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Copper is a harmful metal impurity that significantly impacts the performance of silicon-based

devices if present in active regions. In this contribution, we propose a fast method consisting of

simultaneous illumination and annealing for the detection of copper contamination in p-type sili-

con. Our results show that, within minutes, such method is capable of producing a significant

reduction of the minority carrier lifetime. A spatial distribution map of copper contamination can

then be obtained through the lifetime values measured before and after degradation. In order to

separate the effect of the light-activated copper defects from the other metastable complexes in low

resistivity Cz-silicon, we carried out a dark anneal at 200 �C, which is known to fully recover the

boron-oxygen defect. Similar to the boron-oxygen behavior, we show that the dark anneal also

recovers the copper defects. However, the recovery is only partial and it can be used to identify the

possible presence of copper contamination.VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4927838]

Copper contamination is a serious issue in both solar-

cell1 and semiconductor technologies2 because of its detri-

mental effect on minority carrier lifetime and diffusion

length. Due to the high copper diffusivity and solubility,3 the

avoidance of copper contamination is rather challenging dur-

ing the growth of silicon ingots and the subsequent solar-cell

fabrication steps. Furthermore, additional copper contamina-

tion may result from recently introduced copper contacts in

both integrated circuits and solar cells, despite the use of spe-

cific copper diffusion barriers. The presence of copper con-

tamination in silicon can be detected by quantitative

methods, such as transient ion drift (TID)4 and total reflec-

tion x-ray fluorescence (TXRF).5 However, the former

method requires immediate measurements after contact for-

mation, while the latter is limited to measuring only near-

surface concentrations. Furthermore, both TID and TXRF

methods are destructive and time-consuming methods.6

Recently, copper has been observed to reduce the mi-

nority carrier lifetime during prolonged annealing in the

dark or illumination at room temperature. The activation of

recombination-active defects during light soaking is com-

monly referred to as copper-related light-induced degrada-

tion (Cu-LID). The Cu-LID has been confirmed to originate

from bulk recombination,5 which is proposed to be caused

by copper precipitation7 or substitutional copper release

through copper complex dissociation during illumination.8,9

The formed defects have been found to be stable at 200 �C
in wafers with initial interstitial copper concentration of

1014 cm�3.10

In addition to copper defects, the involvement of boron

and oxygen in the formation of a metastable recombination-

active defect (BO-LID) has been extensively reported as the

major cause of degradation in low-resistivity boron-doped

Czochralski (Cz) silicon.11 BO-LID is typically observed as a

two-exponential lifetime decay within 24 h of illumination,

which is fully recoverable at 200 �C.12 The lifetime decrease

and the normalized defect density can easily be measured

for both BO-LID and Cu-LID by contactless and

non-destructive characterization methods, such as quasi-

steady-state photoconductance (QSSPC),13 microwave photo-

conductive decay (l-PCD),14 and surface photovoltage

(SPV).15 Since the normalized Cu-LID defect has been found

proportional to the initial interstitial copper concentration,7

lifetime measurements before and after degradation provide

an estimate for the interstitial copper concentration. The main

drawback of this copper-detection technique is the long illu-

mination time needed for a saturation of the observed lifetime

decay.

In order to decrease the BO-LID detection time, a new

method called accelerated light-induced degradation (ALID)

has been recently developed.16 The method relies on illumi-

nation at elevated temperatures (120 �C), achieving full deg-

radation within only 10 min.17 In this letter, our goal is to

deepen the understanding of the formation kinetics of light-

activated copper defects by analyzing the impact of the

ALID method on Cu-LID. Second, we also want to deter-

mine whether this ALID method can be employed for rapidly

detecting the presence of copper contamination in silicon.

The experiments were performed on h100i oriented, 4-
in., boron-doped, electronic-grade Cz- silicon with resistivity

of 3.4–3.9 X cm, thickness of �380 lm, and an oxygen con-

centration higher than 14.5 ppma. After standard RCA clean-

ings, the wafers were passivated through the growth of a

15 nm thick thermal oxide layer, formed during 40 min of

dry oxidation at 900 �C, followed by annealing in nitrogen at

the same temperature for 20 min. A contamination solution

containing 1 ppm of copper sulfate solution was then spinned

onto the front surface of each wafer, which quickly turned

into interstitial copper bulk contamination during annealing

in nitrogen atmosphere at 800 �C. Next, an external coronaa)E-mail: alessandro.inglese@aalto.fi
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charge (þ0.3 lC/cm2) was deposited onto both sides of the

wafer, in order to prevent copper out-diffusion6 and reduce

the surface minority carrier recombination through the crea-

tion of an inversion layer near the surface.

Before illumination, the samples were annealed in the

dark at 200 �C for 2 min to deactivate any metastable active

complex formed during sample preparation. Since annealing

reduces the surface corona charge, þ0.06 lC/cm2 was added

onto each side of the wafer.10 The samples were then divided

into two separate batches that underwent different degrada-

tion treatments. The first batch went through illumination at

room temperature for 24 h under a 0.5 Sun Xenon lamp, i.e.,

a RT-LID treatment. The second batch of wafers was sub-

jected to the ALID procedure, consisting of illumination

with the same Xenon light source and simultaneous heating

at the temperature of 120 �C.17 During the ALID and the RT-

LID treatments, the effective minority carrier lifetime was

monitored with QSSPC measurements at the injection level

of Dn ¼ 0:1 � Ndop, ensuring that the measured lifetime is

dominated by Schockley-Read-Hall recombination.

Figure 1 presents the minority carrier lifetime measured

in identical Cu-contaminated wafers during ALID and RT-

LID. The ALID method clearly accelerates the formation

kinetics of light-activated copper defects compared with RT-

LID, which is in analogy with previous ALID data reported

for the B-O complex. This result hence raises the question

whether the possible effect of copper has been ignored in

previous publications on ALID.16

Figure 1 also shows that during ALID a large portion of

the lifetime decay takes place during the first few minutes,

suggesting that the degradation kinetics are initially very fast

and progressively slow down until a saturation is reached. By

comparing the lifetime values measured during ALID and

RT-LID after identical degradation time steps, it becomes

evident that ALID results in almost complete lifetime satura-

tion within 1 h, whereas RT-LID requires almost a whole day

to reach similar degradation. Note that the Cu-related degra-

dation rate depends on the annealing temperature,10 light in-

tensity,9,14 and impurity concentration,7 enabling probably

even faster lifetime saturation at higher temperatures, illumi-

nation intensities, or copper concentrations.

The strong impact of 120 �C annealing on the degrada-

tion kinetics can be explained by the higher copper diffusiv-

ity at increasing temperatures.18,19 Since copper is known to

form unstable CuB complexes that constantly pair and disso-

ciate even at room temperature, the diffusivity of interstitial

copper is further increased by the complete dissociation of

Cu-B pairs at 120 �C in 3.4–3.9 X cm silicon.20 This result is

in accordance with recent studies proving that Cu-LID is a

bulk phenomenon5 limited by copper diffusion.10

In order to further study the applicability of ALID for

measuring copper in silicon, we intentionally contaminated

only a small portion of the wafer by depositing a 20 ppb cop-

per sulfate solution droplet (�7 cm2) on the wafer front sur-

face. This was followed by the same in-diffusion anneal and

ALID/RT-LID treatments as previously described. The mi-

nority carrier diffusion length was then analyzed in both

clean and intentionally contaminated areas with the SPV

technique, which allows a detailed minority carrier diffusion

length mapping at low injection level (excess carrier concen-

tration of �1012cm�3). Some of the wafers were also meas-

ured by l-PCD that allows the mapping of minority carrier

lifetime at higher injection level (�1015 cm�3).

After illumination, the copper spot becomes visible in

both SPV and l-PCD maps. Hence, light-activated copper

defects are highly recombination active at both high and low

injection level. This is a different behavior compared to iron

impurities. Indeed, the recombination activity of interstitial

iron (Fei) is known to be strongly injection dependent, so

that the lifetime measured after exposure to illumination

(dissociation of Fe-B pairs) significantly increases at high

injection and decreases at low excess carrier concentra-

tions.21,22 There is thus a clear advantage of using high injec-

tion (l-PCD) for copper detection, as the effect of copper

contamination can be easily separated from iron impurities.

Note that in this letter, we have dissociated Fe-B pairs before

any degradation experiments through an initial dark anneal

step, so that the possible presence of iron contamination can-

not influence our low-injection measurements.

Figure 2(a) shows a l-PCD lifetime map after 10 min of

ALID. Stronger degradation is detected in the center of the

FIG. 1. Minority carrier lifetime as a function of the illumination time meas-

ured in identical Cu-contaminated Cz-wafers during ALID and conventional

room-temperature degradation (RT-LID). The lifetime was measured with

QSSPC at the injection level of 3 � 1014 cm�3.

FIG. 2. (a) l-PCD map after ALID (10 min), (b) spatial distribution map of

copper calculated through Eq. (1). The dashed white line in (a) shows the

line-scan position used for the data reported in Figure 3.
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contaminated region, suggesting that copper tends to accumu-

late in the middle of the spot and its concentration progres-

sively decreases towards the spot edges. This is in accordance

with previous studies on Cu-LID, where the initial interstitial

copper concentration NCu was found to be proportional to the

degradation strength through the following empirical

equation:6

NCu ¼ C
1

sdeg
� 1

sinit

� �0:5

; (1)

where C is a pre-factor fitted in Ref. 6 from l-PCD lifetime

results, sinit is the lifetime value before degradation, and sdeg

represents the lifetime measured after ALID.

Figure 2(b) displays the copper concentration in each

point of the copper spot shown in Fig. 2(a), obtained by

inserting the l-PCD lifetime maps before and after ALID

into Eq. (1). Note that this calculation provides only an esti-

mate of the copper concentration, as the numerical values

given by Eq. (1) hold only under the conditions specified in

Ref. 6. However, by combining ALID with a lifetime map-

ping technique, it is possible to achieve within only 10 min a

qualitative copper distribution map, which allows to distin-

guish the different levels of contamination. Although com-

plete degradation might not be reached within 10 min, Eq.

(1) provides a reasonable estimation of Cu concentration,

since, even in the most sensitive case, longer illumination

time increases the estimated Cu concentration at most by a

factor of 2. Therefore, it can be concluded that ALID pro-

vides a fast, non-contact, and non-destructive technique for

measuring the interstitial copper concentration in silicon

wafers.

Since both copper and B-O defects lead to lifetime deg-

radation during light soaking, we want to separate the effect

of the light-activated copper defects from the other metasta-

ble complexes in low-resistivity Cz-Si. Unlike Cu-related

defects, it is well-known that B-O defects can be fully recov-

ered by annealing at 200 �C in the dark, during which these

complexes are thought to transform into a metastable inac-

tive state.23 After ALID, we thus annealed the samples at

200 �C for 3 min in the dark. To minimize the injection level

dependence, the wafers were measured again at low-

injection with SPV. Figure 3(a) shows the line-scan of the

diffusion length map across the line-scan shown in Fig. 2(a)

measured before degradation, after 10 min of ALID and a

subsequent dark annealing at 200 �C. After annealing, Figure
3(a) shows a negligible lifetime increase in the middle of the

copper spot, which is expected to be highly contaminated,

whereas a larger but not complete recovery is detected near

the edge of the copper spot. In order to determine whether

this lifetime recovery is solely caused by the dissociation of

B-O complexes, the experiment was repeated with an inten-

tionally Cu-contaminated 250 lm thick, low resistivity (1.5

X cm) p-type FZ-Si wafer, which is free of B-O recombina-

tion due to its low oxygen concentration.

Figure 3(b) shows the results obtained in the FZ wafer,

i.e., diffusion length measured before and after degradation,

and the subsequent dark annealing at 200 �C across a similar

line-scan of the copper spot. Surprisingly, after annealing a

diffusion length increase is detected over the whole line-scan

of the copper spot. The uncontaminated reference area

remains unaffected by the dark anneal, as the wafer is free of

BO-LID. Any unintentional iron contamination would not

affect the copper spot or the reference lifetime, since iron

exists as Fei
þ both during degradation and annealing.

Therefore, the measured lifetime recovery is clearly related

to copper.

Possible copper-related reactions at 200 �C in FZ-Si

include CuB dissociation, copper complex dissociation,

substitutional copper (Cus) formation, and Cu-LID defect

dissolution. CuB dissociation does not affect the lifetime,

as no recombination activity has been related to CuB nor

Cui
þ. Recombination-free four-copper-atom complexes

start dissociating at 150 �C24 releasing three Cui
þ ions and

an unknown CuDLA center,25 which might be Cus.
26,27

Nevertheless, as substitutional copper is recombination

active,2 any Cus release would cause a lifetime decrease at

200 �C instead of the observed lifetime increase.

Correspondingly, any other Cus formation at 200 �C would

cause a further lifetime decrease, such as Cui
þ reaction

with a vacancy,28 a silicon self-interstitial,29 or an oxygen-

vacancy center.30 Hence, the observed lifetime increase is

concluded to be a result of Cu-LID defect dissolution. If

Cu-LID were caused by recombination at substitutional

copper, annealing at 200 �C might diffuse some copper

from a substitutional lattice site into an interstitial, partly

recovering the degraded lifetime. In case of copper precipi-

tation being responsible for Cu-LID, the lifetime increment

might be a result of precipitate dissolution, i.e., decrease of

the precipitate size and/or density.

In the recent literature, only partial recovery has been

observed in solar cells after LID but the reason has remained

unclear.31–33 Our results suggest that the partial recovery

could be a fingerprint of copper contamination and the dark

FIG. 3. Diffusion length measured with SPV before degradation (initial), af-

ter 10 min of ALID (degraded) and a subsequent 200 �C dark annealing

(annealed) in spot Cu-contaminated Cz-Si (a) and FZ-Si (b).
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anneal could be used to determine whether the observed deg-

radation is caused by copper.

In this letter, we have shown that the formation kinetics

of recombination active copper defects can be significantly

accelerated through simultaneous annealing and illumina-

tion. A qualitative copper distribution map has been calcu-

lated through the l-PCD lifetime values measured before

and after degradation. Such method can thus be used for the

rapid detection of copper contamination.

While applied to low resistivity monocrystalline Cz- and

FZ-material here, this method can, in principle, be extended

to quasi-mono and multicrystalline silicon. In low-resistivity

Cz-silicon, however, one needs to distinguish copper-related

defects from metastable BO-complexes and, for this purpose,

we investigated the effect of dark annealing after degradation.

Interestingly, we observed a noticeable lifetime increase in

lowly Cu-contaminated wafers that cannot be solely attrib-

uted to the dissociation of BO-complex, since a similar phe-

nomenon was observed in oxygen-free FZ-silicon. This

finding led us to conclude that the observed lifetime recovery

results from the dissolution of Cu-LID defects. However,

since the recovery seems not to be complete in the copper

contaminated regions, the dark anneal can be used to deter-

mine whether the observed degradation is caused by copper

contamination.
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