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Here we propose a universal method for the determination of all helicities present in unidirectional
assemblies of hexagon-based graphitic or graphiticlike tubular structures, e.g., multiwalled or
bundled carbon nanotubes �CNTs� or boron-nitride nanotubes and their structural analogs. A critical
dimension characteristic of a fundamental structural property, i.e., the atomic bond length, is
discerned from electron diffraction patterns by which all helicities present in the assemblies are
identified. Using this method, we determine the helicity population in a single-walled CNT sample
produced by laser ablation technique. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2993217�

Since the recognition of carbon nanotubes �CNTs�
by Iijima in 1991,1 nanoscale tubular structures, including
graphitic CNTs2 and graphiticlike boron-nitride nanotubes
�BNNTs�,3 have generated tremendous interest. Single-
walled CNTs �SWCNTs� are either metallic or semiconduct-
ing depending on the tube diameter and the chiral angle, i.e.,
helicity. BNNTs show an insulating character due to their
large band gap regardless of the helicity or diameter.4 To
better understand nanotube properties, develop practical ap-
plications, and control synthesis, it is crucial to advance our
capability for structural characterization of nanotubes.

A number of techniques have been used to characterize
nanotube structures. In contrast to optical measurements that
generally depend on whether or not a nanotube has a detect-
able optical response to the illuminating light,2 electron
diffraction allows direct analysis of single-walled, multi-
walled, bundled, or isolated nanotubes. Moreover, in combi-
nation with high-resolution electron microscopy, the mor-
phology of nanotubes, i.e., whether the tubes are individual,
bundled, or multiwalled, can simultaneously be established.
In particular, electron diffraction analysis of individual
SWCNTs5–9 or BNNTs10 enables explicit determination of
their atomic structures specified by chiral indices �n ,m�.

Nanotubes often form bundles or exist as coaxial multi-
walled tubes, i.e., as unidirectional assemblies. Efforts have
been undertaken to analyze the structures of such assemblies
in CNTs11–16 and in BNNTs17–19 from their electron diffrac-
tion patterns �EDPs�, usually with uncertainties due to un-
measured tilt effects of the nanotube with respect to the elec-
tron beam and the streaking effects of reflections forming the
so-called diffraction “layer lines.”8 Errors are especially
large when layer lines overlap, if two or more helicities are
close to each other. In general, current methods for electron
diffraction analysis are inadequate and there is an urgent
need for a reliable and universal method to characterize
structural helicity properties in nanotube assemblies.

In this letter, we propose a method for electron diffrac-
tion characterization of unidirectional assemblies of graphitic
or graphiticlike tubular structures. We discovered that from
EDPs of such tubular structures, whether or not they are
coaxially aligned or packed in bundles, a critical dimension
can be calculated, which can then be used to identify all
helicities present in the groups. This enables a fast and reli-
able approach to determine the helicities present in CNTs,
BNNTs, or other such similar structures.

For simplicity, but without loss of generality, we illus-
trate our method by using a simulated EDP �Fig. 1� of a
small SWCNT bundle that consists of four tubes: �13,2�,
�18,7�, �20,6�, and �26,6�. The EDP was calculated using the
DIFFRACT program20 by assuming a bundle tilt angle of 15°
with respect to the electron beam. In addition to the equato-
rial line at the center of the EDP, the pattern is mainly com-
posed of a number of layer lines, which are spaced in parallel
by certain distances from the equatorial line. An arbitrary
individual tube i is characterized by a set of layer line dis-
tances d1

i , d2
i , and d3

i assigned for the first-order hexagon and
d4

i , d5
i , and d6

i for the second-order hexagon.9 In this work,
only d2

i and d3
i will be involved in the analysis though theo-

retically any two pairs could be used. The chiral angle of
tube i is determined by the ratio of d2

i and d3
i .5 We notice that

as the chiral angle of the nanotube increases from 0° �zigzag�

a�Authors to whom correspondence should be addressed. Electronic ad-
dresses: hua.jiang@tkk.fi and esko.kauppinen@tkk.fi.

FIG. 1. �Color online� A simulated EDP of a SWCNT bundle containing
four individual tubes: �13,2�, �18,7�, �20,6�, and �26,6�.
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to 30° �armchair�, the value of d3
i is reduced while the value

of d2
i rises. Layer lines d2

i and d3
i merge or converge for

an armchair tube, i.e., d3
i =d2

i .9 The distance from the con-
vergent line to the equatorial line is defined by the pair
�d2

i ,d3
i � of an arbitrary tube i

dcon = ��d2
i �2 + �d3

i �2 − �d2
i d3

i � . �1�

Because the convergent line is located where layer lines
d3

i and d2
i of an armchair tube appear as a single line, dcon can

be also determined by dcon=K /�3r. Here, r is the atomic
bond length in the hexagonal networks, e.g., the C–C bond
length r in graphite is �0.142 nm.21 K is the diffraction
camera constant. In other words, for a certain EDP, dcon is an
intrinsic constant describing the fundamental structural prop-
erty, i.e., the atomic bonding distance r in graphitic or gra-
phiticlike tubular structures. As a result, d3

i and d2
i are con-

jugated to each other, and thus form a conjugated pair.
Based on the above analysis, in the EDP of a CNT

bundle, layer line distances d3
i for all possible helicities must

appear in the range dcon�d3
i �d3

max, where d3
max is the largest

possible d3
i �Fig. 1�. On the other hand, all layer-line dis-

tances d2
i in the bundle are bounded by d3

max /2�d2
i �dcon. In

practice, the smallest possible d2
i denoted by d2

min �Fig. 1� is
measured from the layer line that is closest to d3

max /2. d2
min

and d3
max form a conjugated pair that corresponds to a single

helicity in the assembly with the smallest chiral angle. With
d2

min and d3
max, one can calculate the intrinsic constant dcon

based on Eq. �1�, by which all visible layer lines located
between d3

max /2 and dcon can then be paired, thus allowing
corresponding helicities in the assemblies to be identified.
For the example in Fig. 1 by the above-described means,
helicities corresponding to layer lines d2

A, d2
B, d2

C, and d2
D are

determined to be 7.00°, 10.35°, 12.79°, and 15.90°, respec-
tively, with an accuracy better than 0.2°. The analysis is fully
independent of the tilting effect8 of the nanotube with respect
to electron beam.

Now, we apply our method for the analysis of an EDP
taken from a bundle of SWCNT produced by a laser ablation
technique.22 The transmission electron microscopy �TEM�
sample has been so prepared �to be published elsewhere� that
SWCNT bundles are typically well isolated, straight, and ap-
propriate for electron diffraction analysis. Figure 2 shows a
typical EDP from a CNT bundle with its high-resolution im-
age as an inset. The TEM image and the EDP were taken on
a Philips CM-200FEG microscope operated at 80 kV. A Ga-
tan 794 multiscan charge coupled device camera �1 k
�1 k� was used for digital recording. The EDP shown in
Fig. 2 is superior in that all the layer lines are clearly re-

solved and they are straight with clear features in contrast to
the previously published EDPs from similar samples, where
layer lines are weak and form dim arcs. This means that the
nanotubes are not twisted in the bundle and helicities are
well defined.16

In Fig. 2, two characteristic diffraction layer lines d3
max

and d2
min are denoted by their distances measured from the

equatorial line. dcon is calculated from d2
min and d3

max and it
separates all d2 and d3 layer lines. Six d2 layer lines indicated
by A, B, C, D, E, and F, respectively, are observed between
layer lines d2

min and dcon. For each d2 layer line, a correspond-
ing d3 can be calculated based on Eq. �1� with the aid of dcon,
thus resulting in a corresponding helicity. From this particu-
lar EDP, six individual helicities are recognized. However,
this does not necessarily imply that there exist only six nano-
tubes in the bundle. It is possible that two or more tubes in
the bundle may have the same helicity and thus produce
diffraction layer lines that overlap. Due to the fact that the
diffraction intensity depends not only on the helicity of the
nanotube, but also on the nanotube diameter, the integrated
intensity of a certain layer line is typically not a linear func-
tion of occurrence of a given helicity. Attempting to evaluate
the helicity density from one single EDP by analyzing the
diffraction intensity is beyond the scope of this work. In-
stead, for a reliable statistical analysis of helicity distribution
in a CNT sample, a large number of diffraction patterns are
required to reduce the effects due to possible overlap.

We now apply the above-introduced method to the
analysis of helicity distribution in the laser-produced
SWCNT sample. Fifty-eight EDPs from 48 SWCNT bundles
and 10 individual SWCNTs have been acquired under the
same microscope settings as previously mentioned. Alto-
gether 228 helicities are extracted resulting in the helicity
distribution as shown in Fig. 3. The sample number is large
enough so that further increasing sampling size do not dra-
matically change the character of the helicity distribution,
which is biased toward large chiral angles with deficiencies
around 3°, 7°, 19°, and 28°. This result is in contrast to
previous reported electron diffraction studies of similar
samples. Qin et al.11 claimed that SWCNTs in the bundles
display a rather uniform distribution of helicities, Bernaerts
et al.13 claimed a narrow dispersion around the armchair con-
figuration, while Colomer et al.14 concluded that their sample
contains multiple but well-defined helicities. It is interesting
to note that each of the three previous results represents a
portion of the helicity distribution determined in this work.

In conclusion, we propose a universal method for quan-
titative helicity analysis in unidirectional assemblies of
hexagon-based tubular structures from their EDPs. A critical
dimension dcon is discerned from an EDP, which is a unique

FIG. 2. �Color online� An EDP from a laser-produced SWCNT bundle with
its high-resolution image as an inset.

FIG. 3. �Color online� Helicity distribution in the laser-ablation SWCNT
sample.
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intrinsic structural property of the atomic bonding distance in
graphitic or graphiticlike tubular structures. With the aid of
dcon, diffraction layer lines from bundles of single-walled or
multiwalled graphitic or graphiticlike tubular structures are
easily identified. Every individual layer line paired with its
conjugated layer line reveals a single helicity contained in
the assembly. If the layer lines are clustered into bunches,
helicity bounds can be defined. The method has been used to
analyze helicity in a SWCNT sample produced by a laser
ablation technique, resulting in a reliable helicity distribu-
tion. This result helps to resolve a ten-year dispute over the
helicity population in such samples. We attribute the reliabil-
ity of our results to improvements in TEM sample prepara-
tion and to the improved helicity evaluation technique intro-
duced here.

H.J. is grateful to Professor Ph. Lambin for providing the
FORTRAN code of their DIFFRACT simulation program. This
work has been supported in part by the European Commis-
sion under the 6 Framework Programme �STREP Project
BNC Tubes� �Contract No. NMp4-CT-2006-033350�.

1S. Iijima, Nature �London� 354, 56 �1991�.
2A. Jorio, E. Kauppinen, and A. Hassanien, Carbon Nanotubes, Topics in
Applied Physics Vol. 111, edited by A. Jorio, G. Dresselhaus, and M. S.
Dresselhaus �Springer, Berlin, 2008�, pp. 63–100.

3D. Golberg, Y. Bando, C. Tang, and C. Zhi, Adv. Mater. �Weinheim, Ger.�
19, 2413 �2007�.

4X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28,

335 �1994�.
5M. Gao, J. M. Zuo, R. D. Twesten, I. Petrov, L. A. Nagahara, and R.
Zhang, Appl. Phys. Lett. 82, 2703 �2003�.

6Z. Liu, Q. Zhang, and L.-C. Qin, Phys. Rev. B 71, 245413 �2005�.
7J. C. Meyer, M. Paillet, G. S. Duesberg, and S. Roth, Ultramicroscopy

106, 176 �2006�.
8H. Jiang, D. P. Brown, A. G. Nasibulin, and E. I. Kauppinen, Phys. Rev. B

74, 035427 �2006�.
9H. Jiang, A. G. Nasibulin, D. P. Brown, and E. I. Kauppinen, Carbon 45,
662 �2007�.

10R. Arenal, M. Kociak, A. Loiseau, and D.-J. Miller, Appl. Phys. Lett. 89,
073104 �2006�.

11L.-C. Qin, S. Iijima, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba,
Chem. Phys. Lett. 268, 101 �1997�.

12H. Z. Jin, R. R. He, and J. Zhu, J. Electron Microsc. 48, 339 �1999�.
13D. Bernaerts, A. Zettl, N. G. Chopra, A. Thess, and R. E. Smalley, Solid

State Commun. 105, 145 �1998�.
14J.-F. Colomer, L. Henrard, Ph. Lambin, and G. Van Tendeloo, Eur. Phys. J.

B 27, 111 �2002�.
15Z. Liu, Q. Zhang, and L.-C. Qin, Appl. Phys. Lett. 86, 191903 �2005�.
16L. Henrard, A. Loiseau, C. Journet, and P. Bernier, Eur. Phys. J. B 13, 661

�2000�.
17D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Solid State Commun.

116, 1 �2000�.
18T. Laude and Y. Matsui, Eur. Phys. J.: Appl. Phys. 28, 293 �2004�.
19A. Celik-Aktas, J. M. Zuo, J. F. Stubbins, C. Tang, and Y. Bando, Appl.

Phys. Lett. 86, 133110 �2005�.
20Ph. Lambin and A. Lucas, Phys. Rev. B 56, 3571 �1997�.
21M. F. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin, and A. M.

Mebel, Chem. Phys. Lett. 407, 266 �2005�.
22T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem.

Phys. Lett. 243, 49 �1995�.

141903-3 Jiang et al. Appl. Phys. Lett. 93, 141903 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.233.216.22 On: Wed, 28 Oct 2015 07:50:05

http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1002/adma.200700179
http://dx.doi.org/10.1209/0295-5075/28/5/007
http://dx.doi.org/10.1063/1.1569418
http://dx.doi.org/10.1103/PhysRevB.71.245413
http://dx.doi.org/10.1016/j.ultramic.2005.07.008
http://dx.doi.org/10.1103/PhysRevB.74.035427
http://dx.doi.org/10.1016/j.carbon.2006.07.025
http://dx.doi.org/10.1063/1.2335379
http://dx.doi.org/10.1016/S0009-2614(97)00166-8
http://dx.doi.org/10.1016/S0038-1098(97)10078-3
http://dx.doi.org/10.1016/S0038-1098(97)10078-3
http://dx.doi.org/10.1007/s10051-002-9009-x
http://dx.doi.org/10.1007/s10051-002-9009-x
http://dx.doi.org/10.1063/1.1923170
http://dx.doi.org/10.1007/s100510050083
http://dx.doi.org/10.1016/S0038-1098(00)00281-7
http://dx.doi.org/10.1063/1.1885177
http://dx.doi.org/10.1063/1.1885177
http://dx.doi.org/10.1103/PhysRevB.56.3571
http://dx.doi.org/10.1016/j.cplett.2005.03.088
http://dx.doi.org/10.1016/0009-2614(95)00825-O
http://dx.doi.org/10.1016/0009-2614(95)00825-O

