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1. Introduction

1.1 Motivation

Mobile data rate requirements are increasing at a very fast pace, due

to the ubiquitous use of applications that require significantly high data

rates [133,167]. An indication of this trend is shown in Fig. 1.1, with mo-

bile traffic data rates expected to be up to 2̃5 Exabytes per month [59]. In

addition, users are increasingly expecting to have the same browsing ex-

perience while using mobile and wired broadband connections [19]. With

the current exponential increase in data rate demands expected to con-

tinue, operators and vendors have been investigating mechanisms that

will improve data rates, satisfy user demand [41, 92], and minimize im-

pacts on the user experience and network signaling load. Heterogeneous

networks, with macro cells providing wide area coverage and small cells

(such as remote radio heads (RRH), relays, and pico or femto cells) provid-

ing coverage and capacity enhancements at relevant hotspot locations are

increasingly proving to be an attractive deployment option for network

operators [78,94].

Recent estimates have shown that the contribution of information and

communication technology (ICT) to global greenhouse gas emissions is ap-

proximately 2% [13,96]. Based on the survey done in [115], approximately

10-15% of total network operating expenses (OPEX) is due to energy con-

sumption. In developing markets it can be up to 50%. Since this analysis

is mainly based on existing networks, it could indicate the impact of macro

cell power consumption. It is also assumed that the energy consumption

includes backhaul power consumption.

As network density increases because of densely deployed small cells,

the network energy consumption also increases, due to the higher num-

1
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Figure 1.1. Overall mobile traffic data growth [59].

ber of active nodes in the system [58,135]. Improving the energy efficiency

of such networks could involve the efficient use of the energy consumed

for network operations, rather than merely reducing the total energy con-

sumption. Optimal use of network resources can be achieved when the

traffic demands of the network are taken into account, while optimizing

the amount of active nodes in the system [35, 56, 108, 138]. Deactivating

cells with limited or no traffic could also reduce the overall interference

in the network [7, 34]. The anticipated network densification of future

wireless networks means that mechanisms for energy-efficient operation

of network nodes are an important area of study. The study of back-

haul power consumption is also receiving increasing attention, both in

academia and the industry [22,101,102]. Energy-efficient techniques that

consider both radio access and backhaul link power consumption could be

a relevant area of study [140].

With the advent of cloud technologies, it is also proposed to have a cloud-

based, centralized radio access network (RAN) architecture in fifth gen-

eration (5G) networks [118, 147, 165, 171]. In essence, densely-deployed

small cells with basic physical layer capabilities are connected using low-

delay, high capacity backhaul with a centralized server using general pur-

pose hardware, that could handle complex physical layer processing and

radio resource management (RRM). Various implementation mechanisms

are currently being studied [87] for enabling such architectures. Even

with such an architecture, having legacy macro cells for ensuring wide

area coverage within the cell area could be possible using the dual con-

nectivity mechanism [10,38].

Mobile devices are currently some of the most widely-used electronic de-

2
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Figure 1.2. Mobile operator network OPEX distribution in European markets [115].

vices, with active subscriptions estimated at over 7 billion worldwide [54].

While such devices consume significantly less power than the network

infrastructure, due to the economy of scale involved, optimizing device

power consumption while ensuring connectivity and avoiding negative im-

pacts on capacity, data traffic, and user experience is still an important

consideration. It is essential to identify the functions designed for homo-

geneous macro-only network deployments, which need to be optimized for

the efficient operation in heterogeneous networks.

Since radio access networks are evolving toward higher density in terms

of network nodes and UEs, new RAN architectures, etc., the power con-

sumption problem will only become more severe. Investigating methods

of improving the overall energy efficiency of such systems is therefore be-

coming increasingly relevant and important. In this case, ‘overall energy

efficiency’ implies the optimal operation of all the nodes within the access

network with no adverse impact on network capacity. Developing such

methods, while considering network implementation and deployment con-

straints, has been the main motivation behind this work.

3
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1.2 Problem Definition

Heterogeneous small cell networks face various challenges that can be

broadly classified as self-organizing, backhauling, interference manage-

ment, and handover or mobility management challenges [92]. The chal-

lenges most directly related to power consumption are self-organization,

backhauling, and handover or mobility management, as highlighted in

Fig. 1.3. Self-organization is relevant because of the power consumption

involved in small cell operation, which needs to be optimized. Backhaul-

ing involves network and UE power consumption aspects. Network im-

pacts from power consumption involved in the overall backhaul operation

need to be coordinated with the network self-organizing functions to en-

able power savings. UE power consumption is relevant because of the

possible small cell optimizations that could be done to reduce the delay

constraints on the backhaul, which could consume additional UE battery

power. Handover or mobility involves the discovery of small cells deployed

in a dedicated frequency band, which could consume considerable UE bat-

tery power.

In terms of the nodes involved in a heterogeneous network, it is as-

sumed that the macro cells are deployed after careful network planning

operations. It is assumed that wide area coverage is essential and cannot

be compromised. The small cells and related backhaul links and the UEs

are the nodes which can be operated in an optimized manner to increase

power savings. While the contribution due to small cell operation (defined

here as the joint operation of the small cell node and its backhaul link) on

the operational expenditure of a network operator is evident, the question
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Figure 1.4. UE battery consumption per day due to different inter-frequency scanning
periods.

arises as to whether the UE operation for handover or mobility manage-

ment in a network is significant. To highlight this fact, an illustration

is made in Fig. 1.4 to indicate the UE battery power consumed for small

cell discovery using two different inter-frequency scanning periods. It is

assumed that one inter-frequency measurement is made within the scan-

ning period for a time duration of 6 ms, consuming 0.5 W of battery power.

Assuming approximately 8 kJ of UE battery is available for cellular radio

operation, from the figure we can observe that more than 81% of the UE

battery power would be consumed for the small cell discovery operation

alone, during the period of one day. The detailed assumptions used for

this illustration can be found in Publication III.

There are three key tradeoffs considered in this work. The first trade-

off is between optimizing the UE power consumption for inter-frequency

small cell discovery and ensuring that there is a limited impact on the UE

throughput by being able to connect to the small cells. Here small cells are

assumed to be deployed at capacity hotspots and have low load, thereby

offering significantly high throughput for the UE. The second tradeoff is

between optimizing the power consumed for small cell operation and en-

suring that there is a limited impact on the network capacity. Reducing

the small cell operation time would reduce the energy consumed by the

network, but would negatively impact the network capacity as well. The

third tradeoff is between improving the network spectral efficiency and

capacity using a hybrid automatic repeat request (HARQ) mechanism in

a network employing centralized RAN architecture with non-ideal back-

haul and low-cost RRHs, and optimizing the UE power consumption by

avoiding unnecessary uplink retransmissions.

5



Introduction

Taking all of the above into account, the key question addressed by this

work is: How to reduce the power consumption for the nodes involved

in the heterogeneous small cell network, with relaxed operational con-

straints, and without significant tradeoffs in terms of network capacity?

1.3 Objective of the Thesis

The main objective of the thesis is to propose new mechanisms which

could address the key tradeoffs, while staying within the practical con-

straints involved in real network deployments. The performances of the

proposed mechanisms are then evaluated using system-level simulations,

emulating real network characteristics. For the first tradeoff, the UE

power consumption for discovery is calculated, along with the related

impacts on the connected time. Here the connected time quantifies the

amount of traffic offloading or capacity enhancements that can be achieved

using the enhancements, relative to the reference mechanisms. For the

second tradeoff, the network power consumption using the optimized small

cell operation mechanism, and impacts on mean throughput relative to

different reference mechanisms are evaluated. For the third tradeoff,

the achievable uplink throughput using the proposed enhancement in the

constrained system is compared with the optimal reference scheme.

1.4 Contribution and Structure of the Thesis

There are three main contributions made in this thesis, related to the

considered tradeoffs. First, the mechanisms developed for optimizing the

UE power consumption for conducting inter-frequency discovery opera-

tion are presented. Then, an energy-based traffic offloading and small

cell activation scheme is proposed for optimizing the network power con-

sumption, including small cells and the related backhaul link. Finally,

the mechanism for optimizing the small cell HARQ operation without sig-

nificantly affecting the UE uplink power consumption and throughput is

evaluated, while enabling deployments using non-ideal backhaul in a cen-

tralized cloud-based RAN.

The inter-frequency discovery mechanisms described in this work can

be used by network operators to deploy inter-frequency small cells and

configure appropriate measurement gap periods based on the UE speed
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estimation, resulting in minimal power consumption to the UE. The im-

pact to the network in terms of frequent handovers with short connec-

tion times can also be avoided, thereby avoiding a higher signaling load

towards the core network. Network operators could also reuse the radio

environment map built for the macro cells, using the drive test features to

estimate the proximity of the UE to small cells before initiating the small

cell discovery procedure. These methods could also be combined to filter

out connections from fast-moving UEs while saving valuable UE power.

The network operators could also use similar techniques for device-to-

device (D2D) discovery procedures, if the discovery beacons are sent on a

dedicated frequency layer. Since it was shown that overhead for having

the fingerprint database on a cloud server is minimal from the UE per-

spective, third party application providers can also use such mechanisms

to provision commercial services using D2D.

Based on the energy-efficient small cell and backhaul operation mecha-

nism, network operators can deploy such cells with high density, by hav-

ing a coordinated operation of both entities. Since the mechanism for cell

activation is distributed at a macro-cellular level, such deployments can

operate with minimal operational overhead. Cell activation and deacti-

vation signaling are already standardized as part of Long Term Evolu-

tion (LTE)-Advanced networks, so the mechanism proposed here could be

deployed on existing networks with minimal overhead. In order to accu-

rately estimate the small cells that need to be activated, an efficient small

cell proximity estimation mechanism is required. It is thus assumed that

the fingerprint mechanism for small cell discovery could be used as a base-

line for the energy efficient small cell operation.

The work in this thesis also elaborates a mechanism for operating low-

cost small cells or remote radio heads in which network complexity is

transferred to a centralized, virtual base station pool, using a non-ideal,

high-latency backhaul link between the RRHs and the centralized en-

tity. Since non-ideal backhaul is more cost-efficient, the overall reduc-

tion of capital expenditures (CAPEX) could be one of the main motivat-

ing factors behind such network deployments. The mechanism operates

with minimal impact on UE uplink transmission power consumption and

achievable throughput rates. The main contributions of such a mecha-

nism would be the possibility to ultra-densify the network without signif-

icant capital expenditure and to operate the network without negatively

impacting the UE battery power consumption.
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The thesis is organized as follows. The background of the work and

state-of-the-art description based on the literature review is discussed in

Chapter 2. The overall system, simulation, mobility and power consump-

tion models used are discussed in Chapter 3. The discovery mechanisms

which optimize the UE power consumption in heterogeneous networks

are presented in Chapter 4. The techniques for the energy-efficient op-

eration of a heterogeneous small cell network, with detailed performance

evaluations are presented in Chapter 5. The impact of backhaul on the

evolution towards 5G cloud-based systems, and a mechanism for oper-

ating such systems using non-ideal backhaul is presented in Chapter 6.

Finally, Chapter 7 concludes the work, and outlines the possible areas of

future work.

1.5 Summary of the Publications

The thesis consists of an introduction, followed by eight original publica-

tions.

Publication I – Publication IV deals with the first tradeoff of optimizing

UE power consumption for inter-frequency small cell discovery. In Pub-

lication V, the applicability of such a tradeoff for D2D discovery, which

follows similar discovery principles, is investigated. Publication VI – Pub-

lication VII deals with the second tradeoff of optimizing small cell power

consumption, while ensuring limited impacts on the network capacity.

Here the need for jointly optimizing the radio access and backhaul link

power consumption is also studied. Publication VIII is related to the third

tradeoff between the small cell operation in a constrained environment

with non-ideal backhaul and resultant additional UE power consumption

due to HARQ retransmissions.

In Publication I, the UE speed and fingerprint-based small cell discovery

mechanisms were implemented using the constraints defined in the 3GPP

LTE-Advanced heterogeneous network environment. Further, a relaxed

measurement scheme, called the background inter-frequency cell search

mechanism, was also considered and the performance of each in terms of

power consumption and small cell connected time were presented. Op-

timizations in terms of handover signaling required for each mechanism

were also presented. When compared to current cell search mechanisms,

the obtained results show that the optimized schemes enable significant

power savings, and handover signaling optimizations, all without compro-
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mising the small cell connected time.

In Publication II, we consider the use of received signal strength or radio

frequency (RF) fingerprint-based small cell proximity detection and dis-

covery for reducing the power consumption associated with inter-frequency

cell searches. A dynamic fingerprint-matching region is also presented

that takes UE speed into account, excluding fast-moving UEs from initiat-

ing small cell search. Simulations conducted in a heterogeneous network

environment indicate that significant energy savings can be obtained with

some reduction in small cell connected time.

In Publication III, the UE speed and fingerprint based small cell dis-

covery mechanisms were implemented using the constraints defined in

the 3GPP LTE-Advanced heterogeneous network environment. Further,

a relaxed measurement scheme called the background inter-frequency

cell search mechanism was also considered and the performance of each

in terms of power consumption and small cell connected time were pre-

sented. Optimizations in terms of handover signaling required for each

mechanism was also presented. When compared to current cell search

mechanisms the obtained results show that the optimized schemes en-

able significant power savings, and handover signaling optimizations, all

without compromising the small cell connected time.

In Publication IV, the cost of sending measurement reports by the UEs

for estimating small cell proximity by the network is studied and com-

pared with the mechanism in which optimized fingerprint information

is sent directly to the UE and stored on the device. The performance

of the optimized fingerprint mechanism is compared with the network-

based fingerprint scheme in terms of small cell connected time and power

consumption. The simulation results indicate that significant energy sav-

ings can be obtained by using the optimized fingerprint mechanism, while

further reducing the signaling load related to measurement reporting.

In Publication V, energy-efficient device discovery using an ideal net-

work or cloud-based fingerprint information is evaluated in a D2D envi-

ronment. The additional energy consumption for having the fingerprint

database in the cloud is analyzed using realistic UE power consumption

models. Based on the evaluations done, it is shown that the fingerprint

mechanism can also be implemented in the cloud without significant addi-

tional power consumption, while enabling commercial deployment of D2D

communication.

In Publication VI, a fully-distributed small cell activation mechanism
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is presented, which takes energy-saving gains based on offloaded traffic

from macro to small cells into account when making cell activation deci-

sions. Information elements that need to be communicated over the in-

terface between cells are also discussed. The scheme is evaluated using

LTE-Advanced heterogeneous network settings employing different traf-

fic models, and energy saving results are presented.

In Publication VII, the load-based small cell activation mechanism is

further extended to take backhaul link power consumption into consider-

ation and is evaluated in an LTE-Advanced heterogeneous network with

dual connectivity architecture. In this system, mechanisms for dynamic

traffic offloading with control and user plane separation are analyzed un-

der mobility constraints and with indoor and outdoor deployment of small

cells. Based on the evaluations done, the backhaul-aware mechanism is

shown to provide significant energy saving gains, with acceptable trade-

offs in terms of user throughput gains.

In Publication VIII, an opportunistic HARQ mechanism is considered.

The mechanism estimates the decoding error probability and enables cloud-

based RAN using a non-ideal backhaul. Using the mechanism, RRHs can

directly send the feedback for HARQ while still centralizing the decoding

process in the cloud by implementing the delay-critical component at the

radio access point. The performance of the mechanism is compared with

a fixed re-transmission and optimal HARQ and is shown to perform well,

especially compared to the optimal scheme.

10



2. Background and State of the Art

2.1 Introduction

In order to provide significant improvements to the user experience and

to enhance the support of a multitude of mobile services and applications,

3GPP introduced LTE as part of release 8 specifications in 2008 [23]. Com-

pared to the previous generation of communication standards, changes

were made in the air interface as well as the core network in order to

satisfy the challenging requirements defined by 3GPP. Some of the key

requirements include: i) 100 Mbps in downlink, 50 Mbps in uplink, ii)

higher spectral efficiency and bit rates, iii) lower round-trip time, iv) scal-

able bandwidth, v) support for time and frequency division duplexing

(TDD and FDD), as well as vi) higher cost efficiency [1, 52]. Performance

evaluation of the release 8 LTE systems, with features such as multi-

antenna transmissions, inter-cell interference coordination and flexible

spectrum, indicated that all the requirements set by 3GPP were achieved

[16].

As data rate requirements for mobile users continued to increase over

time, new requirements for mobile communication systems were specified

as part of International Mobile Telecommunications-Advanced (IMT-A)

system requirements [158]. Key among them were: extended bandwidth

capabilities of up to 40 MHz; higher peak spectral efficiency in uplink

and downlink; and lower control and user plane latency. LTE-Advanced

systems were specified by 3GPP as part of release 10 standards, in order

to satisfy these enhanced requirements, with peak data rate support of

up to 1 Gbps [8, 120]. The above-mentioned requirements were achieved

with: enhancements in the spectrum supported, using the carrier aggre-

gation feature; enhancements in multi-antenna techniques; and most im-
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portantly, by providing improved support for heterogeneous network de-

ployments.

2.2 Heterogeneous Networks

One of the main drivers behind improving data rates for end users has

been network densification, which is enabled by heterogeneous network

deployments. A heterogeneous network, consisting of a macro cell for wide

area coverage and small cells for coverage and capacity improvements,

can be broadly classified into two types, based on the frequency reuse

mechanism employed: co-channel deployments with macro and small cells

deployed in the same frequency layer; or inter-frequency deployments

in which small cells are deployed in a dedicated frequency layer. The

co-channel deployments are considered to be key enablers for improv-

ing spectral efficiency and providing coverage enhancements. But such

deployments face significant challenges in interference coordination and

mobility, due to co-channel interference between the small and macro

cells [91,93,123]. Inter-frequency deployment of heterogeneous networks

is also an attractive solution, especially for providing capacity enhance-

ments [122]. Several current works look into efficient frequency reuse and

the use of the carrier aggregation feature within such deployments [48,63,

127]. In this work it is assumed that the dedicated frequency carrier allo-

cated for the small cell is fully reused. The possible roles of the UE in such

an environment are evaluated in terms of radio link monitoring, radio re-

source management, channel state information (CSI) feedback, detection

of weak cells and interference calculation, and are presented in [40].

While heterogeneous networks enable improvements in user data rates,

there are some key technical challenges faced in the operation of such

networks. As discussed earlier, these include self-organization, inter-cell

interference, handover or mobility performance, and backhauling [92].

Since heterogeneous networks involve random deployment of base sta-

tions, network performance depends on the self-organization features of

the cells [32, 125]. Self-organization of a heterogeneous network involves

the three key processes of self-configuration, self-healing and self-optimiz-

ation, altogether making it a complex task with a significant number of

radio parameters to consider. There has been increased focus from indus-

try and academia on this topic, investigating optimizations related to the

various radio parameters involved [43,51,168].
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The power difference between macro and small cells leads to small cells

having a significantly smaller coverage footprint, compared to macro cells.

Because of this, UEs tend to connect to macro cells, even when small cells

with lower load conditions might be available. To overcome this limita-

tion, the cell range expansion (CRE) feature was standardized in LTE

systems, whereby UEs connect to small cells which are weaker by a CRE

offset [109,148]. For co-channel deployments, this complicates the issue of

inter-cell interference [94,149,156] due to UEs connecting to weaker small

cells, which leads to the need for time and frequency domain interference

mitigation techniques. But for inter-frequency deployment scenarios, it

provides the added opportunity of expanding the small cell coverage foot-

print without increasing the interference between macro and small cells.

Handover or mobility performance is yet another key issue facing such

networks, because of higher base station density, which leads to a higher

signaling load towards the core network. Because of this, various solu-

tions, including UE mobility state-based enhancements were studied to

overcome such challenges [21, 57, 91]. The mobility performance issues

for co-channel deployments could lead to service interruptions caused by

radio link failures (RLFs) from handovers that are too late or too early.

Thus, mobility performance issues require special handling in such de-

ployment scenarios. A survey of the different vertical handover decision

algorithms in 4G heterogeneous networks is presented in [161]. Mobility

enhancements for heterogeneous networks with inter-site carrier aggre-

gation are presented in [122], which considers UE autonomous mobility

enhancements. Backhaul network design is a relevant and important is-

sue for heterogeneous networks, with the network QoS and user experi-

ence intricately linked to the quality of the backhaul [83].

2.3 RF Fingerprints and Device to Device Communication

Received Signal Strength (RSS)-based location estimation in mobile net-

works has been widely studied in the literature [64, 82, 139] and [146].

The taxonomy of RF fingerprinting mechanisms for location estimation is

studied in [80]. But the application of such mechanisms for discovering

inter-frequency small cells, and related power consumption aspects have

received limited attention. The main motivation behind the application of

such mechanisms for small cell discovery was the work done on mobility

enhancements for 3GPP LTE-Advanced networks [3]. As part of the work,
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energy efficient discovery of small cells deployed on different carriers for

offloading purposes using network- and UE-assisted enhancements were

investigated.

Device to Device communication for public safety and commercial use

is actively being studied in the industry, as part of the 3GPP LTE re-

lease 12 standardization efforts. There are several works available in the

literature investigating D2D discovery procedures [18,49,75,77]. But lim-

ited attention has been given to D2D proximity estimation using network

or third-party cloud application server-based approaches. Also, currently

available mechanisms do not address the challenge of energy-efficient

D2D discovery if the discovery beacons are sent in a different frequency

carrier. Such multi-carrier deployments are considered to be one of the

main future enhancements for this technology [114].

2.3.1 Energy Efficiency in Heterogeneous Networks

While there are clear advantages to having inter-frequency deployments

for capacity enhancements, one basic challenge would be the efficient dis-

covery of small cells that are deployed in a frequency band different from

that of the macro cell. The legacy inter-frequency cell search mechanism

has been optimized for homogeneous networks, with the UE initiating an

event-based cell search based on the serving cell signal strength [145].

In heterogeneous networks, small cells can be present in the proximity

of a UE, even while the serving macro cell signal strength is high and

so energy-efficient mechanisms that reduce UE battery power consump-

tion for discovering small cells while avoiding unnecessary handover and

measurement reporting-related signaling are required. Thus, optimizing

the UE power consumption needed for discovering inter-frequency small

cells, while minimizing related signaling, was defined as one of the fo-

cus areas of this work. In addition, because of the rise of D2D technol-

ogy [50,128,172], which has a discovery process that can use mechanisms

similar to those of small cell discovery, optimizing UE power consumption

for D2D discovery with small cell discovery principles was also studied.

The work done in [97] provides a detailed overview of the impact of net-

work upgrades on the overall power consumption and energy efficiency.

Based on the analysis done, it was shown that having remote radio heads

supporting multiple carriers offers significantly high energy efficiency,

while the relative gains from having a dense deployment of small cells are

low. However, based on the evaluations done, it was also concluded that

14



Background and State of the Art

upgrading the existing base stations to the latest LTE-Advanced models

and using heterogeneous small cell deployment provides the best trade-

off between network performance and power consumption. Also, the im-

portance of considering the backhaul power consumption along with the

radio access network operation is elaborated. A detailed analysis of the

energy-saving techniques and impacts on the energy consumption of ac-

tual network deployments is presented in [126]. From a small cell power

consumption perspective, it was shown that for the considered deploy-

ment scenario, even with an 8 hour off-time for the small cells, the reduc-

tion in energy consumption is only 1.3% of the total network power con-

sumption per year (approximately 2.8 GWh/year). While the work gives

a clear indication of the technology potential of small cell deactivation, it

considers the activation or deactivation of small cells based on the macro

cell load, not on the actual proximity estimation assumptions and energy-

based traffic offloading, which is considered in this work.

The work done in [17] evaluates the active and sleep mode power con-

sumption profiles of LTE eNBs, which are used in this work as well. Simi-

lar power consumption models have also been evaluated in [36,46,60,131].

Most of the work currently available in the literature focuses on macro

cell power consumption optimizations [25, 31], with fundamental trade-

offs involved in the operation of such networks evaluated in detail in [29].

The work done in [14, 103, 150] deals with the optimization of small cell

power consumption in a heterogeneous network, mainly focusing on op-

timizing radio access power consumption, while not taking the backhaul

link power consumption into account.

In [151,152], the impact of ‘ideal’ fiber optic backhaul links on the overall

network power consumption, and the impact of various backhaul types on

the operation of heterogeneous networks are also evaluated, mostly with

full load assumptions. The mobile backhaul initiative of the broadband

forum is investigating various techniques for energy-efficient backhaul

architectures to be integrated with radio access networks [22, 141]. The

studies being done take into account different types of backhaul links.

Currently, 3GPP is also working on developing energy-saving enhance-

ments for LTE-Advanced heterogeneous networks [7], where small eNBs

are assumed to enter an energy saving (ES) state under certain condi-

tions, while macro cells provide compensation in terms of coverage and

capacity. Such a scenario would also comply with the design requirements

of the dual connectivity feature.
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Figure 2.1. Dual Connectivity Architecture.

2.3.2 Dual Connectivity

Currently, the 3GPP has developed a paradigm called dual connectivity

that enables simplified mobility within a heterogeneous network environ-

ment by optimizing the handover procedure and reducing the signaling

load towards the core network [10]. Dual connectivity enables the mas-

ter eNB (MeNB) to assume more control over RRM and other operational

functionalities of the secondary eNB (SeNB) [15,38,68,104,106,166]. With

dual connectivity enhancement, the QoS supported for traffic flows de-

pends mainly on the backhaul link quality. Such enhancements have also

led to an increasing focus on the importance of the backhaul links for ef-

ficient traffic management and QoS support. Considering this, joint opti-

mization of the power consumption of backhaul and radio access networks

has been selected as yet another focus area of this work.

The dual connectivity architecture considered with master eNB deployed

along with secondary eNBs is as shown in Fig. 2.1. From an architec-

ture and deployment perspective, there are no restrictions on the type of

eNBs that could be classified as MeNB or SeNB. The architecture used

in this work is based on the agreed assumptions from [10], and the work

presented in [131]. Here MeNBs and SeNBs are deployed in different

frequency layers F1 and F2 respectively. This maximizes the spectral uti-

lization and enables user throughput enhancements through inter-eNB

traffic splitting and with the help of an increased number of buffers and

independent RRM operations available within the eNBs.

Dual connectivity architecture could also enable the operators to design

the network by providing wide area control and data plane coverage by

configuring macro eNBs as MeNBs. They could also help in densifying

the network by using low cost remote radio heads, or small cells as SeNBs.

Such a deployment alternative is considered to be the basic assumption
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in this work, with similar assumptions also studied in [74, 79, 166]. This

could provide data plane throughput enhancements, throughout the net-

work or at selected hotspot areas depending on the operator’s deployment

strategy, without adding significant control plane overhead. Wide area

data plane coverage using MeNBs is essential for improving mobility per-

formance and connectivity throughout the network, while reducing the oc-

currence of radio link failures and other service interruptions. This could

also enable an energy-efficient operation of the network, by enabling the

MeNBs to take distributed energy saving decisions.

Such deployments enable operators to have CAPEX reductions by us-

ing low-cost small cells that involve minimal infrastructure costs. OPEX

reductions are possible due to the low power consumption of such nodes,

without the need for artificial cooling, etc. Dense deployments of small

cells with limited coverage footprint also implies that significant optimiza-

tions are required in the operation of such cells for further reduction in

OPEX.

2.4 5G Networks

Cloud-based, centralized RAN architecture is one of the key enhance-

ments currently being studied for future 5G networks. It combines vari-

ous solution aspects of 4G heterogeneous networks with centralized com-

puting, thereby improving the overall performance of such systems. One

of the key focus areas of such an architecture has been the use of ideal,

high-capacity and low-latency backhaul [90,121]. But the use of non-ideal

backhaul for such architectures would also be an interesting area of study,

as it would enable a wider adoption of the technology [28,117,119] by low-

ering deployment costs.

While capacity enhancement is the main motivation behind the research

and development of 5G systems, there are other key drivers as well, in-

cluding: mobility performance enhancements; latency reductions; improv-

ed security and privacy; better reliability; reduced CAPEX and OPEX; and

energy efficiency [39]. Some additional requirements, mainly from a phys-

ical layer perspective, considered in [99] include: the support of frequency

coordination and reuse; support for advanced and pipeline-processing at

the receivers; low UE battery power consumption; support for new com-

munication links (beyond eNB-UE link in legacy networks); and self-back-

hauling.
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The perceived increase of connected devices is due to the provisioning of

commercial and public safety services using 5G networks, including de-

vices engaged in machine type communications (MTC). Recent advance-

ments in MTC and the internet of things is presented in [70, 134]. Such

MTC devices engaging in machine-to-machine (M2M) communication are

expected to be one of the main reasons behind the increase in user density

in 5G systems [132]. Some of the key requirements, scenarios and perfor-

mance targets for such a system is also documented in [37,111], a subset

of which is as shown in Fig. 2.2. Currently, massive deployment of MTC

devices for enabling smart cities, energy meters, etc., and ultra-reliable

MTC for industrial automation is envisioned as a key use case for further

studies.

Currently, a thousand-fold capacity increase is one of the main design

targets for such a system, with a significant increase in the total amount

of connected devices as well as improved individual user experience [69,

88, 116]. The capacity enhancement target is further divided into the

three components of spectral efficiency, bandwidth and access point den-

sity, each of which is anticipated to provide tenfold gains. Spectral effi-

ciency is expected to be improved by considering advanced transmission

technologies, possibly a new physical layer, massive antenna configura-

tions, and better utilization of multi-user and peer-to-peer communication
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mechanisms [112]. For improving system bandwidth, apart from physical

layer enhancements, the possibility of utilizing the spectrum available in

millimeter and centimeter wave (mmW and cmW) frequency bands is also

being studied [153]. Network densification using small cells is yet an-

other key factor expected to provide capacity enhancements for achieving

the targets currently set for 5G systems.

One of the main considerations for mobility performance enhancement

is seamless mobility within the radio access network, with limited im-

pact on user experience. It is also expected that 5G networks should be

able to support high data rates for fast moving users in high-speed trains,

with user speeds of up to 500 km/h, compared to 250 km/h in 4G [154].

Mobility support with increased network densification and heterogeneity

in terms of multiple radio access technologies, etc., is considered to be

a key challenge in 5G as well [11, 111]. Restricting highly mobile users

from connecting to 5G mmW cells would be beneficial, considering the

challenges involved in handover in terms of aligning transmit and receive

beams [11]. Enabling mobility with reliable connectivity, and low UE bat-

tery power consumption is considered to be a key challenge in [111], es-

pecially taking into account that the small cells in 5G would be deployed

in different frequency layers, as compared to the coverage of a wide area

cell. This would make the studies for efficient small cell discovery done in

this work, which tackle all of these challenges, relevant and important in

the context of 5G systems as well.

Latency reductions could be achieved using novel physical layer design,

for example with reduced transmission time intervals. This is important

for latency-critical industrial automation, automation of vehicles, pub-

lic safety communication, etc. Key technology enablers for high-capacity,

low-latency 5G networks are presented in [100], where an optimized frame

structure with time-separated data and control parts are proposed to en-

able low-latency communication. Enhanced security and privacy would

require new mechanisms to be developed at the core network, and should

adequately be reflected in the radio access network as well. Some mech-

anisms for enhancing security, while reducing the latency and improving

the reliability of the network are described in [76]. The reduction of net-

work deployment and operation costs is another key factor which would

impact the widespread adoption of the system [45]. While the increased

CAPEX and OPEX resulting from network densification is identified as a

key limitation for 5G networks [42], the work done in [107], based on the
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Figure 2.3. Cloud-based radio access network architecture.

evaluation of the profitability and cost-capacity analysis of 5G mmW cells

shows that such cells could provide operators with more than a 50% profit

margin.

2.4.1 Cloud-based Centralized RAN Architecture

The main idea behind cloud-based RAN architecture is the deployment of

low-cost remote radio heads, with limited radio capabilities, and a central-

ized, general-purpose processor for handling the radio access and resource

management functionalities. The motivation for having such an architec-

ture is to lower the deployment costs (CAPEX) of next-generation wireless

access networks while enabling easier implementation of sophisticated

features such as Coordinated Multi Point (CoMP) [12,89,155]. Currently,

the main assumption in cloud-based centralized RAN in terms of backhaul

is that the functionalities could be either fully or partially centralized, de-

pending on the backhaul link quality [33]. The possible cloud-based or

centralized radio access network architecture considered in this work is

as shown in Fig. 2.3. The centralized virtual base station pool could also

enable the dynamic sharing of resources between the RRHs as well [142].

A fully centralized architecture would have an ideal, high capacity, low

delay backhaul link with the central base station pool handling baseband

processing and other higher-layer functionalities. Partially centralized

architecture would consist of the baseband processing still being done by
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the RRHs, while the rest of the functionalities would be handled at the

centralized entity. This partially centralized architecture is used as the

baseline assumption in the presented work. The advantage of a fully cen-

tralized architecture is that the RRHs could be low-cost radio equipment

with limited radio processing capabilities with a high-cost backhaul link.

With the partially centralized approach, the RRHs need to have more pro-

cessing capabilities, increasing the relative deployment costs, with low-

cost, non-ideal backhaul links. Here we use the term cloud-based and

centralized interchangeably, remaining agnostic regarding the location of

the central processor, whether on the cloud server infrastructure or dedi-

cated servers.

2.4.2 Energy Efficiency in 5G

Energy efficiency is a key requirement in 5G, both from the network and

UE perspective. With the perceived ultra-dense deployment of different

types of cells in 5G, mechanisms for optimizing the power consumption

of the network while minimizing the impact on user throughput and QoS

would be essential. Such networks also provide the opportunity to provide

targeted delivery of data, which could result in efficient use of spectral

and energy resources [30, 124, 136]. One such way to target provision-

ing of capacity to the users could be with the use of the enhanced small

cell discovery mechanisms presented in this work, since the ultra-dense

small cells deployed in dedicated mmW or cmW frequencies, as compared

to the wide area cells, would require energy-efficient discovery [130]. The

limited coverage footprint of such cells would necessitate mobility opti-

mizations that take UE power consumption reductions into account, such

as the mobility state-based small cell discovery.

Since D2D communication is a key use case in such networks, efficient

discovery mechanisms that apply the small cell discovery concepts pre-

sented in this work would be relevant as well. The energy-efficient small

cell operation mechanisms considered in this work could be a key enabler

for the targeted delivery of high capacity to end users, enabling efficient

use of energy and spectral resources, with configurable tradeoffs in user

QoS as well.

While cloud radio access networks could provide significant improve-

ments in spectral efficiency, they could also be considered to be key en-

ablers for energy-efficient 5G networks [124,136]. The work done in [124]

shows that a significant increase in spectral and energy efficiency can
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Figure 2.4. LTE HARQ operation with eight processes [67].

be achieved using heterogeneous cloud RAN, through higher degrees of

freedom in interference control and resource allocation. In [136], the im-

provement of spectral and energy efficiency is shown using higher levels of

flexibility and adaptability, with the help of software functions and algo-

rithms implemented at the cloud server. Such architectures could also en-

able network controllers to deactivate parts of RAN and backhaul, based

on user demand and/or network conditions, in order to reduce network en-

ergy consumption. In [137], the energy efficiency benefits of having RAN-

as-a-Service concept for 5G with a cloud-based infrastructure and using

commodity hardware is evaluated. Based on the performance evaluations

done, the proposed paradigm was shown to provide promising energy effi-

ciency gains for 5G RAN.

2.4.3 HARQ in 5G

The HARQ procedure has been defined in wireless systems such as LTE [4]

to improve physical layer robustness [67,144] and spectral efficiency of the

system by enabling the use of a higher spectral efficiency for transmis-

sions. The HARQ ensures the successful reception of packets, and mini-

mizes the error rates in the system. The process is as shown in Fig. 2.4,

based on the description in [67]. Upon receiving the packet in the phys-

ical uplink/downlink shared channel (PUSCH / PDSCH) the UE or eNB

will decode it, and based on the decoding result send an acknowledgment

(ACK) or negative ACK (NACK) back to the entity that sent the packet.

The ACK/NACK for the packet in frame n should be sent in frame n+4 by

the UE or eNB receiving the packet. This would mean that the process-

22



Background and State of the Art

PDCP 

RLC 

Priority Handling 

Multiplexing 

HARQ 

FEC 

Modulation 

Etc. 

MAC 

PHY 

U
L 

In
fo

rm
at

io
n 

Fl
ow

 DL Inform
ation Flow

 
BH Split

Figure 2.5. Typical LTE protocol stack.

ing delay requirement for decoding would be approximately 3 ms, which

could increase the computational requirements of the RRH in a partially

centralized RAN environment.

In this work, we assume that some of the basic functionalities defined

in the LTE protocol stack, such as HARQ could be used in 5G as well.

The LTE user plane protocol stack is as shown in Fig. 2.5 [84]. Opti-

mizing HARQ based on various constraints has been widely studied in

the literature. The work done in [164] considers the rate adaptation de-

sign of adaptive modulation and coding (AMC)/HARQ system with Chase-

combining, under different block error constraints, while considering the

throughput as the performance metric. In [163], various sources of chan-

nel quality indicator (CQI) errors at the transmitter in the rate adapta-

tion of AMC/HARQ systems are studied, with CQI errors being modeled

based on practical scenarios. In both cases, the evaluations are done with

a fixed or maximum number of retransmissions, which is similar to the

work considered here. The work in [53] considers the use of an effective

SINR parameter to map various combinations of HARQ and AMC into a

smaller group of reference states. The work presented here also consid-

ers the use of an effective SNR paradigm for estimating whether or not

a retransmission is required. In [169], the mapping between SINR and

the modulation and coding scheme (MCS) is optimized for maximizing

the throughput, considering the HARQ scheme used. While a mapping

approach is used in this work as well, the mapping is done between the

effective SNR of the UE uplink transmissions and the related block error

rates.

The work done in [162] presents a rate compatible structure (irregular
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repeat-accumulate and generalized irregular repeat-accumulate codes),

which is considered to be attractive for 5G. Mechanisms for supporting dif-

ferent code rates for incremental redundancy-based HARQ for 5G mmW

networks are also elaborated. The work presented in [81] proposes a new

air interface for 5G systems, which enables the implementation of a sim-

ple HARQ scheme, with reduced complexity and latency requirements.

In [144], the use of HARQ as a means for handling the SINR uncertain-

ties in 5G networks is evaluated, and the potential for HARQ to improve

the link quality is shown based on simulations.
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3. System and Simulation Model

In this chapter, the overall system model used is discussed, along with

the details of the simulation scenario setting and parameters used for

evaluation. A generic overview of the simulator is also provided, detailing

the process used for scientific validation. The motivation for the use of

simulation-based evaluations done in this work is also discussed. The

models used in this work for inter-frequency discovery, mobility and power

consumption are also presented.

3.1 System Model

The overall system considered in this work is as shown in Fig. 3.1, consist-

ing of three sub-systems: a heterogeneous network sub-system consisting

of macro and small cells; a D2D sub-system with macro and D2D UEs

with a discovery procedure similar to small cell discovery; and a cloud-

RAN sub-system consisting of densely deployed RRHs, with a centralized

or cloud-based virtual base station pool. In the heterogeneous network

sub-system, small cells were deployed randomly within the coverage area

of the macro cells, with minimum inter-cellular distance conditions, in

order to have good spatial separation between the cells. For both the het-

erogeneous network and D2D sub-system, a uniform distribution of users

within the scenario is assumed. It is also assumed that users move or re-

main static within the scenario, discover and connect to the most proximal

cell or D2D device with the strongest received reference signal strength,

and with an offset in the case of small cells.

The UE is assumed to consume a fixed amount of power for small cell

and D2D discovery while searching for the discovery signal sent in a ded-

icated frequency layer. A backhaul link exists between the macro and

small cells, as well as the core network, for data and control plane in-
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Figure 3.1. Overall system considered.

formation exchange, which is also assumed to consume power, depending

on the link type. Macro and small cell operation also consumes power, de-

pending on the load of the cell, which needs to be optimized. The backhaul

link is also assumed to be present between the RRHs and the centralized

base station pool.

Here, in the context of 4G systems, backhaul is considered to be the link

between eNB and the core network, as well as between eNBs in the sys-

tem. The interface between the eNB and the remote radio heads is often

called fronthaul in this context. From a 5G perspective, the terms fron-

thaul and backhaul are used more ambiguously. Recent studies on 5G

backhaul architecture use the term ‘backhaul’ for both the interfaces be-

tween eNBs and the core network, and between eNBs and RRH [71]. This

convention has been followed in this work as well, as indicated in Fig. 3.1.

Backhaul links are assumed to be transport networks that are IP-based,

including aggregation points, routers, etc., connecting RAN elements, core

network elements and RRHs.

The main focus of the system considered in Publication I to Publica-

tion V is on the energy consumed by the UE when discovering small cells

deployed in a dedicated frequency band or other devices in its proximity

which send D2D discovery signals on dedicated frequency resources. The

work done in Publication VI to Publication VII investigates the energy-

efficient operation of the heterogeneous small cell network, with the basic

assumption that the UEs discover small cells in such a network in an op-

timal, energy-efficient manner. The work done in Publication VIII mainly

focuses on partially decentralizing the HARQ process of a system with

a non-ideal backhaul link between RRHs and the cloud BS pool, while
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Table 3.1. Fingerprint Database Structure

Fingerprint 1 Fingerprint 2 ... Fingerprint M

MacroBSID11 MacroBSID21 ... MacroBSIDM1

RSRP11 RSRP21 ... RSRPM1

MacroBSID12 MacroBSID22 ... MacroBSIDM2

RSRP12 RSRP22 ... RSRPM2

... ... ... ...

MacroBSID1N MacroBSID2N ... MacroBSIDMN

RSRP1N RSRP2N ... RSRPMN

minimizing UE UL transmit power consumption due to unnecessary re-

transmissions.

In this chapter the simulation setting, small cell discovery, mobility and

power consumption models used for evaluations are also discussed. The

models discussed here are mainly applicable for the evaluations presented

in Publication I to Publication VII.

3.2 Simulation Setting

The path loss models, antenna pattern, etc., used in heterogeneous net-

work and D2D sub-systems for evaluation follow the 3GPP case 1 model

defined in [2]. The mobility settings have been mainly modeled based

on heterogeneous network mobility studies done in 3GPP [3]. Similar

models were used for evaluations in several works in literature related to

heterogeneous networks [20, 91, 129]. For the simulations with mobility,

two-dimensional, spatially-correlated slow fading was also used, in order

to more closely model real-world handover and other aspects of mobility-

related performance. Thus, fixed slow fading values for each physical lo-

cation were used in simulations, enabling a more reliable approximation

of mobility and handover performance [26, 113]. The distance-dependent

path-loss from macro BS to mobile terminal, LM, and from pico cell to the

terminal, LP, is given by [2]:

LM = 128.1 + 37.6 log10(RM ) (3.1)

LP = 140.7 + 36.7 log10(RP ), (3.2)

where RM and RP are the distance between the UE and the macro and

pico respectively.

The fingerprint database structure considered for small cell discovery is

as shown in Table 3.1. The RF fingerprint (FP) information is assumed
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Table 3.2. System Level Simulation Parameters

Basic Radio Configuration Parameters [3]

Macro cell ISD 500 m

Shadowing Standard Deviation Macro (Pico) cell 8 (10) dB

Spectrum Allocation 10 MHz Channels

Macro and Pico in separate carriers

Macro (Pico) Max Tx Power [dBm] 46 (30)

Antenna Gain [dB] Macro (Pico) 15 (5)

Transmit Power Related Parameters [17]

NA (per cell) Macro (Pico) 2 (2)

P0 [W] Macro (Pico) 130.0 (6.8)

Δp Macro (Pico) 4.7 (4.0)

Pm [W] Macro (Pico) 20.0 (0.5)

Ps [W] Macro (Pico) 75.0 (4.3)

Other Simulation Parameters

Spectral Efficiency, Seff 4.0

No. of RBs, NRB 50

PRB size, RBs 180 kHz

User Placement Random

to be a combination of the reference signal received power (RSRP) values

of N strongest cells, and the corresponding cell IDs. The fingerprint is

considered to be a match if the intra-frequency measurements conducted

by the UE on the macro cell layer indicate that the macro cell IDs match

with the fingerprint entry, and RSRP value differences are within a pre-

scribed limit. This limit is assumed to be a static or dynamic offset, δfp,

in the presented work.

While throughput evaluations are not the main focus of this work, the

related results were generated using the modified Shannon formula for

LTE systems, presented in [98], which has been widely used in the litera-

ture [55,62,127]. For simplifying the SINR calculations, and to make the

interference conditions in the scenarios more challenging, the neighbor-

ing cells are always assumed to be fully loaded. Some of the system-level

parameters used for simulations are as shown in Table 3.2.

3.3 Simulator Overview

A dynamic system-level simulator was used in this work to conduct the

evaluations with mobility, with static mode being used for the ones with-

out mobility. A flow-chart showing the overview of the simulator operation
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Figure 3.2. Overview of the simulator operation.

is as shown in Fig. 3.2, similar to the one described in [47]. The only dif-

ference between static and dynamic mode is that the UEs move within

the scenario using different mobility models, described later in this sec-

tion, and the path-loss values, etc., were calculated after the UE takes

each step, defined as the distance moved in 1 ms, depending on the speed

of the UE. In the static mode, the UEs are dropped uniformly at random,

with the values related to slow-fading, path-loss, etc., remaining static.

Publication I – Publication IV uses the dynamic mode, Publication V –

Publication VI uses the static mode, and Publication VII uses a combi-

nation of both modes. All simulations with conducted with significantly

large simulation run-time or number of snapshots, in order to achieve a

good averaging of the results.

The main motivation behind using spatially correlated slow-fading was

that it was shown to provide more reliable estimates of mobility and han-

dover performance [113]. For throughput evaluations, mainly a full-buffer

traffic model was used, where the system would be fully loaded, with data

to be sent throughout the simulation duration. Such a traffic model is

useful in understanding the potential boundaries of the evaluated system.

Constant and maximum bit rate traffic models were used in Publication

VII – Publication VI, for load calculations and power consumption eval-

uations. For the constant bit rate model, based on the downlink SINR

experienced by the UE, the scheduler was assumed to do radio resource
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Figure 3.3. Radio map showing strongest cells at each physical location (near small cells)
with and without fading (Resolution = 2m). c©2013 IEEE

reservations for all the users in order to achieve the constant bit rate,

Rcbr. Any remaining resources were assigned to the other users in a round

robin fashion. For the maximum bit rate traffic model, the resources were

allocated in a round robin fashion until the users achieved the maximum

rate of Rmax, thereby throttling the rates. If Rmax was used along with

a minimum bit rate, Rmin, then a combination of resource reservations

until each user achieves Rmin was used. The remaining resources were

allocated until the maximum bit rate was reached.

A uniform distribution of users within the simulation world was consid-

ered for the simulations, in order to achieve a good averaging of results,

which can be easily reproduced as well. The mobility models were also

chosen with the same goal in mind. Various statistics related to mobility

and power consumption were then collected and averaged over the whole

simulation to generate the results.

3.4 Motivation for Conducting Simulation-based Evaluations

The evaluations presented in this work for the heterogeneous network

and D2D sub-systems were mainly done on a dynamic system-level simu-

lator, emulating an LTE-Advanced system. The solutions considered were

mainly evaluated using the system-level simulator, to understand the im-

pacts, in a setting that emulates the real-world. This is essential, espe-

cially for mobility performance and network energy efficiency evaluations,

in order to evaluate whether the enhancements would provide gains when

deployed in actual networks.
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The evaluations for mechanisms proposed during the course could also

be done using a more predictable analytical model. The key difference

between such an analytical modeling of the heterogeneous network sub-

system and a more complicated system with slow-fading settings is as

shown in Fig. 3.3. The figure shows the radio environment map of a het-

erogeneous network, with each color indicating the strongest cell in each

physical region. The radio environment map was created with a reso-

lution of 2 m. From the figure we can observe that while the mobility

within an ideal environment without the effects of shadow fading is more

predictable and can be evaluated analytically, the scenario becomes quite

complex when the effects of shadow fading are added.

When a UE searches for inter-frequency small cells every TInter = 80ms,

and with UE speed, v = 3km/h, the small cell connection time distribu-

tion is as shown in Fig. 3.4. In the purely analytical system, the mean

distance dmean covered by a UE while traversing through a cell of radius

rd is evaluated in Publication I and is given by:

dmean = 2rd · 2
π

∫ π
2

0
sin θ dθ =

4rd
π

(3.3)

This mean distance value combined with the knowledge of the UE speed

indicates the mean amount of time the UE would be spending in a small

cell. But as we can observe from Fig. 3.4, such an analysis would no longer

be valid for the more realistic system that was simulated, primarily due

to the altering of the cell shape.

A similar evaluation of the radio environment map was also done in Pub-

lication II, the effects of which are shown in Fig. 3.5. Here we consider

the use of radio fingerprints and fingerprint matching regions along the
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Figure 3.5. Radio environment map showing fingerprint matching regions for scenario
without and with fading (δfp = 1 dB). c©2013 IEEE

boundaries of small cells, with a matching offset of δfp = 1 dB. The match-

ing offset is the maximum allowable difference between the radio finger-

print information available at the network and the RSRP values of the

three strongest macro cells measured by the UE. Here in the case without

fading, the path loss, antenna gain and base station feeder losses are con-

sidered to enable macro-cell sectorization. The radio environment map

also includes a 12 dB cell range expansion offset for small cells. From the

figure we can observe that the fingerprint matching region is ideal in the

analytical model, with matches occurring only in close proximity of the

fingerprint locations. We can also observe that there is no probability of

errors in such a scenario.

But in the more realistic case with shadow fading the system becomes

much more complicated, with significantly higher false fingerprint matches.

The need for understanding the impact of false matches is clearly evident

in the realistic cases, as shown in Fig. 3.5(b), generated with the complex

simulator. A complex system-level simulator was used for the evaluations

because it was considered important to understand the effects and perfor-

mance of the proposed mechanisms in a realistic network environment.

From the figure we can see that there is a significant number of false

matching regions, which would consume additional UE battery power for

performing inter-frequency measurements.
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Figure 3.6. Hotspot Movement Model.

3.5 Inter-Frequency Small Cell Discovery Modeling

For inter-frequency cell discovery, the UEs are assumed to be configured

a measurement gap, during which the UE can switch to the new fre-

quency band to search for cells. The measurement gap is assumed to

be of 6 ms, in line with the assumptions in LTE-Advanced systems [6],

with the measurement gaps configured every 40 or 80 ms, during which

time no data is sent in the uplink or downlink directions. Even with re-

laxed measurement gap periods, the cell discovery is modeled such that

the UE makes multiple measurements with a periodicity of 40 or 80 ms

before initiating the handover procedure. This is done in order to improve

the discovery performance of the UE. In Publication I and Publication II,

inter-frequency cell search power consumption is modeled as a function of

number of cells detected and based on a minimum RSRP value for cell de-

tection. But in the remaining work, a simpler cell discovery model of fixed

power consumption is assumed, based on the model for power consumed

when receiving downlink data that is presented in [157]. Similar assump-

tions have been made for device discovery in Publication V as well, since

discovery beacons are assumed to be sent in a dedicated frequency layer.

3.6 Mobility Models

The movement models used in the paper are the macro movement and

hotspot movement models, as shown in Fig. 3.6. In the macro movement
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Figure 3.7. UE transmit and receive power consumption model [9,85,157]. c©2014 IEEE

model, the UE moves in a random fixed direction, at a constant speed

until it reaches the end of the simulation world, after which it takes a

randomly selected new direction. Such a model enables good averaging of

mobility and handover performance with the system. In Publication III

and Publication IV, a more realistic model is considered. It combines the

macro movement model with stationary periods and a longer time scale

for simulations. The stationary periods could indicate the time a user

would normally spend at home, the office or at a shopping center, during

the course of a day. The state transition probabilities and the time du-

ration spent in each state follow an exponential distribution with mean

values as shown in the figure. In Publication I, Publication II, Publica-

tion V and, Publication VII a random straight walk model was simulated

with users moving in a straight line until the end of the simulation world,

and then turning to a random new direction within the simulation world.

In Publication VI and Publication VIII mobility was not simulated, since

that was not the main focus of the work.

3.7 Power Consumption Models

The used UE power consumption model used is as shown in Fig. 3.7, based

on [9, 85, 157]. The total power consumption [W] depends on the radi-

ated transmit power [dBm]. The relationship between the radiated trans-

mit power and the power consumption according to [85] is plotted with

dashed green lines in Fig 3.7. In 3GPP, absolute power consumption lev-
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Figure 3.8. SeNB transmit power vs. actual power consumption with and without con-
sidering backhaul power consumption [Publication VII]. c©2014 Springer Sci-
ence+Business Media New York

els have not been discussed. Relative energy consumption per sub-frame

were however discussed in [9]. These are plotted in dashed blue in the fig-

ure, with the relative energy units shown at the left. According to [157],

the power consumed when the UE is receiving is 0.5 W, whereas according

to [9], the relative energy consumption per subframe is 1, when the UE is

receiving. These receive power consumption levels are added to the figure

for convenience. Here, these receive power consumption levels are used to

measure the power consumed for inter-frequency scanning.

Similar models have been considered for D2D discovery in [128], as well.

The receive power consumption [W] has been used in Publication III, and

the transmit and receive power models have been used in Publication IV
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and Publication V. The UE transmit power consumption is calculated

based on the LTE UL power control models [5, 27], based on ideal path

loss estimation assumptions.

The work done in [86] presents the transmit and receive power con-

sumption measurements, based on experiments conducted on LTE smart-

phones. The measurements show higher power consumption than [85].

For low transmit powers, < 0 dBm, there is an approximately 3 to 3.5

times increase in actual power consumption in the new measurement re-

sults. At the maximum transmit power of 23 dBm, there is an approxi-

mately 1.33 to 1.67 times increase in the UE battery power consumption.

The main relative trend of the transmit power consumption is well cap-

tured by the simple models of [85] and [9], used in this work. The ratio of

the baseline total transmit power consumption at -20 dBm to the receive

power consumption, is almost the same in the measurements of [86], as

it is in the models of [9, 85, 157]. Accordingly, if measurements from [86]

would be used instead of the simple models of [9, 85, 157], the total abso-

lute power consumption would be roughly 3 times the values presented

in Publication III- Publication IV, where the power consumption is domi-

nated by reception. In Publication IV and Publication V, the results would

be affected with up to 3.5 times increase in absolute power consumption

values.

In Publication I and Publication II, a slightly more complicated model

was considered with the energy consumed for the first inter-frequency

measurement depending on the number of detected cells. Assuming three

cells are detected, this would be about 0.625 W, with subsequent mea-

surements consuming 0.25 W. This model was simplified in the subse-

quent papers. If a total of six inter-frequency measurements are con-

ducted, on average 0.31 W would be consumed for this operation, with

up to 5 times increase in power consumption results compared to the new

measurements. An analysis of the actual power consumption, based on

the measurements of a smartphone that supports carrier aggregation was

also presented in [143].

The small cell transmit vs. actual power consumption is as shown in

Fig. 3.8(a). Here, the eNB transmit power is estimated based on the load

of the cell, with full power assumed for a cell which is fully loaded, and

with the power equally distributed between all physical resource blocks

within a subframe. The linear model used for active mode and sleep mode

power consumption is based on [17] is used in Publication VI, given by:
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System and Simulation Model

PC =

⎧⎪⎨
⎪⎩
NA(P0 +ΔpρPm) + Pbha , active mode

NA Ps + Pbhs , sleep mode,
(3.4)

where NA is the number of antennas, P0 is the power consumption at zero

RF output power, Δp is the slope of the load-dependent power consump-

tion, Pm [W] is the maximum RMS transmit power of the base station,

and Ps is the power consumption [W] when the BS is in sleep mode. Pbha

and Pbhs are the active and sleep mode power consumption of the back-

haul link. The load factor ρ is the ratio of the number of resources being

used NU, and the total available resources NT.

The power models used in Publication VI did not consider backhaul

power, while those in Publication VII did. The backhaul power consump-

tion for various backhaul link types are presented in Publication VII,

based on [72,95,151,152]. The symmetric backhaul (SB) and wired (Wrd)

model is based on [151,152], and the fiber access (FA) model on [72]. The

wireless backhaul (WL) model used is based on the studies done in [95].

A detailed description of the model and related assumptions is presented

in the publications. The power consumption model presented in [44] for

future cellular base stations show even lower power consumption of up to

0.2 W for pico cells in sleep mode. This would have significant impact on

the results presented in this work, especially on the load-based offloading

schemes, since the power savings from small cells in sleep mode would be

significantly higher.
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4. Optimizing UE Power Consumption
in Heterogeneous Small Cell
Networks

4.1 Introduction

In this chapter, we mainly deal with the heterogeneous network and D2D

sub-systems discussed earlier. The application of device speed and small

cell proximity estimation for optimizing the UE power consumption for

small cell discovery is studied. The work is then extended to evaluate

whether a combination of these mechanisms could enhance the perfor-

mance in terms of power consumption reduction. The mechanisms were

evaluated with the constraint of maximizing small cell discovery, which

could result in an increase in the data rates experienced by the UE. Fi-

nally, the proximity estimation mechanism is evaluated for D2D device

discovery, and the performance evaluation results are presented.

4.2 Device Speed Estimation Based Discovery

The small cell discovery based on device speed estimation considered in

this work uses two approaches: the accurate determination of UE speed,

assuming a measurement error; or the use of UE-based mobility state es-

timation currently defined in LTE-Advanced systems. The main idea is

to suspend inter-frequency measurements for small cells when the speed

estimation indicates that the UE speed has exceeded a certain threshold.

For the first approach of speed estimation (assuming a measurement er-

ror) we consider the suspension of inter-frequency measurements, when

the UE speed v exceeds a threshold speed vt. In Publication I, the method

for analytically calculating the threshold velocity is presented, with the

small cell connected time results compared for different values of cell

search periods. Here for a small cell with radius R, we consider the mean
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distance that the UE covers within a small cell dmean, assuming uniform

distribution of users, to be given by Eq (3.3).

The threshold speed vt is defined such that above this speed, the amount

of time spent by a UE in a small cell would be less than a minimum

time-of-stay duration tMTS. Connecting to a small cell for less than the

minimum time-of-stay is not beneficial because of relatively low amount

of traffic offloaded and the increased handover signaling load involved.

Therefore, it is proposed that inter-frequency measurements could be sus-

pended when the UE speed is above this threshold, to save UE battery

power for inter-frequency cell search instead. The value of vt is defined as

the ratio of dmean and tMTS. But here, the minimum periodicity with which

the inter-frequency cell search is conducted (which determines the UE

power consumption for this activity) and the amount of small cell traffic

offloading opportunities that are missed (resulting in lower user through-

put values) could be considered to be conflicting metrics. The use of an

offloading loss ratio, RLoss, which indicates the target ratio of small cell

traffic offloading opportunities used and the total available offloading op-

portunities, is considered to be a tradeoff value that could be related to

the minimum inter-frequency scanning period, TInter,min for UE speed v is

given as:

TInter,min =

⎧⎪⎨
⎪⎩

2 dmean RLoss
v , 0 < v < vt

0 , v > vt

(4.1)

In the work done in Publication III, the problem is generalized by using

three quantized levels for UE mobility states instead of actual speed es-

timations, and a similar mechanism of suspending cell search procedure

is considered. Inter-frequency scanning is suspended when the UE is in

a medium or high mobility state, as shown in Fig. 4.1.c. From the figure,

we can observe that the inter-frequency scanning rate can be controlled,

depending on mobility state, thus enabling flexible and configurable mo-

bility performance at various UE speeds. Here mobility states are UE

speed estimates quantized into three different levels - normal, medium

and high - based on the number of cell selections within a specified time

window. In both cases, the speed estimation is done at the UE, with assis-

tance information received from the macro cell. Optionally, the estimation

can also be done at the network, utilizing handover history information

in combination with time spent in each cell. Thus, the cell search can be

autonomously suspended by the UE, depending on the speed or mobility
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Figure 4.1. Efficient small cell discovery mechanisms: a) background and regular inter-
frequency measurements; b) signaling flow for background and regular inter-
frequency measurements; c) mobility state based inter-frequency measure-
ment mechanism. c©2013 IEEE

state estimation. Alternatively, the macro cell can change the measure-

ment configuration of the UE, based on the estimates received from the

UE. Here the mobility state estimation values can be configured in such

a way that the UE speeds at which the state transitions occur can be con-

trolled. Based on this, proper values of TInter,min could also be chosen.

4.3 Received Signal Strength Based Discovery

The RSS-based estimation of small cell proximity uses a combination of

RSRP values and corresponding macro cell IDs to determine the approx-

imate location of a UE, relative to a small cell. If the current RF finger-

print of a UE, estimated based on measurements done by the UE, matches

a fingerprint in a database, it is assumed that there is a small cell in the

proximity, and cell search procedure needs to be initiated. In Publication

II, the measurement of the current fingerprint information of a UE with
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an RSRPoffset is compared with the database. Here the offset is selected

in a manner that reduces the chances of fast moving UEs having a finger-

print match and initiating the cell search procedure.

Let α be the path-loss exponent, RFP be the distance of the fingerprint lo-

cation from the macro eNB, and rfp be the radius of the fingerprint match-

ing region that needs to be defined. RSRPoffset is given by:

RSRPOffset = 10α log10
(RFP + rfp
RFP − rfp

)
+ δc, (4.2)

where δc represents the correction factor that accounts for the effects

of slow and fast fading that would be seen in a realistic network deploy-

ment scenario. Here, if the search for a fingerprint match is done every

TFPMseconds, the match region can be designed in such a way, using an ap-

propriate selection of the RSRPoffset value, that UEs moving with speeds

greater than ṽ can be excluded from finding the small cell, where ṽ is

given by:

ṽ >
2r

T
(4.3)

In Publication II, it is assumed that the fingerprint data is present only

for the border regions of the small cells. The work done in Publication

III considers a more generic fingerprint mechanism that could be applied

in real network deployments, with a fingerprint database containing en-

tries for all physical regions where the UE could connect to a small cell.

Further, this mechanism is combined with the mobility state estimation-

based cell search procedure, providing further UE power consumption op-

timization by not even searching for a fingerprint match when the UE is in

a medium or high mobility state. A static measurement offset δFP is used

in the paper, which also accounts for measurement errors, slow fading
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effects, etc. The performance of the received signal strength-based mech-

anism is compared with the speed estimation mechanism both indepen-

dently and in a combined manner, along with a relaxed inter-frequency

measurement mechanism in which the inter-frequency scanning is done

less frequently, without using any additional intelligence.

The location of the fingerprint database is a key aspect in determining

the additional signaling load required to implement the fingerprint-based

small cell discovery in a real system. In Publication II and Publication

III, the mechanism was evaluated while remaining agnostic as to where

the database is located and related signaling involved. In Publication IV,

we evaluate this aspect, studying the additional costs involved of hav-

ing the database either at the network or in the UE. If the database is

located at the network, there would be additional signaling load, radio re-

source utilization and power consumption required for sending frequent

measurement reports back to the network.

If the fingerprint database is located at the UE itself, such signaling

overheads for fingerprint reporting could be avoided. There would be,

however, an additional signaling load from sending the fingerprint infor-

mation to the UE, and for periodic updates depending on the size of the

information. The database size would also be limited by the storage capac-

ity of the UE. The signaling flow diagram for the fingerprint-based small

cell discovery mechanism is as shown in Fig. 4.2, where both approaches
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(fingerprint database located on the network and at the UE) are consid-

ered. The signaling flow involved in the optimized fingerprint mechanism

presented in Publication IV, is as shown in Fig. 4.3. Here we assume that

the inter-frequency measurement gaps are configured only for those UEs

that are not carrier aggregation (CA) capable.

4.4 Applications in D2D Discovery

The main consideration of the work so far has been energy-efficient dis-

covery of inter-frequency small cells. In Publication V, we consider the

possible power consumption optimizations in a D2D environment, where

similar received signal strength-based discovery principles are applied.

In a D2D environment, the key difference would be that discovery opti-

mizations would have to be done on the devices sending and searching for

discovery beacons, since both operations consume UE battery power. This

is different from the small cell discovery procedure, where the power con-

sumed by small cells in periodically sending synchronization signals for

UE measurements are not considered.

The performance of having the real-time fingerprint information present

either at the network (network-based / NB approach) or at the third party

cloud application server (cloud-based / CB approach) is compared. Since

D2D devices could be frequently moving around within the network, which

would correspondingly require frequent updates of the fingerprint infor-

mation, the UE-based approach was not considered for such a scenario.

The network-based approach has the advantage of relatively simple im-
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plementation and no additional overhead for signaling, apart from the

currently defined measurement report feature. As in the earlier cases,

the network could configure the D2D devices to search for discovery bea-

cons when there is a match between the UE sending the measurement

report and that of the UE sending discovery beacons.

In the cloud-based approach, the UEs first need to establish a connection

with the cloud server before reporting the fingerprint information. There

are some advantages to the cloud-based approach, such as application-

aware device discovery, where device discovery is initiated only when the

devices in proximity are using the same application. Such an advantage

would not be possible in the network-based approach, due to the lack of

awareness within the 3GPP network of the UE applications initiating the

D2D discovery. It is also worth noting that with this approach the addi-

tional overhead of generating and maintaining the fingerprint database

could be assumed by the owner of the cloud application server, instead of

the network operator.

An overview of the social cloud region management, with the CB ap-

proach, is as shown in Fig. 4.4. Here the Social Cloud Application Server

(SCAS) configures a Social Cloud Application Network Area (SCANA),

which is the physical proximity region of a D2D UE sending discovery

beacons for the service/application XY. Here, similar to the earlier ap-
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Figure 4.6. Small cell connected time normalized to that of TInter = 80 ms vs. UE Speed.

proaches for RSS-based small cell discovery, the UE searches for the D2D

device only when it is within the SCANA, which is indicated based on a

fingerprint match by the SCAS. The different discovery mechanisms con-

sidered in the work are as shown in Fig. 4.5, where Direct Discovery (DD)

could be related to small cells frequently sending synchronization signals

and the UEs searching for it with a fixed periodicity, without any other

optimizations.

4.5 Performance Evaluations

The results presented in this section are based on Publication I – Publi-

cation V.

In Publication I, the focus was mainly on finding the tradeoffs between

46



Optimizing UE Power Consumption in Heterogeneous Small Cell Networks

0.08 0.8 1 2 4 6 10 30 45 600

0.2

0.4

0.6

0.8

1

Scanning Period [s]

N
or

m
al

iz
ed

 U
E 

Po
w

er
 C

on
su

m
pt

io
n

Figure 4.7. Normalized UE inter-frequency measurement power consumption vs. mea-
surement period.

small cell traffic offloading ratios and power savings, using the relaxed

inter-frequency cell search period and a speed estimation-based mecha-

nism. The performance of these two indices for various UE speeds and

measurement periodicity were investigated. The small cell connected

time normalized to that of the TInter =80 ms scenario is as shown in

Fig. 4.6, with UE speeds varying from 3 - 120 km/h. In the scenario

without fading, which represents a theoretical scenario having larger cell

sizes, an offloading loss ratio of 20% is observed only at 30 km/h, for

TInter =6 s, as shown in Fig. 4.6(a). For such a scenario, the mean distance

the UE would be traveling within the small cell, as well as the threshold

velocity vt, can be calculated analytically. But for the scenario with slow-

fading, which represents the realistic network environment, we can see

that the offloading loss ratio is much steeper when the inter-frequency

measurement periods are relaxed, as observed in Fig. 4.6(b). Here, we

can see that the offloading loss ratio target would be exceeded even with

a more frequent scanning period of TInter =800 ms, with the mean connec-

tion times varying from the theoretical values.

For actual deployments, it is proposed that network configurations be

done in such a way that the threshold speed information is sent to the UE

by the network, enabling the UE to suspend inter-frequency measure-

ments once the threshold speed is exceeded. For slow-moving UEs, the

inter-frequency measurements can be relaxed so that the UE can save

power, with acceptable tradeoffs in terms of the traffic offloaded to the

small cells. The UE inter-frequency measurement power consumption

relative to the TInter =80 ms scenario can be observed in Fig. 4.7. From
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the figure, we can observe that significant power savings can be obtained

without significantly compromising small cell connected time by optimiz-

ing measurement periodicity, as observed in Fig. 4.6. For example, mea-

surements could be done every 10 s for the scenario with fading, and every

60 s for the ideal case, resulting in only a 20% loss in terms of small cell

offloading opportunities.

The values of UE power consumption and small cell connected time nor-

malized to that of TInter = 80 ms can be seen in Fig. 4.8, which shows the

relative gains of the proposed enhancements compared to the reference

scheme of scanning with a fixed period of 80 ms. Here, in the case with-

out fading, δc = 0 dB, and δc = 2 dB, and ṽ = 36 km/h. From the figures

we can observe that while there are significant energy savings resulting

from the fingerprint-based small cell discovery mechanism, the filtering of

small cell discovery actions at higher speeds is not entirely perfect. This

is because of the residual connections occurring when the UE is in the

matching region r when the fingerprint matching is done. The perfor-
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mance is slightly worse for the non-ideal case with slow-fading, compared

to the ideal case, because of the higher number of fingerprint matching

locations within the scenario. In Fig. 4.8(b), the power consumption for

a 10 s scanning period was included in order to illustrate the significant

amount of power saved, even with such an infrequent cell search period.

From these results we can conclude that while the fingerprint mech-

anism is important for enabling energy savings for inter-frequency cell

search, the mechanism needs to be combined with the device speed esti-

mation mechanism in order to actually enhance performance. This leads

us to consider the enhanced mechanisms considered in Publication III,

where a combination of the two mechanisms considered so far was evalu-

ated. The hotspot mobility model shown in Fig. 3.6 is more realistic than

what has been considered so far (walking in straight lines in random di-

rections). Instead of using dynamic values for RSRPoffset, we consider a

static offset δfp = 5 dB in order to simplify implementation in a real net-

work.

In Fig. 4.9, the normalized values for small cell connected time, and UE

power consumed for inter-frequency cell search relative to the TInter = 80

ms case is shown. Here the values using the fingerprint mechanism (1 s

and 60 s FP), as well as combining it with the MSE mechanism are also

shown (1 s and 60 s FP-MSE). From the figure, we can observe that the

enhanced mechanism saves a significant amount of UE battery power as

compared to the 40 ms scanning period scheme. Here we can also observe

that the FP-MSE scheme provides significant energy savings, even com-

pared to the FP only scheme, irrespective of the period (1 or 60 s), due to
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the filtering of fingerprint searches at medium and high mobility states.

The cell re-selection parameters for MSE were chosen in such a way that

the UE would enter the medium mobility state at around 30 km/h and the

high mobility state at 60 km/h, which is reflected in the savings in power

consumption as well.

While the results clearly indicate that, as discussed earlier, combining

the device speed estimation mechanism with the fingerprint mechanism

can provide significant reductions in consumed power due to small cell

search at high speeds, they also show that it saves the short connec-

tions that occur when the UE is moving at high speeds. This is shown

in Fig. 4.10, where a significant drop in handovers can be observed in

Fig. 4.10.a. From the connected time distribution shown in Fig. 4.10.b, we

can see that the handovers that are filtered out are indeed short time-of-

stay connections.
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Since throughput values were not computed in this study the impact

of the various proposed mechanisms on the UE energy efficiency can-

not be accurately predicted. However, based on the normalized values

of small cell connected time and UE power consumption values relative

to the baseline mechanism of scanning every 40 ms, an ideal estimate of

the energy efficiency can be calculated. It is assumed that the normalized

maximum power consumption for cell search is 1 W when TInter = 40 ms,

and the corresponding maximum capacity with all possible small cell of-

floading opportunities utilized to be 1 bit/s. The values for all the other

mechanisms having relative power values and capacity values can be cal-

culated from Fig. 4.9. The resultant ratio of the normalized values from

the figure is presented in Fig. 4.11. It gives an indication of the estimated

energy efficiency values of various schemes, relative to the TInter = 40

ms case. From the figure, we can see that the FP-MSE schemes perform

relatively better than the fingerprint schemes, with the other enhanced

schemes providing significant gains as compared to the reference case.

The mechanisms studied so far have been agnostic in terms of the loca-

tion of fingerprint databases. The work done in Publication IV compares

the use of an optimized fingerprint mechanism where the fingerprint en-

tries within a range δ1 are filtered out and the optimized fingerprint infor-

mation is sent to the UE, with the fingerprint approach presented in Pub-

lication III used as a reference scheme. Here, an offset of δ2 is used for

obtaining a fingerprint match, which is assumed to be configured by the

network. From the figure, we can observe that significant energy savings

can be obtained by optimizing the fingerprint information and storing it

at the UE, thus avoiding the sending of frequent measurement reports.

The savings depend on whether the UE is a macro cell edge or mean
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Figure 4.13. State diagram and power consumption model [157] for idle UEs sending
location information to the network or cloud. c©2014 IEEE
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Figure 4.14. Mean power consumed for D2D discovery with different values of δapp.

user, which affects the amount of power consumed while receiving the

optimized fingerprint information. Mean users consume even less power

than the 60 s FP scheme. Based on performance results, no impact on

small cell connected time was observed.

In the studies so far, the UEs were always assumed to be in connected

mode and the fingerprint information present on the network. Applying

such a discovery procedure to D2D discovery would require possible sup-

port from D2D applications where the application mismatch error factor

δapp could add a new dimension. This could also be roughly generalized

to the closed subscriber group case in the small cell scenario, with a mis-

match indicating the willingness of the operator that deploys such small

cells to share connectivity with all UEs. The impact of the fingerprint in-

formation for such device discovery scenarios with support from the cloud

application server is considered in Publication V, mainly from a UE power

consumption perspective for device discovery.
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Here, for idle to connected mode state transition, we consider the model

shown in Fig. 4.13. The UE remains connected for 1 TTI to send the fin-

gerprint information in the NB approach, whereas in the CB approach it

is assumed to remain active for 5 TTIs to send the fingerprint information

to the SCAS, to search for a fingerprint match, and to estimate whether

the UE is in the SCANA region. In the NB approach, the UE initiates the

D2D discovery procedure whenever there is a fingerprint match, whereas

in the CB case the discovery procedure is initiated only when the finger-

print matches and the applications for the UEs within the SCANA regions

are the same. In the NB case the 3GPP network is unaware of the appli-

cation used by the UEs, and only the fingerprint information related to all

the UEs sending discovery beacons is available. This effect is simulated

by having a static application mismatch error value, δapp which varies

from 0 to 1, with δapp = 0 indicating that the UEs within the SCANA

region are using different applications, and hence need not discover each

other.

The performance comparison of both the schemes is as shown in Fig.

4.14. It can be observed that the overhead for having the fingerprint

information at the application server is only around 23% when the ap-

plications mismatch completely, reducing to 20% when the applications

fully match. The relative savings are due to the fact that the UEs need

to send fewer fingerprint reports to the SCAS once a matching D2D de-

vice is found. The value of δapp has no effect on the NB approach, since

the fingerprint reporting event would remain constant, irrespective of the

applications used by D2D devices within the SCANA. Here the results for

the DD approach are not presented, since the resultant trends were sim-

ilar to the case where the inter-frequency scanning period was varied in

the small cell discovery case, as shown in Publication V.

4.6 Conclusion

From the studies done in this section so far, the importance of optimiz-

ing the inter-frequency small cell discovery procedure is quite evident. It

was also observed that combining the device speed estimation and fin-

gerprint mechanisms provide significant UE battery power savings, while

effectively filtering out short-time-of-stay connections, which are usually

considered detrimental to the operation of heterogeneous small cell net-

works. Mechanisms for enabling fingerprint information to be located at
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the network or at the UE were also considered, and further optimizations

of having such information on third party application servers evaluated.

Based on the evaluations, it was shown that significant energy savings

can be obtained by using the proposed optimization mechanisms, which

could eventually lead to an improvement of the UE energy efficiency for

inter-frequency small cell or device discovery, as well.

The main consideration of the work here was to optimize the power con-

sumption for UEs for conducting inter-frequency small cell discovery. This

would mean that the UEs are not allowed to discover, if other conditions

such as the device speed, etc., exceed defined limits. Relevant areas for

future work from this perspective would be to investigate the impact on

UE transmit power consumption due to the evaluated optimizations. The

work done in [110] considers the optimized mechanisms presented here,

and proposes an inter-frequency small cell discovery period, based on UE

transmit power as the optimization criteria. Since UEs consume higher

amount of transmit power to connect to the macro cells which are further

away than small cells, a joint optimization of both the metrics would also

be an interesting area of further study.
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5.1 Introduction

In this chapter, an energy-efficient small cell activation mechanism is

evaluated, which takes into account the energy saving gains obtained

based on the amount of traffic load offloaded from the macro cell to small

cells. The energy saving gains are achieved while avoiding UE service

quality degradation. Offloading traffic to small cells in energy saving

mode is proposed only when significant energy saving gains are achiev-

able, thereby minimizing the total energy consumption of the network in

the process. The user traffic characteristics and load-based cell activation

and offloading is further extended to take into account the backhaul link

active and sleep mode power consumption as well. Energy efficiency of

the backhaul aware mechanism is evaluated without affecting the service

quality experienced by the user. The mechanism is also evaluated in de-

tail, using various user density, mobility, and traffic conditions, with both

indoor and outdoor deployment of small cells.

In this work, it is assumed that the MeNBs provide control and data

plane coverage throughout the network, with SeNBs providing data plane

enhancements at locations where capacity enhancements are required.

This enables the macro to control the small cell on/off activity in a dy-

namic manner through dynamic traffic split within the network, without

adding any significant control plane overhead. Data plane coverage by

MeNBs is assumed to be essential in providing coverage throughout the

network, which is especially required for time-critical services such as

public safety, emergency calls, etc. Such an architecture could also enable

the dense deployment of small cells, without increasing the load on control

plane entities in the core network, thereby also possibly simplifying mo-
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bility procedures, etc. This chapter is mainly related to the heterogeneous

network sub-system.

5.2 Energy-Efficient Small Cell Operation Mechanisms

In this section, we will discuss the energy-efficient small cell operation

mechanisms presented in the thesis, as well as the reference schemes

used for comparisons.

5.2.1 Backhaul-aware Energy Efficiency Mechanism

The energy efficiency mechanism considered in this work takes both the

radio access network load as well as backhaul power consumption into

account when taking traffic offloading decisions. In Publication VI, an

energy efficiency criteria based on energy offloading – in this case, on the

RAN traffic load alone, ignoring the power consumed by the backhaul

link – is considered. The work done in Publication VII further extends

this concept to take both the RAN and backhaul load into account while

activating and deactivating small cells. The main idea of the backhaul-

aware criteria is that traffic is only offloaded from a macro to a small cell

if it results in energy consumption reduction in the network.

Offloading traffic reduces the load of the macro cell, resulting in reduc-

tion of transmit power consumption, which leads to energy savings. If,

however, the additional energy consumed by activating a small cell and

its backhaul link is more than the energy saved from traffic offloading, it

is better not to offload the traffic in order to avoid increasing the power

consumption of the network. The offloading decision is also assumed to

be taken if it results in service quality improvements for the user, based

on network priorities defined by the operator. The backhaul-aware energy

efficiency criterion is given by:

ρMS >

(
NAs(P0s +ΔpsρSMPms − Pss) + Pbh_as − Pbh_ss − Pbh_am-off

)
NAmΔpmPmm

, (5.1)

where NAm , Δpm , Pmm are power consumption values from Eq. 3.4 for the

MeNB, and NAs , Δps , Pms are those of the SeNB. ρMS is the aggregate load

of the users offloaded from MeNB to SeNB, and ρSM the estimated load

due to the offloaded users at the SeNB. Pbh_as and Pbh_ss are the active

and sleep mode backhaul power consumption of the SeNB backhaul links.

Here, Pbh_am−off
is the load-dependent part of the MeNB backhaul power
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consumption in the ideal backhaul model presented in [152], and is given

by:

Pbh_am-off
=

(1− τ)Pmax
switch

nportsCmax
switch

∑Noff

n=1
Rn, (5.2)

where Noff is the number of offloaded users, and Rn is the data rate of

each user. Here, ρMS and ρSM are dependent on the sum rates of the

offloaded users,
∑Noff

n=1 Rn, whose values can be calculated as a ratio of the

number of PRB utilized and the total amount of PRBs available.

In this way traffic is offloaded from the MeNB to the SeNB if the power

consumption reduction due to the offloading action at the MeNB results

in a total network power savings. The main challenge in implementing

the backhaul-aware mechanism in a real network is the accuracy of the

potential load estimation, ρMS and ρSM . For this the SINR of the UE

towards the SeNB in an inactive state should be known, since all the

other values in the equations are constants, and can be pre-configured at

the MeNB. For making a small cell activation decision, the MeNB needs

to determine the accurate potential load caused by the offloaded traffic

towards the small cell. During the small cell deactivation procedure, the

small cell informs the MeNB about the traffic characteristics and load

conditions, and the MeNB is assumed to make the deactivation decision.

In both cases, the MeNB is assumed to receive assistance from the latest

tools available for network analytics, using dynamic radio environment

maps, for making such decisions. While the work done in Publication

VII assumes an ideal estimation of this load, a possible signaling flow di-

agram, which is a modified version of the one presented in Publication

VI, indicates how the flow might look with this assistance information.

One such standardized feature in LTE-A systems is minimization of drive

tests [65, 73], which enables network operators to collect network infor-

mation such as coverage and capacity maps based on the reports from the

UE. Depending on network configurations, such reports maybe periodic or

event-based. This enables the operator to build an accurate radio environ-

ment map using various data analytics and visualization tools. The use

of such information was considered as a possible technique for generating

the fingerprint information mentioned in this work as well.

The work done in [151, 152] mainly tries to optimize the overall energy

consumption of the network with full load assumptions, taking the power

consumption for ideal backhaul links into consideration. In a network

with realistic traffic and related network load, such optimizations would

not be enough. The work done in [14, 103, 150] optimizes the power con-
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Figure 5.1. Signaling Flow Diagram.

sumption due to small cells, but the overall network power consumption,

including the backhaul links, is not considered. Such a mobility and load-

balancing algorithm for optimizing the overall network energy efficiency

of the network as considered in this work is not currently addressed in

the literature.

5.2.2 Reference Schemes

The work done in Publication VI considers location-based small cell acti-

vation as the reference mechanism for comparing the performance of the

offloaded energy-based small cell activation mechanism. Here, a small

cell proximity determination mechanism based on RF fingerprints could

be one possible means to practically implement the mechanism in a real

system. Thus, the work done in Publication I – Publication V for energy-

efficient small cell discovery could be considered as a baseline assumption

in this work.

In 3GPP, several other mechanisms were also considered as possible en-

hancements [7]. These included small cell-based UE UL signal measure-

ments, estimation of UE proximity based on interference over thermal

measurements done by the small cells, and UE measurement of DL sig-

nals sent by the small cells for proximity estimation. The work presented

in this thesis remains agnostic about which exact mechanism should be

used to implement the location-based scheme in a real network. In Publi-

cation VII, the load-based mechanism presented in Publication VI, which

employs the radio access network power consumption optimization with-
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Figure 5.2. Total pico power consumption for the proposed load based scheme, normal-
ized to that of the baseline location based scheme for NUE = 20, 40, 60 for full
buffer and maximum bit rate (MBR) user scenarios.

out considering backhaul link power consumption, is also considered as a

possible reference scheme.

5.3 Simulation Results

The results presented in this section are taken from Publication VI and

Publication VII.

An overview of the load-based offloading mechanism considered in Pub-

lication VI and its relative gains for each user density, in terms of pico

cell or SeNB power consumption, as compared to the location-based base-

line mechanism, is shown in Fig. 5.2. Here the pico power consumption

values for the proposed mechanism are normalized to that of the baseline

scheme, for each user density. For Scenario-1, Rcbr = 64 kbps, and data

users have full buffer traffic. For Scenario-2, for 80% of the CBR users,

Rcbr = 64 kbps and Rcbr = 512 kbps for the rest of the CBR users. The

MBR data users in this scenario have Rmax = 2 Mbps, with no minimum
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rate constraint, Rmin = 0 Mbps.

From the results we can observe that the proposed load-based scheme

provides significant gains: up to 40% for the full buffer traffic scenario

and more than 20% for the MBR scenario. As the density of full buffer

or MBR data users increases in the network (NUE ≥ 40) the gains tend to

be quite similar, since almost the same amount of SeNBs are activated in

such scenarios. It can also be observed that the gains are dependent on

the traffic type. In Scenario-1, the users not having full buffer traffic have

only low-speed voice traffic, which enables a higher amount of SeNBs to

remain in an inactive (energy saving) state. For the MBR scenario, how-

ever, the other users have a mix of voice and video traffic which consumes

a significantly higher amount of resources. The resultant load causes a

higher number of SeNBs to be activated, leading to lower gains of 2̃5% at

high user density of NUE = 60. The relative energy saving gains increase

by up to 8% for the MBR case as the user density increases, compared to

the NUE = 20 case. This shows that the mechanism is still effective when

the majority of the users have lower traffic rates. Similar trends are ob-

served in the full buffer case, especially because SeNB is activated even if

there is a single full-buffer traffic user in its proximity.

In order to give an overview of the potential system energy savings

[kWh] that can be obtained using the load-based small cell activation

mechanism, the total energy savings over all the eNBs in the considered

system is also shown in Fig. 5.3. The energy saving gains are shown for

the proposed mechanism, relative to a scenario where no energy saving

actions are implemented (All Active) and in comparison with the baseline

location-based mechanism. From the figure, we can observe that the gains

converge in comparison to the baseline scheme, since at high user densi-

ties of full buffer or MBR traffic, all the SeNBs in the proximity of UEs

are activated, thereby giving the same performance while using a location

or load based scheme. But even in such a scenario, there are significant

gains as compared to the case where no energy saving actions are taken.

In such cases there might be SeNBs which do not have a proximal UE,

thereby consuming energy unnecessarily. These results also highlight the

importance of having energy saving mechanisms implemented in hetero-

geneous networks.

While the basic mechanism considered so far can be applied to any net-

work that has base stations with load-dependent power models, the eval-

uations still lack the enhancements that could be achieved using dual
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Figure 5.3. Total system energy savings per day [kWh] for full buffer and MBR user
scenarios, for proposed scheme as compared to the all cells active case and
baseline mechanism. c©2013 IEEE

connectivity technology. Backhaul links are gaining increasing relevance

and importance through the anticipated dense deployment of small cells.

Network power consumption optimization must take this into account.

The evaluations done in Publication VII address this key consideration

while using load- and location-based mechanisms as baseline reference

schemes.

In order to present the technology potential of dual connectivity, the

throughput distribution results with full buffer traffic and number of pi-

cos, NP = 10, are shown in Fig. 5.4, based on results presented in Pub-

lication VII. Here we assume that the UEs are able to use all the radio

resources allocated to it in a round robin fashion to send data, with the

capacity limited based on the Shannon fitting formula presented in [98].

The curves are plotted for user densities of 10 and 50 UEs per MeNB cell,

with full SeNB coverage in a network with the dual connectivity feature.

From the figure, we can observe that with fixed small cell density there
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Figure 5.4. Throughput distribution curves with full buffer traffic with number of picos,
NP = 10, and number of UEs, NUE = 10, 50 [Publication VII]. c©2014 Springer
Science+Business Media New York

are significant gains in user throughput with the inter-eNB traffic split-

ting feature, which is enabled by using dual connectivity. The gains are

significantly higher at a low user density of 10 UEs per cell. Gains of

more than 20 % can be observed for the 5th percentile cell edge users, with

significant improvements in throughput for cell center users as well.

As the first case, we consider the ideal fiber optic backhaul presented

in [152] to be used for both MeNB and SeNB. Since the sleep mode power

values for this type of backhaul were not available, we assumed a scaling

factor β varying from 0 to 1, indicating the different amounts of power

consumed by the backhaul during sleep mode, which would be multiplied

with the active mode backhaul power consumption. Thus, β = 0 indicates

that the backhaul link can be fully switched off during sleep mode, and

β = 1 indicates that it cannot be switched-off at all. We also considered

two traffic scenarios – static traffic of Rcbr = 128 kbps, and dynamic traffic

with a maximum bit rate of Rmax = 512 kbps, and Rmin = 128 kbps. The

results are as shown in Fig. 5.5. Here we consider the location-based small

cell activation scheme as the worst possible case, consuming the highest

amount of power.

From the figure, we can observe that the user traffic and the backhaul

link power consumption during sleep mode have a significant impact on

network power consumption. The largest amount of energy savings rel-

ative to the location-based scheme (up to 24%) can be observed for the

static traffic scenario, when β = 0 and NUE = 30, since in such scenar-
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Figure 5.5. System power consumption for symmetric backhaul, normalized to the
location-based scheme, with static and dynamic traffic.

ios the location-based scheme tends to activate a significant amount of

SeNBs. Such actions could be avoided. There is up to 9% savings rela-

tive to the load-based mechanism, highlighting the need for taking the

backhaul link power consumption into consideration while optimizing the

network power consumption. While the relative gains are lower in the dy-

namic traffic case, maximum gains of 13% relative to the location-based

scheme and up to 11% relative to the load-based schemes are observed,

indicating that such mechanisms provide gains at higher user data traf-

fic rates as well. It should also be noted that the gains drop to 6̃% with

β = 0.5, indicating the significant dependence on backhaul power savings

when the radio access network is in sleep mode.

The network power consumption relative to the location-based scheme,

with a wired backhaul having different values of β and user densities is as

shown in Fig. 5.6. The resulting trends remain the same as in the earlier

case, with a symmetric backhaul and the absolute values of power savings

varying, due to the lower power consumed by such a backhaul. From the
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Figure 5.6. System power consumption for wired backhaul, normalized to the location-
based scheme, with static and dynamic traffic.

figure, we can observe that with static traffic and β = 0 there is a savings

of up to 21% compared to the location-based mechanism and 12% com-

pared to the load based mechanism. For β = 1 the gains (4̃%) converge

with those of the load-based scheme, since the backhaul link power con-

sumption would no longer be a factor for such a scenario. Here it should

also be noted that the backhaul link is assumed to enter sleep mode for

all the schemes, irrespective of whether or not they were taken into ac-

count by the optimization criteria. For β = 0.5, gains of 13% and 9% are

observed, relative to the location- and load-based schemes respectively.

For the dynamic traffic case, the maximum gains observed are reduced

to 11% and 5%, due to the relatively lower power savings obtained from

the backhaul link nodes entering sleep mode, as well as the higher traffic

rates which lead to more cell activations. And at higher user density, all

the schemes converge since all the SeNBs are activated.

The normalized power consumption for the fiber-access and wireless

backhaul schemes are also shown in Fig. 5.7. Here, it can be observed that

the relative gains are lower than for both of the backhaul link types con-
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sidered previously. Both of these links consume less active mode power

than the previous link types. But FA, for example, consumes higher

amounts of sleep mode power than SB, β = 0.5 case, whereas WL con-

sumes more than SB, β = 0.5 and the same amount as Wrd, β = 0.5.

Thus, the relative gains from these backhaul links entering sleep mode

are limited, which also highlights the need for developing backhauling

technologies that can coordinate with the radio access network in taking

energy saving actions.

From Fig. 5.7(a), we can observe that if we take the fiber-access back-

haul link into consideration, maximum power consumption reductions of

up to 15% for static traffic and 6% for dynamic traffic can be obtained,

compared to the location-based mechanism. The maximum gain com-

pared to the load-based scheme is approximately 4% for both traffic types.

It can be noted that the gains would be around 5% for the static traffic

case, even at very high user densities of 100 UEs per cell. For the wire-

less backhaul case shown in Fig. 5.7(b), maximum gains of about 10% and

2% are observed, compared to the location- and load-based schemes. Here

the impact of energy savings in sleep mode for the backhaul link is clearly

shown in the significantly low gain observed in comparison to the load

based mechanism.

Fig. 5.8 shows normalized network power consumption for symmetric

backhaul if there is a delay between the MeNB requesting SeNB to switch-

off and the time when the SeNB enters the inactive state, when the users

are moving at 3 km/h. Here, we also consider a dense deployment of

NUE = 50, with users walking in straight lines in random directions. From

the figure the impact of mobility on the small cell activation mechanism

can be observed, and it can be seen that for the static traffic scenario the

proposed load+backhaul-based scheme provides significant gains, even

when the switch-off delay is high. While in this work no specific value

for deactivation delay was considered in this work, it was shown in [44]

that the delay could be up to 1 s. Based on the results presented so far,

it can be observed that the small cell operation mechanism could be ben-

eficially deployed in outdoor scenarios, where user mobility is expected,

and in indoor scenarios, where users might remain static, while provid-

ing significant power consumption reductions compared to the reference

schemes.

Normalized mean throughput values for the dynamic traffic scenario

are shown in Fig. 5.9. For the static traffic scenario, it is assumed that
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Figure 5.7. System power consumption for fiber access and wireless backhaul, normal-
ized to the location based scheme, with static and dynamic traffic.

the network provides resources for all the users similar to the GBR traffic

available in LTE-A systems. For dynamic traffic, the energy-based offload-

ing decisions would have some negative impact on the overall user data

rates, since offloading a user to a SeNB would enable more resources to

be made available for the remaining users in the MeNB. In order to con-

trol this possible deterioration in the QoS, the network could use various

traffic offloading criteria, which are not considered in this work. In order

to simplify this problem, we consider a traffic offloading factor δoff which

represents the probability that a user’s traffic is offloaded to the SeNB

even when the energy-based offloading condition is not satisfied. Thus,

δoff = 0 would indicate that only the load+backhaul condition is consid-

ered, whereas δoff = 1 would indicate the location-based scheme, where

the traffic is offloaded if the UE is in the proximity of an SeNB. The sym-

metric backhaul case with β = 1 case is considered here.

From the figure we can observe that the impact on user data traffic

rates depends on the user density, with only 10% impact observed when

there are 20 UEs per cell. But this can be dynamically controlled by the
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network by offloading users based on the network tradeoffs policies be-

tween network power consumption and user QoS. Here the throughput

impacts would depend on the backhaul link type and the user density as

well, apart from the traffic type, similar to the energy-saving tradeoffs

observed earlier. For example, as the backhaul link power consumption

decreases, more users are offloaded, even at medium user densities. This

makes no negative impact on user throughput relative to the reference

schemes.

5.4 Conclusion

Based on the evaluations done in this section, the relative gains of having

energy-efficient small cell operation mechanisms were presented. The im-

portance of having energy-saving schemes, even with relatively sparse de-
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ployment of small cells, was shown. Its relevance is expected to continue

to grow in the fifth generation networks, with ultra-dense deployment of

small cells for delivering high data rates to the end users. The signif-

icance of backhaul link power-saving mechanisms, such as sleep modes

that are synchronized with the radio access networks, is also clearly ev-

ident. While the proposed mechanism was shown to provide significant

power-saving gains with limited impacts on user throughput, enhance-

ments which take new network architectures into account, and enable

power savings at even shorter time scales need to be investigated. Such

work could be especially relevant in the context of 5G networks.
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6. Impact of Backhaul on the Evolution
Towards 5G Systems

6.1 Introduction

In this chapter, we focus on an efficient operation of the UE in a 5G cloud

RAN environment, where the backhaul link between the remote radio

heads and the centralized base station pool is non-ideal. The RRH is as-

sumed to have only the basic physical layer capabilities such as chan-

nel state estimation, and would be unable to decode packets, in order

to make HARQ decisions. Instead, an opportunistic HARQ mechanism

is proposed, based on which estimates are made as to whether the UE

UL packets should be retransmitted or not, with an appropriate feedback

provided to the UE. Thus, the problem is that a HARQ mechanism is re-

quired, in the considered non-ideal system, which is as energy-efficient

from the UE perspective as the case when the RRH is actually able to

decode the packets. Such a system could be built on top of the energy ef-

ficient small cell operation mechanism described in Chapter 5, where the

backhaul link is assumed to be non-ideal.

The mechanism enables an architectural split in the LTE protocol stack

handling uplink HARQ. This helps in reducing the computational require-

ments at the RRH. Using an opportunistic mechanism, the RRH esti-

mates the probability of successfully decoding the received packet, based

on the received signal to noise ratio (SNR), without actually decoding it.

Based on the estimate, the RRH sends an ACK/NACK message to the

UE, and forwards the received packet (including the HARQ information)

to the centralized entity. This enables the implementation of advanced de-

coding algorithms at the central processor, thereby centralizing processes

which require high computational requirements. It also enables reducing

the latency requirements on the backhaul interface between RRH and the
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centralized base station pool, thereby reducing deployment costs.

Based on performance evaluation, the proposed adaptive scheme is shown

to perform close to the optimal HARQ mechanism where accurate esti-

mates are made for retransmissions. It is also shown to perform signif-

icantly better than a simple fixed retransmission scheme. This would

mean that in such a 5G environment, the investigated scheme would not

cause a significant overhead to the UE power consumption, due to unnec-

essary UL retransmissions. The work presented in this chapter is based

on Publication VIII, and is mainly related to the cloud-RAN sub-system.

In Publication VIII, the main focus was on enabling uplink HARQ in the

constrained environment which gives similar performance as the current

state-of-the-art. In this chapter, it is shown that the same methodology

could be used to optimize UE uplink power consumption, by minimizing

unnecessary HARQ retransmissions in the considered network environ-

ment.

6.2 Problem Description

Consider a HARQ system where a maximum of T transmissions per code-

word is allowed, with the maximum error probability target of Prtarget and

a given expected effective rate of Reff . The backhaul between the RRH and

centralized BS pool where the actual packet decoding is done is non-ideal.

The time delay for receiving the feedback result from the centralized BS

pool is considered unacceptable, which necessitates local estimation of the

packet decoding probability, and sending UL retransmission requests to

the UE accordingly. This could lead to a degradation in the UE UL power

consumption performance compared to the ideal case, due to the potential

unnecessary retransmissions. The main goal is to develop a transmission

strategy, that would enable the UE to consume minimum transmit power

to support Reff , within T retransmissions. Here the power minimization

is with respect to the ideal HARQ mechanism, where retransmissions are

sent based on actual decoding of packets.

6.3 Reference Schemes

Two reference mechanisms are described, to compare the performance

of the proposed scheme. A simple fixed retransmission strategy is con-

70



Impact of Backhaul on the Evolution Towards 5G Systems

sidered, where retransmissions are sent irrespective of the decoding re-

sult. This mechanism represents the worst-case scenario, where the RRH

would request the UE for the maximum number of retransmissions. An

optimal HARQ scheme is also considered, which represents the ideal case,

where it is assumed that retransmissions are sent based on actual de-

coding results. The main aim is to find the minimum UE UL transmit

power for each of these cases, for the given expected effective rate, Reff,

the maximum number of retransmissions, T , and target outage proba-

bility, Prtarget. The minimum required transmit power for the reference

schemes could then be compared to the proposed opportunistic scheme, to

evaluate the energy efficiency of the mechanism.

An expression which computes the minimum required UE UL transmit

power is required to evaluate the schemes. For the t:th transmission of a

packet over a block-fading channel with SNR γt, let R0(γt) be the cut-off

rate for energy-constrained Gaussian input signals in an AWGN channel

[61, Eq. 7.4.36]:

R0(γt) =

[
1 +

γt
2

−
√

1 +
γ2t
4

]
log2 e+ log2

[
1

2

(
1 +

√
1 +

γ2t
4

)]
(6.1)

Here γt = Pu|ht|2, with channel gain ht and UE UL transmit power Pu

which remains the same all over retransmissions. The cut-off rate can be

considered as the lower bound on the capacity of the given channel. It

defines the region of rates in which a communication system can operate

with an arbitrary probability of error [160]. Thus, cutoff rates provide a

capacity bound for finite block length and error probability [170]. While

rates higher than cut-off rates are possible, the parameter is used in this

work since it is considered valuable for predicting the performance [24,

160].

For T transmission blocks, where the channel during each transmission

is modeled using an independent Gaussian channel, we have the following

lower bound on the error probability [61, Eq. (7.5.33)]:

Pre(Rinit, γ(t)) = cte
−NTEr(Rinit,γ(t)) (6.2)

Er(Rinit, γ(t)) =
1

T

T−1∑
t=0

R0(γt)− Rinit

T
(6.3)

where N is the blocklength, Rinit is the initial rate, Er is the error expo-

nent and γ(t) indicates the vector of SNRs of the first t+ 1 transmissions.

It is assumed that the constant ct = 1 and is not further detailed here, as

it has only minor impact and scales slower than the exponential term.
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In order to calculate the minimum UE UL transmit power we need to

relate the effective rate with the cut-off rate and the error probability.

The effective rate after T transmissions is given by Reff(T ) = Rinit/T ,

and the expected effective rate would depend on the expected number of

retransmissions. Taking the inverse function of Eq. (6.2) and substituting

with eqs. (6.1) and (6.3), we get:

Rinit =

T−1∑
t=0

{[
1 +

γt
2

−
√

1 +
γ2t
4

]
log2 e

+ log2

[
1

2

(
1 +

√
1 +

γ2t
4

)]}
+

ln(Pre(Rinit, γ(t)))

N
(6.4)

For the simple fixed retransmission case, the expected effective rate is

the ratio of initial rate and the total number of transmissions that are

allowed, T . From the above expression, the minimum transmit power for

achieving the target effective rate can be calculated for the fixed retrans-

mission case, with Pre(Rinit, γ(t)) = Prtarget, the target outage probability.

For the optimal HARQ case, the effective rate depends on the the ini-

tial rate and the expected number of transmissions [163] to achieve that

rate. For this case, the initial rate with the given outage probability con-

straint Prtarget can be calculated for each transmit power values. Here,

the initial rate is chosen based on a target outage probability, rather than

the first transmission block error rate (BLER). The expected number of

transmissions for the transmit power value can also be calculated based

on the initial rate, and the cut-off rate and resultant error probabilities

based on eqs. (6.2),(6.3). Based on these, through numerical evaluation,

the minimum transmit power at which the ratio of the initial rate and

expected number of transmissions equals the target effective rate can be

calculated.

6.4 Opportunistic HARQ for non-Ideal Backhaul

The opportunistic HARQ mechanism enables the deployment of central-

ized RAN using non-ideal, high-latency backhaul links, while still mini-

mizing the computational requirements at the RRHs. The possible cost

involved here, by estimating the need for retransmissions locally at RRH

without packet decoding, would be the higher transmit power consump-

tion from the UE perspective, which needs to be minimized. When HARQ

feedback is sent based on estimated error probability rather than actual

packet decoding result, there is an additional ambiguity involved that an
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ACK response is sent by the RRH but the BS pool is unable to decode

the packet. In order to overcome this ambiguity, an outage probability

threshold Prth < Prtarget is used in the opportunistic HARQ case.

Another issue is that the RRH cannot estimate the average cut-off rates

locally without actually decoding the received packets, since the resul-

tant SNR after t retransmissions is not known to the RRH. If the RRH

is able to estimate this independently, the error exponent, and resultant

error probability can also be estimated locally at the RRH. Thus, in the

constrained environment, the RRH can make the HARQ retransmission

decisions based on the expected error probability. In order to achieve

this, the concept of effective SNR, which has been used widely in liter-

ature [53, 66, 105], is proposed to be used. Here, an estimate of the SNR

over all the retransmissions, is used to calculate the cut-off rates in Eq.

(6.1), which is then used in Eq. (6.2) to calculate the error probabilities.

The effective SNR is computed by taking the maximum of high and low

SNR approximations. Thus, the effective SNR is given by:

γeff = max

(
T−1∑
t=0

γt, (e/4)
T

T−1∏
t=0

γt

)
(6.5)

Here the maximum value is considered in order to get the closed-form

lower bound, as both the high and low SNR approximations are lower

bounds. The effective SNR estimated could then be used to calculate the

average cut-off rates and for calculating the estimated error probability.

The estimated error probability can then be compared to the threshold

value, Prth, in order to estimate the need for retransmissions. If the esti-

mated error probability is less than Prth, the UE is requested by the RRH

to retransmit the UL packet, else the acknowledgment message is sent

to the UE. The energy efficiency of this mechanism can be calculated by

first evaluating the initial rate as mentioned in the previous section with

a given outage probability target, Prtarget. Then the minimum transmit

power at which the estimated number of transmissions that is required

to achieve the expected effective rate can be evaluated using the modified

error probability threshold for retransmissions, Prth.

For a given initial rate, the opportunistic method could be implemented

using a look-up table that maps the effective SNR value with the expected

error probability. Based on this mapping, the RRH can determine whether

UE UL HARQ retransmissions are required. A simplified flow diagram

of how the opportunistic HARQ mechanism could work in practice, is as

shown in Fig. 6.1. Here, avoiding the decoding process at the RRH enables
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Figure 6.1. Flow diagram for the opportunistic HARQ mechanism.
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over five 3GPP LTE PRBs, and Prth = ε/2.

the use of simplified and low-cost hardware. This helps in reducing the

CAPEX and OPEX of such deployments, since non-ideal backhaul would

also be relatively inexpensive as compared to ideal, low-latency backhaul.

While similar concepts such as effective SINR mapping and using BLER

constraints to maximize throughput in a system using HARQ have been

investigated in the literature, the application of effective SNR to minimize

the decoding complexity has not been studied yet.
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6.5 Simulation Results

For a fixed expected effective rate, the minimum UE UL transmit power

required, Pu, with an independent and identical block Rayleigh fading

channel, outage error probability target, Prtarget = ε = 10−4, coding over

five LTE PRBs, and maximum number of transmissions, T = [2, 3, 4], is

shown in Fig. 6.2. The probability threshold for retransmissions, used for

the opportunistic scheme is given by Prth = ε/2.

Here the transmission method is chosen with a target outage probabil-

ity, Prtarget, and not a target first transmission BLER. This would mean

that the first transmission BLER is T :th root of ε. The BLER target of 10%

considered in this work, for T = 4, is similar to the value used in [84,144].

Based on the system-level performance evaluations done in [159], it was

shown to provide optimal performance. Using a higher first transmission

BLER such as 30% could improve the spectral efficiency of the system,

but with a fixed T , it would increase the outage probability. The added

cost could be an increase in the latency of the system.

The performance of the opportunistic HARQ mechanism with an effec-

tive SNR approximation (Opportunistic HARQ, approx.) is compared to

the ideal case where the average cut-off rates are known and retransmis-

sion decisions are made based on the modified error probability threshold

of Prth = ε/2, which might not be realistic in actual settings. The mech-

anism is compared with an optimal HARQ mechanism where feedback is

sent based on actual decoding results, which represents the upper bound

of the performance that can be achieved. As another reference case, the

performance of the static, fixed retransmission mechanism is also pre-

sented.

From the figure we can observe that, from an energy efficiency perspec-

tive, increasing the value of T in a system with HARQ allowing a maxi-

mum of T transmissions with a given expected effective rate Reff , and sup-

ported by an imperfect backhaul, Pu needs to be lower. This consequently

lowers the energy consumed by the UE to achieve the set expected effec-

tive rate. Consider the case where Reff = 1, and T = 4. From the figure we

can observe that the minimum transmit power Pu required to achieve this

for the opportunistic HARQ case is the same as the ideal optimal HARQ

scheme.

From the figure, we can also observe that the opportunistic HARQ mech-

anism performs close to the ideal mechanism, with a slight decrease in
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performance for high effective rate targets. In order to achieve the same

expected effective rate, the minimum transmit power required for the

opportunistic HARQ scheme with effective SNR approximation is about

3.4% higher than the ideal case, for T = 4, and approximately 0.5% for

T = 3 can be observed. Based on these considerations, the opportunis-

tic HARQ mechanism gives almost the same performance as the optimal

scheme. Thus, the considered mechanism enables simplified implementa-

tion of centralized RAN, with an imperfect backhaul, with no significant

impact on the energy consumption of the UE, despite basing HARQ re-

transmissions on estimated, not decoded block errors.

6.6 Conclusions

We consider an opportunistic HARQ mechanism, which provides retrans-

mission feedback to the UE, based on the channel state information, and

not on actual decoding of packets. Such an optimization might be rele-

vant for enabling centralized RAN in an environment with a non-ideal

backhaul. The main aim is to enable deployments of 5G systems with

centralized processors, and RRHs with limited radio capabilities, using

low-cost backhaul links with possibly high delay and latency characteris-

tics, without having any negative impacts on UE power consumption. The

mechanism is evaluated based on constraints currently defined for 3GPP

LTE-Advanced systems, and is compared with optimal HARQ and sim-

ple fixed retransmission reference schemes. The core idea is to split the

functionalities such that the delay-critical component of sending HARQ

retransmission feedback remains at the RRH, while moving the compu-

tationally intense part to the centralized and possibly cloud-based virtual

base station pool. The mechanism could be considered as a key enabler

for low cost and dense deployment of 5G networks that would provision

the higher data rate requirements currently envisioned for 5G systems.

In this work, the analytical model of a real system is considered, which

gives an indication of the potential gains from using the proposed scheme.

Some mechanisms available in such systems, such as uplink transmit

power control is not considered in this work, and could be considered as an

area for further study. Evaluating the scheme using more realistic system

level simulations would also be an interesting area of future work.
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Ultra-dense deployment of small cells for capacity enhancements with

macro cells providing coverage and control plane signaling is the direction

in which current cellular systems are evolving. In such a paradigm, where

small cells are being deployed in a dedicated frequency layer, in contrast

to macro cells, energy-efficient and handover signaling optimized mecha-

nisms are required for the overall efficiency of the network. With back-

haul and radio access networks becoming increasingly integrated, and

due to the increase in backhaul links proportional to the radio access

network deployment density, new mechanisms which consider energy-

efficient overall network operation are also becoming relevant and im-

portant.

The trends in the evolution of next generation 5G systems are also grow-

ing in clarity, with system requirements, deployment scenarios, network

performance metrics, etc., being defined by various industrial and aca-

demic research forums. Current developments indicate that network den-

sification will continue to gain prominence in 5G systems as well, imply-

ing the need to further investigate energy-efficient operation mechanisms

for the UE and network, which reduce the overall control plane signaling

load of the network.

In this work, we first investigate the energy-efficient small cell discovery

operation in dense small cell deployment scenarios. Three mechanisms

were primarily considered: (i) relaxed measurement gaps, with which the

network would configure an infrequent inter-frequency measurement gap

for the UE, with the network configuring more frequent measurement

gaps upon detection of a small cell (ii) UE mobility state-based measure-

ment gap configuration, where measurement gap configuration depends

on the accurate or coarse estimates of the speed of the user, and (iii) small

cell proximity estimation based on neighbor cell signal strength measure-
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ments, called RF fingerprints. A combination of these approaches was

also considered, to optimize the signaling load in the network by avoiding

handovers when UEs are moving at high speeds.

Evaluations based on LTE-Advanced heterogeneous network settings

indicate significant gains in terms of UE power consumption reductions,

while optimizing the amount of handovers and related signaling for UEs

moving in medium and high mobility states. The small cell connected

time performance of the RF fingerprint-based small cell discovery mecha-

nism, used in combination with the UE mobility state-based scheme, was

shown to be close to the inter-frequency measurement scheme, with reduc-

tions in UE energy consumption. Further optimizations of the proximity

estimation scheme based on the fingerprint database location were also

investigated, and both network and UE-based approaches were found to

be feasible. The small cell proximity estimation mechanism was further

generalized to apply to the device-to-device discovery procedure as well,

in combination with the relaxed measurement gap mechanism applied

for sending discovery beacons in such a scenario. Here, control and user

plane location reporting mechanisms were studied. Results indicate that

when the fingerprint database for proximity estimation is located on a

social cloud server, with application layer location reporting, results in

only minimal overhead (in terms of energy consumption and data plane

resource utilization).

Energy-efficient small cell operation that takes traffic characteristics

and the impact of backhaul power consumption into consideration is also

studied. Mechanisms which jointly optimize radio access and backhaul

power consumption is presented and evaluated using an LTE-A hetero-

geneous network setting. Various deployment scenarios, including indoor

and outdoor deployment of small cells, dense and sparse deployments,

and static and mobile users are also investigated, and related network

power consumption values are presented. Evaluations indicate that with

the perceived dense deployment of small cells and proportional increase

in backhaul link and related power consumption, the joint optimization

mechanism can provide significant network power consumption optimiza-

tions (up to 20 %), with acceptable tradeoffs in terms of the total system

capacity. Here the small cell proximity estimation mechanism is consid-

ered to be the baseline for the accurate determination of cells to be acti-

vated.

Finally, the system considered so far is used as a baseline for 5G central-
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ized cloud-based small cell deployments, and further cost optimizations

using low cost RRHs deployed using a non-ideal backhaul with a central-

ized base station pool. Here the key consideration is to keep the delay-

critical HARQ component at the RRH, while implementing the computa-

tionally intense part at the centralized processor. Simplifying the HARQ

procedure by estimating the packet decoding probability, based on chan-

nel state feedback, is studied with the constraints of delay requirements

currently defined for LTE-Advanced systems. The packet decoding prob-

ability is estimated based on mapping SNR with the error probability,

using look-up tables. This could be implemented in a real system. Eval-

uations are done to compare the proposed mechanism with ideal HARQ

and static retransmission mechanisms, with the results indicating that

the performance is quite similar to that of the optimal scheme. This en-

ables massive and ultra-dense deployment of small cells in a cost-efficient

manner with possibly non-ideal backhaul.

Based on the evaluations done on small cell discovery, maintaining the

RF fingerprint database has shown significant reductions in energy con-

sumption for the discovery and operation of ultra-dense networks. Fur-

ther study on small cell discovery procedures could include the implemen-

tation of the proposed mechanisms in a real system, making use of net-

work data visualization tools for evaluating the performance of the pre-

sented mechanisms. Coordination of such mechanisms with commercial

application servers would also be an enabler for provisioning new services,

especially using D2D communication procedures. The practical feasibility

in terms of deployment and maintenance costs of such new network enti-

ties could be an interesting area of future work. Improving the accuracy of

the mobility state estimation of UEs, especially at medium mobility state,

could also require further study.

Current power consumption models need to be further evaluated with

higher system bandwidths to study whether the linear models would still

be applicable in such a system. With the development of mmW and cmW

small cells, the study of cell discovery and operational power consump-

tion models of such base stations would also be relevant. The joint UE,

base station and backhaul power consumption would also be an interest-

ing topic for further study. Currently, high capacity wireless backhaul for

small cells is not practical when the backhaul power consumption exceeds

that of the radio access. With dense deployment of small cells also envi-

sioned for remote locations where wireless backhaul deployments would
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be relevant, energy-efficient wireless backhaul mechanisms in such envi-

ronments could be a fruitful area of further study.

The practical application of the opportunistic HARQ mechanism and the

investigation of realistic gains that can be achieved in terms of RRH com-

putational complexity reduction and impacts on user data rates would be

yet another interesting area for future work. The effect of HARQ retrans-

mission prediction errors on the overall system performance could also be

further investigated. The impact of mobility on the accuracy of the effec-

tive SNR estimates, and the possible related performance impacts could

also be an area of further study.
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Errata

Publication III

In Fig. 5a, 120 km/h is erroneously printed as 12 km/h.

Publication VIII

In Fig. 3 and related description, Prth is erroneously written as Pth.

Publication VIII

The effective rate after block t is given by Reff(t) = 1/(t+1)Rinit.
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