stress which is the result of fil-

tering at the grid-filter level. The idea of the scale-similarity model was

introduced by Bardina et al. [20]. Scale-similarity models consist of the

non–eddy viscosity category of SGS models (which are not the scope of

the current work). The main purpose of these models is to account for the

unresolved scales of turbulence through the inclusion of an additional fil-

tering process on the velocity field and their derivatives. The mechanism

of similarity models works in such a way as to capture the similarities

associated with stresses on neighboring velocity scales, especially those

that are above and below the LES cutoff length. Although showing an

acceptable agreement with available experimental data, this model has

limited application in practical LES since it underestimates the energy

cascade, which causes causing an underestimation of the subgrid dissipa-

tion. One way to overcome this limitation is to combine a scale similarity

model with a subgrid viscosity model resulting in so called mixed model.

One example can be by mixing a scale similarity model with a Germano-

Lilly one in which the respective weights of the scale-similarity and SGS

eddy-viscosity parts of the model can be modified. This mixed model al-

lows a better control of the dissipation by inclusion of an eddy-viscosity

term.
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3. Mathematical Formulation for the
Proposed Models

3.1 Zero–equation Model

In this section, the underlying mechanism of a zero-equation model is dis-

cussed. A comprehensive presentation of this model can be found in Publi-

cations I and III. This model is called RAST (Rahman-Agarwal-Siikonen-

Taghinia). It is also worthwhile mentioning that the authors also devised

an RANS model called RAS (Rahman-Agarwal-Siikonen) from which the

model now presented has taken its name.

Applying the spatial filter to incompressible Navier-Stokes equations

and using the commutation characteristics, the LES equations yield:

∂ūj
∂xi

= 0 (3.1)

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi
∂xj

)
− ∂τij

∂xj
(3.2)

where the overbar (̄.) denotes the application of grid filter and ν is the

kinematic viscosity. On the right–hand side, an unresolved term τij re-

mains to be modeled. This term is analogous to the Reynolds–stress

tensor of RANS turbulence modeling. Since in the LES formulation the

larger length scales are resolved, it denotes the turbulent SGS stresses

and hence, is smaller than its counterpart in RANS. The SGS stress ten-

sor is defined as

τij = uiuj − ūiūj (3.3)

The role of the SGS model is to remove energy from the resolved scales.

In an LES, the small dissipative scales need to be modeled. Therefore, the

SGS model is employed to account for the dissipation of turbulent kinetic

energy to heat. Thus, the SGS models do not attempt at producing SGS

stresses accurately but only account for their effect in a statistical sense.
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The unknown SGS turbulent stresses resulting from the filtering opera-

tion in Equation (3.3) need a closure. Following the Boussinesq approx-

imation, the relationship between the anisotropic part of the SGS stress

tensor and the resolved strain–rate tensor can be expressed as:

τij − 1

3
τkk δij = τij − 2

3
ksgs δij = −2νT S̄ij , S̄ij =

1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(3.4)

where ksgs is the SGS kinetic energy. The isotropic part of stress tensor

(23ksgsδij) is implicitly added to the pressure. The SGS eddy–viscosity νT

is assumed to be a scalar quantity and is determined as:

νT = Cμ Δ̄
2 S̄ (3.5)

where Cμ is a model coefficient, S̄ =
√
2S̄ijS̄ij is the invariant of resolved

strain–rate tensor, and Δ̄ is the grid–filter length (or width) computed

from the cell–volume [18]:

Δ̄ = (Δ1Δ2Δ3)
1
3 (3.6)

where Δ1, Δ2 and Δ3 are the grid sizes in x-, y- and z- directions, respec-

tively.

The eddy–viscosity coefficient Cμ appearing in Equation (3.5) is an in-

disputably flow–dependent quantity which can be computed based on the

resolved strain–rate S̄ij and vorticity W ij tensors in question (which is ex-

tensively discussed in section 3.1.1). The resolved strain–rate tensor S̄ij

is given in Equation (3.4). The resolved vorticity W ij is given by

W ij =
1

2

(
∂ūi
∂xj

− ∂ūj
∂xi

)
(3.7)

The invariant of resolved vorticity tensor is defined by W =
√
2W ijW ij . In

the current study, Cμ is evaluated in a manner analogous to that employed

in the RANS modeling [31]. In particular, the SGS turbulent kinetic en-

ergy ksgs transport model accounts for the history and non–local effects,

having the potential to benefit complex flows with non–equilibrium tur-

bulence [32]. The SGS kinetic energy is defined as:

ksgs =
1

2
τkk =

1

2
(ukuk − ūkūk) (3.8)

which can be obtained by contracting the sub–grid scale stress in Equa-

tion (3.3). However, with the current zero–equation model ksgs is com-

puted algebraically as follows. Assuming the SGS dissipation εsgs would

exactly balance the scaling of the SGS production of ksgs yields [24]:

εsgs =
k

3
2
sgs

Δ̄
= 2νT S̄ijS̄ij = νT S̄

2 (3.9)
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Alternatively, the underlying assumption is the local equilibrium between

the transferred energy through the grid–filter scale and the dissipation of

kinetic energy at small sub–grid scales. Considering Equations (3.5) and

(3.9) ksgs can be obtained as:

ksgs = C
2
3
μ (Δ̄S̄)2 (3.10)

The Yoshizawa–relation [33] for ksgs is similar to the one given in Equa-

tion (3.10). Nevertheless, the difference is distinguishable in the sense

that the former introduces a constant coefficient with the formulation.

The variable coefficient Cμ in Equation (3.10) depends non–linearly on

both the resolved strain–rate and vorticity parameters, and it allows ksgs

for an intrinsic ability to adapt to the local level of turbulent activity to

some extent.

3.1.1 Eddy–viscosity coefficient Cμ

The requirement of realizability in a turbulence model is of utmost impor-

tance. The realizability concepts to SGS stress components are:

τii ≥ 0 (3.11)

with no summation over i and,

τij
2

τiiτjj
≤ 1 (3.12)

with no summation on i and j.

The realizability conditions represent the mathematical requirement

to prevent a turbulence model from producing nonphysical results [34].

The commonly used isotropic eddy–viscosity model with a constant Cμ be-

comes unrealizable in the case of a large strain–rate producing negative

normal stresses and thus the realizability is violated [34]. The realizabil-

ity principle applied to the present model, i.e., Equations (3.4), (3.5) and

(3.10) implies that

τii
2ksgs

=
1

3
− C

1
3
μ
S̄ii

S̄
≥ 0 (3.13)

Note that each SGS normal-stress component should satisfy the realiz-

ability condition and hence Eq. 3.13 must be taken without the summa-

tion over i. From equation (3.13), it can be noted that the negative normal

stresses can occur, e.g., when S̄ii/S̄ > 0.5 with Cμ = 0.3. To ensure re-

alizability, the model coefficient Cμ cannot be a constant (however, even
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variable eddy viscosity coefficient does not necessarily guarantee the re-

alizability criteria in all grid cells). It must be related with the resolved

flow deformation rate. Accordingly, a plausible formulation for Cμ as sug-

gested by Rahman and Siikonen [31] in an RANS modeling is adapted

here:

Cμ =
1

2
(
1 + TtS̄

√
1 + �2

) (3.14)

where Tt is the hybrid time scale and � = W/S̄ is a dimensionless param-

eter which is very useful in characterizing the flow. For instance, for a

pure shear flow � = 1, whereas for a plane strain flow � = 0. It is impor-

tant to emphasize here that Cμ should be appropriate for both the shear

and vorticity dominated flows that are far from equilibrium. A detailed

analysis of the model realizability is available in References [31, 35, 36].

The total turbulent normal stress profiles obtained after adding up the

resolved and unresolved parts of the Reynolds stresses benefit from Equa-

tion (3.13) when compared with the DNS and experimental data, espe-

cially in the near–wall region. In particular, Equation (3.13) shows that

the energy components are always positive due to the inclusion of coeffi-

cient Cμ, a simple variant to the general non–linear eddy–viscosity model

discussed by Pope [21].

It should be emphasized that the new formulation usually produces re-

alizable SGS stresses but it obviously does not guarantee realizability ev-

erywhere in the computational domain. This shortcoming is probably re-

lated to the fact that the new model uses the Boussinesq (linear/isotropic)

approximation for the SGS Reynolds stresses. However, the realizabil-

ity constraints are not so important for the SGS modeling. To this end, it

can be stressed that applying a variable eddy-viscosity coefficient is better

than that of a constant one (which is a common practice for LES model-

ing).

A plot of Cμ against the DNS data [38] for a fully developed turbulent

channel flow with Reτ = 395 is shown in Figure 3.1 which is obtained

from LES calculation. A good agreement with the data is obtained. This

demonstrates that the model can be integrated all the way down to the

wall without adding a damping function to the eddy–viscosity. The strain–

dependent coefficient Cμ in the eddy–viscosity equation provides natural

damping as the wall is approached. This feature is of significant impor-

tance in the problem with flow separation and reattachment. It seems

likely that Cμ may converge to a higher value of 0.5 as the shear param-
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eter (TtS̄) → 0. In general, Cμ is highly flow–dependent and several au-

thors [39, 40, 41] have suggested a wide range of 0.0–0.6. To this end, it

Figure 3.1. Cμ profile against DNS data

can be stressed that the WALE [27] and the Vreman models [28], in par-

ticular, retain the eddy–viscosity approach and modify the Smagorinsky

model to allow for an adaptation of its structure to the flow. Their mod-

ification of the model coefficient Cμ is similar to the one proposed in the

current model. Nevertheless, the glaring difference is that the WALE and

the Vreman models additionally invoke flow–dependent constants with

Cμ in contrast to the present model.

3.1.2 Hybrid time scale Tt

The flow shows strong inhomogeneity and anisotropy in the viscous layer

with y+ < 5 and, therefore, the use of the dynamics time scale k/ε is not

appropriate in that region. In the present study, the total kinetic energy

k and the dissipation ε are determined by the expressions:

k = ksgs +
1

2
ū′kū

′
k, ε = 2 (ν + νT ) S̄ijS̄ij (3.15)

The average of instantaneous resolved velocity ūi is collected continuously

as

< ūi >m= [(m− 1) < ūi >m−1 +(ūi)m]/m (3.16)

where m is the number of instants in the average. The averaged values of

Reynolds stresses are recorded in a similar manner:

(ū′i)m = (ūi)m −< ūi >m (3.17)

(ū′iū
′
j)m =

[
(m− 1)(ū′iū

′
j)m−1 + {(ūi)m −< ūi >m}{(ūj)m −< ūj >m}

]
/m

(3.18)
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where m is the number of instants in the average. From Equation (3.18)

the resolved turbulent kinetic energy
(
1
2 ū

′
kū

′
k

)
in Equation (3.15) can be

calculated easily. It is worth mentioning that in the case of a transient

inhomogeneous flow, it is problematic to apply the above-mentioned ap-

proach to calculating the resolved kinetic energy, and the definitions of the

current equations are valid only for statistically steady flows. However,

if the transient is slow enough, a good approximation can be achieved.

Equations (3.15)-(3.18) are applied to an indoor airflow problem [42] to

obtain the resolved turbulent kinetic energy which can be considered as

an inhomogeneous transient flow case having no homogeneous direction.

According to the above discussion and low Reynolds number of the cur-

rent cases in this thesis, all simulations share a good agreement with the

experimental data available.

The total dissipation rate ε is evaluated as follows:

ε = ν
∂ui
∂xj

∂ui
∂xj

(3.19)

which is referred to as filtered dissipation. We can either try to model ε

directly or combine it with the resolved dissipation and model the differ-

ence:

εsgs = ν

(
∂ui
∂xj

∂ui
∂xj

− ∂ūi
∂xj

∂ūi
∂xj

)
= 2ν

(
SijSij − S̄ijS̄ij

)
(3.20)

which can be called as the SGS energy dissipation. The above-mentioned

expression can be recast as:

2νSijSij = 2νS̄ijS̄ij + εsgs = 2 (ν + νT ) S̄ijS̄ij = ε (3.21)

Employing k/ε for the dynamic time scale results in the time scale van-

ishing when approaching a wall, where k → 0 and ε is non–zero. To avoid

this, the Kolmogorov time scale
√
ν/ε is used as a lower bound close to the

wall, where the viscous dissipation is dominant. To interpolate smoothly

between the Kolmogorov and dynamic time scales, a hybrid time scale is

formed as

Tt =

√
k2

ε2
+ C2

T

ν

ε
=

k

ε

√
1 +

C2
T

ReT
, ReT =

k2

ν ε
(3.22)

where ReT is the turbulence Reynolds number. Equation (3.22) guaran-

tees that the eddy time scale never falls below the Kolmogorov time scale

CT

√
ν/ε, which is dominant in the immediate neighborhood of the solid

wall. Alternatively, the turbulence time scale is k/ε at a large ReT but

approaches the Kolmogorov limit CT

√
ν/ε for ReT � 1. The empirical
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constant CT =
√
2 associated with the Kolmogorov time scale is estimated

from the behavior of the k–transport equation in the RANS modeling as

given in Reference [35]. In the viscous sublayer k = y2/(C2
T ν/ε), where the

basic scale is the Kolmogorov time scale and y is the normal distance from

the wall. Besides, the k-equation reduces to ν∂2k/∂y2 = ε as the wall is

approached. Combining these two relations gives CT =
√
2 ≈ 1.42, which

is close to the experimental value of about 1.5 [43].

3.2 One–equation Model

The concept behind the one–equation model is similar to that of the zero–

equation model. Although there is one difference in the representation

of the kinetic energy calculation and also a minor change in the form of

the turbulent eddy viscosity, it can be regarded as a modified version of a

zero-equation model.

Both the original and dynamic Smagorinsky models are essentially al-

gebraic models in which the SGS stresses are obtained as a function of the

resolved velocity scales. The underlying assumption is that there is a lo-

cal equilibrium between the transferred kinetic energy through the grid–

filter scale and the dissipation of kinetic energy at small sub–grid scales.

The SGS turbulence is thus represented more faithfully by accounting

for the transport of SGS kinetic energy. The transport of SGS turbulent

kinetic energy can account for the history and non–local effects, which

potentially benefits complex flows with non–equilibrium turbulence. The

transport equation for ksgs is given by [19, 32, 41]:

Dksgs
Dt

= ∇[(ν + νT )∇ksgs] + Pksgs − Cε
k

3
2
sgs

Δ̄
(3.23)

where the production term Pksgs is computed from

Pksgs = −τij
∂ūi
∂xj

(3.24)

The turbulent eddy viscosity is calculated based on ksgs as:

νt = CμΔ̄
√
ksgs (3.25)

The constant–coefficient models suggest a value of 1–1.5 for the dissipa-

tion term coefficient Cε [44], which falls within the range given by the

dynamic model [32] for turbulent channel flow computations. Therefore,

Cε = 1.05 is set and reference computations show that the current LES

33



Mathematical Formulation for the Proposed Models

yields predictions in good agreement with the direct numerical simula-

tion (DNS) and experimental data. Noteworthily, the difference between

the current and previous one–equation SGS models [19, 41] is that Equa-

tion (3.23) contains a variable eddy–viscosity coefficient, which provides

a better solution than the common approaches in LES. A detailed discus-

sion of the model can be found in Publication II where the results obtained

for various fluid flow cases are presented and discussed.
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4.1 Turbulent channel flow

In this section, the prediction of one–equation model for a turbulent chan-

nel flow is presented and discussed briefly. The turbulent channel flow

serves as a suitable benchmark in testing new turbulence models due to

its simplicity and importance. The computational settings and schemes

are extensively discussed in Publication II. The results and a detailed

analysis of the diffuser flow- which is a significant adverse-pressure gra-

dient case can also be found in Publication II.

The large eddy simulation is performed for turbulent channel flows at

Reτ = 180 and Reτ = 395 based on the wall friction velocity uτ and half-

height channel δ. A uniform grid spacing is used in both the stream–wise

and span–wise directions. The grid is stretched in the wall–normal di-

rection. A summary of the grid distributions is given in Table 4.1. It

should be mentioned that the current domain dimensions and grid dis-

tribution have been used in previous studies [45, 48] and their results

showed that increasing the domain width does not affect the final results

for the case with Re =395. A second-order upwind scheme for convective

terms and a central differencing scheme for diffusion terms are applied.

It is well known that the second-order upwind scheme can be too dissi-

pative in some cases. However, it is more stable and converges faster

than the central-scheme (which can produce dispersive errors) and does

not need any artificial dissipation for its stabilization. Since the current

simulations yielded good results using the second-order upwind scheme,

especially at a lower Reynolds number where there is a main flow direc-

tion, it has been applied in the present study.

Figure 4.1 shows the mean velocity profiles for different models. Predic-
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tions of the present model are comparable/superior to those obtained with

the DSM. In the mean velocity profile the upward shift in the log–layer is

a little bit smaller than that of the DSM. The turbulent eddy viscosity pro-

files in Figure 4.5 show that the eddy–viscosities are under-predicted at

y+ > 30, explaining the overprediction of both the models at a dimension-

less wall–distance larger than about 30. However, taking into account

that the numerical method is only second–order accurate, there is rea-

sonable agreement with the DNS data. Profiles of total turbulent shear

stresses are displayed in Figure 4.2. Agreement of both the model predic-

tions with the DNS data is fairly good. It seems likely that the present

model returns superior predictions relative to the DSM.

Figure 4.3 shows the RMS values of the resolved velocity fluctuations. The

stream–wise RMS velocities are over–predicted by both models; this is

probably a consequence of the over–prediction of stream–wise mean ve-

locities shown in Figure 4.1. Near the wall both the SGS models are in

good agreement with the DNS. The wall–normal and span–wise RMS val-

ues are fairly accurate. Nevertheless, the current model is slightly better

than the DSM model in predicting the turbulence statistics provided by

the DNS.

Further examination of the model performance is directed to the total

k+ (resolved+modeled) profiles as illustrated in Figure 4.4. As is evident,

k+ closely matches the unfiltered DNS data. This approach is usually

followed in the literature (i.e., to compare unfiltered DNS or experimental

data with the sum of the resolved and unresolved/modeled part of the

Reynolds stress tensor).

Table 4.1. Grid parameters for LES of a turbulent channel flow. Lx, Ly, Lz are stream–
wise, wall–normal and span–wise lengths, respectively. δ is the channel half-
height, Nx,y,z and Δ(x, y, z)+ are the number of grid points and resolution in
wall units, respectively.

Reτ Lx Ly Lz Nx Ny Nz Δx+ Δy+(min−max) Δz+

180 12δ 2δ 4δ 48 48 48 55 0.5–16 25

395 6δ 2δ 2δ 64 64 64 45 0.9–34 20
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Figure 4.1. Channel flow predictions compared with DNS results

Figure 4.2. Total shear stress profiles for channel flow

Figure 4.3. RMS values of fluctuating resolved velocity components for channel flow: cur-
rent model (solid lines); DSM (dashed lines) and DNS (symbols)
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Figure 4.4. Total kinetic energy comparison with DNS results

Figure 4.5. Eddy viscosity distribution for channel flow

38



Numerical test cases

4.2 Indoor airflow

The performance of the RAST zero-equation model is investigated for in-

door airflow in different ventilation scenarios. A detailed discussion of

this study is extensively presented in Publication IV where the results for

mixed and forced convection, and an impinging jet in a room are demon-

strated. Therefore, in this section, the results for forced convection are

discussed.

The computational domain follows the experimental work of Nielsen et

al. [49] as shown in Fig. 4.6. For a better assessment, the predictions

from the SST-SAS model are also included.

A second–order upwind flux–difference splitting scheme for convective

terms and a central differencing scheme for diffusion terms are applied.

For time integration, a Crank–Nicolson second-order accurate scheme is

utilized. It should be mentioned that commutation errors on non-uniform

grids are well-known problems, however they are usually neglected in

practice. In order to control this issue all computations are performed us-

ing the top–hat filter (second–order filter) which is positively defined in

the physical space. A grid stretching of 1.05 is used in the wall-normal

and stream-wise (only for the diffuser and hill flow cases) directions, but

the grid distributions in the stream-wise and span-wise directions are uni-

form. Second-order accurate numerical schemes are used so that the com-

mutation errors are of the order of the truncation error. However, when

using a higher-order spatial discretization scheme, the order of the filter

will dictate the order of accuracy in the solution [50].

The flow geometry is three dimensional. The inlet slot-height hin/H =

0.056 and outlet slot-height hout/H = 0.16. The slot-width of the inlet

and the outlet is the same as the model width. The Reynolds number is

Re = Uinhin/ν = 5 × 103 based on the inlet slot-height. Apart from the

inlet and the outlet, all other boundaries are defined as walls.

The mean velocity and fluctuation profiles at horizontal y/H(= 0.028,

0.972) and vertical x/H(= 1, 2) locations are demonstrated in Figures 4.7

and 4.8, respectively. As shown in Figure 4.7, the predictions of both mod-

els agree well with the experimental data. However, the RAST model

shows a better agreement with measurements as the flow travels away

from the inlet. Considering the mean velocity distribution at x/H = 1

and x/H = 2, the RAST model predictions agree very well with the ex-

perimental data close to the wall region (with less than 3% error) due
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to its sensitivity to the recirculation and streamline curvature. On the

other hand, the turbulent eddy viscosity of the SST-SAS model is under–

predicted close to the top wall (the jet region) causing an over–prediction

of the mean velocity in that location. Overall, the trend and magnitude

of the predicted velocities are almost the same for both models, although

the RAST model shows a better performance close to the top and bottom

walls.

Figure 4.8 shows the root–mean–square (RMS) velocity fluctuation val-

ues for the RAST and SST-SAS models. A lower turbulent fluctuation at

y/h = 0.972 and y/h = 0.028 is due to the under–estimation of the tur-

bulent eddy–viscosity in the SST-SAS model which can explain the dis-

crepancies between the computed results and measured data of the mean

velocity close to the wall at these locations. The predictions of both models

are consistent with the experimental data at x/H = 1 and x/H = 2 with a

maximum deviation of 5%, however, the RAST model gives more accurate

results in terms of turbulence statistics.

Figure 4.6. Computational domain for forced convection case.
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Figure 4.7. Predicted mean velocity profiles at different locations for forced convection

.
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Figure 4.8. Predicted RMS fluctuating velocity profiles at different locations for forced
convection
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4.3 Flow past a circular cylinder

The flow over a circular cylinder is a significant phenomenon encountered

in a wide range of engineering and industrial applications.The general

characteristics of the flow past bluff bodies include a laminar separa-

tion, a reattachment and vortical motions. This section deals with assess-

ing the performance of the RAST (Rahman–Agarwal–Siikonen–Taghinia)

model in predicting the flow features around a circular cylinder at ReD =

3900. The results are compared with available experimental data and

with those obtained by the dynamic Smagorinsky model (DSM). An exten-

sive discussion on this case and flow features can be found in Publication

V.

The computational domain with the origin at the center of the cylinder

is illustrated in Figure 4.9. The geometry follows the work of Franke and

Frank [51]. The stream–wise direction is along the x–axis with x = 0 at

the center of the cylinder, the y–axis is the vertical axis with y = 0 be-

ing the wake center-line, and the z–axis is the span–wise direction with

z = 0 being the center-line of cylinder. The mean stream–wise velocity

Figure 4.9. Computational domain for the circular cylinder

ū along the centerline with the experimental data of Lourenco and Shih

[52] is illustrated in Figure 4.10. On the wake centerline ū is zero at

the base of the cylinder (no–slip condition); it reaches a negative max-

imum Umin in the recirculation zone and converges asymptotically and

monotonously toward the external velocity U∞. As can be seen, the DSM

under–estimates the Umin velocity at the very near wake region causing a

shorter recirculation zone while the RAST model results agree fairly well

with the experimental data. This may be due to the over–estimation of
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turbulent eddy–viscosity by the DSM. The sensitivity of Cμ to the flow

with recirculation and reattachment, associated with the RAST model

is obviously ascertained at this sub–critical flow. In fact, the quality of

recirculation–length Lr prediction is the deciding factor about the agree-

ment between experimental and numerical statistics. Lr corresponds to

the distance between the base of cylinder and the change in sign of ū.

The stream–wise recirculation lengths predicted by the DSM and RAST

model are Lr/D = 1.3 and Lr/D = 1.35, respectively. The experimental

value [52, 53] of recirculation length Lr/D = 1.33 ± 0.2, which is in the

range predicted by the RAST model.

Figure 4.11 presents the profiles of mean stream–wise velocities at three

x–locations. As can be observed, a strong velocity deficit in the ū–profile

occurs in the recirculation region at x/D = 1.06 with a U–shape close to

the cylinder which evolves toward a V–shape further downstream. The

agreement between the current LES and experimental velocity profiles is

very satisfactory compared with previous LES studies [51, 53, 54]. How-

ever, the pronounced peak of ū at the edge of the wake region is slightly

over–predicted by the DSM.

Figure 4.12 demonstrates the shear–stress profiles at the near wake re-

gion. The RAST model results are in a better agreement with the ex-

periment. To summarize for all profiles presented herein, the agreement

between the present computations and experimental data is very satis-

factory and comparable with the previous LES studies. The small lack of

symmetry in the time-averaged values are related to the fact that averag-

ing was not performed in the span-wise direction. These asymmetries are

small and are localized to areas where the first or second-order quantity

has very small magnitude.
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Figure 4.10. Mean stream–wise velocity on centerline.

Figure 4.11. Mean stream–wise velocity at different locations near wake of the cylinder
(curve shifts are due to an under-prediction of the turbulent viscosity).

Figure 4.12. Shear stress at different locations at the wake of the cylinder.
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4.4 Jet impingement on a curved surface

The performance of a zero-equation model in predicting the jet impinge-

ment on a concave surface is discussed in this section. A full description

of the computational procedure and the boundary conditions for this case

is addressed in Publication III. The computational domain for an uncon-

fined impinging jet on a semi-circular concave surface is utilized according

to the experimental setting of Choi et al. [55]. The jet is injected from a

rectangular slot with a width of B = 5 mm impinging on a curved surface

with a diameter of D = 150 mm.

A no–slip condition is imposed on the wall and a constant heat flux of

5000 W/m2 is applied on the impingement surface. The jet inlet tem-

perature (Ti) is set to 300K and the inlet condition at the jet exit is con-

structed from a separate calculation of a turbulent channel flow with the

same width as the inlet slot. A pressure boundary condition is used at the

outlets in order to recreate the experimental settings. In the span-wise

direction a periodic boundary condition is applied. In order to provide a

fully developed turbulent flow condition at the nozzle exit, the nozzle duct

is extended for 20B.

The predicted mean axial velocity at different h/B ratios is represented

in Figure 4.13 at Re = 2960. The velocity values are normalized with the

jet exit velocity Ue and r/B is the normalized distance from the jet exit

towards the impingement surface along the jet centerline. As can be seen,

DSM over-estimates the velocity close to the impinging zone. As the jet-to-

surface distance is increased, a better agreement between the predicted

results and the experiment has been achieved. This behaviour can also

be seen at Re = 4740 for all three applied models (Publication III). By

examining the velocity profile in a free jet region especially at lower h/B

values, it can be seen that DSM under-estimates the velocity profiles; this

may be due to an over-estimation of the turbulent viscosity values at that

location.

Figure 4.14 shows the mean velocity profiles at different circumferen-

tial locations for h/B = 6. The results are compared with the available

experimental data at Re = 2960 along the radial direction (s). As the flow

expands radially along the concave surface, the predicted results become

closer to the measured values. It can be seen that DSM over-estimates the

values close to the wall jet region especially at s/B = 4 and s/B = 6, while

away from the concave surface these values are under-estimated. Again,
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here, it should be noted that as the jet-to-surface distance spacing is in-

creased, the predictions of velocity in the wall jet region are in a better

agreement with the experiment.

Figure 4.13. Mean axial velocity profiles along the jet centerline at Re =2960.

Figure 4.14. Mean velocity profiles along the radial direction at different circumferential
location for h/B= 6 at Re = 2960.
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5. Conclusions

Two new subgrid scale models for large eddy simulation have been devel-

oped in this thesis. These models benefit from a variable eddy viscosity

coefficient that depends non–linearly on both the rotational and irrota-

tional strains. This "dynamic" eddy viscosity coefficient Cμ offers some

improvements over the traditional SGS models in LES. The main features

of these two models are that unlike conventional SGS models e.g. the dy-

namic Smagorinsky model, they only require a single filtering operation

in order to extract the sub-grid turbulent structures and the coefficient Cμ

embedded with these models provides a natural damping in the vicinity

of the wall.

The underlying mechanism in Cμ effectively reflects the influence of re-

solved scales on the small ones. This scheme allows the model to adapt

itself to the rapid change in the flow topology especially in regions with

large strain and rotation rate. The zero-equation model accounts for the

sub–grid scale kinetic energy, (ksgs) in which the included coefficient Cμ

allows ksgs for an inherent ability to adapt to the local level of turbulent

activity to some extent. However, in the one-equation model which is

the improved version of a zero-equation model, ksgs is obtained by solving

an additional transport equation for ksgs. This turbulent kinetic energy

transport equation accounts for the history and non–local effects, having

the potential to benefit complex flows with non–equilibrium turbulence as

supported by presented numerical test cases.

The performance of both model is somewhat similar. However, the pre-

dictions for turbulent channel and diffuser flows by present models demon-

strate that the ability of one-equation model to reproduce accurate infor-

mation on the fluid flow is slightly better than those of a zero-equation

model. These models offer a simple and robust expression in the SGS

modeling which is easy to implement and cost effective. Computations
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show that the models are competitive with the dynamic Smagorinsky

model and can save up to 20-30% calculation time in similar conditions.

For the future work, due to their ability of being easily implemented,

these models can be used in collaboration with the Detached Eddy Sim-

ulation (DES) and hybrid RANS–LES modeling. Therefore, according to

the nature of the DES method in utilizing both the RANS (close to the

wall) and LES, the proposed SGS models can provide a good compromise

between robustness and accuracy in various industrial fluid engineering

problems where a precise as well as a robust solution is desirable.
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"I am an old man now, and when I die 
and go to heaven there are two matters 
on which I hope for enlightenment. One 
is quantum electrodynamics, and the 
other is the turbulent motion of fluids. 
And about the former I am rather 
optimistic." 
  
-Horace Lamb (1849-1934) 
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