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Abstract
This thesis examines the explanatory power of equity index options and volatility indexes on short-
term equity index returns. The work relates to literature that employs options to show what risks
are compensated in financial assets and how to assess the riskiness of investments in general. The
contribution of this thesis is to provide a comprehensive assessment of the main sources of predic-
tive power by employing a wide range of option-implicit predictors. Moreover, global evidence is
provided. The predictive information is based on risk-neutral nonparametric probability distribu-
tions of equity index returns, volatility indexes, and realized returns. The main focus is in using
information available before the return periods to explain subsequent returns.

The considered predictive variables comprise of option-implied volatility, option-implied skew-
ness, volatility risk premium, skew risk premium, and two tail risk measures. This thesis answers
whether the variables are consistently behaving and statistically significant predictors across in-
dexes. The involved indexes are S&P 500 (the U.S.), FTSE 100 (the U.K.), and DAX 30 (Germany).
In addition, information on S&P 500 is used to explain returns of ten equity indexes globally, the
remaining seven being Euro STOXX 50 (Europe), Nasdaq OMX Helsinki (Finland), Hang Seng
(Hong Kong), Nikkei 225 (Japan), MXIPC35 (Mexico), MERVAL (Argentina), and S&P/ASX 200
(Australia). The sample ranges from February 2006 to December 2014, and the option data includes
options with expiries from May 2006 to December 2014. Predictive regressions are run for one-
week, one-month, two-month, and three-month returns.

The results show that tail risk and volatility risk premium are the main sources of predictive power,
and that the variables are robust to the inclusion of other option-implicit variables and market val-
uation, interest rate, and dividend based alternative explanatory variables. The results hold for FTSE
100 and DAX 30 only if the information in S&P 500 options is used to explain returns. This implies
that risks and premiums are global, and that the information is best reflected in S&P 500 options.
Applying the information in S&P 500 options on ten indexes globally further confirms this finding.
A one standard deviation increase in the ex ante volatility risk premium of S&P 500 on average leads
to a 2.2% to 4.1% increase in three-month logarithmic returns globally. A one standard deviation
increase in the tail risk measure leads on average to a 3.2% to 7.8% increase. Skew risk premium
seems to contain the same information as the volatility risk premium. The tail risk measure and the
volatility risk premium also likely contain similar predictive information, as the inclusion of the tail
risk measure at most leads to a 1% increase in explained variation for the ten equity indexes. The
predictive power in the variables comes mainly from the time-varying risk of large price movements
and risk aversion.

Keywords equity index returns, tail risk, volatility risk, skew risk, ex ante moments, moment pre-
miums, equity index options, volatility indexes
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Tiivistelmä
Tämä tutkielma tarkastelee osakeindeksioptioiden ja volatiliteetti-indeksien selittävää voimaa ly-
hyen aikavälin osakeindeksituottoihin. Työ liittyy kirjallisuuteen, joka hyödyntää optioita tutkies-
saan mitä riskejä rahoitusinstrumenttien tuotot kompensoivat ja miten sijoitustoiminnan riski-
syyttä tulee arvioida. Tämän tutkielman kontribuutio on antaa kattava arviointi olennaisista teki-
jöistä tuottojen taustalla soveltamalla optioissa olevaa informaatiota laaja-alaisesti. Tutkielman em-
piirinen osio kattaa globaalisti eri indeksejä. Selittävä informaatio perustuu ei-parametrisesti esti-
moituihin riskineutraaleihin osakeindeksien tuottojakaumiin, volatiliteetti-indekseihin ja toteutu-
neisiin tuottoihin. Informaation käyttäminen ennustamaan tulevia indeksituottoja on tutkielman
keskiössä.

Selittävät muuttujat tutkielmassa ovat tuottojen implisiittinen volatiliteetti, implisiittinen vinous,
volatiliteettiriskipreemio, vinousriskipreemio ja kaksi eri häntäriskin mittaria. Tutkimuskysymyk-
set kysyvät, ovatko selittävät muuttujat tilastollisesti merkittäviä ja johdonmukaisesti käyttäytyviä
osakeindeksituottojen selittäjiä. Osakeindeksit S&P 500 (Yhdysvallat), FTSE 100 (Yhdistynyt ku-
ningaskunta) ja DAX 30 (Saksa) ovat empiirisen osion pääindeksit, ja lisäksi S&P 500-indeksin op-
tioita ja volatiliteetti-indeksiä käytetään selittämään kymmenen eri osakeindeksin tuottoja maail-
manlaajuisesti. Muut seitsemän indeksiä ovat Euro STOXX 50 (Eurooppa), Nasdaq OMX Helsinki
(Suomi), Hang Seng (Hong Kong), Nikkei 225 (Japani), MXIPC35 (Meksiko), MERVAL (Argen-
tiina) ja S&P/ASX 200 (Australia). Tutkielman regressioanalyysissä selitetään viikon ja yhden, kah-
den ja kolmen kuukauden logaritmisia osakeindeksien tuottoja.

Tulokset näyttävät, että häntäriski ja volatiliteettiriskipreemio ovat merkittävimmät tekijät seli-
tettyjen tuottojen taustalla. Muuttujien selitysvoima säilyy sisällyttäessä muut optioihin liittyvät
muuttujat ja arvostustaso-, korko- ja osinkoperusteiset muuttujat estimoituihin malleihin. Tulokset
pitävät FTSE 100 ja DAX 30 indekseille jos informaatiota S&P 500-optioissa käytetään selittämään
tuottoja. Tämän perusteella riskit ja preemiot ovat globaaleja, ja S&P 500-indeksin optiot parhaiten
heijastavat tätä informaatiota. Kymmenen eri osakeindeksin tuottojen selittäminen S&P 500-indek-
sin informaatiolla tukee tätä havaintoa. Yhden keskihajonnan kasvu ennakoidussa volatiliteettiris-
kipreemiossa kasvattaa keskimäärin 2.2-4.1% osakeindeksin kolmen kuukauden logaritmista tuot-
toa. Yhden keskihajonnan kasvu häntäriskin mittarissa vastaavasti lisää tuottoa 3.2-7.8%. Vinous-
riskipreemio vaikuttaa sisältävän saman informaation kuin volatiliteettiriskipreemio. Sama pätee
osittain sovelletulle häntäriskimittarille ja volatiliteettiriskipreemiolle, ja häntäriskimittarin sisäl-
lyttäminen globaaleja indeksituottoja selittävään malliin lisää enimmillään selitettyä vaihtelua 1%.
Selittävä voima muuttujissa tulee enimmäkseen ajassa muuttuvasta suurten hinnanmuutosten ris-
kistä ja sijoittajien riskinkaihtamisesta.

Avainsanat osakeindeksituotot, häntäriski, volatiliteettiriski, vinousriski, ennakoidut tuottoja-
kauman momentit, momenttipreemiot, osakeindeksioptiot, volatiliteetti-indeksit
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1. Introduction

Forward-looking information in option prices powerfully explains aggregate stock market

returns. This information also enables a comprehensive view on what risks are compensated in

financial asset returns, and how to assess the riskiness of investments in general. In explaining

market returns, the information in option prices seems superior to the explanatory power of market

valuation, dividend, or interest rate based measures particularly for under one-year horizons.

Especially the variance risk premium is shown to explain subsequent aggregate returns in the U.S.

(see, e.g., Bollerslev, Tauchen, and Zhou, 2009; Drechsler and Yaron, 2011) and globally (see

Bollerslev et al., 2014). The variance, or volatility, risk premium is the difference between risk-

neutral and true expectations of return variance, and is usually measured as the difference between

option-implied and realized variance. In addition, recently applied measures of tail risk show that

the time-varying risk of large price movements is compensated with a premium. Tail risk is the

risk of a sudden and deep decline in market valuations. Du and Kapadia (2012) provide an option-

based jump and tail index, and Kelly and Jiang (2014) provide a measure based on historical

returns. Bollerslev and Todorov (2011) and Santa-Clara and Yan (2010) show that price jumps

have a major contribution to the equity premium using equity index options.

Related to the mentioned findings, studies that focus on the cross-section of stocks in the

U.S. stock market show that risk measures based solely on return covariance with the market and

measures that do not incorporate compensation for possible jumps in prices, as the CAPM beta,

fail to account fully for priced risks in individual stocks. Cremers, Halling, and Weinbaum (2015)

separate aggregate jump and volatility risk by using investable option trading strategies, and stocks

that hedge against increases in volatility or jump risk earn lower returns. Conrad, Dittmar, and

Ghysels (2013) and Chang, Christoffersen, and Jacobs (2013) find that ex ante moments, i.e.

volatility, skewness, and kurtosis, of the expected risk-neutral return distribution1 (RND) are

related to future returns. If investors have preferences over these moments on the aggregate level,

they should also provide explanatory power on future returns. Higher expected variance of returns

could be, for instance, associated with a higher required rate of return as in the mean-variance

framework. Moreover, the probability distribution of returns can show features that are not

1 The cross-section of equity option prices at any given point of time reveals a risk-neutral probability distribution of
-
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captured fully by the moments, but which explain future returns. One potential feature could be the

tail of the probability distribution of expected returns.

The purpose of this study is to provide new empirical evidence on the explanatory power of

option-based information on aggregate stock market returns by applying the recent findings in a

global setting. The contribution of this study is twofold. First, a comprehensive range of option-

implicit predictors is used simultaneously to explain subsequent equity index returns. The top-

down approach aims to reveal the main drivers behind future returns and assess the robustness of

key variables in earlier studies. Particularly interesting is the robustness of the volatility risk

premium and the jump and tail index to simultaneous inclusion of RND moments. Second,

evidence is provided for a number of indexes, as opposed to the common focus on the U.S. stock

market. For comparison, ex post measures of the premiums are included, but the focus is on ex ante

measures which are available before the return periods. The considered variables comprise of

volatility risk premium, skew risk premium, option-implied volatility, option-implied skewness,

and two tail measures2. The tail measures are

applied by Du and Kapadia (2012).

Specifically, three questions are answered. First, are volatility and skew risk premiums

consistently behaving predictors of returns across indexes? Second, are option-implied volatility

and skewness consistently behaving predictors of index returns across indexes? Third, is the tail

density or jump and tail index a consistently behaving predictor of returns across indexes?

Consistent behavior refers to a similar impact of variables on subsequent returns, and not to the

consistency of the statistical estimators. The theoretical basis of the variables makes the empirical

results interesting from an asset pricing and risk management perspective. The tail measures are

explicitly measures of crash risk in a risk-neutral world. Option-implied volatility and skewness

also unveil only the risk-neutral expectation of the respective moments. The volatility and skew

risk premiums are in this sense different. They enable inferences of investor risk aversion and

preferences that drive the differences between true and risk-adjusted expectations. The moments

are labeled model-free in this study as they are based on the RNDs that do not depend on any

option-pricing model, and are driven by the observed prices of traded equity index options. To

clarify, the moments use the entire cross-section of options with different strikes and do not relate

2 Table II on page 28 provides variable definitions and Table B.1 in Appendix B provides relevant terminology.
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to any particular strike price as, for instance, the at-the-money (ATM) Black-Scholes (BS) option-

implied volatilities do.

The approach of this study relies on information in equity index options, equity index returns,

and volatility indexes. Specifically, the option-related information is considered in the form of

probability distributions, RNDs. The sample period ranges from February 2006 to December 2014,

and the involved options have expiry dates from May 2006 to December 2014. One-week, one-

month, two-month, and three-month logarithmic returns of S&P 500 (the U.S.), FTSE 100 (the

U.K.), and DAX 30 (Germany) are explained with option-based information specific to the return

period. After identifying the sources of predictive power the explanatory information of S&P 500

is used to explain returns for a number of equity indexes globally. The additional indexes comprise

of Euro STOXX 50 (Europe), Nasdaq OMX Helsinki (Finland), Hang Seng (Hong Kong), Nikkei

225 (Japan), MXIPC35 (Mexico), MERVAL (Argentina), and S&P/ASX 200 (Australia).

The empirical results show that the ex post volatility risk premium is positively related to

subsequent returns for horizons from one to three months. The ex ante volatility risk premium is

also positively related to subsequent returns. The results on the ex ante premium are statistically

significant for FTSE 100 and DAX 30 only at the three-month horizon and if information in S&P

500 options is used instead of options from the British or German markets. This is in line with the

finding of Bollerslev et al. (2014) that a global variance risk premium is a more powerful predictor.

A one standard deviation increase in the ex ante volatility premium on average leads to a 1.9%

(3.7%) increase in two-month (three-month) logarithmic returns for the S&P 500. A one standard

deviation increase in % (2.8%) increase in the three-month

logarithmic returns of FTSE 100 (DAX 30). Skew risk premium is also tested, which to my best

knowledge has not been done before, and the results indicate that the information is similar as in

the volatility risk premiums, yet not as powerful. This suggests that the premiums are driven by the

same factor.

Option-implied volatility and skewness fail to provide any conclusive evidence without the

inclusion of the ex post volatility premium in the model, which means that their predictive power

, defined as the difference between the model-free

implied volatility measure and volatility index value, proves to be positively related to the one-,

two-, and three-month returns of S&P 500, FTSE 100, and DAX 30. The results are significant at
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conventional levels for all two- and three-

volatility premium and jump and tail index is tested by including other option-related variables and

a range of alternative predictors in the estimated models. The jump and tail index and the ex ante

volatility premium are the only consistently behaving and statistically significant explanatory

variables, and robust to the inclusion of other variables. They decrease in significance with the

inclusion of each other, indicating that they include similar explanatory information.

This motivates the last empirical test based solely on information in S&P 500 option contracts

and the S&P 500 volatility index, VIX. The two measures along with option-implied volatility and

skewness are used to explain three-month returns of the ten mentioned equity indexes. The jump

and tail index is not included in the first regressions. For nine of the ten indexes the ex ante volatility

risk premium is statistically significant and positively related to subsequent returns, and for the last

index, MERVAL, the coefficient is in line with the other indexes and has a t-value of 1.47. A one

standard deviation increase in the premium on average leads to a 2.2% to 4.1% increase in three-

month logarithmic returns of an equity index. Similar results follow for the jump and tail index.

Six of the ten indexes provide statistically significant coefficient estimates, and ten of the ten

positive and similarly sized coefficients. Including both variables does not improve any of the

models, and the variables contain similar predictive information. The inclusion of the jump and tail

index at most leads to a 1% increase in explained variation of returns. To sum up the findings, this

study provides evidence that the U.S. option market has explanatory power globally, and likely

indicates global risk factors and premiums. The volatility risk premium and jump and tail index

measure are shown to explain returns. The skew risk premium seems to contain similar information

as in the volatility risk premium, but no conclusive evidence is gained.

This paper proceeds as follows. First, the empirical section is motivated with earlier research.

Also the theoretical background for the explanatory power of options is provided. Second, an

overview on the wide range of recent contributions is given, and literature on aggregate returns and

individual stocks are both given their own subsection. Then research questions are brought up and

hypotheses are formed. Then Section 5 shows the data and methodology, and Section 6 provides

results. Results start with moment premiums, then move to option-implied moments, after which

the two tail measures are considered. Then the robustness of results is tested, and the S&P 500

options are used in explaining equity indexes globally. Section 7 concludes.
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2. Motivation and background

2.1 Motivation and theoretical background

Studying the explanatory power of options on subsequent equity index returns of S&P 500,

FTSE 100, and DAX 30 is motivated by empirical asset pricing literature on equity premium and

compensated risks. Table I below lists the considered variables based on the literature, and a brief

motivation for their use. For reference, Table B.1 in Appendix B covers relevant terminology.

Table I
Option-implicit explanatory variables of equity index returns

Variable Source Motivation for use

Option-implied volatility Risk-neutral densities (RND)

option prices are the primary

source of information along with

interest rate, equity index price,

and dividend yield data

Equity risk is uncertainty of the future price level,

and the variables characterize this uncertainty in the

form of a probability distribution. Compensation for

equity risk translates into a premium, which should

be reflected in subsequent returns.

Option-implied skewness

Negative tail probability density

Jump and tail index RND model-free volatilities and

volatility index values

Difference between the measures reveals risk-

neutral expectations of jumps in prices

Volatility risk premium

Skew risk premium

RNDs and realized asset returns

for calculation of realized

volatility. Premiums equal the

difference between the objective

or statistical expectation and the

risk-neutral expectation.

Differences between the objective expectation and

risk-neutral expectation of returns translate into

premiums. A measure of the second or third moment

premium relate to the equity premium, if they are

driven by a common factor. Serve as indicators of

risk aversion or economic uncertainty.

This study specifically relies on the information content of option-implied risk-neutral densities

(RND). The reasoning is that they provide market-based forward-looking expectations of future

return volatility and skewness, which cannot be inferred from past returns. The RND of an asset is

the expected probability density of the price or return if investors were risk-neutral. The risk-neutral

measure risk-adjusts true expectations. The information in RNDs is specific to the life of the option

cross-section. Therefore, the information content should optimally correspond to the future

realizations of the studied equity indexes. In addition, if the density is estimated with nonparametric

market participants to consider the significance of extreme events, but it also implicitly brings a
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by Jackwerth and Rubinstein (1996). This feature is utilized by incorporating the probability

density of th to infer whether it is a signal of priced tail risk. In addition,

due to the possibly complex logic market participants use to consider the future outcomes, this

study strives to incorporate as much information as possible from option prices to the explanatory

variables. This is covered in section 4.2. All option-implicit variables are based on the entire

continuum of option strikes.

And why would the ex ante moments, volatility and skewness, be important in explaining

future returns? If large negative outcomes are increasingly harmful for a risk averse investor whose

utility is a monotonically increasing concave function of wealth, increased variance exposes the

investor to decreased expected utility. Therefore, holding wealth in such an investment would

require a higher premium, and risk is traded off for return. Thus, the CAPM predicts that the

volatility of the stock market index return is a determinant of the equity premium. Moreover,

keeping variance constant, if the negative skewness of the future return distribution increases, an

investor is again more exposed to harmful negative outcomes.  On the individual security level,

regarding a parameter-preference model, Rubinstein (1973) states

appropriate individual measures of security risk since the comoments reflect the contribution of a

marginal increase in the holdings of a security to the corresponding central moments of individual

future wealth, which are the appropriate measures of portfolio risk in parameter-preference

mod

ture wealth matter, then

aggregate volatility or skewness present in equity indexes also matter. The pricing of betas on

market-wide volatility and skewness, i.e. asset return sensitivities to changes in option-implicit

moments, has been studied by e.g. Ang et al. (2006) and Chang, Christoffersen, and Jacobs (2013).

Option-implicit moments do matter in the cross-section of stock returns. The impacts are similarly

or skewness instead of the market return.  Regarding overall explanatory power of volatility,

Bollerslev, Tauchen, and Zhou (2009) in their study of expected stock returns and variance risk

premium comment  an extensive empirical literature devoted to the estimation of such
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a premium (between aggregate market returns and volatility), the search for a time-invariant

expected return-volatility trade-off type relationsh

Moment premiums, i.e. volatility and skew risk premium, instead, have proven to provide

significant explanatory power on subsequent aggregate market returns. As with the equity

premium, variance and skew premiums are the differences between the true expectation and the

risk-neutral expectation. risk aversion and

utility function. E.g. Bliss and Panigirtzoglou (2004) utilize this to estimate risk aversion, and this

- the risk-neutral density, the objective

density, and/or the pricing kernel (equivalently the utility function) - permits us to infer the third

, because the premiums evident in volatility

and skewness possibly unveil factors that also drive the equity premium. This connection between

the three functions is central to the interpretation of moment premiums and aggregate returns. The

objective or true expected density is not observed, requiring a substitute. In this study the ex ante

and ex post realized values of volatility and skewness are used as substitutes for the objective

expectation.

The common perception of considering a risk-neutral measure of future return variation, e.g.

the Chicago Board Options Exchange (CBOE) volatility index (VIX), as an indicator of overall

risk aversion can therefore be misleading. VIX can be high due to a high objective expectation,

high risk aversion or both. Bollerslev and Todorov (2011) develop an Investor Fears index that

 premiums

into diffusive risk and jump risk components. In their model jump risk of the price process directly

links the equity and variance risk premiums, and has a major contribution to both. A price process

of a security models how the price evolves over time, and usually option pricing models specify a

process for the price and derive option prices as a function of the price process parameters. Santa-

Clara and Yan (2010) form a time-varying equity premium with index options which explains

following returns. Thus, it is reasonable to expect that moment premiums provide explanatory

power over moments. Equity risk premium is of major importance in this study. A high required

equity premium translates into a high expected return.

Volatility indexes have an alternative, yet important, use in this study. Du and Kapadia (2012)

show that the difference between Bakshi, Kapadia, -free implied
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volatility (MFIV) and volatility index prices are proportional to the jump intensity in the assumed

price process. According to the authors, MFIV is a measure of the variance of holding period log-

returns, and VIX is constructed to measure the quadratic variation of a strictly continuous stock

return process. The difference reveals the jump and tail index, which suits the purpose of this study

is completely determined by (large) jumps. Therefore, the time variation in the difference between

the quadratic variation and the VIX measure of integrated variance measures the time variation in

the tail of

The jump and tail index of Du and Kapadia (2012) is replicated in this study with the model-

free option-implied volatility of RNDs, since it exactly measures the option-implicit volatility of

holding period log-returns. Since there are three equity indexes employed in this study, the different

volatility indexes should be calculated similarly. This is important for the meaningfulness of the

empirical tests, and requires attention due to changes in the methodologies in volatility index

calculations. The CBOE introduced VIX in 1993, which originally measured the expected 30-day

volatility implied by at-the-money (ATM) options on the S&P 100 index. In 2003 CBOE with

Goldman Sachs updated the VIX, and nowadays it is calculated from a wide range of out-of-the-

money (OTM) calls and puts on the S&P 500. The original index is abbreviated VXO. Similarly

calculated corresponding indexes for DAX 30 and FTSE 100 are VDAX-NEW and VFTSE.

Deutsche Börse and Goldman Sachs jointly created the VDAX-NEW, and the new index, similarly

to VIX, applies OTM options. The new index has been calculated on a continuous basis since 18th

of April 2005. The old index, which uses ATM implied volatility, is called VDAX. The VFTSE

was introduced in 2008 by NYSE Euronext, and differs in methodology from the new FTSE 100

Implied Volatility Index (FTSE 100 IVI). The FTSE 100 IVI was launched on 18th of February

2013. Methodology for the included indexes  (2003)

Indexes of Deutsche Börse (2007).

The concepts of RNDs, moments, moment premiums, model-free, and risk-neutral measure

are central to the methodology and results. Table I gives exhaustive explanations, which are now

elaborated. RNDs are basically a more intuitive way to report option prices as a probability

distribution. The equity index ends to different values with different probabilities, and the

probabilities sum up to one. European option prices depend on the outcome, and with many options
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on the same equity index one finds the probability distribution of different outcomes indirectly

from option prices. This is because the option prices can be thought of as discounted expectations

of future payoffs, and options have different exercise prices. Moments and the tail density simply

measure certain characteristics of the probability distributions of the future asset value, the RNDs.

The option-implied moments, volatility and skewness, are labeled model-free since they

totally depend on the RNDs that are not determined by any option-pricing model. Black-Scholes

(BS) implied volatility, in turn, is a model-dependent way to report a

that with other inputs held constant the option-implied volatility is the volatility input that matches

used as a conversion tool in the methodology, and different options usually imply different

volatilities for the underlying asset since the pricing model is incorrect (see Figure 3 in Appendix

C). The risk-neutral measure provides us with a probability distribution which has incorporated the

pricing of risk. This is what one observes from option prices, and it gives the risk-neutral moments

and tail densities. Now if one observes or assumes a true expected probability distribution, then the

difference between these distributions shows risk premiums. These are the moment premiums

considered in this study, and the basis for the literature on moment swaps.

2.2 Contribution and limitations of the study

The theoretical basis from which the explanatory power is drawn is broad. In turn, the

empirical approach is strictly driven by the main idea behind this study: the information in the form

of probability distributions reveals the assessment of the future as well as its pricing. The RNDs

should incorporate all the relevant information if pricing is correct and markets efficient. By

applying nonparametric methodology in estimating the risk-neutral densities it is possible to make

use of all the information content and account for the possibly complex logic of market participants

to price uncertainty. The contribution of this study is to explain subsequent returns with a wide

range of information available in option-implicit RNDs, supplemented with the information in

volatility indexes. Even though the variance premium and tail measures have proven to be

important predictors, including volatility, skewness, and skew premium allows for comparison

between the measures and testing their mutual explanatory nature. This comprehensive top-down

approach enables inferences of the sources of explanatory power based on earlier theoretical work

on the subject.
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Two recent studies are the main motivators of this work, but are distinctively focused on tail

measures and do not consider market returns outside the U.S. stock market. Du and Kapadia (2012)

study the explanatory power of the variance risk premium and the jump and tail index along with

a common set of alternative predictors also controlled for in this study. They provide results for

one-month, two-month, six-month, one-year, and two-year horizons. Kelly and Jiang (2014) also

focus on the tail risk measure they construct, and for comparison include variables applied in this

study such as the variance risk premium, risk-neutral skewness, and risk-neutral kurtosis along

with a range of non-option-based variables. The market return predictability results are reported on

a univariate or bivariate level, and the horizons include one-month, one-year, three-year, and five-

year horizons. Bollerslev et al. (2014) broaden the geographical perspective by including eight

countries in the study, but limit the investigation entirely on the variance risk premium and its

predictive power. Therefore, empirical research on the predictive abilities of option-implicit

information in general and across indexes has room for new evidence.

In addition, this paper has two distinctive features. First, the empirical investigation considers

a wider set of variables simultaneously.  In practice this is implemented by first studying the

explanatory variables and subsequent returns in isolation, and then assessing the robustness of the

findings to the inclusion of the full range of predictors. Second, an attempt is made to preserve the

maximal possible amount of information in options with loose filtering of input option data, and

this information is used primarily in the form of probability distributions. The option prices are the

channel of predictive power applied in this study, and strict filters and pre-imposed distributional

structures would work against the main idea of this study. Section 5 covers the methodology in

detail.

The limitations of the study result directly from the choice of approach. Using solely RNDs

constrains the study to this perspective. A number of studies have exploited returns of traded option

strategies and estimations of the price process to find compensated risks and relationships between

option-implicit information and subsequent returns. To simplify, this study uses information on

where the price can end up, but not how it gets there. The only variable containing information on

the price process is the jump and tail index. Therefore, there is no direct correspondence to these

strands of literature, and also there is no direct contribution to option pricing literature despite

options being in the center of the methodology. Moreover, option series expiries are infrequent,
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which constrains the amount of observations to construct the RNDs. This could be circumvented

by forming constant maturity RNDs, or directly moments, as is done by Neumann and

Skiadopoulos (2013) in their study of predictable dynamics of higher-order risk-neutral moments,

but little would be gained in the case of explaining returns due to a major overlap in observations.

Also, the choice of methodology affects the study. The information on model-free risk-neutral

moments implicit in RNDs can be extracted directly from option prices (see Bakshi, Kapadia, and

Madan, 2003; and, e.g., Trolle and Schwartz, 2014; Conrad, Dittmar, and Ghysels, 2013; Buss and

Vilkov, 2012, for application) or after estimating the RNDs, and the latter is done in this case due

to including the probability density of the negative tail in the study.

Last but not least, this study does not take into account the true expectation of future return

tail density. Volatility and skew risk premiums incorporate this information regarding the second

and third moments, but no objective measure of the tail probability is applied. In general, forming

objective expectations of jumps or tails is challenging because these events occur rarely. This is a

limitation, because the RND reveals the effect of true probability attributable to the tail after

correcting for investor preferences. Separation of these factors is not possible without statistical

expectations (see Bollerslev and Todorov, 2011, for separation of diffusive and jump risk into risk-

neutral and statistical expectations and their empirical application, and Kelly and Jiang, 2014, for

another proposed measure of tail risk). The pricing of tails is indirectly taken into account through

the variance and skew premiums, and directly with the tail risk measures.
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3. Prior literature

This section covers literature on compensated risks in financial assets. Literature is covered

to understand the compensated risks in individual stocks and the stock market on aggregate, and

two questions get an answer. First, what risks are lately considered relevant for equity prices?

Second, is there something in the option market that would indirectly imply the size of the equity

premium? These considerations provide the motivation for the empirical part, and provide

explanations why option-implicit information has explanatory power on equity index returns. Table

B.1 in Appendix B lists relevant terminology.

3.1 Risks and premiums

3.1.1 Equity risk, volatility risk, skew risk, and moment premiums

Exposure to risk is associated with an expected compensation for being exposed. Equity risk

compensates for the uncertainty of the future price level. In the traditional mean-variance

framework holding wealth in an equity index is expected to have a higher return than holding

wealth in an asset which is considered risk-free, i.e. variance-free, since the exposure to price

changes is higher in that case. This results from risk aversion, and large negative outcomes appear

to be more harmful for investors than large positive outcomes are beneficial. The difference

between the expected return on the two securities can be interpreted as an equity premium, i.e.

compensation for the risk. In this study the RND is applied for finding out the perceived

characteristics of the future returns beforehand, and the difference between the objective return

density  mean and the risk-free counterpart is the equity premium. However, this premium is not

observable. Therefore, a model or indicator of the premium is needed to have explanatory power

on future returns.

If investors dislike being exposed to changes in the volatility of market returns, they require

being compensated for it. Volatility risk refers to the risk that volatility changes, or to the fact that

returns are volatile. Option-implied volatilities usually exceed the subsequent realized volatilities,

and the difference uncovers a premium (see, e.g., Carr and Wu, 2009). The difference is analogous

to the difference between a long-term fixed interest rate and a floating rate. One usually pays less

interest if one takes the risk that interest rates rise. The difference between the RND volatility and

the objective expectation translates into a volatility risk premium. Alternatively, if volatility risk is
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not perceived as a risk factor itself, the observed differences between option-implied volatilities

and realized volatilities mean that there are volatility arbitrage opportunities. Volatility risk

premium varies in time, and has been documented as a powerful predictor of equity index returns.

Therefore, there seems to be a direct link to the equity premium. Market volatility is nowadays

widely traded, and by entering an over-the-counter variance swap an investor can receive a floating

payoff based on the realized market volatility by paying a fixed leg. Interestingly, the expected

payoff for such a contract seems to have a lot to do with market returns, most likely because the

variance risk premium is correlated with the equity premium.

The average return on being short in the fixed and receiving the floating leg of the swap has

been widely documented negative, and therefore hedging against market volatility costs the

volatility risk premium. Carr and Wu (2009) studied five stock indexes and 35 individual stocks

over a seven-year period from January 1996 to February 2003, and compared a synthetic variance

swap rate, constructed from options written on the underlying, on the ex post realized return

variance. Defining this difference as the variance risk premium, they find that for the S&P 500 and

100 indexes and for the Dow Jones Industrial Average the risk premiums are strongly negative.  In

addition, their analysis suggests that there is a systematic variance risk factor requiring a highly

negative risk premium.

The negative risk premium in this context means that the realized variance, i.e. the floating

leg of the variance swap, is on average lower than the fixed leg. Similarly as the difference between

the RND and the objective density translate into premiums, the difference between the fixed leg

and the floating leg unveils a premium. When an investor invests in a security, at least two sources

of uncertainty are faced. Uncertainty about the return is captured by the return variance, and the

remaining risk is variance of the return variance itself. Therefore, the security exposes the investor

behavior of financial asset prices

The variance risk premium is tested against a range of classic risk factors, and for

instance the CAPM relationship of returns of the swap and market excess returns is not sufficient

in explaining variance swap returns.

Delta-hedged option strategies that are exposed to changes in volatility similarly uncover the

premium associated with volatility. Bakshi and Kapadia (2003) use S&P 500 index options, and
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find that a delta-hedged long straddle option strategy underperforms zero. As the position holder

gains from increases in market volatility, the position serves as a hedge against increases. Similar

empirical investigations are numerous, and more recently Cremers, Halling, and Weinbaum (2015)

use straddles in a way that separates jump and volatility risk with vega or gamma positive but delta

neutral option positions. The variance premium is affected by differences in the jump tails of the

risk-neutral and objective distributions, and Bollerslev and Todorov (2011) show that on average

the difference explains over half of the observed variance premium. Bakshi and Kapadia (2003)

tried to explain the negative variance risk premium with risk-neutral skewness, but concluded that

the jump-

looking at the risk-neutral measure, comparing it with the objective measure, as in Bollerslev and

Todorov (2011), is beneficial.

Kozhan, Neuberger, and Schneider (2013) study skew and variance swaps, and provide

evidence that skew and variance premiums are manifestations of the

The implication for explaining equity index returns is that including both premiums should not add

explanatory power to a model. Relevant to this study, the variance and skew premiums embed

possible expected jumps. Bollerslev and Todorov (2011) claim that jump risk drives both equity

and variance premiums, and as a result higher variance premium would mean that the equity

premium is higher. Drechsler and Yaron (2011) theoretically show that the variance premium,

defined as the square of VIX less the expectation of realized variance, is linked to uncertainty about

economic fundamentals. They show that time variation in economic uncertainty and preference for

early resolution are required to generate a variance premium that is time-varying and predicts

excess stock market returns. The variance premium is shown to effectively reveal the level of jump

intensity, and an increase in jump intensity causes an increase in the variance and market risk

premium. This idea is strongly supported by the findings of this study.

The variance premium captures time variation in the risk premium and serves as an effective

predictor of market returns. In practice increased jump intensity means that price jumps become

more frequent and probable. From the probability distribution perspective, increased downward

jump intensity in the price process makes the negative tail fatter or return expectation more

negatively skewed.
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Asymmetries in the return distribution can either make the distribution negatively or

positively skewed. Skew risk is the risk that skewness of this expected return distribution changes,

or the fact that expected returns are skewed. For a negatively skewed distribution large negative

outcomes are more probable than large positive outcomes. The RND has for long been on average

negatively skewed for equity indexes (see Figure 2 and Figure 3 in Appendix C), despite historical

returns show a far more symmetric distribution of returns. Consequently, either the market

constantly expects a large negative movement in the index value that occurs far too rarely, or the

improbable negative event is accompanied with a high required compensation. As the RND is

of the density and their preferences, either one of these

explanations or both lead to an observed skew risk premium. Negative skewness is by construction

related to tail risk, as a high probability of crashes leads to a skewed RND. This shows in the

correlations between variables, and e.g. the one-month jump and tail index is correlated by -0.52,

-0.73, and -0.67 with option-implied skewness for S&P 500, FTSE 100, and DAX 30 respectively

(see Table B.5 in Appendix B for correlation matrices of variables).

Asymmetries in the objective distribution of returns and skew risk premium both drive the

option-implicit skew, and as mentioned earlier this is quantified lately by Kozhan, Neuberger, and

Schneider (2013) with a skew swap. The underlying idea is similar to the other option strategy-

based studies, but as the risk exposures of strategies vary over time, they rebalance the positions to

avoid spurious evidence of skew or variance premiums. The rebalancing and hedging is done in a

model-free way. Again, S&P 500 index options are used to provide evidence that there exists a

skew and variance risk premium, and trading strategies receiving the floating leg, i.e. realized

moment, of the respective moment swap earn negative returns. Half of the option-implied skew is

due to the risk premium, whereas the rest reflects the negative correlation between returns and

volatility. In other words, when equity prices decline volatility simultaneously increases.

Therefore, half of the skew is explained by the objective assessment of the density. As variance

comes short in explaining the shapes of RNDs, skewness helps in explaining the shape.

3.1.2 Tail and jump risk

Tail or jump risk is not as unambiguous of a concept as the moments. Tail risk is usually

considered as the possibility of an extreme return, and in the RND on the

negative side of the mean would mean that tail risk is high. As an alternative, a sudden jump in an
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otherwise continuous price process is interpreted as the realization of tail risk. An increased tail

risk in this setting would mean that the modeled jump intensity has increased, leading as well to a

higher probability of an extreme return.

To list suggested measures, Du and Kapadia (2012) calculate their jump and tail index from

the difference between the holding period return variance of Bakshi, Kapadia, and Madan (2003)

and integrated variance as calculated in the VIX index. The difference between the two measures

and the bias of VIX, in case of jumps in the price process, reveals the jump risk. Kelly and Jiang

(2014) use historical stock returns, and assume that the tail risk of all assets is governed by a single

process. The tail risk is then determined from the commonalities of tail risks of individual

securities, tail probability being calculated as the probability that the return falls below a certain

negative threshold. Bollerslev and Todorov (2011) use statistical extreme value theory

approximations with high-frequency intraday data to estimate jump tails under the objective

probability measure, and short maturity OTM options to estimate the risk-neutral counterpart. For

comparison, in this study tail risk is simply defined as the risk-neutral probability that the future

return falls below a certain threshold. The jump and tail index is used as an alternative.

3.1.3 Risks implicit in modeled asset price processes

Characteristics of the RNDs do not necessarily reveal the underlying price process.

Reversely, without further assumptions an observed RND can result from any possible price

process that satisfies it. By using non-path-dependent options that only derive their price from their

terminal value, this study explicitly focuses on the moments and the tail of the period-end density,

and any parametric restrictions on the density are avoided. However, the implications of various

applied models are also relevant to cover the literature discussed.

To start with, the BS model  price process has only one source of risk, which is uncertainty

s price represented by the volatility input. Hedging against this one

source of risk leads to a riskless portfolio, and a delta neutral portfolio should earn the risk-free

rate. Therefore, the model incorporates diffusive risk but excludes jump risk. In other words, there

is equity risk resulting from volatility, but no volatility risk. Also the form of the price process

implies that skewness, jumps, and tails are negligible. Volatility is assumed to be time-invariant,

and the RND for the asset following this difference-stationary process is lognormal. The log-return

is consequently normally distributed.
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The crash of 1987 and the following smirk effect (see Figure 3 in Appendix C for volatility

smiles and smirks) in implied volatilities revealed that many of the assumptions behind the model

are to be questioned. Heston (1993) introduced stochastic volatility, allowing the volatility of the

price process itself vary in time, and Bates (2000) introduced Poisson-distributed jumps in

proposing a stochastic volatility/jump-diffusion model. Later on, time-varying jump risk has been

modeled by e.g. enabling the jump intensity to vary, and applied in solving for its contribution to

the equity premium (see Santa-Clara and Yan, 2010; Bollerslev and Todorov, 2011). Jump

discontinuities in the stock price process increase the tail or skew, and volatility of a return

distribution.

3.2 Stock returns

The different sources of risk mentioned in the earlier section have been successfully used to

explain the cross-section of stock returns. The results are generally robust to the inclusion of other

explanatory factors, such as liquidity risk and momentum, and the choice of model. The following

studies have revealed important priced risk-factors, but have also helped in assessing the magnitude

of the time varying equity risk premium.

Ang et al. (2006) study the pricing of aggregate volatility risk in the cross-section of stock

returns. Assets with high sensitivities to market volatility risk hedge against market downside risk,

which results as a negative price of volatility risk of approximately -1% per annum. The proxy for

innovations in volatility is the change of the VIX index3. They bring up alternative explanations

from economic theory on the pricing of volatility risk. Investors may want to hedge against

increases in market volatility because it makes investment opportunities worse, or alternatively the

low-return stocks hedge against market downside risk because usually downward movements in

stock prices are accompanied with high volatility of returns. Similar results are provided by

Cremers, Halling, and Weinbaum (2015) who separate the pricing of time-varying aggregate jump

and volatility risk in the cross-section of stock returns, finding that these are separately priced. The

results of Ang et al. (2006) did not include this kind of separation. Cremers, Halling, and Weinbaum

(2015) also find that the jump risk and volatility risk betas are uncorrelated, and therefore a stock

3 Ang et al. (2006) note that the VIX combines both stochastic volatility and the stochastic volatility premium, and
only if the volatility risk premium was zero would the VIX correctly proxy for innovations in aggregate volatility. This
difference caused by the premium is analogous to the difference between the risk-neutral and statistical expectation,
and is revealed by moment swaps (see e.g. Kozhan, Neuberger and Schneider, 2013; Carr and Wu, 2009).
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that provides protection on one of these risk factors does not necessarily hedge for the other risk.

Jump and volatility risks are mimicked by constructing straddle option positions that are either

vega or gamma positive but market neutral. I

the vega positive option position, the results suggest that keeping other factors constant the

expected rate of return becomes smaller. The same holds for gamma positive option positions.

In addition to  using risk factors driven by changes in the VIX or changes in the value of vega

or gamma exposed option positions, cross-sectional stock returns have also been studied by using

the ex ante moments of the risk-neutral return distribution by Conrad, Dittmar, and Ghysels (2013).

Moments are calculated from options on individual stocks following Bakshi, Kapadia, and Madan

(2003). With a sample of options on individual stocks, they find that cross-sectional differences in

estimates of risk-neutral volatility, skewness and kurtosis are related to subsequent returns.

Volatility and skewness are negatively related to returns, whereas kurtosis is positively related.

These relations are robust for controlling for firm characteristics, beta, size, book-to-market ratios,

and adjustments of the Fama-French risk factors.

Rehman and Vilkov (2012) find that the ex ante option-implied skewness from individual

stock options is positively related to future stock returns. In contrast to literature finding that the

subsequent higher returns for negative skews are due to a risk premium, the model-free implied

skewness is said to identify deviations of individual stocks from their fundamental values. A

negative skew consequently shows that a stock is overvalued, and the value correction process

They also find that the speed of this

inefficiency correction process is dependent on arbitrage risks.

the opposite is found by Chang, Christoffersen, and Jacobs (2013), who report a large and negative

premium for bearing market skewness risk. Also kurtosis risk is priced in the cross-section of stock

returns, but results are more robust for skewness. Ang, Chen, and Xing (2006) study downside beta

and the cross-section of stock returns, and show that stocks with high downside betas have high

returns on average. Kelly and Jiang (2014) have confirmed the robustness of their tail risk measure

to the downside beta along with liquidity, momentum, and other factors. This possibly indicates a

separate role and economic interpretation of the downside beta from jump or tail risk.
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3.3 Aggregate stock market returns

Option-implicit factors also have explanatory power on aggregate stock market returns.

Especially options have proven to be more powerful predictors of equity index returns in the short

term than other traditionally considered predictors such as dividend yield, price to earnings, default

spread, or term spread. The following section sheds light on this part of literature. Santa-Clara and

Yan (2010) use S&P 500 index

ex ante They consider diffusion risk and jump risk, and calibrate a model to option

prices which embeds time-varying stochastic volatility of diffusion shocks and jump intensity.

Further on, they construct a time-varying model-implied equity premium dependent on these risks.

Predictive regressions explaining realized stock returns suggest that the model-implied equity

premium has significant predictive power on future stock returns for horizons up to three months,

and the predictive power seems to be more related to the stochastic jump intensity. This finding is

in line with the theoretical work and empirical findings of Bollerslev and Todorov (2011) and

Drechsler and Yaron (2011). In their work jump risk and its pricing contribute to the size of equity

and variance premiums.

In Santa- (2010) model the average premium that compensates investors

for the risks implicit in option prices is quantified at 11.8%, which is 40% higher in relative terms

than the premium required to compensate the same investor for the realized volatility in stock

market returns, 6.8%. Regardless of the approach taken, this highlights the important fact that

realized variation, skewness, crashes, or other measures are insufficient in explaining asset returns.

The higher compensation for ex ante risks compared to realized risks is said to support the Peso

explanation of the equity premium puzzle, which means that the historic equity premium has been

higher than what would be explained by compensation for the covariance between market returns

and consumption growth with reasonable levels of risk aversion, and this is explained by rarely

occurring large price movements.

Investors clearly require compensation for events that are deemed probable but occur rarely.

As options are based on the perceived ex ante risks, the compensation of these events should be

embedded in option prices. Santa-Clara and Yan (2010)

perceived as likely by the investors ev  In contrast

to earlier research, the model of the price process includes an independent process of jump
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intensity. The RNDs used in this study capture the ex ante risks in the form of a probability

distribution, and the increased jump intensity in Santa-  model would increase tail

probability densities and negative skewness if the price jumps were negative. The jump and tail

index is directly affected by increased jump intensity.

Rarely materializing events have been widely considered as a solution for the equity premium

puzzle brought up by Mehra and Prescott (1985). Rietz (1988) first considered possible, yet

unlikely, market crashes as an explanation. He concludes that adding unlikely and low-probability

crashes to the model proposed by Mehra and Prescott explains the high equity risk premium and

low risk-free returns, thus solving the puzzle. The ex ante small probability of a stock market crash

would be evident in the tail of the RND. The idea behind the rare events hypothesis, i.e.

compensation for rare events explaining the equity premium puzzle, is that even though these

events rarely materialize, they are still compensated in the equity premium.

Recently Julliard and Ghosh (2012), as opposed to literature supporting the rare event

hypothesis, have argued that the occurred disasters in the world are too small to rationalize the

puzzle, and that an unreasonably high level of relative risk aversion is needed. Ziegler (2007) also

states that a very high level of relative risk aversion is needed to rationalize the stock market risk-

premium, and that the rare events hypothesis is an unlikely explanation. The results also suggest

that the most likely explanation is one that increases the likelihood of recessions and market crashes

compared to the historical frequency. This study does not address the composition of the equity

premium. The ex ante perception of the return distribution, risk premiums, and tail measures embed

the expectations and pricing of rare events.

Related to the equity premium puzzle and the Peso problem, tail risk has been studied to find

out whether it should be considered an additional channel of risk and risk premiums. Liu, Pan, and

Wang (2005) find that the total equity premium consists of a diffusive risk premium, a jump risk

premium, -exchange

economy with a representative agent who is averse not only to risk but also to model uncertainty

, i.e. decreasing implied volatility in exercise

prices, is consequently suggested to be driven by uncertainty aversion to rare events and by rare-

event premiums. More recently Bollerslev and Todorov (2011) have shown that the compensation

of rare events accounts for a large fraction of the average equity and variance risk premiums.
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Similarly to Santa-Clara and Yan (2010), the distinct roles of continuous price variation and large

jumps is studied, and their results suggest that on average close to 5% in absolute terms of the

equity premium is explained by the compensation for rare events. Relevant to this study, estimates

of right and left tail jump density measures, which unveil the jump risk perceived by investors,

under the risk-neutral and objective measure are formed. Close-to-maturity and deeply OTM S&P

500 options are the basis for measures under the risk-neutral measure, and objective measures are

based on high-frequency price data.

The important role of time-varying tail risk is also found by Kelly and Jiang (2014). Unlike

the vast literature using options to infer measures of tail risk, they use firm-level price crashes of

individual stocks to determine commonalities. Predictive univariate regressions on aggregate stock

market returns suggest that tail risk has significant predictive power for all horizons, which are

one-month, one-year, three-year, and five-year predictions. Higher tail risk leads to higher

subsequent returns. A wide range of alternative predictors is used, and in relation to this study

variance risk premium, risk-neutral skewness, and kurtosis are also present. Skewness has a

negative, yet statistically insignificant, effect on returns.

Variance risk premium is positively and significantly related for one-month and one-year

horizons, but negatively and significantly related for the five year horizon.  Bivariate predictive

regressions where tail risk is coupled with book-to-market, default return spread, default yield

spread, dividend payout ratio, dividend price ratio, earnings price ratio, inflation, long-term return,

long-term yield, net equity expansion, stock volatility, term spread, and Treasury bill rate show

that the tail risk measure remains a consistently positive and significant predictor. Moreover, the

explanatory power of the proposed tail measure is tested on returns of individual stocks, and the

expected return is lower for stocks with low loadings on tail risk.

Related to considerations of tail risk and tail risk measures (most relevantly Bollerslev and

Todorov, 2011; Kelly and Jiang, 2014), Du and Kapadia (2012) study the predictability of index

returns with option data. They also propose a new measure of tail risk and explain that the VIX is

not a model-free measure of stock return variability in the presence of jumps (also see Martin,

2013, for a discussion on volatility derivatives and jumps, and for reasons behind illiquid volatility

derivatives markets during 2008-2009). First of all, as discontinuities, jumps, in the stock price

process affect both volatility and the tail of the stock return distribution, they construct model-free
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volatility and tail indexes that separate these. They use the Bakshi, Kapadia, and Madan (2003)

holding period return variance and VIX, and use the inaccuracy of VIX to determine time variation

in tail risk, labeling it as the jump and tail index. The indexes are used to examine their predictive

ability on market returns, and the study covers 1996-2009.

underscores the importance of understanding the variance risk premium from option prices, and its

The empirical estimations of the jump and tail index show

significant time-variation, and therefore provide similar evidence on tail risk dynamics as Santa-

Clara and Yan (2010).

Directly relevant to this study are the results of their predictive regressions. Their predictive

regressions include variance risk premiums, the proposed jump and tail index, and a set of common

predictor variables. Both variance risk premium and the jump tail index are positively related to

returns, and provide significant predictive power for up to six-month long predictions. The results

of Du and Kapadia are in line with the positive impact of variance risk premium on subsequent

returns documented by e.g. Bollerslev, Tauchen, and Zhou (2009). Using the Bakshi, Kapadia, and

Madan (2003) holding period variance based measure increases the predictive power of the

variance risk premium. Notable is also that the variance risk premium performs best for quarterly

horizons. Drechsler and Yaron (2011) also document statistically significant predictive power of

the variance premium for stock returns. According to Dreschler and Yaron

is  interesting due to both its theoretical underpinnings and its empirical success above and

beyond tha

Based on the earlier contributions considered above, apparently the variance, or volatility,

risk premium should work in predicting market returns. The premium should unveil information

about the equity premium and be positively related to subsequent returns. Ex ante moments, i.e.

volatility, skewness, and kurtosis of the risk-neutral densities, have not been as successful in

explaining short term returns, but from a parameter-preference perspective (e.g. CAPM trade-off

between variance and mean, risk and return) should be considered. Tail risk, however, seems to be

compensated for, and the question is more of how it is measured and is the effect evident in other

considered variables, especially in volatility and skew risk premiums. The next section forms the

research questions and brings up the hypotheses to be tested in the empirical section.
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4. Research questions and hypotheses

4.1 Volatility and skew risk premium

Recent literature on the variance premium strongly suggests that the premium is positively

related to returns. One possible explanation is that the explanatory power comes from investor

preferences implicit in the premium of the risk-neutral value over the expected value. Rubinstein

2. the state-price density (or RND), , reveals

the third. This study explicitly focuses on number 2 and the difference between 2 and 3, thus likely

employing number 1 as a part of the moment premiums. Alternatively, along the lines of Santa-

Clara and Yan (2010) and Bollerslev and Todorov (2011) the premiums might unveil increased

jump risk. In either case, also the skew premium is affected. If the same factor drives equity,

variance and skew premiums, then knowing any of them would provide explanatory power on

others.

The empirical work on variance premium and its predictive power currently extensively

focuses on the U.S. stock market. Drechsler and Yaron (2011) use S&P 500 and a value-weighted

NYSE-Amex-Nasdaq combination. Bollerslev, Tauchen, and Zhou (2009) and Du and Kapadia

(2012) focus on S&P 500, and Kelly and Jiang (2014) provide results on the CRSP value-weighted

index. Bollerslev et al. (2014) study variance risk premium and returns from a geographically wider

perspective4. The skew risk premium is not covered to the same extent, possibly because the

premiums are driven by the same factor and taking either one of them into account could be

sufficient. Kozhan, Neuberger, nd variance

premiums . Putting these considerations

together, studying variance and skew risk premiums simultaneously with other RND-related

information and in isolation remains an interesting question to be answered, especially when

evidence is drawn from a wider geographical perspective. The first research question is thus formed

as follows.

Question 1 Are volatility and skew premiums consistently behaving predictors of index returns?

4 The considered indexes comprise of AEX (Netherlands), BEL 20 (Belgium), CAC 40 (France), Nikkei 225 (Japan),
DAX 30 (Germany), SMI 20 (Switzerland), FTSE 100 (the U.K.), and S&P 500 (the U.S.).
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The difference between ex ante premiums and ex post premiums is also shown. From a

practical and theoretical perspective the ex ante premiums are more interesting because market

declines are usually associated with higher realized volatility. In the empirical section focus is on

the ex ante measure, and results on the ex post measure are provided for comparison. Due to the

suggested link between the variance, skew, and equity risk premiums, the first two hypotheses are

as follows.

H1 Volatility risk premium is positively related to subsequent returns.

H2 Skew risk premium contains the same information as the volatility premium, and only differs

in sign.

The skew premium in Hypothesis 2 would differ in sign because negative skewness has a

negative sign, and increased investor fears or risk aversion would make the skew premium even

more negative, but the volatility premium more positive. Formally, all the regressions in the

empirical section take the form of Equation 1, based on which the hypotheses can be tested.

PI is the price index of equity index i observed at the option price observation date t and option

maturity T. Dates are measured in days. There are n + m explanatory variables. n refers to variables

of main interest and m to controlled effects. In answering Question 1, the volatility and skew

premiums are tested in isolation with n = 1 and m = 0. This is done both for ex ante and ex post

premiums. Section 5.2 provides definitions for the dependent and independent variables, and

Section 6.1 reports the results. Section 5.5 covers the econometric methodology.

4.2 Volatility and skewness of the risk-neutral density

Question 1 considers moment premiums. Moments have not been as prominent recently in

explaining subsequent aggregate returns. However, from the parameter-preference perspective a

highly volatile investment environment exposes the investor to increasingly unwelcome negative

outcomes. This requires a premium, reflecting the CAPM trade-off between variance and return.

Also, negatively skewed returns mean that negative outcomes become more probable. Volatility

and skewness depict the nature of uncertainty related to future returns, and serve as possible
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explanatory variables on equity index returns. Therefore the second research question of this study

is as follows.

Question 2 Are option-implied volatility and skewness consistently behaving predictors of index

returns?

Section 6.2 provides answers to this question, and also briefly reviews other evidence on the

explanatory nature of option-implied volatility and skewness. The tested hypothesis is based on the

idea that investors dislike high volatility and negative skewness in returns.

H3 Higher implied volatility and negative skewness require compensation and result as higher

subsequent returns.

This question is approached by including both volatility and skewness in the regression with n = 2

and m = 0, and with m = 1 controlling for the effect of ex ante and ex post volatility risk premiums

separately.

4.3 Tail risk measures

With tail risk the consideration is not whether it is priced, but rather how it is measured. On

top of the theoretical considerations, changes in tail risk provide a possible explanation for market

valuation changes in the post-crisis era, as central banks have taken a more active role in managing

economy-wide tail risks5. To recall, Santa-Clara and Yan (2010) and Bollerslev and Todorov

(2011) account a large fraction of the time-varying equity risk to the jump component in the price

process. Increased jump intensity increases the equity premium. When looking at the RND,

increased jump intensity would increase the negative skewness and negative tail density. Kelly and

Jiang (2014) suggest a historical return based tail risk measure, which performs remarkably well

for horizons ranging from one month to five years. Again, increased tail risk increases subsequent

returns on average. In this study, tail risk is simply the negative tail probability implicit in the

RNDs. The jump and tail index is used as an alternative measure. Therefore, the last research

question is the following.

5 From a European perspective, on
comment in his speech on 26th of July 2012 at the Global Investment Conference in London:
ECB is ready to do whatever it takes to preserve the euro. And
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Question 3 Is the tail density or jump and tail index a consistently behaving predictor of subsequent

returns across indexes?

The literature on the equity premium puzzle suggests that rare events are a possible

explanation. This is supported by the recent findings that jump risk is an important component in

equity and variance premiums. In addition the recent empirical studies on the cross-section of

stocks show that sensitivity to skewness, tails, or jumps is priced. This leads to the fourth tested

hypothesis.

H4 Tail density or the jump and tail index indicates tail or jump risk, and higher crash probability

is compensated with a premium.

First the tail density is tested in isolation with n = 1 and m = 0, and simultaneously with n = 1 and

m = 3, three controls being the volatility premium, option-implied volatility, and option-implied

skewness. Then the jump and tail index is studied. Results are reported in Section 6.3 for n = 1 and

m = 0.

All questions are also studied by including all of the predictive variables discussed above

with n = 5, and by controlling for other generally considered variables present e.g. in Kelly and

Jiang (2014) and Du and Kapadia (2012) with m = 5. These m variables are dividend yield, price-

to-earnings, default yield spread, term spread, and detrended risk free rate. The variables and

definitions are closely covered in Section 5.2. To recall, this study focuses on returns for one-week,

one-month, two-month, and three-month horizons. For these relatively short horizons, volatility

risk premium is expected to play a significant role. Even if so, the behavior of other ex ante

measures after controlling for volatility risk premium is highly interesting. The research questions

get answers after covering the methodology to construct the explanatory variables.
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5. Data and methodology

5.1 Approach to answering the research questions

The data and methodology of this study comprises of three separate parts. First (Section 5.2),

the variables are defined and data sources are given for control variables. Second, the option-

implicit explanatory variables are formed and option data sources are explained (Section 5.3 and

5.4). Third, the econometric methods are specified (Section 5.5) to answer the research questions

brought up in Section 4.

The empirical part involves regressions explaining equity index returns. The index price

levels of S&P 500, FTSE 100, and DAX 30 are used. The dependent variables are one-week, one-

month, two-month, and three-month annualized logarithmic index returns (see Equation 1 on page

24). The explanatory variables can be divided into two different types. The first type includes

variables implicit in option prices, volatility indexes, or index returns. Options provide information

unique to the period before their maturity, and one-week, one-month, two-month, and three-month

observations before an option cross-  maturity are used to explain returns over the

corresponding period. An option cross-section consists of all traded European call and put options

on the underlying equity index maturing on the same day.

5.2 Variables, definitions, and control variable data sources

The main explanatory variables are option-implied volatility, option-implied skewness,

volatility and skew premiums, tail density, and jump and tail index. Option-implied volatility,

skewness and tail density are observed at t from options maturing at T. Ex post volatility and skew

premiums are calculated as the difference between the option-implicit value at t and realized value

in the period t to T. The ex ante measures are calculated over the realized value over the month

preceding the observation. This means that e.g. return volatility from t-21 to t is subtracted from

option-implied volatility observed at t. The jump and tail index is the difference between option-

implied volatility and volatility index observed at t. The other type of variables consists of

commonly used variables in predicting index returns, and these serve to control for their effect on

index returns. These variables are the price-to-earnings ratio, dividend yield, term spread, default

spread, and detrended risk-free rate, as applied in e.g. Bollerslev, Tauchen, and Zhou (2009) and

Du and Kapadia (2012). Table II on the next page gives a full list of variables and definitions.
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Table B.2 in Appendix B presents summary statistics for all variables from options or realized

returns. Definitions for all the variables involved in the predictive regressions are given below.

Summary statistics for remaining variables of interest are provided in Table B.3 in Appendix B.

Table II
Explanatory variables and definitions

Variable Abbreviation Definition

Annualized log-return RET Annualized logarithmic return from t to T

Option-implied volatility OI-VOL
Model-free annualized implied volatility implicit in risk-neutral densities,

observed at t from all out-of-the money options maturing at T

Option-implied skewness OI-SKEW
Model-free implied skewness implicit in risk-neutral densities, observed

at t from all out-of-the money options maturing at T

Volatility risk premium VOLPRE OI-VOL less the realized volatility from t to T

Skew risk premium SKEWPRE OI-SKEW less the realized skewness from t to T

Tail density TAILZ2
Probability density below two standard deviations from the risk-neutral

t from options maturing at T

Ex ante volatility premium EA-VOLPRE OI-VOL less the realized volatility from t-21 trading days to t

Ex ante skew premium EA-SKEWPRE OI-SKEW less the realized skewness from t-21 trading days to t

Jump and tail index JTIX OI-VOL less the volatility index value observed at t

Price-to-earnings PE
Aggregate equity index market capitalization over aggregate earnings

observed at t; directly from Datastream

Dividend yield DY
Aggregate equity index dividends over aggregate market capitalization

observed at t; directly from Datastream

Term spread TERM
The yield difference between a ten-year and three-month government

liability observed at t

Default spread DEF
aa and Aaa bond yield observed at t; one

series used for all three indexes

De-trended risk-free rate RREL
One-month government liability yield less its trailing 12-month average

observed at t

Option-implied volatility, OI-VOL, is the annualized standard deviation of logarithmic

returns implicit in the RNDs. Skewness, OI-SKEW, is the third moment around the mean
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standardised with squared volatility, i.e. variance, to the power of 3/2. Volatility and skew

premiums, VOLPRE and SKEWPRE, are calculated by subtracting the ex post observed realized

values from their ex ante observed option-implied counterparts, and the sample is the forecast

period of the options. For example, if we use options maturing in 21 trading days from the

observation, the realized value is calculated from the 20 trading days between the observation and

maturity. To recall, this study involves 5, 21, 42, and 63 trading day return horizons. Every variable

previously mentioned therefore only contains information specific to the forecast period. Volatility

risk p realized values are labeled EA-VOLPRE and EA-

SKEWPRE. Section 5.4 provides the calculation methodology for the variables.

Price-to-earnings, PE, and dividend yield, DY, are downloaded for the indexes from

Datastream. Term spread, TERM, is the yield difference between a ten-year and three-month

government liability. For S&P 500, these are calculated from ten-year Treasury notes and three-

month Treasury bills. For FTSE 100 the basis rates are ten-year and three-month UK government

liability spot rates downloaded from Datastream. For DAX 30 the benchmark ten-year Bund yield

and the three-month BD EU-Mark Deposit (ECWGM3M) are used. Datatype is redemption yield

(RY) except for the BD EU-Mark Deposit, for which it is interest rate (IR). DEF is the default

aa and Aaa rated corporate bonds from the Federal

Reserve  website6, and one value is used for the three indexes. RREL is the detrended risk-free

rate. Yields for one-month government liabilities are taken from Datastream, and for the S&P 500

series Treasury bill rates are applied. For FTSE 100 the UK Government Liability Nominal Spot

Curve 1M is used. For DAX 30, the BD EU-Mark Deposit (ECWGM1M) is used. Table B.3 in

Appendix B provides summary statistics.

5.3 Estimating the risk-neutral probability densities

5.3.1 Overview on methodology, option data, and sample period

Option prices can be used to infer the risk-neutral probability density function7,8, RND, for

-neutral

6 http://www.federalreserve.gov/releases/h15/data.htm
7 -neutral PDF is defined via the relationship that dictates that the
market option price equals its theoretical price calculated as the integral of the option payoff with respect to the risk-

8 See Jackwerth (2004) for a comprehensive overview on estimating risk-neutral probability distributions.
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expectations of future return volatility, skewness, kurtosis, or more broadly, the shape of the entire

return distribution not necessarily characterized by parametric models of the price process. The

advantage compared to historical information is that options are traded for different exercise prices,

and since pricing of European options can be done as the discounted expectation of the payoffs at

maturity,

Alternatively, the price process of the asset can be modeled in a way that it satisfies the time-series

features of prices and option prices, enabling similar inferences. A simple description of the applied

methodology is that first a continuum of option prices along exercise prices is formed, and then the

probability distribution, RND, which explains these prices, is calculated.

The usual aim is to estimate RNDs that are smooth and accurate close to the mean. In this

particular case the aim is to avoid extensive smoothing to preserve information in option prices

(see Figures 2 and 3 in Appendix C for examples of estimated RNDs). No assumptions on the data-

generating process behind equity index returns are made, and only the properties of the RNDs are

employed in explaining returns. In addition, the aim is to make use of all information in option

prices with minimal limitations and no pre-imposed structure on the resulting RNDs. In filtering

the input option data the requirements are not as strict as generally applied, and all options with

traded volume are considered regardless of their moneyness. The RNDs are estimated by finding a

discrete set of risk-neutral probabilities.

Regarding data requirements for the whole empirical section, options are important since

they provide the necessary forward-looking information for constructing RNDs for the underlying

indexes. The index returns of S&P 500, FTSE 100, and DAX 30 are in the focus of this study.

Breeden and Litzenberger (1978) showed that with a continuous set of options with strikes from

zero to infinity, the entire risk-neutral distribution is attainable by taking the second derivative of

option prices with respect to the exercise price. Shimko (1993) first provided a way to implement

this by interpolation and extrapolation of implied volatilities. The implied volatilities then imply

the option pricing function which gives the probability density function. Rubinstein (1994)

exactly

horizontal, he will imply a lognormal risk-neutral probability distribution with the correct

closely, but instead of the

Breeden-Litzenberger result the resulting distribution is attained by finding a discrete set of
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probabilities based on the implied volatilities. This avoids over-smoothing of the input implied-

volatilities. The method also implies a lognormal distribution with the correct volatility for a flat

volatility smile.

The market prices for puts and calls for the option observation dates are converted into BS

implied volatilities, and after applying filters on the data an OTM cross-section of implied

volatilities is formed. Then the implied volatility set is interpolated inside the available exercise

price range and extrapolated outside it to form a continuous set of implied volatilities for all

possible end values of the underlying index. The implied volatility set is then discretized and state

price densities are calculated to unveil the whole RND for different forecast periods.

European options on three different equity indexes are used to build the risk-neutral densities.

Daily observations for market prices and trade volumes are downloaded from Datastream for

European options on the S&P 500 spot index traded on CBOE, FTSE 100 index options traded on

NYSE Euronext LIFFE, and DAX 30 index options traded on Eurex. Covered expiry date range is

from May 1, 2006 to December 31, 2014. The S&P 500 set contains 31,005 individual options with

379 different exercise prices for 110 expiry dates, and for FTSE 100 there are 13,013 options, 225

exercise prices, and 104 expiry dates. The DAX 30 set has 17,050 options with 213 exercise prices,

and 105 different expiry dates. DAX 30 and S&P 500 have few close expiries so that the number

of expiry dates exceeds months in the sample. Volatility index time-series for VIX, VFTSE, and

VDAX-NEW are also obtained from Datastream with names FTSE 100 Volatility Index, CBOE

SPX Volatility VIX (New), and VDAX-NEW Volatility Index. The datatype is price index (PI).

The market prices used in this study, by Datastream definitions, are issued day end prices for

FTSE 100 and DAX 30 options. The final settlement day for DAX 30 options is the third Friday

of each expiration month if it is an exchange day, and otherwise it is the exchange day immediately

preceding that day. The option can be exercised only on the final settlement day until 21:00 CET.

For FTSE 100 options the last trading day is also the third Friday of the expiration month, and

exercise is to be done by 19:30 CET. Settlement days are the exchange days following the last

trading day for both. S&P 500 option market price is given as the last traded price provided that it

is within the bid-ask range. Otherwise the nearest bid or ask price to the last trade price is given.

The expiration date for S&P 500 contracts in the sample is the Saturday following the third Friday

of the expiration month. A time-series for put and call option prices and trade volumes is formed
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for every available exercise price. Forecast periods of one week, one month, two months, and three

months are formed by observing the prices of option contracts 5, 21, 42, and 63 business days

before all expiry dates. If the observation date is invalid then the observation is done one or two

business days before the initial date.

5.3.2 Option data filters and conversion to implied volatilities

The data is then filtered by requiring that every observation has volume traded on the specific

observation date. After that, monotonicity for option prices across strikes is required, i.e. calls with

lower strikes must be more or as expensive as all observed call options with higher exercise prices,

and the same is required for put options with higher strikes. Therefore, the sample call option prices

are monotonically decreasing in exercise price and the opposite is true for put options. Also, option

prices below their intrinsic value are excluded, which is observed often for deep in-the-money

(ITM) options.

Table III
Summary statistics for option cross-sections

This table provides summary statistics for available strikes from option cross-sections after matching option contract price
information with all available strike prices traded on the underlying index. Traded Strikes sets contain all options with different
exercise prices that had volume traded on the observation date 5, 21, 42, or 63 business days before the contract s expiry. The time
range is increased for up to two business days in case of missing observations. The filtered OTM series contains all OTM contract
prices from Traded Strikes  Calls/Puts after applying monotonicity and intrinsic value requirements for option prices. The sample
contains all European equity index options on the underlying spot indexes with expiries from May 2006 to December 2014.

Available forecast
periods

Traded Strikes  Calls Traded Strikes - Puts Filtered OTM Series
Time to
Expiry Min. Mean Max. Min. Mean Max. Min. Mean Max.

S&P
500

1 week 103 26 48.3 102 31 65.4 126 35 64.6 106

1 month 103 19 57.2 135 31 85.8 135 36 89.4 136

2 months 100 13 38.6 63 17 54.9 146 22 66.6 139

3 months 101 3 21.3 50 4 31.9 70 5 40.6 85

FTSE
100

1 week 104 9 22.6 54 11 27.2 48 14 32.0 59

1 month 104 9 25.1 43 18 30.3 49 22 38.0 63

2 months 104 8 17.4 29 13 21.5 38 20 30.2 44

3 months 104 3 11.7 26 3 14.9 30 7 21.3 38

DAX
30

1 week 104 15 27.5 52 20 33.0 59 22 37.0 68

1 month 104 19 32.0 52 25 37.9 65 30 45.9 74

2 months 104 13 25.4 55 20 31.8 60 25 41.1 70

3 months 100 5 19.0 40 2 22.4 64 8 33.1 88
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OTM cross-sections are then formed by including call options with exercise prices above the

index value and put options with exercise prices below the index value on the observation date.

The OTM option series of call and put prices are then converted into BS implied volatilities. The

BS model is in this stage only used to convert prices into implied volatilities. The applied

methodology does not impose any form or restrictions on the resulting probability distributions,

since variation in implied volatility is not restricted beyond the initial filters on price data and,

therefore, it provides the needed flexibility. Inputs required are the price of the index, time to

maturity, dividend yield, and the risk-free rate of return. Time to maturity is the difference between

the observation date and option expiration date measured in days, and risk-free rates, dividend

yields, and index prices are downloaded from Datastream. Following Bliss and Panigirtzoglou

(2004) the applied risk-free rates are three-month EuroDollar London, Libor, and Euribor rates for

the rates to be free from distortions of central bank activities and reflective of the actual borrowing

costs faced by option traders. The rates are modified by taking into account the day count

convention and converting into continuously compounded rates. Thereafter, the implied volatilities

for all the option time-series are numerically computed.

Conrad, Dittmar, and Ghysels (2013) use OTM calls and puts, and require that they have the

same number of both options available. The minimum number of required options is two. Moments

of the density are directly calculated from option prices using the results of Bakshi, Kapadia, and

Madan (2003). Similarly to this study they exclude options with no trading volume, but unlike in

this study exclude options with prices less than $0.50. Table III shows that in this study the

minimum number of OTM options used to infer the RND in the whole sample is five for S&P

-month horizon. The minimum average is 21 options for FTSE 100 -month

-month horizon. Using actively

traded equity indexes is crucial for this study, since the RNDs can be reliably estimated with a wide

range of available exercise prices. Bliss and Panigirtzoglou (2004) use OTM options, and exclude

implied volatilities greater than 100%. They also discarded cross-sections with less than five

available strikes. In this sample observing BS implied volatilities for deeply OTM put options

exceeding 100% was not exceptional.
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5.3.3 Interpolation and extrapolation of implied volatilities

In the next step the implied volatility cross-sections are interpolated using cubic spline

interpolation for the one-month forecasts and linear interpolation for the rest of the forecast periods

as there were no material differences between the methods. This is due to the frequency of traded

OTM exercise prices. Outside the available strike range the set is extrapolated using the closest

available implied volatility value, thus forcing lognormal tails with the extreme BS implied

volatility to the RND. As the left tail of the density is applied as a variable in this study, forcing a

specific structure on the tails is not optimal. The wide range of available strikes along with

relatively short forecast periods, however, decreases the impact of this choice.

In calculating moments or RNDs from a continuum of option prices, the interpolation of

option prices or implied volatilities is required. The linear or cubic interpolation applied above is

done in the BS implied volatility-strike space with perfect fit to the inputs (see Figure 3 in Appendix

C for examples). Similar interpolation inside and extrapolation outside the available strike range is

used by Carr and Wu (2009) and Du and Kapadia (2012). Here the goal is to match the RND to the

input option prices with minimal limitations. Bliss and Panigirtzoglou (2004) do not apply perfect

fit to the data, and apply an interpolation methodology which trades fit for smoothness. Moreover,

the interpolation is done in implied volatility-delta space, which focuses the attention more to the

center of the distribution.

5.3.4 Forming the risk-neutral densities

The new BS implied volatility sets now enable us to form the RNDs, because we have a

continuous set of implied volatilities and option prices at disposal. The density is estimated by

finding a discrete set of risk-neutral probabilities qk associated with m = 5,000 different outcomes

Pj,k that should satisfy all prices V of contracts j dependent on the same asset maturing after a single

forecast period.  Similarly, period-beginning k with a payoff of 1 if state k occurs and

0 otherwise at period end unveils the distribution. R is the period-end price of 1 earning the risk-

free rate of return. The idea is that there should be a unique set of probabilities that matches the

different option payoffs to their market prices, and these probabilities sum up to one. The

underlying index itself is also the discounted period-end expectation of its value, and without

discounting matches the forward price of the index.
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The implied volatility sets are discretized to 5,000 equally-sized ticks of the exercise price

with intervals of 2.5 for FTSE 100 and DAX 30, and 1 for S&P 500. Rubinstein (1994) uses prior

guesses of risk-neutral probabilities and formulates the solution as a minimizing problem to find

posterior probabilities in his work on implied binomial trees. This could be a solution in this case

but is not tested for now. In this case, the risk-neutral node probabilities qk are estimated using the

BS N(d2)9 probability that a call will be exercised. Input implied volatilities are from the

interpolated and extrapolated series.

The estimated risk-neutral probabilities then provide an estimate of the entire density with

5,000 separate intervals. Figures 2 and 3 in Appendix C show examples of estimated RNDs. With

a flat implied volatility across exercise prices the probability density

is lognormal. To use the Breeden-Litzenberger (1978) result, volatilities should be converted to

call prices, which would have to be made a twice-differentiable, convex, and monotonic function

of the exercise price. This leads to smooth RNDs and loss of input information.

5.4 Volatility, skewness, and tails

5.4.1 Risk-neutral density based measures

Option-implied volatility and skewness of the RND for forecast periods are calculated based

on the discrete sets of probabilities qk as shown in Equation 4 and Equation 5. Xk is the logarithmic

return from time t to T if index value equals strike Kk and µ is its expected value. Volatility is

annualized by multiplying it with the square root of 260 trading days divided by days in the forecast

period. Table B.2 in Appendix B shows the summary statistics. Estimated model-free option-

implied volatilities are, as expected, closely similar to the corresponding volatility indexes (see

Figure 1 on page 37 for an example of one-month forward looking option-implied volatilities), and

on average exceed the realized values. The time-series of one-month forward looking implied

9 , where
, r is the continuously compounded risk-free rate, and div is the dividend yield.
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volatilities from the risk-neutral densities show an upward bias compared to the volatility indexes

in Figure 1. All the volatility series show a peak in the second half of 2008 when the financial crisis

started, and other peaks in volatility occurred in May 2010 and August 2011.

The difference between option-implied volatilities and realized volatilities imply the volatility risk

premium. Volatility indexes and the RND-based measures are based on options on the same

underlying, but the methodology applied here means that the RND includes information from all

OTM

Option-implied skewness is on average clearly negative for all indexes and maturities. This

means that the left tails are fatter than implied by log-

maturity. The absolute values decrease as maturity increases. Realized skewness, for comparison,

is closer to zero implying that investor preferences make the risk-neutral expectations more skewed

compared to statistical expectations. This leads to the skew premium. A widely used method to

calculate risk-neutral moments is to calculate the model-free implied variance, skewness and

kurtosis directly from option prices following the approach of Bakshi, Kapadia, and Madan (2003).

They show that any payoff to a security can be formed and priced using options with different

exercise prices on the security. Quadratic, cubic, and quartic returns on base securities, standard

European call and put options, are used along with standard moment definitions. However, due to

including the tail density measure, the entire distribution has to be formed.

In the empirical analysis the time-series of volatility, skewness, and their premiums over the

preceding one-month realizations are used. Also, the premium of the option-implied value over the

realized moment over the return prediction period is used to have ex post risk premiums for

comparison. The last explanatory variable inferred from risk-neutral densities is the tail density.
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            Figure 1
Risk-neutral density implied volatility time-series and volatility index time-series

The one-month forward-looking option-implied volatility as presented by traded volatility indexes, VIX, VFTSE, and VDAX-
NEW, and the log-return volatility calculated from the formed risk-neutral densities. The volatility index and the density-based
time-series have the same source of information, and for the one-month forecasts of index volatility the measures are correlated by
0.94 for S&P 500, by 0.92 for FTSE 100, and by 0.93 for DAX 30. The density-based estimates remarkably exceed the volatility
index. The difference is on average 0.12 for S&P 500, 0.07 for FTSE 100, and 0.06 for DAX 30. Similarly to findings of Du and
Kapadia (2012) the VIX provides a downward biased measure compared to the option-implied volatility of the
log-returns (see Bakshi, Kapadia, and Madan, 2003, for a measure of model-free implied volatility extractable directly from option
prices).

The tail density is formed so that by construction it is independent of the volatility level.

Specifically, the tail density is the probability that the return falls below a specified number Z of

standard deviations from the mean in the RND.

01jul2006 01jul2008 01jul2010 01jul2012 01jul2014

S&P 500 volatility VIX

01jul2006 01jul2008 01jul2010 01jul2012 01jul2014

FTSE 100 volatility VFTSEIX

01jul2006 01jul2008 01jul2010 01jul2012 01jul2014

DAX 30 volatility VDAXNEW
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5.4.2 Realized volatility, skewness, and premiums

The realized values are calculated from daily logarithmic returns over the one-week, one-

month, two-month, or three-month forecast periods, i.e. from t to T. The ex ante accessible

premium is calculated from the preceding month  returns. The Datastream price index (PI) values

for the underlying indexes are used as the basis. As noted in literature, skewness estimates are

sensitive to outliers, and a more reliable estimate of volatility results from using high-frequency

returns. Especially the one-week horizon values are subject to error. Acknowledging these

shortcomings, the realized values are calculated as in Equation 7 and Equation 8, where u  =

ln(PIa/PIa-1), observations are daily, , and n = T  t. For the ex ante premiums, EA-

VOLPRE and EA-SKEWPRE, a = t- and n = 21. The volatilities are annualized similarly as

the option-implied values.

The realized volatilities of S&P 500, FTSE 100, and DAX 30 (see Table B.2 in Appendix B) are

close to each other during the sample period. For instance, the volatility sets that match the one-

month option-maturity horizons show 0.18, 0.17, and 0.21 respectively. The differences in option-

implied volatilities are larger, implying possibly a differing volatility premium across indexes or

estimation differences. The S&P 500 sets are constructed on average with more valid option price

quotes (see Table III on page 32).

Realized skewness is generally more negative than positive, but values are close to zero. This

implies that actual returns are close to symmetric.

5.5 Methodology for the predictive regressions

Section 4 outlines the ordering of the analysis, and the motivation behind the empirical

analysis. The time-series nature and overlapping of part of the data requires that issues with

autocorrelation and conditional heteroskedasticity are considered when doing the empirical

analysis. Research questions are first addressed by explaining index returns for S&P 500, FTSE

100, and DAX 30 separately in Sections 6.1, 6.2, and 6.3. In Section 6.4 the data is treated as a
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panel to increase the sample size and regressions are pooled.  In Section 6.5 the data is treated again

as a time-series.

Option maturities and sample observations have monthly intervals. Consequently, the one-

week and one-month sets of returns can be reasonably thought to be serially independent. However,

for the two longer horizons there is overlap, and by construction the explanatory variables and the

logarithmic returns show serial correlation. For instance, at a single point in time the realized return

over the last one and three months share the price innovations that occurred during the last month.

As an example, the one-month logarithmic returns for S&P 500 show no clear structure in values

of autocorrelation, but the two-month returns show a 0.56 correlation with its lagged value, and

three-month returns are correlated by 0.76, 0.52, and 0.32 with lags from one to three months

respectively.

Working with time-series data, the dependent variables should be stationary, i.e. mean and

variance should be constant and unconditional on time. This is required for the estimator properties

to hold. By applying the Dickey-Fuller test, a null hypothesis that the series has a unit root can be

rejected for all return series except for two-month S&P 500 logarithmic returns, indicating

stationarity. Therefore, no specification adjustments on the model are done due to non-stationary

dependent variables. For post-estimation testing, the Breusch-Godfrey test for autocorrelation and

a test for autoregressive conditional heteroskedasticity (ARCH) are applied. The errors in OLS

estimations show autocorrelation, and ARCH effects are also present. To account for these,

regressions are done with Newey-West standard errors with lag length of one. The samples have

few missing option cross-sections, and the time-series are forced to be equally spaced. The special

feature in applying the pooled regression with Newey-West standard errors for a panel in the

econometric programme Stata is that observations are assumed to have zero serial correlation with

the few missing observations (see Table III on page 32 for the number of available cross-sections

for all indexes and maturities).
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6. Results

6.1 Volatility and skew risk premium

Differences between risk-neutral and objective expectations of the future return distribution

show premiums associated with different moments. Investor preferences and risk aversion

determine the differences. Exposure to the first moment, mean, has a positive premium, and a risk-

free bond on average has a lower return than an investment in the stock market. High mean return

is good for investors. Exposure to the second moment, variance (or volatility), has a negative

premium. Receiving the floating leg of a variance swap has on average negative returns. High

volatility is bad for investors. Skew risk has a positive premium, and negatively skewed returns are

bad for investors. Knowing any of the premiums indicates the magnitude of other premiums if they

are driven by a common factor. The equity premium is interesting regarding equity index returns,

and volatility and skew premiums are applied in explaining returns. This leads to the first research

question.

Question 1 Are volatility and skew premiums consistently behaving predictors of index returns
across indexes?

Table IV on page 41 provides results for the first set of predictability regressions, which

consider the volatility premium. The ex post volatility premium, VOLPRE, is consistently

positively related to subsequent returns for one-month, two-month, and three-month horizons. This

holds for all three indexes. A one standard deviation increase in the ex post volatility premium

means on average a 3.1%, 2.9% or 3.3% increase in the one-month logarithmic return of S&P 500,

FTSE 100, and DAX 30 respectively. For the three-month horizon the impact of a one standard

deviation increase is 7.4%, 6.4%, or 6.6%. Table IV shows Newey-West standard error based t-

values in parenthesis below coefficient estimates, and the coefficients are significant at the 1%

level. The impact on returns is sizable, and the positive relationship can result from the volatility

connection to the equity premium. An alternative and more likely explanation is that

volatility tends to be lower when there is no downward trend in the stock market. Low realized

volatility leads to high ex post premiums. Therefore, from a practical and theoretical perspective

the ex ante volatility premium, EA-VOLPRE, is more interesting, because the interest is not in

explaining the contemporaneous movement of return volatility and returns but rather in uncovering

the predictive role.
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Table IV
Volatility risk premiums and returns

OLS regressions with Newey-West standard errors. Results for univariate regressions, where logarithmic index returns over the
following week (PANEL A), month (PANEL B), two months (PANEL C), and three months (PANEL D), or 5, 21, 42, and 63
trading days, are regressed on the realized volatility premium, VOLPRE, and the volatility premium of implied volatility over the

realized volatility, EA-VOLPRE. Option-implied volatility, which is the basis for the volatility premiums, is
calculated from options maturing in 5, 21, 42, or 63 trading days so that the information is relevant and specific to the return
prediction period. The sample period covers all option maturities with monthly intervals between May 2006 and December 2014,
and observations span from February 2006 to December 2014.
ex ante volatility premium.

S&P 500 FTSE 100 DAX 30

 PANEL A: 1-WEEK
VOLPRE -1.267 0.103 0.500

(0.97) (0.08) (0.35)
EA-VOLPRE -1.029 -2.242 1.253

(0.78) (0.94) (0.88)
S&P 500 EA-VOLPRE -0.521 -0.594

(0.52) (0.41)
Constant 0.298 0.230 -0.113 0.137 0.029 -0.052 -0.182 0.196

(1.12) (0.79) (0.76) (0.61) (0.13) (0.18) (0.63) (0.61)
N 103 103 104 104 103 104 104 103
Prob > F 0.33 0.44 0.94 0.35 0.60 0.73 0.38 0.69
R2 0.03 0.01 0.00 0.01 0.01 0.00 0.01 0.00

PANEL B: 1-MONTH
VOLPRE 3.404 3.471 4.393

(3.53)*** (6.76)*** (3.33)***
EA-VOLPRE 2.071 0.767 -0.458

(1.52) (0.71) (0.34)
S&P 500 EA-VOLPRE 1.283 1.161

(1.21) (0.92)
Constant -0.497 -0.282 -0.322 -0.059 -0.176 -0.357 0.092 -0.123

(3.46)*** (1.22) (4.70)*** (0.47) (1.00) (2.75)*** (0.59) (0.54)
N 103 103 104 104 103 104 104 103
Prob > F 0.00 0.13 0.00 0.48 0.23 0.00 0.73 0.36
R2 0.34 0.05 0.29 0.01 0.02 0.27 0.00 0.01

PANEL C: 2-MONTH
VOLPRE 2.369 3.826 3.500

(3.45)*** (7.63)*** (3.32)***
EA-VOLPRE 1.151 0.181 -0.182

(1.73)* (0.18) (0.33)
S&P 500 EA-VOLPRE 0.641 0.966

(1.14) (1.52)
Constant -0.254 -0.100 -0.269 -0.014 -0.085 -0.195 0.056 -0.084

(2.49)** (0.77) (6.22)*** (0.13) (0.78) (2.40)** (0.60) (0.66)
N 103 103 104 104 103 104 104 103
Prob > F 0.00 0.09 0.00 0.86 0.26 0.00 0.74 0.13
R2 0.44 0.06 0.52 0.00 0.02 0.37 0.00 0.03

PANEL D: 3-MONTH
VOLPRE 2.474 2.546 2.200

(6.71)*** (5.90)*** (3.28)***
EA-VOLPRE 1.626 0.692 0.224

(2.56)** (1.38) (0.41)
S&P 500 EA-VOLPRE 0.875 1.238

(2.08)** (2.35)**
Constant -0.278 -0.176 -0.199 -0.059 -0.119 -0.114 0.025 -0.123

(4.72)*** (1.55) (4.62)*** (0.88) (1.48) (1.79)* (0.34) (1.22)
N 101 101 104 104 102 100 100 98
Prob > F 0.00 0.01 0.00 0.17 0.04 0.00 0.68 0.02
R2 0.57 0.13 0.49 0.02 0.05 0.32 0.00 0.06

* p<0.1; ** p<0.05; *** p<0.01
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The ex ante volatility premium measures are inconsistent for the three indexes. The S&P 500

is the only index to show a clear positive relation between ex ante volatility premium and

subsequent returns. The regression coefficients are signific -month and three-

month horizons. A one standard deviation increase in the ex ante volatility premium leads on

average to a 1.9% (3.7%) increase in two (three) month logarithmic returns for the S&P 500.

Bollerslev et al. (2014) studied variance risk premium on eight indexes, and found that a globally

weighted variance premium improves the explanatory power. This leads to ask whether the

premiums are global, and could it be that the most liquid sets of options for the S&P 500 explain

the other indexes better? This is studied by simply regressing the returns of FTSE 100 and DAX

30 with the ex ante volatility premium implicit in S&P 500 options and returns. This greatly

improves the estimated models. The regression coefficients become consistently positive for FTSE

100 and DAX 30 for one-month, two-month, and three-month returns. The coefficients are

significant at the 5% level for all indexes at the three-month horizon. A one standard deviation

 on average to a 3.7%, 2.0%, or 2.8%

increase in three-month logarithmic returns of S&P 500, FTSE 100, and DAX 30 respectively.

These results are in line with the evidence for the U.S. stock market (see, e.g., Bollerslev,

Tauchen, and Zhou, 2009; Drechsler and Yaron, 2011) and the recent extension (Bollerslev et al.,

2014) to the global level. Yet, s Skew premium in

predicting equity index returns has not been addressed to my best knowledge. Research on moment

swaps indicate that volatility and skew premiums are tightly linked (see Kozhan, Neuberger, and

Schneider, 2013), and they should provide us with the same information. Table A.1 in Appendix

A shows results for univariate regressions. Ex post skew premiums, SKEWPRE, are negatively

related to returns for all indexes and horizons except the three-month horizon of DAX 30. S&P

indexes for one-

month, two-month and three-month horizons.

The coefficients are statistically significant at -month horizon,

and for all indexes at the two-month horizon. A one standard deviation increase in the ex ante skew

premium of S&P 500 leads to a 1.4%, 1.3%, or 2.1% decrease in two-month logarithmic returns

for S&P 500, FTSE 100, and DAX 30 respectively. This is in line with the common factor

explanation behind the premiums. Due to volatility risk
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and their similar explanatory impact, skew risk premium is not considered further. The results show

that volatility and skew premiums are consistent predictors of future returns. The truly predictive

-implicit variables, indicating that the

premiums are a global phenomenon or that S&P 500 options provide more relevant information.

Empirical finding 1 Volatility and skew premiums are consistently behaving explainers of equity

index returns, and the volatility risk premium is more powerful. For ex ante premiums, the results

hold for FTSE 100 and DAX 30 if information implicit in S&P 500 options is used.

The empirical findings strongly support the Hypothesis 1 that volatility premium is positively

related to returns. Regarding the Hypothesis 2, information in skew premiums clearly seems similar

than what is in the volatility premium, but statistically no conclusive evidence is reached.

Bollerslev et al. (2014) report adjusted R2 values for the variance risk premium and S&P 500 excess

returns for their sample from 2000 to 2011, and the values are 8.9%, 8.7%, and 13.0% for one- to

three-month horizons. The explanatory power with the more recent sample is similar, and Table

IV reports simple R2 values of 5%, 6%, and 13% for the same horizons. For comparison, the R2 of

the lagged equity premium of Santa-Clara and Yan (2010) for the three-month horizon is 6.6%.

6.2 Option-implied volatility and skewness

The focus in explaining short-term stock market aggregate returns has lately been in using

tail measures or variance premiums. However, option-implied volatility and skewness are

intuitively highly interesting, since they directly depict the nature of future uncertainty. If implied

volatility is high, higher future stock return variation is likely and larger movements can be

expected. Negative skewness leads to an increased probability of large negative returns. Equity

premium is compensation for the uncertainty of the future price level, and therefore measures of

this uncertainty are interesting. This leads to the second research question.

Question 2 Are option-implied volatility and skewness consistently behaving predictors of index
returns across indexes?

Kelly and Jiang (2014) report the relation of stock volatility and risk-neutral skewness on

subsequent returns on the CRSP value-weighted index. For one-month horizons stock volatility
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Table V
Ex ante moments, volatility risk premiums, and returns

OLS regressions with Newey-West standard errors. Results for bivariate and multivariate regressions, in which logarithmic index
returns over the following week (PANEL A), month (PANEL B), 2 months (PANEL C), or 3 months (PANEL D), or 5, 21, 42, and
63 trading days, are regressed on option-implied volatility, OI-VOL, skewness, OI-SKEW, and the ex post volatility premium,
VOLPRE, or the ex ante volatility premium, EA-VOLPRE. The sample period covers all option maturities with monthly intervals
between May 2006 and December 2014, and the observations span from February 2006 to December 2014.

S&P 500 FTSE 100 DAX 30

PANEL A: 1-WEEK
OI-VOL -3.154 -4.943 -2.296 -1.882 -1.178 -3.014

(1.87)* (2.14)** (1.19) (0.91) (0.52) (0.98)
OI-SKEW -0.170 -0.004 -0.120 -0.189 -0.257 -0.099

(1.37) (0.02) (0.61) (0.75) (1.13) (0.35)
VOLPRE 0.471 0.729 0.745

(0.22) (0.43) (0.29)
EA-VOLPRE 4.018 -0.352 4.555

(1.16) (0.09) (0.91)
Constant 0.742 1.066 0.313 0.234 0.005 0.238

(1.81)* (2.12)** (0.59) (0.45) (0.01) (0.38)
N 103 103 104 104 104 104
Prob > F 0.16 0.10 0.43 0.38 0.35 0.25
R2 0.12 0.15 0.05 0.05 0.03 0.05

PANEL B: 1-MONTH
OI-VOL -2.079 -0.608 -1.575 0.259 -1.894 0.630

(3.89)*** (0.83) (3.05)*** (0.35) (2.89)*** (0.78)
OI-SKEW 0.093 -0.018 0.313 0.061 0.396 -0.031

(2.50)** (0.34) (2.50)** (0.42) (2.02)** (0.16)
VOLPRE 5.118 4.939 6.186

(7.04)*** (6.66)*** (5.98)***
EA-VOLPRE 2.576 0.889 -1.142

(1.52) (0.57) (0.66)
Constant 0.135 -0.198 0.345 -0.066 0.499 -0.066

(0.86) (0.99) (1.74)* (0.32) (1.57) (0.22)
N   103 103 104 104 104 104
Prob > F 0.00 0.31 0.00 0.78 0.00 0.88
R2 0.48 0.07 0.39 0.01 0.37 0.01

PANEL C: 2-MONTH
OI-VOL -1.678 -0.220 -1.150 0.362 -1.271 0.481

(4.28)*** (0.44) (2.36)** (0.83) (2.29)** (0.98)
OI-SKEW 0.156 0.007 0.387 0.161 0.483 -0.074

(4.59)*** (0.15) (6.09)*** (1.68)* (4.20)*** (0.58)
VOLPRE 4.135 4.709 5.290

(11.33)*** (15.31)*** (10.07)***
EA-VOLPRE 1.373 0.718 -0.716

(1.31) (0.61) (1.00)
Constant 0.304 -0.050 0.347 0.019 0.465 -0.104

(3.38)*** (0.45) (2.87)*** (0.14) (3.52)*** (0.64)
N 103 103 104 104 104 104
Prob > F 0.00 0.31 0.00 0.39 0.00 0.67
R2 0.67 0.06 0.66 0.03 0.54 0.01

PANEL D: 3-MONTH
OI-VOL -1.578 -0.138 -1.251 0.325 -1.315 0.438

(5.82)*** (0.43) (2.98)*** (0.95) (2.50)** (0.84)
OI-SKEW 0.094 -0.006 0.306 0.073 0.358 0.153

(2.08)** (0.08) (3.75)*** (0.62) (4.32)*** (1.66)
VOLPRE 3.461 3.367 4.165

(11.86)*** (7.95)*** (9.10)***
EA-VOLPRE 1.656 0.817 0.864

(2.68)*** (1.48) (1.24)
Constant 0.220 -0.144 0.323 -0.090 0.387 -0.030

(2.76)*** (0.85) (3.09)*** (0.68) (3.76)*** (0.23)
N 101 101 104 104 100 100
Prob > F 0.00 0.06 0.00 0.38 0.00 0.31
R2 0.75 0.13 0.61 0.03 0.60 0.02

* p<0.1; ** p<0.05; *** p<0.01
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and risk-neutral skewness are negatively related to returns. Only stock volatility is statistically

significant. With the sample at hand, bivariate regressions including option-implied volatility and

skewness do not provide any consistent evidence. Applying S&P 500-based values in all

regressions did not improve results, and one-week returns are only consistently related to volatility

and skewness. The relationship is negative for both. Table V on page 44 reports results, in which

ex ante volatility premium or ex post volatility premium is included. With the ex ante premium,

volatility and skewness still fail to provide any conclusions.

If coupled with the ex post premium, the evidence becomes consistent and highly significant

for one-month, two-month, and three-month horizons. Option-implied volatility is negatively and

skewness positively related to subsequent returns, and the ex post volatility premium itself remains

positively related. Consistent evidence is only reached when the ex post volatility premium is

included, and the Hypothesis 3 that volatility and skewness require compensation and therefore

predict returns is not supported. Substituting estimated RND model-free volatilities to volatility

index values does not change the results.

6.3 Tail risk measures

Du and Kapadia (2012) and Kelly and Jiang (2014) provide tail risk measures that are

positively related to index returns. Bollerslev and Todorov (2011) and Santa-Clara and Yan (2010)

show that jumps in the price process are important in determining the size of the equity premium.

Tails or jumps are therefore clearly priced. Tail and jump risk should be present in the tails of the

estimated risk-neutral densities. Alternatively, Du and Kapadia (2012) provide a jump and tail

index by decomposing jump risk from different measures of implied volatility. The measure builds

on the difference between model-free volatility, in this case the RND option-implied volatility, and

biased volatility measures given by volatility indexes. Section 2.1 includes an explanation of the

variable and Section 5.2 provides definitions. These two measures are tested as alternatives. These

considerations lead to the third research question.

Question 3 Is the tail density or jump and tail index a consistently behaving predictor of subsequent

returns across indexes?

Table A.2 in Appendix A reports results for univariate regressions, in which the estimated

tail probability density is used to explain equity index returns. The univariate regressions do not
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provide consistent evidence. Unlike with volatility and skewness premiums, using information

from options on S&P 500 does not improve the results. The coefficients are mostly negative,

indicating that a fatter option-implied tail leads to drops in the index. This is not in line with the

idea that an increased risk of market crashes requires a compensation. Multivariate regressions

including the ex post volatility premium, option-implied volatility, and option-implied skewness,

reported in Table A.2 in Appendix A, do not change the results. If something, the tail is negatively

related to returns. Hypothesis 4, that the tail is compensated, is not supported. Moreover, the

evidence to the opposite direction is not strong enough to end up to alternative conclusions. The

next set of regressions focuses on the jump and tail index created by Du and Kapadia (2012). Table

VI below reports the results. To my best knowledge the measure has not been applied earlier to

explain equity index returns outside the U.S. stock market.

The jump and tail index is positively related to subsequent returns for the S&P 500. As with

the volatility risk premium, explanatory power is greatly increased by using the jump and tail index

inferred from S&P 500 options and VIX to explain returns on FTSE 100 and DAX 30. A one

standard deviation increase in the S&P 500 jump and tail index leads on average to a 1.5%, 1.4%,

or 1.9% increase in two-month logarithmic returns for S&P 500, FTSE 100, and DAX 30

respectively. For three-month logarithmic returns, a one standard deviation increase leads to a

2.7%, 2.1%, or 2.4% increase.

Table VI
S&P 500 jump and tail index and returns

OLS regressions with Newey-West standard errors. Results for univariate regressions, in which annualized logarithmic index returns
for S&P 500, FTSE 100, and DAX 30 from t to T are regressed on the jump and tail index of S&P 500, JTIX*, observed at t. The
jump and tail index is the difference between the option-implied volatility from risk-neutral densities, OI-VOL, and the VIX index.
T-t is 21 trading days (1m, one month), 42 trading days (2m, two months), or 63 trading days (3m, three months). The sample ranges
from February 2006 to December 2014, with option expiries from May 2006 to December 2014. *NOTE:
index is applied in all regressions.

S&P 500 FTSE 100 DAX 30

1m 2m 3m 1m 2m 3m 1m 2m 3m

JTIX* 2.197 1.181 1.935 1.998 1.063 1.520 1.784 1.414 1.750
(1.46) (1.84)* (2.09)** (1.52) (1.98)* (1.88)* (1.16) (2.13)** (1.81)*

Constant -0.232 -0.064 -0.160 -0.224 -0.106 -0.161 -0.163 -0.096 -0.141
(1.14) (0.61) (1.25) (1.27) (1.16) (1.49) (0.74) (0.89) (1.10)

N 103 103 101 103 103 101 103 103 97
Prob > F 0.15 0.07 0.04 0.13 0.05 0.06 0.25 0.04 0.07
R2 0.04 0.04 0.07 0.03 0.04 0.06 0.02 0.04 0.04

* p<0.1; ** p<0.05; *** p<0.01
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The jump and tail index coefficient is significant at the 10% level for two-month returns of

S&P 500 and FTSE 100, and three-month returns of FTSE 100 and DAX 30. The coefficient is

significant at the 5% level for three-month S&P 500 returns and two-month DAX 30 returns. These

results encourage to apply the jump and tail index as an indicator of compensated tail risk. The

Hypothesis 3 and Hypothesis 4 that tail risk is compensated and behaves consistently are supported

by these findings. On the other hand, the tail density measure, TAILZ2, seems inconclusive and

negligible at this point.

 Empirical finding 2 The jump and tail index is positively related to subsequent returns, implying

compensation for tail risk. The jump and tail indexes from FTSE 100 and DAX 30 options and

volatility indexes do not provide similar predictive power as the jump and tail index from S&P 500

options and VIX. The S&P 500 based jump and tail risk measure is the only statistically significant

and consistently behaving return predictor on all three indexes of the tail measures.

6.4 Robustness to alternative explanatory variables

By far, ex ante volatility premium and the jump and tail index have been consistently and

significantly related to future returns. In this section the variable

of the other considered option-implicit variables as well as to common alternative predictors is

tested. Section 5.2 defines the variables and Table VII on page 48 reports results. The jump and

tail index of S&P 500 remains positively related to future returns, and the coefficients are

significant at the 5% level for the one- and three-month horizons, and at the 1% level for the two-

month horizon. The jump and tail index is therefore robust to the inclusion of the wide range of

alternative explanatory variables, which implies that it contains important information that is not

embedded in other variables. The ex ante volatility premium is also significantly and positively

related. These variables serve as the only return predictors that are stable and statistically

significant across the three longer horizons.

For other variables, the results do not imply a clear and significant relationship to returns for

all three longer horizons. The default spread, DEF, is clearly negatively related to future returns

for all horizons, and the coefficient is statistically significant for one-month returns at the 5% level

when the jump and tail index is involved. Du and Kapadia (2012) have a sample from January 1996

to October 2009, and they also find a negative relationship between the default spread and returns.
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Table VII
Robustness to alternative explanatory variables of returns

Pooled OLS regressions with Newey-West standard errors. Results for multivariate pooled regressions, in which annualized
logarithmic index returns of S&P 500, FTSE 100, and DAX 30 are regressed on a set of independent variables. The sample spans
from February 2006 to November 2014. Independent variables include option-implied volatility, OI-VOL; skewness, OI-SKEW;
negative tail density, TAILZ2; S&P 500 ex ante volatility risk premium, EA-VOLPRE*; OI-
VOL and the VIX index, JTIX*; term spread between ten-year and three-month government liability yields, TERM; default spread

DEF; one-month government liability yield minus its 12-month moving
average, RREL; price to earnings, PE; and dividend yield, DY. variables EA-VOLPRE and JTIX applied.

1-week 1-month 2-month 3-month

OI-VOL -1.741 -0.259 0.531 0.509 0.476 0.513 0.600 0.519
(0.59) (0.20) (0.88) (0.84) (1.16) (1.30) (1.58) (1.41)

OI-SKEW 0.016 -0.094 0.081 0.145 0.042 0.067 0.063 0.091
(0.12) (0.84) (1.07) (1.95)* (0.74) (1.17) (1.34) (1.82)*

EA-VOLPRE* 1.896 1.486 0.783 1.051
(0.55) (1.68)* (1.78)* (3.20)***

JTIX* -0.933 3.178 1.272 1.906
(0.90) (2.22)** (2.86)*** (2.39)**

TAILZ2 0.702 0.314 -17.888 -19.884 -1.071 -0.449 -4.419 -4.685
(0.08) (0.04) (1.85)* (2.14)** (0.22) (0.09) (1.45) (1.49)

TERM -3.160 -2.511 -0.120 -0.336 2.879 2.965 2.609 2.004
(0.35) (0.27) (0.03) (0.08) (1.02) (1.08) (1.05) (0.71)

DEF -43.936 -56.923 -23.144 -34.536 -7.519 -12.108 -7.904 -14.693
(0.93) (1.30) (1.39) (2.10)** (0.63) (0.99) (0.87) (1.48)

RREL 5.646 3.618 1.083 0.890 0.910 -0.054 2.390 0.808
(0.26) (0.17) (0.12) (0.10) (0.13) (0.01) (0.56) (0.18)

Ln(PE) 0.772 0.713 -0.025 -0.024 0.010 0.030 -0.054 -0.060
(1.29) (1.14) (0.12) (0.11) (0.06) (0.19) (0.45) (0.49)

Ln(DY) 0.450 0.590 0.184 0.085 0.009 -0.020 -0.063 -0.121
(0.95) (1.21) (0.88) (0.40) (0.06) (0.14) (0.55) (0.93)

Constant 0.400 1.015 1.734 1.571 -0.029 -0.178 0.008 -0.084
(0.20) (0.52) (1.53) (1.38) (0.05) (0.31) (0.02) (0.20)

N 311 309 309 309 309 309 301 299
Prob > F 0.69 0.60 0.22 0.10 0.42 0.10 0.02 0.05
R2 0.08 0.09 0.05 0.06 0.04 0.05 0.09 0.09

* p<0.1; ** p<0.05; *** p<0.01

The tail density measure is also negatively related, and significant at the 5% or 10% level for one-

month returns. Option-implied volatility and skewness are positively related to future returns, and

the coefficients of skewness are significant at the 10% level for one- and three-month returns when

the jump and tail index is involved.

These findings are important in answering the research questions. At this point Question 1

- and three-month horizons. So is the jump and tail risk

if it is measured with the jump and tail index from S&P 500 options and VIX. So far Hypothesis
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1, Hypothesis 2, and Hypothesis 4 set up in Section 4 have received support from the empirical

evidence. However, implied volatility and skewness have failed to provide predictive power on

returns as expected. In general, these results provide an extension to the earlier empirical evidence.

The results show that the tail measure also explains returns outside the U.S. market, and is robust

to the inclusion of risk-neutral moments. This is not self-evident. Negative price jumps should

affect risk-neutral skewness, because far negative returns become more probable. This makes the

probability distribution more skewed. As a measure of tail risk the jump and tail index therefore

seems more accurate, assuming that exposure to the tail is compensated with a premium.

6.5 Global predictive power of S&P 500 equity index options

One additional test is highly motivated by the earlier results. If the premiums and tail risk are

a global phenomenon, then the variables of S&P 500 should have predictive power globally. This

assumes that S&P 500 is the best source for this kind of information from the three considered

indexes. This is apparent based on earlier results in Section 6.1 and 6.3. Global evidence has been

reported in Bollerslev et al. (2014) for the variance risk premium and index returns. Their global

returns for eight indexes, and explains variation best for four- and five-month horizons. Their

sample spans from January 2000 to December 2010. Adding the jump and tail index brings new

evidence on two things. First, does the tail risk measure explain returns globally? Second, what is

the mutual explanatory nature of the volatility risk premium and the jump and tail index? If they

measure different relevant factors, they have individual predictive power even if grouped with the

other. As important as the results is to consider the reason why the measures predict returns.

Predictive multivariate regressions are run for ten equity indexes. Independent variables are

ex ante volatility risk premium, jump and tail index, option-implied volatility, and option-implied

skewness. All variables are based on S&P 500 equity index options and the VIX. The considered

indexes comprise of S&P 500 (the U.S.), FTSE 100 (the U.K.), DAX 30 (Germany), Euro STOXX

50 (Europe), Nasdaq OMX Helsinki (Finland), Hang Seng (Hong Kong), Nikkei 225 (Japan),

MXIPC35 (Mexico), MERVAL (Argentina), and S&P/ASX 200 (Australia). Prices for the return

calculations are in local currencies. The considered return horizon is three months and three

separate regressions are run for all indexes. First excludes the jump and tail index, second excludes
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the volatility premium, and the third one includes all four independent variables. Table VIII on

page 52 reports results.

Without the jump and tail index in the regressions, the ex ante volatility premium of S&P

500 is positively related and statistically significant for nine of the ten equity indexes, the one being

MERVAL. For MERVAL the Newey-West standard error based t-value is 1.47 and the regression

coefficient is in line with other values. The coefficients range between 0.990 and 1.820, implying

that the effect of a one standard deviation increase in the premium leads on average to a 2.2% to

4.1% increase in equity indexes hree-month logarithmic returns. Without the ex ante volatility

premium, the jump and tail index is positively related to subsequent returns for all of the ten

indexes. The coefficient t-values range from 1.27 to 2.54. For six indexes the variable is significant

at the 10% level, and for four indexes significant at the 5% level. Variable coefficients are between

2.347 and 5.690, and a one standard deviation increase in the jump and tail index on average leads

to a 3.2% to 7.8% increase in the equity indexes hree-month logarithmic returns.

Including both the ex ante volatility premium and the tail and jump index decreases the

remain significant at the 10% level, and none of the coefficients for the jump and tail index. This

finding strongly suggests that they are alternative measures of the same determinant of future

returns. Looking at the R2 and F-statistics supports this. For all of the ten indexes the F-statistics

imply that inclusion of the jump and tail index returns does not improve the model. Moreover, the

R2 increases at most by 1% with the inclusion of the jump and tail index. S&P 500 equity index

options clearly provide explanatory power on equity index returns globally. It is apparent that the

variables indicate the same return determinant, while the volatility risk premium has some

additional information embedded.

Based on theory, this additional information relates to time-varying risk aversion or investor

preferences. First of all, the tail and jump index measure should purely expose tail risk in a risk-

neutral world. Risk aversion and investor preferences are not extractable without estimates of

jumps in the true expected price process. Estimation of future price jumps is difficult, because they

occur rarely. In turn, the ex ante volatility premium is based on the difference between the risk-

neutral expectation and the true expectation of return volatility. The measure includes expectations

of jumps and investor preferences, but these two impacts cannot be easily separated.
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Both the ex ante volatility premium and the jump and tail index are significant and the models

excluding the other explain roughly the similar amount of variation in returns. Therefore, tail risk

is clearly important, but the additional information in the volatility premium makes it a better

predictor of equity index returns globally. To sum up, this section shows that S&P 500 equity index

options provide explanatory power on equity index returns globally. The ex ante volatility risk

premium and the jump and tail index contain similar predictive information, and the premium is a

more powerful predictor. The role of jumps or tails is important. This is in line with the results of

Bollerslev and Todorov (2011) and Santa-Clara and Yan (2010). The empirical findings of this

section are summed as follows.

Empirical finding 3 S&P 500 equity index options provide explanatory power on equity index

returns globally. The ex ante volatility risk premium and the jump and tail index contain similar

predictive information, and the premium is a more powerful predictor. Their similar predictive

nature implies that they include a common component.

From a practical point of view we now have sufficient evidence that either the volatility risk

premium or the jump and tail index serves as a good indicator of future returns. They seem superior

in predicting short term equity index returns, and the choice is between the two. From a theoretical

point of view separation of jump and volatility risk in the process would be interesting. The next

section reviews the study, and sums up the empirical findings.
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7. Conclusion

This study assesses the explanatory power of option prices on subsequent equity index

returns. This is motivated by the rich forward-looking information content of options, and by the

on individual stock returns and the

stock market on aggregate. These findings give a better picture on what risks are compensated in

financial asset returns, and how to assess the riskiness of investments. In this study a

comprehensive approach is adopted to find out the mutual explanatory nature of option-related

information, and to find out the main components of explanatory power that are robust to the

inclusion of other alternatives. In short, tail risk and time-varying risk aversion or investor

preferences are the key components of return predictability. Equity index options, volatility

indexes, and return data on S&P 500, FTSE 100, and DAX 30 are employed. One-week, one-

month, two-month, and three-month returns on equity indexes are in the focus. In addition,

information on the S&P 500 is used to explain future returns for the three indexes and Euro

STOXX 50 (Europe), Nasdaq OMX Helsinki (Finland), Hang Seng (Hong Kong), Nikkei 225

(Japan), MXIPC35 (Mexico), MERVAL (Argentina), and S&P/ASX 200 (Australia).

The results show that the information in S&P 500 options has global explanatory power.

This exceeds the explanatory power in options on FTSE 100 and DAX 30 even on the returns of

their underlying indexes. Moreover, the results show that the volatility risk premium and the jump

and tail index contain the relevant information in options and volatility indexes regarding short-

term equity index returns. This is because they imply tail risk and risk aversion. A one standard

deviation increase in the ex ante volatility premium leads on average to a 2.2% to 4.1% increase

in three-month logarithmic returns for different indexes globally. A one standard deviation

increase in the jump and tail index leads to a 3.2% to 7.8% increase. The two predictors contain

similar explanatory information, and adding the jump and tail index leads at most to a 1% increase

in explained return variation for the three-month global equity index returns. The volatility risk

premium also contains information on risk aversion, whereas the jump and tail index is explicitly

a measure of jumps under the risk-neutral measure. Ex ante moments, in turn, seem negligible.

The contribution of this study is twofold. First, the top-down approach reveals the option-

implicit variables that are relevant and robust in explaining short term equity index returns. This

is interesting from a theoretical perspective, since it enables inferences on what risks are
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compensated. Second, the evidence from the U.S. stock market is supplemented with new global

evidence. Regarding further research, more accurate separation of risks due to large price moves

and small price variation could be used to provide global evidence, as is done for the U.S. market

by Bollerslev and Todorov (2011) and Santa-Clara and Yan (2010). This is encouraged by the

observed small role of risk-neutral moments, and focusing the approach to studying implicit price

processes seems worthwhile. A model of the price process that separates small price moves and

price jumps would enable a more accurate breakdown of risks and compensation of risks.  In the

current approach, for instance, the model-free implied volatility includes possible price jumps in

index does not enable inferences of the jump risk premium, because the true expectation of large

price moves is missing.

 The discrepancy between information in S&P 500 options and options on FTSE 100 and

DAX 30 is also interesting. Is the superior explanatory power in S&P 500 options due to more

liquid options and a wider range of available strikes, or are there systematic inconsistencies in

option pricing? Based on the explanatory power of S&P 500 options either one is the answer, since

perceived risks and fears that are reflected in the U.S. equity index option market are clearly

relevant worldwide.

 To conclude, the hypothesized connection between the moment premiums is supported,

and this is likely due to time-varying risk aversion. Higher skew and volatility premiums, in

absolute value, lead to higher subsequent returns on average, implying a higher equity premium.

Instead, moments of the RNDs do not provide information on future equity index returns. The

hypothesized connection between tail risk and higher future returns is confirmed, and the question

is more of how it is measured. The jump and tail index proves to be a remarkably powerful

predictor of future returns.
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Appendix A

Table A.1
Skew risk premium and returns

OLS regressions with Newey-West standard errors. Results for univariate regressions, in which logarithmic index returns over the
following week (PANEL A), month (PANEL B), two months (PANEL C), or three months (PANEL D), are regressed on the ex
post skew premium, SKEWPRE, and the ex ante skew premium EA-SKEWPRE. Option-implied skewness, which is the basis for
the skew premiums, is calculated from options maturing in 5, 21, 42, or 63 trading days so that the information is specific to the
return prediction period. The sample ranges from February 2006 to December 2014.

S&P 500 FTSE 100 DAX 30

 PANEL A: 1-WEEK
SKEWPRE -0.057 -0.164 -0.304

(1.14) (1.39) (2.32)**
EA-SKEWPRE 0.035 -0.122 -0.072

(0.45) (1.02) (0.56)
S&P 500 EA-SKEWPRE -0.003 -0.020

(0.04) (0.20)
Constant -0.156 0.074 -0.314 -0.250 -0.100 -0.372 -0.050 0.010

(0.81) (0.34) (1.46) (1.10) (0.50) (1.29) (0.18) (0.04)
N 103 103 104 104 103 104 104 103
F-statistic 1.29 0.20 1.94 1.03 0.00 5.38 0.31 0.04
Prob > F 0.26 0.66 0.17 0.31 0.97 0.02 0.58 0.84
R2 0.00 0.00 0.02 0.01 0.00 0.04 0.00 0.00

PANEL B: 1-MONTH
SKEWPRE -0.063 -0.077 -0.054

(1.31) (1.11) (0.66)
EA-SKEWPRE -0.102 -0.106 -0.096

(2.00)** (1.49) (0.94)
S&P 500 EA-SKEWPRE -0.065 -0.104

(1.34) (1.62)
Constant -0.101 -0.182 -0.082 -0.109 -0.119 -0.015 -0.064 -0.167

(0.66) (1.14) (0.73) (0.92) (0.85) (0.11) (0.39) (0.93)
N 103 103 104 104 103 104 104 103
F-statistic 1.72 4.01 1.23 2.21 1.80 0.44 0.88 2.63
Prob > F 0.19 0.05 0.27 0.14 0.18 0.51 0.35 0.11
R2 0.01 0.04 0.01 0.02 0.02 0.00 0.01 0.03

PANEL C: 2-MONTH
SKEWPRE -0.085 -0.022 -0.063

(2.77)*** (0.30) (0.66)
EA-SKEWPRE -0.080 0.041 -0.041

(2.01)** (0.58) (0.83)
S&P 500 EA-SKEWPRE -0.074 -0.118

(2.08)** (2.51)**
Constant -0.080 -0.074 -0.022 0.040 -0.118 -0.009 0.006 -0.144

(0.86) (0.67) (0.23) (0.46) (1.21) (0.09) (0.08) (1.20)
N 103 103 104 104 103 104 104 103
F-statistic 7.70 4.02 0.09 0.34 4.34 0.43 0.69 6.32
Prob > F 0.01 0.05 0.76 0.56 0.04 0.51 0.41 0.01
R2 0.04 0.03 0.00 0.00 0.03 0.00 0.00 0.05

PANEL D: 3-MONTH
SKEWPRE -0.093 -0.042 0.022

(1.88)* (0.61) (0.34)
EA-SKEWPRE -0.069 -0.001 0.000

(1.63) (0.02) (0.00)
S&P 500 EA-SKEWPRE -0.045 -0.072

(1.18) (1.64)
Constant -0.069 -0.048 -0.035 -0.004 -0.061 0.056 0.042 -0.052

(0.76) (0.51) (0.49) (0.05) (0.76) (0.95) (0.63) (0.57)
N 101 101 104 104 102 100 100 98
F-statistic 3.55 2.66 0.38 0.00 1.38 0.11 0.00 2.69
Prob > F 0.06 0.11 0.54 0.98 0.24 0.74 1.00 0.10
R2 0.03 0.02 0.00 0.00 0.01 0.00 0.00 0.02

* p<0.1; ** p<0.05; *** p<0.01
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Table A.2
Tail density, moments, moment premiums, and returns

OLS regressions with Newey-West standard errors. Results for univariate and multivariate regressions, in which logarithmic index
returns over the following week (PANEL A), month (PANEL B), two months (PANEL C), or three months (PANEL D), or 5, 21,
42, and 63 trading days, are regressed on 1. the negative tail of the estimated risk-neutral probability density, TAILZ2, and 2.
TAILZ2, option-implied volatility and skewness, OI-VOL and OI-SKEW, and volatility premium, VOLPRE, which is OI-VOL less

realized volatility. The sample ranges from February 2006 to December 2014.

S&P 500 FTSE 100 DAX 30

PANEL A: 1-WEEK
TAILZ2 2.616 -11.440 8.666 2.778 2.175 -8.420

(0.13) (0.36) (0.44) (0.14) (0.22) (0.71)
OI-VOL -3.185 -2.291 -1.166

(1.84)* (1.18) (0.50)
OI-SKEW -0.134 -0.115 -0.321

(1.14) (0.59) (1.57)
VOLPRE 0.432 0.692 1.094

(0.19) (0.42) (0.39)
Constant -0.119 1.332 -0.543 0.180 -0.056 0.241

(0.14) (0.75) (0.56) (0.16) (0.11) (0.30)
N 103 103 104 104 104 104
Prob > F 0.89 0.20 0.66 0.60 0.83 0.24
R2 0.00 0.12 0.00 0.05 0.00 0.03

PANEL B: 1-MONTH
TAILZ2 -12.648 -16.233 -8.051 -28.620 -9.294 -26.456

(1.76)* (2.06)** (0.65) (3.07)*** (0.50) (1.41)
OI-VOL -2.168 -1.842 -1.963

(3.95)*** (3.84)*** (3.01)***
OI-SKEW 0.199 0.416 0.483

(3.23)*** (3.88)*** (2.64)***
VOLPRE 5.174 5.357 6.383

(7.33)*** (7.58)*** (6.07)***
Constant 0.660 1.193 0.477 2.142 0.562 2.062

(2.04)** (2.05)** (0.66) (3.78)*** (0.56) (2.07)**
N 103 103 104 104 104 104
Prob > F 0.08 0.00 0.52 0.00 0.61 0.00
R2 0.03 0.50 0.00 0.44 0.00 0.39

PANEL C: 2-MONTH
TAILZ2 -2.599 -0.587 3.380 -5.036 1.911 -7.782

(0.90) (0.12) (0.50) (1.37) (0.14) (1.12)
OI-VOL -1.675 -1.097 -1.193

(4.16)*** (2.27)** (2.17)**
OI-SKEW 0.162 0.394 0.495

(2.45)** (6.55)*** (3.91)***
VOLPRE 4.142 4.772 5.365

(11.07)*** (15.51)*** (10.10)***
Constant 0.228 0.353 -0.235 0.687 -0.084 0.966

(1.21) (0.90) (0.48) (2.37)** (0.09) (2.08)**
N 103 103 104 104 104 104
Prob > F 0.37 0.00 0.62 0.00 0.89 0.00
R2 0.00 0.67 0.00 0.66 0.00 0.55

PANEL D: 3-MONTH
TAILZ2 -0.669 -0.250 -10.305 -5.348 -4.536 -1.800

(0.13) (0.05) (1.91)* (1.25) (0.79) (0.43)
OI-VOL -1.577 -1.253 -1.303

(5.77)*** (3.00)*** (2.46)**
OI-SKEW 0.096 0.256 0.354

(1.44) (3.12)*** (4.06)***
VOLPRE 3.463 3.323 4.156

(11.50)*** (7.77)*** (9.11)***
Constant 0.083 0.237 0.602 0.597 0.277 0.475

(0.27) (0.63) (1.87)* (2.40)** (1.00) (2.21)**
N 101 101 104 104 100 100
Prob > F 0.90 0.00 0.06 0.00 0.43 0.00
R2 0.00 0.75 0.02 0.61 0.01 0.60

* p<0.1; ** p<0.05; *** p<0.01
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Appendix B

Table B.1
Terminology of relevant literature

Risk-neutral probability
density function

Defines the forward looking probability distribution of the asset price level or returns implicit in
option prices. Is inferred from option prices and is specific to the period up to the option cross-

Objective probability
density function

Unobserved true expectation of the probability distribution of the asset price level or returns. In this
study characteristics of the unobserved objective distribution are taken from actual realizations of
return volatility and skewness.

Equity risk premium
Equity risk is uncertainty of the future price level. Equity risk premium is the expected compensation
for holding equity risk. The return difference between a risk-free asset and the equity instrument
should on average equal the premium, and is generally positive.

Volatility and skew risk
Risk related to changes in volatility and skewness of returns. E.g. a delta-neutral and vega-positive
option position is exposed to volatility risk but not equity risk. Can also refer to volatility and
skewness of returns.

Volatility and skew risk
premiums

The difference between the risk-neutral and objective or statistical expectation of volatility and
skewness. Shows the compensation for holding volatility or skewness risk. Volatility risk premium
is generally negative, i.e. a strategy that pays off when volatility rises has on average negative
returns.

Moments
Mean, variance (or volatility), skewness, and kurtosis of returns. Moments characterise a probability
density function parametrically if the distribution is known. A normal distribution is determined by
its mean and variance.

Moment premiums

The difference between the risk-neutral and objective expectation of a moment. Equity, volatility,
and skew risk premiums are moment premiums. E.g. if one wants to receive a fixed payoff based on
future return variance and pay a floating payoff based on actual realized variance, on average the
payoff is positive due to exposure to variance risk.

Moment swaps

A moment swap swaps the option-implied moment (fixed leg) to the realized moment (floating leg).
Payoffs to moment swaps on average unveil the risk premium related to the specific moment. E.g.
investing in the stock market and borrowing at the risk-free rate can be thought of as a moment swap
on the first moment of returns.

Tail risk
Tail refers to the far end of a probability distribution. A major negative price jump would mean the
realization of tail risk. A negatively skewed distribution means that far negative movements are more
probable. Therefore jump risk and skewness are related to tail risk.

Diffusive risk
Risk due to small price moves. Diffusive risk can be hedged. E.g. in Bollerslev and Todorov (2011)
diffusive risk is the variation in returns and volatility of returns attributable to a continuous-time
stochastic volatility process.

Jump risk for jump risks drives both the variance risk premium and the equity risk premium. Modeling jumps
typically involves modeling the jump size and intensity.

Delta

-specific, and usually
refers to the Black-Scholes delta. Holding the underlying asset equals a delta of 1. Zero delta option
positions can be used to show the price of volatility risk or, from an alternative perspective, do
volatility arbitrage.

Vega

-specific, and usually refers to the Black-
Scholes vega. For long option positions vega is positive, and increases in volatility benefit the option
holder. A delta neutral but vega positive option position is useful for assessing the volatility risk
premium.

Gamma
ng asset. Gamma and vega

positive option positions are used to assess the pricing of diffusive risk and jump risk, e.g. by
Cremers, Halling, and Weinbaum (2015).
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Table B.2
Summary statistics of the explanatory variables

This table shows summary statistics of the option-implicit explanatory variables employed in return-predictive regressions. Also,
the realized values of volatility, skewness, and kurtosis are presented, as well as kurtosis premium which is not used in the predictive
regressions. Option-implied model-free moments, OI-VOL, OI-SKEW, and OI-KURT are based on the risk-neutral densities
calculated from option prices (see Figure 2 and Figure 3 in Appendix C for examples). Ex post premiums, VOLPRE, SKEWPRE,
and KURTPRE, are differences between option-implied moments and realized values during the return prediction periods. Ex ante
premiums EA-VOLPRE, EA-SKEWPRE, and EA-KURTPRE are differences between option-implied moments and realized values
occurred during 21 trading days before the prediction periods. TAILZ2 is the probability density in the negative side tail of the risk-
neutral probability distributions. JTIX is the difference between OI-VOL and volatility index value for the underlying index.
Volatility indexes, VIX, VFTSE, and VDAX-NEW, are based on options maturing close to 30 days from the observation. Option-
implicit volatility, skewness, and kurtosis all decrease on average in absolute value as the forecast horizon becomes longer. The
same holds for the volatility, skew, and kurtosis premiums. The average size of the premiums are not dependent on whether the

, or kurtosis of
returns. The tail density is higher for longer forecast periods.

Mean / Std.
Deviation

S&P 500 FTSE 100 DAX 30
1w 1m 2m 3m 1w 1m 2m 3m 1w 1m 2m 3m

OI-VOL
0.41 0.33 0.31 0.31 0.28 0.27 0.25 0.26 0.38 0.30 0.28 0.28

0.23 0.15 0.15 0.12 0.13 0.11 0.09 0.09 0.16 0.12 0.11 0.11

OI-SKEW
-2.5 -2.24 -1.71 -1.39 -1.21 -1.22 -1.01 -0.86 -1.35 -1.16 -0.89 -0.76

1.69 1.05 0.93 0.57 0.6 0.59 0.42 0.29 0.88 0.51 0.44 0.64

OI-KURT
15.9 10.79 5.75 3.49 3.61 3.03 1.75 1.03 5.24 2.82 1.37 1.36

17.43 9.95 7.7 1.48 2.95 4.41 2.26 1.01 4.94 3.07 2.32 3.35

VOL - Realized
volatility

0.17 0.18 0.18 0.18 0.17 0.17 0.18 0.18 0.19 0.21 0.21 0.21

0.15 0.13 0.12 0.12 0.14 0.11 0.10 0.10 0.14 0.11 0.10 0.10

SKEW -
Realized skew

0.03 -0.08 -0.16 -0.22 0.08 0.06 -0.03 -0.09 0.03 0.03 -0.07 -0.11

1.01 0.64 0.60 0.57 0.99 0.58 0.47 0.36 0.89 0.56 0.46 0.37

KURT -
Realized
kurtosis

0.24 0.75 1.02 1.25 0.3 0.41 0.6 0.72 0.25 0.62 0.76 0.89

2.33 1.18 1.23 1.48 1.94 1.20 1.24 0.99 1.92 1.30 1.14 1.14

VOLPRE
0.24 0.16 0.13 0.13 0.11 0.10 0.07 0.08 0.20 0.09 0.07 0.07

0.21 0.11 0.13 0.12 0.12 0.10 0.08 0.1 0.16 0.09 0.10 0.12

SKEWPRE
-2.55 -2.18 -1.57 -1.21 -1.29 -1.28 -0.99 -0.77 -1.38 -1.18 -0.82 -0.66

2.05 1.16 1.13 0.76 1.16 0.84 0.58 0.43 1.27 0.72 0.57 0.71

KURTPRE
15.7 10.08 4.79 2.37 3.31 2.62 1.15 0.31 4.99 2.20 0.62 0.48

17.47 9.76 7.44 3.55 3.72 4.48 2.6 1.44 5.25 3.23 2.50 3.62

EA-VOLPRE
0.23 0.15 0.13 0.13 0.11 0.10 0.07 0.08 0.18 0.09 0.07 0.07

0.18 0.07 0.10 0.09 0.07 0.06 0.06 0.07 0.10 0.06 0.07 0.10

EA-SKEWPRE
-2.41 -2.15 -1.59 -1.28 -1.23 -1.17 -1.01 -0.92 -1.34 -1.17 -0.89 -0.72

1.77 1.30 1.06 0.86 0.89 0.79 0.72 0.71 1.07 0.76 0.83 0.91

EA-KURTPRE
15.16 10.00 4.98 2.73 3.19 2.60 1.31 0.49 4.69 2.19 0.70 0.55

17.23 9.82 7.69 3.61 3.09 4.55 2.72 1.82 4.99 3.14 2.75 3.64

TAILZ2
0.042 0.049 0.067 0.060 0.051 0.06 0.069 0.059 0.047 0.055 0.067 0.052

0.008 0.009 0.011 0.006 0.006 0.005 0.007 0.005 0.018 0.005 0.006 0.007

JTIX
0.196 0.123 0.099 0.105 0.073 0.065 0.043 0.054 0.149 0.064 0.044 0.051

0.182 0.056 0.079 0.055 0.050 0.042 0.035 0.047 0.102 0.039 0.056 0.078
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Table B.3
Summary statistics of the alternative explanatory variables

This table shows summary statistics for term spreads, default spreads, stochastically detrended risk-free rates, price-to-earnings
ratios, and dividend yields applied in Section 6.4. The means and standard deviations are calculated from monthly observations
from April 2006 to November 2014, so that the information supplements the option information which covers option cross-section
expiries from May 2006 to December 2014. Term spread is the difference between ten-year and one-month government liability

, and the same values are
applied for all indexes. Detrended risk-free rate is the one-month government liability yield less its 12-month trailing average.
Price-to-earnings is the equity index market capitalization divided by aggregate earnings. Dividend yield equals aggregate
dividends divided by market capitalization. Price-to-earning and dividend yield are directly Tho
datatypes. *NOTE: The applied default spread is the same for all indexes.

Mean Standard deviation

S&P 500 FTSE 100 DAX 30 S&P 500 FTSE 100 DAX 30

Term spread TERM 0.0205 0.0163 0.0100 0.0116 0.0147 0.0095

Default spread* DEF 0.0118 0.0118 0.0118 0.0058 0.0058 0.0058

Detrended risk-free rate RREL -0.0024 -0.0023 -0.0014 0.0070 0.0081 0.0075

Price-to-earnings PE 16.53 12.26 14.64 2.25 2.24 4.48

Dividend yield DY 0.0211 0.0360 0.0327 0.0031 0.0059 0.0070

Table B.4
Summary statistics of monthly logarithmic equity index returns

This table shows summary statistics for the equity index returns considered for the ten equity indexes. The statistics are based on
monthly observations of monthly returns from April 2006 to December 2014. The indexes are from the U.S. (S&P 500), the U.K.
(FTSE 100), Germany (DAX 30), Europe (Euro STOXX 50), Finland (OMXH), Hong Kong (Hang Seng), Japan (Nikkei 225),
Mexico (MXIPC35), Argentina (MERVAL), and Australia (S&P/ASX 200). The statistics are based on returns in local currencies.

Mean Standard Deviation Annualized volatility
S&P 500 0.00255 0.05253 0.18
FTSE 100 -0.00140 0.05468 0.19
DAX 30 0.00176 0.06580 0.23
EURO STOXX 50 -0.00485 0.06372 0.22
OMXH -0.00644 0.06798 0.24
HANG SENG 0.00294 0.06693 0.23
NIKKEI 225 -0.00014 0.07197 0.25
MXIPC35 0.00793 0.05500 0.19
MERVAL 0.01422 0.09451 0.33
S&P/ASX 200 0.00002 0.05240 0.18
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Table B.5
Correlation matrices of variables for one-month observations

This table shows correlation matrices for the option-implicit explanatory variables and volatility indexes employed in return-
predictive regressions. The equity index option observations are done at t, which is 21 trading days before the option cross-section
maturity T, and the information is used to explain returns from  t to T. Option-implied model-free moments, OI-VOL and OI-SKEW,
are based on the risk-neutral densities calculated from option prices (see Figure 2 and Figure 3 in Appendix C for examples). Ex
post volatility premiums VOLPRE are differences between option-implied volatilities OI-VOL and realized volatilities during the
return prediction periods. Ex ante premiums EA-VOLPRE and EA-SKEWPRE are differences between option-implied moments
and realized values occurred on 21 trading days before t. TAILZ2 is the probability density in the negative tail of the risk-neutral
probability distributions. JTIX is the difference between OI-VOL and volatility index value for the underlying index. Volatility
indexes VIX, VFTSE and VDAX-NEW are based on options maturing close to 30 days from the observation.

OI-VOL OI-SKEW VOLPRE EA-VOLPRE EA-
SKEWPRE TAILZ2 JTIX VIX

S&P 500

OI-VOL 1

OI-SKEW 0.0578 1

VOLPRE 0.5272 -0.2982 1

EA-VOLPRE 0.4838 -0.3486 0.5475 1

EA-SKEWPRE 0.0509 0.8479 -0.2297 -0.2035 1

TAILZ2 -0.0242 0.7730 -0.2411 -0.2610 0.6447 1

JTIX 0.7184 -0.5243 0.7244 0.7596 -0.4089 -0.4388 1

VIX 0.9380 0.3361 0.3223 0.2485 0.2697 0.1873 0.4327 1

FTSE 100

OI-VOL 1

OI-SKEW 0.0501 1

VOLPRE 0.4495 -0.3502 1

EA-VOLPRE 0.3757 -0.5118 0.4322 1

EA-SKEWPRE -0.0409 0.7172 -0.2466 -0.3785 1

TAILZ2 -0.0537 0.3027 0.0416 -0.1040 0.2567 1

JTIX 0.4548 -0.7252 0.6275 0.7067 -0.5105 -0.0889 1

VFTSE 0.9233 0.3689 0.2325 0.1157 0.1744 -0.0218 0.0777 1

DAX 30

OI-VOL 1

OI-SKEW 0.0472 1

VOLPRE 0.4633 -0.3055 1

EA-VOLPRE 0.4162 -0.4146 0.3439 1

EA-SKEWPRE -0.0650 0.6329 -0.2409 -0.2490 1

TAILZ2 0.0195 0.3178 0.0081 0.0616 0.1920 1

JTIX 0.6072 -0.6696 0.6119 0.6243 -0.4660 -0.1062 1

VDAX-NEW 0.9532 0.3107 0.3158 0.2553 0.1004 0.0634 0.3385 1



61

Appendix C

Figure 2
S&P 500 one-month forward-looking risk-neutral densities

This figure shows an example of a time-series of one-month forward-looking risk-neutral densities. The risk-neutral densities are
based on all European out-of-the-money options on the S&P 500 with traded volume on the observation date. The involved options
always mature in 21 trading days. Negative skewness is evident in the densities, as the densities show a long negative tail compared
to the upper side of the distributions. The decrease in the underlying index during 2008 shows as a shift in the position of the
density, and high volatility during the crisis results as flat distributions. An upward market is associated with highly peaked risk-
neutral densities. Dimensions are time, S&P 500 price level, and probability density (Y-axis).
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Figure 3
Implied-volatility cross-sections and risk-neutral densities

This figure shows four examples of Black-Scholes option-implied volatility cross-sections for put options, call options, and out-of-
the-money interpolated options (line), and the corresponding risk-neutral densities of index prices at maturity. Y-axis is option-
implied volatility for the scatter graphs, and probability density for the probability distributions. X-axis is the equity index level.
For comparison, a lognormal probability density with at-the-money volatility is also plotted (line). The volatility skew results as
negatively skewed distributions, and the exact fit of interpolated implied volatilities make the density jagged especially for S&P
500. Applying out-of-the money puts causes a jump in the density and this is clearly visible for FTSE 100 and DAX 30.
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