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Electronic textbooks of mathematics would benefit from interactively explorable
proofs, where the reader can request a more detailed explanation for any part of
the proof he or she does not understand. This requires that definitions, theorem
statements, and proofs are written in some formal language. In this thesis we
investigate the theoretical and practical challenges of producing such textbooks.

Any particular choice of language cannot be adequate for all textbooks, so we
construct a theoretical framework for discussing extensible languages. Under this
framework we define three languages for expressing definitions and theorem state-
ments. The first two correspond to the standard languages of propositional and
first-order logics. The third language is expressive enough for most definitions and
theorem statements in discrete mathematics, but conceptually less problematic
than the languages of set theory and higher-order logic, because it cannot express
unrestricted quantification over sets that are larger than the set of real numbers.

In addition, an implementation of an interactive proof explorer is presented. Its
capabilities are demonstrated with an explorable proof of Bertrand’s postulate.
The focus of this thesis is on the experience of the reader, and the results seem
promising in that regard. With further work on making the authoring tools more
efficient to use, it should be feasible to formalize an entire textbook.
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Sähköisissä matematiikan oppikirjoissa olisi hyötyä interaktiivisista todistuksista,
joiden avulla lukija voisi pyytää tarkentavaa selitystä mihin tahansa kohtaan, jota
hän ei ymmärrä. Tällaisen kirjan kirjoittaminen vaatii, että määritelmät, lauseet
ja todistukset on kirjoitettu jollain formaalilla kielellä. Tässä diplomityössä tut-
kitaan sekä käytännön että teorian tasolla interaktiivisia todistuksia sisältävien
oppikirjojen kirjoittamiseen liittyviä haasteita.

Koska mikään yksittäinen kieli ei voi olla riittävä kaikkien oppikirjojen tarpeisiin,
työssä määritellään kielen laajentamisen käsite. Tämän viitekehyksen sisällä ke-
hitetään määritelmille ja lauseille kolme kieltä, joista kaksi ensimmäistä vastaavat
lauselogiikkaa ja ensimmäisen kertaluvun predikaattilogiikkaa. Kolmas kieli, joka
on näiden laajennus, on ilmaisuvoimaltaan riittävä monien diskreettiin matema-
tiikkaan keskittyvien oppikirjojen formalisoimiseen. Tämä kieli on käsitteellisesti
yksinkertaisempi kuin joukko-opin tai korkeamman kertaluvun predikaattilogiikan
kielet, koska siinä ei pysty rajoittamattomasti kvantifioimaan sellaisten joukkojen
yli, jotka ovat suurempia kuin reaalilukujen joukko.

Lisäksi työssä esitellään tietokoneohjelma, jonka avulla interaktiivisesti
tarkasteltavia formaaleja todistuksia voi lukea, sekä tämän ohjelman avulla
kirjoitettu Bertrandin postulaatin todistus. Tässä työssä keskitytään todis-
tuksiin lukijan näkökulmasta, ja tulokset ovat siltä osin lupaavia. Kokonaisen
oppikirjan formalisoimiseksi vaaditaan vielä lisätyötä oppikirjan kirjoittajan työn
helpottamiseksi.

Avainsanat: formaalit kielet, formaalit todistukset, matematiikan opetus,
ensimmäisen kertaluvun logiikka, toisen kertaluvun aritmetiikka,
Bertrandin postulaatti, kontinuumihypoteesi
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1 Introduction

Education is becoming increasingly electronic. Traditional textbooks are printed on
paper, but newer, electronic textbooks are only meant to be read on screen. This
makes it possible for the textbooks to contain interactive material, which can be
useful for many different purposes. Textbooks of mathematics, in particular, might
benefit from interactively explorable proofs. When reading a proof, a student may
encounter a step that he or she does not fully understand. An interactive textbook
could, upon request, provide additional explanation of that particular step, making
it easier for the student to fully understand the proof.

Elementary mathematics education is not so much focused on proofs as it is fo-
cused on teaching various skills and techniques: how to perform mental calculation,
how to solve an equation, or how to simplify an expression. Therefore, in this thesis
we focus on textbooks of pure mathematics at the university level. No particular
subject is assumed, but possible examples include number theory, abstract algebra,
combinatorics, and graph theory. Such books are often, at their core, about defi-
nitions, theorem statements, and their proofs. In order for the textbook software
to produce detailed explanations of proof steps, it has to understand the proofs at
some level. Definitions, theorem statements, and proofs are usually written in some
natural language, such as English, but this makes it extremely difficult to develop
such software. The problem becomes more approachable if they are written in some
formal language instead.

Let us look at definitions first. A mathematical definition is a description that
uniquely specifies some mathematical object and gives it a name. The object can
be of several different types. It can be a constant (define e as limn→∞(1 + 1/n)n)
or a function (define the factorial ! : N → N so that 0! = 1 and n! = n(n − 1)! for
n > 0). It can even be a new class of mathematical objects, such as when we define
what is meant by a graph, a metric space, or a complex number. In this work we will
mostly focus on function definitions. Today, programming languages are the most
widely used formal languages that can be used to unambiguously define functions.
The benefit of defining functions in programming languages is that these definitions
are executable: a computer can be used to calculate the value of the function for a
given input. However, as will be shown later in this thesis, there are mathematical
functions that cannot be defined in a programming language, which means that
sometimes we need to use a more expressive definition language instead.

Next, we turn to theorem statements, which often take the form of conditional
statements. They introduce some variables, and then claim that whenever certain
hypotheses are satisfied, some conclusion will follow. Let us take Fermat’s Last
Theorem as an example. Suppose that a, b, c, n ∈ Z+. If n > 2, then an + bn 6= cn,
as proven by Andrew Wiles [53]. In this theorem, we have four variables (a, b, c,
and n) whose range is the set of positive integers, a single hypothesis (n > 2), and a
conclusion (an + bn 6= cn). To formalize conditional statements like this, we need to
define precisely what kind of variables can be introduced, what kind of statements
are allowed as hypotheses and the conclusion, and what exactly does it mean for a
conclusion to follow from the hypotheses. Conditional statements such as this are
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implicitly universally quantified, meaning that they must hold for all values in the
ranges of their variables.

Finally, when we have chosen a language for representing theorem statements, we
can choose a language for representing their proofs. Specifically, we want a language
for which there exists an algorithm that can check if a potential proof is correct or
not. In conventional mathematics, a proof that is written in English may be called
formal if it is rigorous and does not appeal to intuition, but in this work we only use
the term formal proof for proofs that are written in some special proof language.
These formal proofs do not need to be displayed to the reader as static text. It
is possible to create proof explorers : programs that can show the structure of the
proof in various ways, and provide clarification for any part of the proof that the
reader finds unclear. This is the main reason why formal proofs, in conjunction with
suitable software, have the potential to be more understandable than conventional
proofs.

1.1 Formal proofs and computers

The idea of formal proofs originated before computers, which meant that early formal
proofs had to be checked by humans. Checking formal proofs is straightforward in
principle, but it is not something humans are particularly good at. Replacing a
conventional proof with a formal proof was likely to make the proof harder to verify,
not easier. Formal proofs were mainly seen as a theoretical idea to be studied, rather
than a tool to be actually used [24].

This changed with the advent of computers: it became possible to write programs
that check formal proofs. Of course, the proof checking program might still contain
programming errors, or the computer hardware might be faulty. For this reason,
computer-verified proofs cannot give us any kind of absolute philosophical certainty,
but they do seem to work well in practice. Thomas Hales argues [21, p. 1376]:

We can assert with utmost confidence that the error rates of top-tier
theorem proving systems are orders of magnitude lower than error rates
in the most prestigious mathematical journals.

The value of computers becomes most apparent when we look at proofs that are long
and complicated. If we have read and understood the proof of the fact that

√
2 is ir-

rational, a computer-verified proof will add nothing to our feeling of certainty. There
are, however, mathematical theorems whose currently known proofs are unusually
difficult for humans to verify. Two examples, the four color theorem and the Kepler
conjecture, are presented in more detail in Sections 3.1 and 3.2, respectively. In such
cases having a formal proof instead of a conventional one can greatly increase the
confidence we can have in the result.

Formal proofs can also be used for formal verification of software, which is dis-
cussed in Section 3.3. This is particularly useful for safety-critical systems, such as
medical devices or aircraft flight control. Proof checkers used for this type of work
should be exceptionally reliable. One of the best ways to achieve this is to use a
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minimalistic system, where the number of things to be trusted is as small as possi-
ble. For example, it takes fewer than 500 lines of computer code to implement the
kernel of the HOL Light proof assistant [21, p. 1376].

The attitude taken in this work is slightly more relaxed. A textbook is not a
safety-critical system, so we are satisfied with an ordinary level of reliability. This
does not mean that we will knowingly allow false statements to be proven; it means
that it is more important to have readable proofs than to have a system that is as
minimalistic as possible. Our main goal is not to reduce the number of errors in
textbooks, but to ensure that the proofs are documented so carefully that the proof
explorer is able to explain every step.

1.2 Human-readable formal proofs

Despite the success in other areas, formal proofs are rarely used when communicating
mathematical ideas between humans. The overwhelming majority of textbooks and
research articles use conventional proofs instead of formal ones. This is despite the
fact that several potential benefits of adopting formal proofs have been listed [5].
For example, if definitions, theorem statements, and proofs in research articles were
written completely formally, then peer review could be partly automated. Referees
could spend their time assessing the originality and importance of a submission
rather than its correctness [25].

One possible explanation why formal proofs are not widely used is the fact that
writing formal proofs is harder than writing conventional proofs. As a rule of thumb,
it currently takes about one week to formalize a page of textbook-level mathematics
[26]. For research articles, the situation may be much worse. Some of this hardness is
unavoidable, since in conventional proofs one can freely cite any previously published
theorems, but in strictly formal proofs one can only use the tiny percentage of
theorems that have already been formalized.

We will focus on textbooks, because their situation looks more promising in
the short term. Textbooks typically rely on a much smaller base of existing results
than research articles, but they can still contain nontrivial and interesting proofs.
Moreover, they are written for a larger audience. Extra effort required for writing
formal proofs might be justifiable, if only the experience of reading formal proofs
can be made better than the experience of reading conventional proofs.

One of the simplest ways to make formal proofs readable is to display expressions
using standard mathematical notation instead of plain text. The person reading the
proof is likely to find

√
2 easier to read than sqrt(2), and several of the current

proof assistants provide a way to produce a typeset version of the proof with the
help of LATEX or by other means [52]. Ideally, a statically typeset proof produced by
such a program might be as readable as a conventional proof, but it could hardly
be more readable. Because of this, we will focus on interactively explorable proofs.
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1.3 Automated theorem proving

In addition to proof checking, there exists a closely related field of automated theorem
proving. A proof checker is a program that automatically checks a formal proof, but
an automated theorem prover tries to also find the proof. We will briefly look at
some successes of automated theorem proving, such as the Erdős discrepancy problem
and the Robbins conjecture in Sections 5.6 and 6.2, respectively. Some of the most
difficult formally proven theorems, such as the four color theorem and the Kepler
conjecture, have used a mixed approach, where a human expert provides an outline
of the proof, and an automated theorem prover fills in the low level details.

The system presented in this thesis contains a proof checker and a proof ex-
plorer, but no algorithms that try to search for proofs. Automated theorem provers
can make authoring of formal proofs easier, but they do not change the experience
of the reader. Therefore, they are not needed to answer the first question we should
be asking ourselves: is it possible to write formal proofs that readers prefer to con-
ventional proofs? If the answer turns out to be yes, then as the next step it would
certainly be important to try to help textbook authors write formalized textbooks
efficiently. Technically, it would be possible to use existing theorem provers in con-
junction with the system presented in this thesis, but this is not necessarily desirable.
Automatic theorem provers do not always prefer the same building blocks as human
readers would. For example, there is an influential proof system introduced by John
Alan Robinson, which is based on a single rule of inference called resolution [46].
This approach has been extremely successful for automated theorem proving, but
the resulting proofs are in a form that is not particularly illuminating for human
readers [12, p. 4].

Since we are not using formal proofs just to have a guarantee of correctness, we
would not necessarily be satisfied with the first proof that an automated theorem
prover happens to find. Instead, we are looking for a proof that a human reader
can easily follow. One possibility would be to create a theorem prover that tries to
find several proofs for a given statement, and automatically chooses the best one. It
would be easy to choose the shortest proof, but there are other desirable properties
of proofs that are not as easy to measure. As an example of this, let us consider the
Brahmagupta–Fibonacci identity. We state it for a, b, c, d ∈ Z, but it also holds in a
more general setting:

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2. (1)

This result is used when determining what natural numbers can be represented as
a sum of two squares [23]. It is a polynomial identity, and it would not be hard for
an automated theorem prover to find a proof along these lines:

(a2 + b2)(c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2

= (a2c2 − 2abcd+ b2d2) + (a2d2 + 2abcd+ b2c2)

= (ac− bd)2 + (ad+ bc)2.

Besides this, there is another proof that uses complex numbers. It is conceivable
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that an automated theorem prover could find this proof too:

(a2 + b2)(c2 + d2) = |a+ bi|2 · |c+ di|2 = (|a+ bi| · |c+ di])2

= |(a+ bi)(c+ di)|2 = |(ac− bd) + (ad+ bc)i|2

= (ac− bd)2 + (ad+ bc)2.

There are several reasons for considering the second proof to be better. It makes the
identity more memorable, and gives a plausible explanation of how one could have
discovered it. It also suggests a generalization. The identity

(a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24)

= (a1b1 + a2b2 + a3b3 + a4b4)
2 + (a1b2 − a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 − a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 − a4b1)2

is known as Euler’s four-square identity, and it can be proven (and discovered!) in
a similar way using quaternions, which are an extension of complex numbers [23].

Memorability, discoverability, and generalizability are all desirable features in a
proof, but measuring them algorithmically is challenging. This is one reason why it
would be hard to develop a theorem prover that automatically produces the kind of
proofs that human readers prefer.

1.4 Goals of this thesis

This thesis investigates the theoretical and practical aspects of producing electronic
textbooks of mathematics that contain interactively explorable formal proofs. The
outline of this thesis is as follows. In Chapter 2 we cover mathematical preliminaries
needed for later chapters. To put the work in a wider context, in Chapter 3 we look
at some examples of prior work.

In Chapter 4 we argue that no fixed language can be expressive enough for all
definitions, theorem statements, and proofs that can arise in textbooks. For this
reason, we define a theoretical framework for discussing extensible languages. In
particular, we introduce the concepts of a function definition language, a conditional
statement language, and a proof language, which will be used in later chapters.

In Chapter 5 we formalize propositional logic as the conditional statement lan-
guage PL. This language is insufficiently expressive to formalize the contents of any
realistic textbook. However, because of its simplicity, it serves as a motivating ex-
ample for later chapters. In addition, we discuss the computational and theoretical
applications of propositional logic. In Chapter 6 we define the conditional statement
language FL, which corresponds to first-order logic, and is an extension of PL. It is
needed to formalize several concepts from abstract algebra. In addition, we look at
some of the theoretical properties of first-order logic. This is particularly important
to understand its limitations, and to see why it is sometimes necessary to go beyond
first-order logic.

One common way to extend first-order logic is to move to higher-order logic.
However, as we argue in Chapter 7, it is not entirely clear what it means for a con-
ditional statement in higher-order logic to be true. This seems undesirable from a
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pedagogic point of view, so we extend first-order logic in another direction instead.
This results in a language denoted by SD. Of the commonly studied formal lan-
guages it has the most in common with second-order arithmetic. The conditional
statement language SD also comes with a function definition language for defining
new computable functions. It is the most expressive conditional statement language
in this thesis, but like PL and FL, it should not be seen as an end to itself, but as a
starting point for future extensions.

On the more practical side, in Chapter 8 we look at a proof checker and an
interactive proof explorer that were implemented as a part of this thesis project.
Their capabilities are demonstrated with an explorable proof of Bertrand’s postulate.
Finally, in Chapter 9 we make some concluding remarks.
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2 Preliminaries

In this chapter we cover mathematical preliminaries needed for later chapters.

2.1 Set theory

Familiarity with basic set theory is assumed, so in this section we will mostly cover
some notational conventions. The set of natural numbers is taken to contain the
number zero: N = {0, 1, 2, 3, . . .}. We write X ⊆ Y when X is a subset of Y , and
X ⊂ Y when X is a proper subset of Y , meaning that X ⊆ Y and X 6= Y . If X is a
set, then the power set of X, which is the set of all sets whose members belong to
X, is usually denoted by P(X). We write Set(X) instead, because it is analogous
with the notation List(X) to be introduced in Section 2.3. The set of Booleans is
denoted by B = {False,True}, and a Boolean-valued function is called a predicate.
Boolean-valued functions are sometimes called finitary relations, but we reserve the
word relation for predicates that take two inputs, such as =, <, and ∈. Universal
quantification over a set is denoted by ∀, and existential quantification over a set is
denoted by ∃. In particular, if X is a set and φ : X → B is a predicate, then we
write ∀x ∈ X : φ(x) to indicate that φ(x) = True for all x in X, and ∃x ∈ X : φ(x)
to indicate that there exists at least one x in X for which φ(x) = True.

We will also use several basic facts about the cardinality (size) of sets. Suppose
that X and Y are sets. The cardinality of X is denoted by |X|. The set of all
functions from X to Y is denoted by X → Y , and we have |X → Y | = |Y ||X|. The
sets N, Z, and Q have cardinality ℵ0, and are said to be countably infinite. A set
that is either finite or countably infinite is called countable. For all sets X, we have
|Set(X)| = 2|X| > |X|. The cardinal number |Set(N)| = |R| = 2ℵ0 is often denoted
by the letter c, which stands for the word continuum. In this work we simply refer
to it as 2ℵ0 . If 2 ≤ |X| ≤ ℵ0 and ℵ0 ≤ |Y | ≤ 2ℵ0 , then |X → Y | = |Y ||X| = 2ℵ0 . In
particular, this implies that |Q → R| = 2ℵ0 . The cardinality of arbitrary subsets of
real numbers or arbitrary real functions is |Set(R)| = |R→ R| = 22ℵ0 .

2.2 Strings

A string is a finite sequence of characters. We write strings inside quotation marks
using a monospaced font. Thus, “hi there” is a string consisting of 8 characters,
including the space between the words. The exact definition of a string depends on
the character set in use. For simplicity, we will use a fixed character set throughout
this work. The character set is a subset of the ASCII characters.
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Definition 1. The countably infinite set S consists of all strings that contain zero
or more of the following characters:

Letters: abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Digits: 0123456789

Punctuation: ()[]{},+-*/=<>^:

The space character:

Our main use for strings is the representation of mathematical expressions. For
example, the expression 2+3 can be represented by the string “2 + 3”. When doing
this for more complicated expressions, we run into two difficulties. First, the char-
acter set of S is quite limited: it is missing the Greek letters and several common
mathematical symbols, including ≤, 6=,∞, N, and ∈. Second, traditional mathemat-
ical notation includes various “two-dimensional” constructions, such as those found
in the nonsensical formula

∞∑
k=1

1

k2
>

(
n

k

)
− lim

n→∞

√
an.

Both of these problems will be handled by introducing an alternative notation for
those strings that represent mathematical expressions. To distinguish it from the
usual notation, we use single quotes instead of double quotes. For example, we could
define ‘

√
1− θ2’ as an alternative notation for the string “sqrt(1 - theta^2)”.

The original notation with double quotes corresponds to how the expressions will be
typed into the computer, so we call it the input notation. The alternative notation
with single quotes corresponds to what will be displayed to the person reading the
proof, so we call it the display notation.

It is sometimes useful to insert a string inside another. We denote this by draw-
ing a rounded rectangle around the string-valued expression whose value should
be inserted. For example, if x = “def”, then “abc x ghi” = “abcdefghi”. If no
ambiguity arises, we will use this notational device in display notation also.

The use of quotation marks for strings is uncommon in mathematics; most writers
omit them. This is feasible if the strings studied are sufficiently different from the
notation used to study them. In our case, the input notation is designed to be
completely indistinguishable from the mathematical notation we use elsewhere, so
there would be greater potential for confusion if quotation marks were left out.

2.3 Tuples and lists

We distinguish between two types of finite sequences: tuples and lists. The elements
of a tuple are written inside parentheses, as in (x1, . . . , xk), and the elements of a
list are written inside square brackets, as in [x1, . . . , xk]. Technically, two separate
types are not needed, but the typical use cases are somewhat different. Tuples are
used when the number of elements is fixed in advance, and the elements may be
of different types. Lists are used when all elements are of the same type, and the
number of elements is not fixed in advance.
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The Cartesian product of k sets produces a set of k-tuples. If X1, . . . , Xk are
sets, then (x1, . . . , xk) ∈ X1 × . . . ×Xk if and only if xi ∈ Xi for all i ∈ {1, . . . , k}.
Conventionally, 2-tuples and 3-tuples are called pairs and triples, or if the context
requires, ordered pairs and ordered triples. In this thesis we use tuples for one purpose
only: the definition of various mathematical objects. When doing so, the number of
elements is fixed in advance, and the elements are informally given names. For
example, a graph G is defined as a pair (V,E) consisting of a set of vertices V and
a set of edges E. Since this is our only use case for tuples, we do not need k-tuples
for k < 2. This is convenient, because 1-tuples could be confused with the ordinary
use of parentheses for controlling the order of evaluation.

If X is a set, then List(X) denotes the set of all lists whose elements belong to
X. For example, [2, 5, 3, 2] ∈ List(Z). We use the set membership symbol ‘∈’ for
lists as well. This defined so that y ∈ [x1, . . . , xk] if y = xi for some i ∈ {1, . . . , k}.
We have, for example, 2 ∈ [2, 5, 3, 2] and 4 6∈ [2, 5, 3, 2]. If X is a nonempty countable
set, then List(X) is countably infinite. Unlike tuples, we use lists in circumstances
where they may have less than 2 elements.

2.4 Free and bound variables

Suppose that n ∈ Z+, and let us look at the expression
n∑
k=1

k2. (2)

The value of this expression cannot depend on the value of k, since k is a bound
variable. We can think of k as a placeholder name that is introduced by the special
notation

∑
, and which does not even properly exist outside of (2). In addition to∑

, there are several other constructions that can introduce bound variables, such as
the quantifiers ∀ and ∃. In contrast to k, the value of the expression (2) can depend
on the value of n, and we say that n in (2) is a free variable. In logic, it is common
to allow the capture of variables that have already been introduced, so that every
occurrence of a variable refers to the “innermost” introduction of that variable. For
example, suppose that n ∈ Z. Then the expressions

n+
10∑
n=1

(
n2 ·

5∑
n=1

2n

)
and n+

10∑
i=1

(
i2 ·

5∑
j=1

2j

)
are equivalent. In the first expression, the first of occurrence of n is free, but the rest
are not. Allowing variable capture has some uses in logic, but it is difficult to see a
place for it in a proof that attempts to maximize readability. Therefore, at the cost
of complicating the definitions somewhat, the formal languages in this thesis forbid
variable capture.

2.5 Computability

Functions on natural numbers (Nk → N) can divided into two classes: computable
and uncomputable [49]. Intuitively speaking, a function is computable if it could



10

be implemented on an ideal computer with no limitations on time or memory. A
precise definition can be given using Turing machines [8]. The restriction to natural
numbers is inconveniently limiting for our purposes, so let us introduce the set D
(standing for data) to denote all values that will be used for inputs or outputs of
computable functions.

Definition 2. Let D be the smallest set such that Z ∪ S ∪ B ∪ List(D) ⊆ D and
(x1, . . . , xk) ∈ D for all x1, . . . , xk ∈ D.

In other words, the set D is built by starting with integers, strings, and Booleans,
and then recursively adding all lists and tuples whose members belong to D. This
allows the elements of D to be rather complex. For example, if

d =
(
−2,

[
(“x”,True), (“y”, False)

] )
, (3)

then d ∈ D. We will also need an injective function s : D → S that gives a string
encoding for all members of D. For n ∈ N, we define s(n) as the standard decimal
representation of n, so that, for example, s(314) = “314”. In more complicated
cases, such as (3), one possible string encoding would be

s(d) = “(-2, [("x", True), ("y", False)])”.

A precise definition of s is omitted. As remarked by Poonen [43, p. 2], it is not
necessary to specify the encoding as long as it is clear that a Turing machine could
convert between reasonable encodings imagined by two different readers.

Definition 3. Suppose that X1, . . . , Xk, Y ⊆ D. A function f : X1 × . . .×Xk → Y
is called computable function if there exists a Turing machine that can produce the
string s(f(x1, . . . , xk)) when given the strings s(x1), . . . , s(xk) as input.

For example, the function + : N2 → N is computable, because N ⊆ D and there
exists a Turing machine that, for any a, b ∈ N, can produce the string s(a + b)
when given the strings s(a) and s(b) as input. When given the strings “59” and
“84” as input, the Turing machine must produce the string s(59 + 84) = “143” as
output. When the sets X1, . . . , Xk, and Y are all equal to N, computable functions
are often called recursive. However, Soare gives a historical and conceptual analysis
of computability and recursion, and recommends the term computable even in this
case [49].

The set D could be extended even further, but note that the requirement of
a string encoding means that D has to be countable. Thus, the classification of
functions into computable and uncomputable does not apply to, for example, real
functions (R → R). Computable functions are very common in the sense that the
vast majority of the most commonly appearing functions are computable. From
another perspective they are very rare, since the number of functions Dk → D
is uncountable, but the number of all programs, and therefore, the number of all
computable functions, is only countable.

Having dealt with functions, we will now define what is meant by computable
and computably enumerable sets. Just as with computable functions, both of these
concepts are often defined only for subsets of natural numbers, but we adopt an
extended definition by defining them as subsets of D.
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Definition 4. A set S ⊆ D is computable if its characteristic function φ : D → B,
φ(x) = (x ∈ S) is a computable function.

As an example, Z+ ⊆ D and the set s(Z+) = {“1”, “2”, “3”, . . .} consists of all
nonempty strings whose all characters are digits, and the first character is not “0”. It
is possible to write a computer program that checks for this, so Z+ is a computable
set.

Definition 5. A set S ⊆ D is computably enumerable (c.e.) if we have S = ∅ or
S = f(N) = {f(0), f(1), f(2), . . .} for some computable function f : N→ D.

Computable and computably enumerable sets can also be called recursive and
recursively enumerable sets, or decidable and semidecidable sets. In Definition 5, we
can think of the function f as an infinitely running computer program that generates
a stream of values (f(0), f(1), f(2), . . .), and S as the set of all values that f will
generate at least once. After the program has generated the values f(0), . . . , f(n) for
some n ∈ N, we know that at least these values belong to the set S. For any other
value in D we do not know in general if it is a value that will eventually appear, or
a value that never will.

We state without proof a few basic properties of computable and computably
enumerable sets. The first three are straightforward to prove, but would require us
to specify an explicit string encoding. The remaining properties are standard results,
whose proofs can be found in [8].

1. The sets Z+, N, Z, S, and B are computable sets.

2. If S ⊆ D is a computable (respectively, c.e.) set, then List(S) is a computable
(resp., c.e.) set.

3. If S1, . . . , Sk ⊆ D are computable (resp., c.e.) sets, then S1 × . . . × Sk is a
computable (resp., c.e.) set.

4. If S ⊆ D is a computable (resp., c.e.) set and φ : S → B is a computable
function, then the restriction {x ∈ S | φ(x)} is a computable (resp., c.e.) set.

5. If S ⊆ D is finite, then it is a computable set.

6. If S ⊆ D is a computable set, then it is also a computably enumerable set.

7. Suppose that S ⊆ T ⊆ D, and that T is a computable set. If S and T \ S are
computably enumerable sets, then both are also both computable sets.

2.6 Operations and relations

A function f : A × B → C with two inputs is called a binary function. There
are several binary functions that traditionally use infix notation: instead of writing
f(a, b) we choose some symbol ?, and write a?b instead. Two important special cases
include binary operations and relations. A relation, as we have already defined, is a
predicate with two inputs, or in other words, a function of the type A × B → B.
We give two different definitions of a binary operation. A binary operation in the
strict sense is a function of the type A2 → A [6, p. 38]. This does not quite capture
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all common use of the word operation. Matrix multiplication, function composition,
and dot product, which are listed in Table 1, are often called operations although
they do not satisfy the strict definition. Therefore, we define a binary operation in
the extended sense to be any binary function that is not a relation. One reason why
the distinction between operations and relations is important is that chaining works
differently for them. If ? is an operation, then the expression a ? b ? c is equivalent
to (a ? b) ? c, or sometimes a ? (b ? c). If ∼ is a relation, then a ∼ b ∼ c is equivalent
to saying that both of the statements a ∼ b and b ∼ c are true.

A binary operation ? is associative if (x ? y) ? z = x ? (y ? z) for all x, y, and
z. If an operation is associative, we can drop the parentheses, and write x ? y ? z
without ambiguity. The way that mathematicians generally use the term associative
is not entirely consistent. The standard definition of associativity is given for the
strict definition of a binary operation, since having a function of type A2 → A
guarantees that both (x?y)?z and x?(y?z) are defined. Despite this, mathematicians
also use the word associative for binary operations in the extended sense, such as
for matrix multiplication and function composition. This remark does not directly
affect the remainder of this thesis, because all binary operations to be used later
are binary operations in the strict sense, but it serves as an example of a more
general phenomenon. Formal textbooks have to be more careful with definitions
than traditional textbooks, since they cannot contain anything that is technically
incorrect even in a relatively harmless way. A formal textbook cannot define the
term associative in the strict sense, and then use it in the extended sense. This
implies that formal textbooks cannot always use the same definitions that are given
in traditional textbooks.

Chaining of binary relations works even if the relations are not the same. Suppose

that we have the relations
1∼ : A×B → B and

2∼ : B×C → B. If (a, b, c) ∈ A×B×C,

then a
1∼ b

2∼ c is an abbreviation of (a
1∼ b) and (b

2∼ c). It is best not to overuse
the chaining of different relations. As a somewhat extreme example, the statement
0 ≤ 1 < 2 = 2 ∈ Z ⊂ Q ⊆ R 6= C has seven different relations chained together, but
readability begins to suffer.

Name Symbol Associative Type

Addition of real numbers + Yes R× R→ R
Subtraction of real numbers − No R× R→ R
Multiplication of real numbers · Yes R× R→ R
Union of sets ∪ Yes Set(τ)× Set(τ)→ Set(τ)
Intersection of sets ∩ Yes Set(τ)× Set(τ)→ Set(τ)
Multiplication of real matrices · Yes Rk×m × Rm×n → Rk×n

Function composition ◦ Yes (β → γ)× (α→ β)→ (α→ γ)
Dot product · N/A Rn × Rn → R

Table 1: Common binary operations. Note that different operations sometimes use
the same symbol.
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2.7 Logical operations and relations

The functions ∨,∧,→,↔ : B2 → B and ¬ : B→ B are defined as follows [40, p. 12]:

Name Symbol Read as Definition

Disjunction ∨ “or” If p = q = False, then (p ∨ q) = False.
Otherwise, (p ∨ q) = True.

Conjunction ∧ “and” If p = q = True, then (p ∧ q) = True.
Otherwise, (p ∧ q) = False.

Negation ¬ “not” (¬False) = True
(¬True) = False

Conditional → “implies” If p = False, then (p→ q) = True.
Otherwise, (p→ q) = q.

Biconditional ↔ “if and only if” If p = q, then (p↔ q) = True.
Otherwise, (p↔ q) = False.

The functions ∨ and ∧ have a higher precedence than→ and↔, and the function
¬ has a higher precedence than ∨ and ∧. For example, if p, q, r ∈ B, then p→ q ∧ r
means p→ (q ∧ r) rather than (p→ q) ∧ r, and ¬p ∧ q means (¬p) ∧ q rather than
¬(p ∧ q). The functions ∨ and ∧ have equal precedence, so p ∧ q ∨ r must written
either as (p ∧ q) ∨ r or as p ∧ (q ∨ r) to clarify which one is meant. The function
↔ can be seen as a special case of equality (=). In many formalisms, such as the
propositional and first-order logics introduced in Chapters 5 and 6, respectively, the
use of = for Booleans is not even allowed, and ↔ must be always used instead.
Programming languages, on the other hand, tend to use the same equality symbol
for Booleans as well.

There are several logical equivalences that can be used for manipulating expres-
sions that contain ∨, ∧, ¬, →, and ↔. The following statements are true for all
p, q, r ∈ B:

(L1) (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) (L2) (p ∧ q) ∧ r ↔ p ∧ (q ∧ r)
(L3) p ∨ q ↔ q ∨ p (L4) p ∧ q ↔ q ∧ p
(L5) p ∨ (p ∧ q)↔ p (L6) p ∧ (p ∨ q)↔ p
(L7) p ∧ (q ∨ r)↔ (p ∧ q) ∨ (p ∧ r) (L8) p ∨ (q ∧ r)↔ (p ∨ q) ∧ (p ∨ r)
(L9) p ∨ ¬p↔ True (L10) p ∧ ¬p↔ False
(L11) (p↔ (q ↔ r))↔ ((p↔ q)↔ r) (L12) (p→ q)↔ ¬p ∨ q

A straightforward way to verify any of these equivalences is to check the statement
for all 23 = 8 combinations of values that the variables p, q, and r can have.

The functions ∨,∧,→,↔ : B2 → B can be regarded as binary operations in the
strict sense, since they are of the form A2 → A. However, they can also be regarded
as relations, since they are of the form A × B → B. Therefore, if we want to allow
chaining, we must first decide which mode of chaining we want to use. If we decide
that the chaining of ? : B2 → B works like an operation, then p ? q ? r is equivalent
to (p ? q) ? r. If we decide that it works like a relation, then p ? q ? r is equivalent
to (p ? q) ∧ (q ? p). In this work we chain ∨ and ∧ as operations, and → and ↔ as
relations. Correspondingly, we call ∨ and ∧ logical operations, and → and ↔ logical
relations.

As noted in the property (L11), the function ↔ : B2 → B is associative, so we
might have also chosen to chain it as an operation. However, if we think of ↔ as
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a special case of =, it makes more sense to define it as a relation. Chaining ↔
as a relation allows us to support chains of equivalences, where p1 ↔ . . . ↔ pn is
an abbreviation of (p1 ↔ p2) ∧ . . . ∧ (pn−1 ↔ pn). In particular, this means that
(True ↔ False ↔ False) is false. If we defined ↔ as an associative operation
this would be true instead.

If ↔ is treated as a logical relation, then it seems natural to handle → in the
same way. Just as with ordinary relations, the logical relations → and ↔ can be
mixed. This means, for instance, that if a, b, c, d ∈ B, then we take a↔ b→ c↔ d
to be equivalent to (a↔ b) ∧ (b→ c) ∧ (c↔ d). Incidentally, if ↔ can be seen as a
special case of =, then → could be seen as a special case of ≤ with the convention
that False < True. Therefore, the situation is analogous to how we would read
a = b ≤ c = d as being equivalent to (a = b) ∧ (b ≤ c) ∧ (c = d).

2.8 A language for exponentiation

Before giving a more general picture of formal languages in Chapter 4, we will
define a simple statement language EX in order to introduce several key concepts.
This language is intended to formalize simple statements about the exponentiation of
positive integers, such as 23 = 8 (a true statement) and 52301 = 4 (a false statement).
These statements will be formalized by the strings “2^3 = 8” and “52^301 = 4”,
but in display notation we can abbreviate these to ‘23 = 8’ and ‘52301 = 4’. To
distinguish mathematical statements from their formal representations as strings,
the strings are called formulas.

Definition 6. (A special case of Definition 14) A statement language L = (FL, |=L)
consists of a computable set of strings FL ⊆ S and a predicate |=L : FL → B. The
members of FL are called formulas of L. If φ ∈ FL, then |=L φ can be read as “the
formula φ is true in the language L.”

When we define the set of formulas FL, we are defining the syntax of L. When we
define the predicate |=L, we are defining the semantics of L. In linguistics, semantics
is the study of what languages mean (or refer to), and natural languages can refer
to a wide variety of things: think, for example, of the terms Napoleon, green, justice,
physics, and Sherlock Holmes. The languages studied in this thesis only refer to
mathematical objects, such as integers, lists, sets, and functions. Accordingly, we
use semantics as a purely technical term that has a precise mathematical meaning.

We are now ready to define the statement language EX. Again, for n ∈ N let s(n)
be the standard decimal representation of n, so that, for example, s(314) = “314”.

Definition 7. (Syntax of EX) The set FEX consists of all strings that are of the
form “ s(a) ^ s(b) = s(c) ” for some a, b, c ∈ Z+. In display notation we write

such strings as ‘ s(a)
s(b)

= s(c) ’.

Thus, the strings “2^3 = 8” and “52^301 = 4” are formulas of EX, and they
can be written in display notation as ‘23 = 8’ and ‘52301 = 4’. This illustrates how
display notation can handle the superscripts used in exponentiation. We will now
define the semantics of EX.
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Definition 8. (Semantics of EX) If s ∈ FEX, then s = ‘ s(a)
s(b)

= s(c) ’ for certain
values a, b, c ∈ Z+. The predicate |=EX : FEX → B is defined so that |=EX s if and
only if ab = c.

Using Definition 8, we can conclude that since 23 = 8, we have |=EX ‘23 = 8’.
This conclusion may seem close to circular, so it may be in order to say a little
more of the purpose of Definition 8. When dealing with formal languages it is im-
portant not to confuse the language we are studying (the object language) with the
language we are using to study it (the metalanguage or the observer’s language).
The metalanguage used throughout this work is the language of standard symbolic
mathematical notation. To be a bit more concrete, we will call it the language of set
theory, since sets can be used to represent numbers, strings, lists, tuples, functions,
and all other objects we will be working with. Therefore, we can say that 23 = 8 is
a (true) statement of set theory, although it does not explicitly mention sets at all.

The object language we are studying in this section is the language EX, whose
syntax and semantics were defined by using the language of set theory. From the
point of view of set theory, formulas of EX are merely strings, and are not considered
true or false by themselves. However, the predicate |=EX classifies certain formulas,
such as ‘23 = 8’, as true, and others, such as ‘52301 = 4’, as false.

It may be helpful to think of the predicate |=EX as a combination of two things.
When it is given the formula ‘23 = 8’ it first translates it into the mathematical
statement 23 = 8. If the formula were written in input notation, then this translation
would be more visible, but in display notation the translation can be done by simply
dropping the quotation marks. Second, this statement is evaluated to produce the
value True. The reason why we cannot break this single predicate down into two
independent functions is that mathematical statements, unlike strings or Booleans,
are not something that set-theoretical functions take as an input or produce as an
output.

23 = 8

statements

‘23 = 8’

formulas

True

Booleans

|=EX

The relationship between EX and set theory is somewhat unusual. We could say
that the language EX is, both syntactically and semantically, a sublanguage of the
language of set theory: syntactically in the sense that every formula of EX in display
notation can be read as meaningful statement of set theory, and semantically in the
sense that the formula is true in EX if and only if the corresponding statement is
true in set theory. This will be made more precise in Chapter 4.

2.9 Ambiguity in set theory

The language EX is relatively simple, and it is clear that every syntactically valid
formula of EX has an unambiguous truth value. It is far more problematic to assume



16

that in the language of set theory every syntactically valid statement without free
variables has an unambiguous truth value. In particular, the language of set theory
can quantify over very large sets, such as Set(R) and R → R, and this can cause
problems when trying to interpret the statements of set theory. We will look at two
questions that shed some light on this matter:

1. Does Cauchy’s functional equation have nonlinear solutions? In other words,
suppose that f : R → R and f(x + y) = f(x) + f(y) for all x, y ∈ R. Does
there exist such an f that is not of the form f(x) = ax for some a ∈ R?

2. Does there exist a set X ⊆ R such that ℵ0 < |X| < 2ℵ0?

A precise treatment of these questions is far beyond the scope of this thesis, so they
will only be presented briefly. It follows from the axiom of choice that Cauchy’s
functional equation does have nonlinear solutions, but all of these functions are
necessarily non-measurable [28]. In 1938 Gödel defined a model of Zermelo–Fraenkel
set theory called the constructible universe, and showed that the axiom of choice is
true in this model [14]. But as shown by Solovay (1970), there also exists a model of
Zermelo–Fraenkel set theory in which all real functions are measurable [50]. Roughly
speaking, we can assume that nonlinear solutions to Cauchy’s functional equation
exist, and this does not lead to any inconsistency, but not a single specific example
of such a function can be given. It seems fair to say that it is not entirely obvious
what does it mean for such functions to “exist”.

As for the second question, the assumption that such a set X does not exist is
known as the continuum hypothesis, and it was posed by Cantor in 1878. Through
the work of Gödel (1940) and Cohen (1963) in particular, it is now known that
this question is not settled by any usual axiomatizations of set theory, including
Zermelo–Fraenkel set theory, the axiom of choice, and several large cardinal axioms
[54]. In this case it seems even less clear what does it mean for such a set to “exist”.
Feferman has argued that the continuum hypothesis is not a definite mathematical
problem [11]. Roughly speaking, we could argue that there may be several different
“flavors” of existence, and the two questions above are ambiguous, because we have
not explicitly said which flavor of existence the quantifier ∃ is referring to.

Modern set theory studies and even embraces phenomena like this, but we are
simply trying to keep the theoretical foundations of formalized textbooks as simple
as possible. Therefore, we only need a rule of thumb that allows us to recognize po-
tentially ambiguous statements. Both of these examples are characterized by quan-
tification over a set whose cardinality is larger than 2ℵ0 . In the first question we
quantify over the set (R→ R), and in the second question X ⊆ R is technically an
abbreviation of X ∈ Set(R), so we quantify over Set(R). Therefore, let us make
the following simplistic assumption:

If a set-theoretic statement without free variables does not quantify
over sets larger than 2ℵ0 , then it is unambiguously true or false.

(4)

Note that it is still possible for statements that quantify over larger sets to be
unambiguous; we just do not assume a priori that they are. It is beyond the scope
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of this thesis to discuss assumption (4) in detail, but for related technical details,
see [54] for an argument on why there exist axioms for H(ω1) that are as canonical
as those of number theory.

The formal languages discussed in this thesis handle the problem of ambiguity
in set theory by not using its full expressive power. Instead, they have syntactical
limitations that make it impossible for the truth values of statements to depend on
quantification over sets whose size is larger than 2ℵ0 . This makes it impossible to
state either of the two example problems given in this section. One possible way of
approaching them is to formulate variations where arbitrary subsets and arbitrary
real functions by some of their smaller subclasses. The number of continuous real
functions is only 2ℵ0 , because |Q → R| = 2ℵ0 , and a continuous real function is
uniquely specified by its values on rational numbers. This restriction settles the first
problem: all continuous solutions to Cauchy’s functional equation are linear [28].
Similarly, the cardinality of all closed subsets of R is only 2ℵ0 , because |Set(Q)| =
2ℵ0 , and every closed set in R is uniquely specified by the rational numbers it does
not contain. This restriction settles the second problem: if X ⊆ R is closed, then
either |X| ≤ ℵ0 or |X| = 2ℵ0 . This result is a corollary of the Cantor–Bendixson
theorem [29, p. 34].
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3 Prior work

In this chapter we look at a few examples of prior work related to formal proofs. In
Sections 3.1 and 3.2 we look at the four color theorem and the Kepler conjecture,
respectively. The known proofs of these theorems are unusually difficult for humans
to verify, so they serve as examples of situations where having a formal proof can
greatly increase our confidence in the results. Moreover, if it is feasible to formalize
proofs that are as difficult as these, then the comparatively simple proofs in text-
books should be formalizable as well. By using these examples we can argue that
the biggest open question about formalized textbook proofs is if they can be written
to be readable, not if they can be written at all.

In Section 3.3 we discuss the applications of formal proofs to the formal veri-
fication of computer programs. In Section 3.4 we look at Metamath, which is an
existing example of an interactive proof explorer. Finally, in Section 3.5 we look at
the human-style automated theorem prover by Ganesalingam and Gowers, and see
how it relates to our current efforts.

3.1 Four color theorem

A simple planar map consists of regions : connected and open subsets of R2 that
are pairwise disjoint. The four color theorem states that it is always possible to
color a simple planar map with only four colors in such a way that adjacent regions
have different colors. Some care is required to state precisely what it means for two
regions to be adjacent. If we divide a circle to n sectors, then all sectors touch each
other at the center of the circle, but they are not all adjacent in the sense meant by
the four color theorem. To rule out cases such as this, a corner is defined as a point
that belongs to the closure of at least three regions, and two regions are adjacent if
their closures have a common point that is not a corner [15, p. 3].

The statement of the four color theorem allows for the number of regions to be
infinite, but as will be shown in Section 5.7, if there were an infinite counterexample
to the four color theorem, then there would have to be a finite counterexample as
well. The basic strategy for proving the four color theorem is to assume that there
exists a counterexample that is minimal in some sense, and use it to prove that
there has to be a counterexample that is even smaller. Since this contradicts the
assumption of minimality, we can conclude that the four color theorem has to be
true. As a simple example, a counterexample with the least number of regions cannot
contain a region that only has three neighbors. If there is a way to color the other
regions using four colors, then we can choose a color that is not used by any of the
three neighbors. If there is no way to color the other regions using four colors, then
the counterexample is not minimal.

The four color theorem was proved in 1976 by Appel and Haken [3]. They listed a
total of 1936 reducible configurations, and with the help of a computer, showed that
none of them can appear in a minimal triangulated counterexample. To complete
the proof, they laboriously verified by hand—in over 400 pages—that a minimal
counterexample would have to contain at least one of these reducible configurations.
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In 2005 Werner and Gonthier presented a complete formal proof of the four color
theorem using the Coq proof assistant [15]. Even though the original proof also used
a computer, it used it in a very different way. To verify the original proof one has
to check hundreds of pages of case analysis, and all of the computer code. To verify
the formal proof, it is only necessary to check the definitions and the statement of
the theorem, and to run the proof checker.

3.2 Kepler conjecture

If we want to pack an infinite number of identical circles densely, two configurations
quickly come to mind. We can tile the plane with either squares or regular hexagons,
and put an inscribed circle inside each polygon. Routine calculations show that the
density (proportion of the plane covered by circles) achieved by these packings is
π/4 ≈ 0.79 for squares and π/

√
12 ≈ 0.91 for hexagons.

If we want to pack an infinite number of identical spheres densely, we could do
it by taking infinite cubic or hexagonal layers, and stacking them together as closely
as possible. If we use hexagonal layers, then the spheres on a single layer are packed
more densely, but if we use cubic layers, the distance between two consecutive layers
will be smaller. It turns out that in both cases the density is equal to π/

√
18 ≈

0.74. Kepler conjectured in 1611 that this is the highest density possible for any
arrangement of spheres. The special case that this the highest density achievable by
a lattice was proven by Gauss in 1831, but the case for irregular packings remained
open [18].

Thomas Hales announced a proof of the Kepler conjecture in 1998, and submitted
it to the Annals of Mathematics. A team of referees was assigned to it, and the proof
was under review for five years [19] before it was accepted for publication [20]. But
even at this point, the referees were not completely convinced. In a letter of qualified
acceptance for publication, an editor described the process [21]: “The referees put a
level of energy into this that is, in my experience, unprecedented. . . . They have not
been able to certify the correctness of the proof, and will not be able to certify it
in the future, because they have run out of energy to devote to the problem.” As a
result, in early 2003 Hales launched an ambitious project called Flyspeck in order to
completely formalize the proof of the Kepler conjecture. Completion of the project
was announced in August 2014, and an official report of the completed project was
published in January 2015 [22].
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The complete formal proofs of the four color theorem and the Kepler conjecture
are both examples of proofs that are significantly more difficult than the proofs
that are typically found in textbooks. They are not given as examples of the kind of
proofs that electronic textbooks should contain, but they do show that even difficult
proofs can be formalized. The question that remains is if those formal proofs can be
made readable.

3.3 Program correctness

Let us suppose that we have written a computer program. Our goal is, of course, that
the actual operation of the program corresponds to what we intended the program
to do. It is often useful to split this large goal into three smaller subgoals. We should
write, in addition to the program itself, a formal specification that describes what
the program is supposed to do. Our first goal is to make sure that the specifica-
tion captures our original intentions, and naturally, this can be only done by careful
thinking and introspection. The second goal is to make sure that the program, if run
on an ideal computer, would satisfy the specification. This part is completely math-
ematical, and all mathematical methods—including computer-verified proofs—are
available. The third and final goal is to make sure that the actual physical computer
we are using corresponds to our idealized model of it. This includes trying to make
sure that no errors are caused by the compiler, the operating system, or the hard-
ware. Because of the involvement of hardware, this last part is necessarily somewhat
empirical. These three goals and their methods of verification are illustrated in Fig-
ure 1. We will focus on the mathematical part of checking that a program satisfies
a specification. A program that satisfies its specification is considered to be correct,
and a proof of this is called proof of correctness.

Intention

Specification Program

Actual operation

by introspection

mathematically

empirically

Figure 1: The formal specification should capture the intention, the program should
implement the specification, and the actual operation of the physical machine should
be faithful to the idealized mathematical model of it.



21

The proofs of correctness that are typically found in mathematical textbooks are
somewhat different than the proofs that are usually found in other applications. For
the purposes of this thesis, we can roughly divide formal specifications into three
classes:

1. The specification uniquely identifies a mathematical function that the program
must implement.

2. The program has to implement some mathematical function, but the specifi-
cation does not identify it uniquely.

3. The execution of the program must have observable effects beyond returning
a value. It is not simply an implementation of a mathematical function.

Much of the work on proofs of correctness is focused on the third class. In contrast,
the proofs of correctness that appear in textbooks are most likely to belong to the
first or second class, with the first class being most common. As an example from the
first class, suppose that we wish to implement a membership predicate for the set of
prime numbers {2, 3, 5, 7, 11, . . .}. As a formal specification, define IsPrime : Z+ → B
so that

IsPrime(n) =
(
n 6= 1 ∧ ¬(∃a, b ∈ Z+ : a > 1 ∧ b > 1 ∧ ab = n)

)
. (5)

One straightforward—and very inefficient—implementation of this function in the
programming language Haskell is

IsPrime n = n > 1 && and [n ‘mod‘ k /= 0 | k <- [2..n-1]]. (6)

A proof of correctness is, then, a mathematical proof that (6) implements the
function defined by (5). The specification is not actually very useful in this case,
since the implementation is almost as simple as the specification. The value of having
a separate specification becomes clearer when the implementation is much more
complicated than the specification. When using a more sophisticated algorithm, such
as the polynomial time AKS primality test [1], the correctness of the implementation
becomes a nontrivial theorem.

Efficient multiplication of large integers is another example of a problem where
having a separate specification is clearly useful. The specification of integer multi-
plication is trivial, but a state-of-the-art implementation can be quite complex. The
GMP arithmetic library adaptively employs seven different algorithms for integer
multiplication depending on the sizes of the multiplicands [17, p. 93].

As an example from the second class, a C compiler is a program that translates
programs written in the programming language C into machine code. There are
several acceptable ways of doing this translation. A formal specification of a C com-
piler should not demand any particular output, but only insist that the translated
program is faithful to the original. This requires a formal mathematical description
of both the C programming language and the machine code.

CompCert is a formally verified C compiler that has been developed using the
Coq proof assistant [35]. The advantage of formal verification is particularly clear
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when it comes to compiler optimization. Compilers usually perform various transfor-
mations to the program in order to make the resulting code as efficient as possible.
However, it is extremely difficult to make sure that these transformations and their
various combinations do not cause errors in any circumstances. For this reason,
safety-critical software is commonly compiled with all optimizations turned off [9,
p. 9]. Since CompCert is formally verified, it can achieve extremely high levels of
reliability even with optimizations turned on. The effectiveness of this approach
has been confirmed by Yang et al. [55], who created a program called Csmith that
generates random C programs in order to find bugs in compilers. They report: “As
of early 2011, the under-development version of CompCert is the only compiler we
have tested for which Csmith cannot find wrong-code errors. This is not for lack of
trying: we have devoted about six CPU-years to the task.”

3.4 Metamath

Metamath is a minimalistic language for formalizing mathematical definitions and
proofs [39]. It is based on first-order logic, which will be covered in more detail in
Chapter 6. One interesting implementation detail is that the proofs are readable as
web pages, and the proofs of the theorems are hyperlinked. The complete Metamath
system can therefore be considered to be an interactive proof explorer. The Meta-
math website contains over 12 000 formal proofs based on the ZFC axioms of set
theory.

Because of the simplicity of the design, the proof checker is easy to implement
and understand. As a drawback, this means that the proofs are quite low level.
Most of the visible steps in the proof of the Euler’s identity in Figure 2 are quite

Figure 2: An explorable proof of the Euler’s identity eiπ + 1 = 0 in Metamath.
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trivial manipulations. Due to its low level proofs, Metamath may be a good tool
for explaining what is meant by a formal proof in first-order logic, but at the same
time it is not as good for documenting the proofs in human-readable form. Intuitive
understanding of why eiπ + 1 = 0 is true may be hard to achieve by reading a proof
such as the one displayed in Figure 2.

3.5 Human-style theorem proving

Ganesalingam and Gowers have developed an automated theorem prover that gener-
ates human-style output. The following proof is an example of the output generated
by the program [12]:

Theorem 1. If f : X → Y is a continuous function and U is an open subset of Y ,
then f−1(U) is an open subset of X.

Proof. Let x be an element of f−1(U). Then f(x) ∈ U . Therefore, since U is open,
there exists η > 0 such that u ∈ U whenever d(f(x), u) < η. We would like to find
δ > 0 s.t. y ∈ f−1(U) whenever d(x, y) < δ. But y ∈ f−1(U) if and only if f(y) ∈ U .
We know that f(y) ∈ U whenever d(f(x), f(y)) < η. Since f is continuous, there
exists θ > 0 such that d(f(x), f(y)) < η whenever d(x, y) < θ. Therefore, setting
δ = θ, we are done.

The program needs two key features to achieve this. First, it clearly needs an
algorithm that converts proofs from some internal representation to English prose.
Second, and more subtly, the proofs found by the program have to structurally
resemble proofs that humans would write.

Both of these features are potentially relevant for formal proofs in textbooks. The
ability to automatically find human-style proofs could be useful for the author of the
textbook, since this would mean that the computer could automatically generate
the low-level parts of the proof. Even so, the textbook author should review the
generated proof. If the author is not satisfied with the automatically generated
proof, he or she can modify it, or discard it altogether and write a new proof. The
proof of the Brahmagupta–Fibonacci identity (1) in Section 1.3 was an example of
a situation where it would be hard for a theorem prover to automatically find the
proof that the author preferred.

The ability represent mathematical statements in English may also be useful. A
symbolic mathematical statement, such as ¬IsPrime(2k), can be expressed in English
as “2k is not prime”. The difference is not large, and somewhat a matter of opinion,
but familiarity might make the option “2k is not prime” slightly more preferable.
The human-style theorem prover of Ganesalingam and Gowers goes further by using
English to represent not only mathematical statements, but also their proofs.

The proof explorer presented in Chapter 8 uses methods like this to convert
symbolic statements to their English equivalents, but it does not present proofs as
prose. It seems almost certain that the conventional way of writing proofs as para-
graphs of text has been influenced by the need to save space in printed books. This
does not apply to electronic textbooks in the same way, and different possibilities
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for displaying the proofs ought to be explored. At the same time, the use of prose
proofs in the development of the human-style theorem provers is easily justified. A
human-style theorem prover should be evaluated by the proofs that it produces, and
comparisons between computer-generated proofs and proofs written by humans are
much easier, if the computer writes proofs in the same format as humans currently
do.
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4 A framework for extensible languages

The formal contents of a textbook consist of definitions, theorem statements, and
proofs, and in this chapter we define an extensible framework for discussing the
formal languages that are needed to express them. For simplicity, we assume that
all definitions in the textbook are function definitions, and that all theorems state-
ments are conditional statements. We then introduce function definition languages,
conditional statement languages, and proof languages in Sections 4.1, 4.2, and 4.3,
respectively.

All three of these need some notion of extensibility. As an example, the number
of definable functions in any particular function definition language is countable,
but the number of all possible functions is not. Therefore, it is not possible to find a
fixed language that is adequate for defining all functions that the textbook author
might need to define.

The concept of a conditional statement language forms the basis for Chapters 5,
6, and 7. In Chapter 5 we formalize propositional logic as the conditional statement
language PL, and in Chapter 6 we do the same for first-order logic, and end up
with the conditional statement language FL, which is an extension of PL. Finally, in
Chapter 7 we extend FL further by defining the conditional statement language SD,
which is related to second-order arithmetic. Like all conditional statement languages,
SD has its limitations, and depending on the textbook it may be necessary to extend
SD even further by adding new features to it. One of the benefits of having an explicit
framework for extensions is that it ensures that new features cannot interfere with
the existing ones in SD.

4.1 Function definition languages

There are several kinds of mathematical objects that we may want to define, but
for simplicity, this thesis will focus on functions. Let us assume that we are working
on with some large set U , which contains all possible inputs and outputs of the
functions that our language is able to define.

Definition 9. If U is a set, then Func(U) is the set that consists of all functions
X1 × . . .×Xk → Y where k ∈ N and X1, . . . , Xk, Y ⊆ U .

Before defining formally what is meant by a function definition language, let us
look at a motivating example. Define square : Z→ Z so that for all n ∈ Z we have
square(n) = n · n, and squareSum : List(Z) → Z so that for all x1, . . . , xn ∈ Z we
have squareSum([x1, . . . , xn]) = square(x1) + . . . + square(xn). We will now restate
these definitions in a formal language, which in this case is a simple programming
language. This example also demonstrates that having a separate notation for input
and display is possible for programs also. Here “=”, or ‘←’ in display notation, is
used as the variable assignment operator.
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square : Int -> Int

square(n):

return n * n

squareSum : List(Int) -> Int

squareSum(list):

a = 0

for x in list:

a = a + square(x)

return a

square : Z→ Z
square(n):

return n · n

squareSum : List(Z)→ Z
squareSum(list):

a← 0
for x in list :

a← a+ square(x)
return a

A function definition language should capture the idea that these lines of code
are syntactically valid, and that they implement the mathematical functions square
and squareSum. The character set used for the set of strings S does not contain a
character for changing lines (the newline character), but we can easily represent a
multi-line function definition as a list of strings, where each string corresponds to a
single line. These two definitions will be represented as a list of lists of strings.

Let [d1, d2] ∈ List(List(S)) be a list containing the two definitions above, so
that, for example, the first string in the list d1 is “square : Int -> Int”. To
formalize the idea of a function definition language L, we first need a set FL ⊆
List(List(S)) so that the statement [d1, d2] ∈ FL indicates that these definitions
are syntactically valid. Second, we need a function SL : FL → List(Func(U)) so
that S([d1, d2]) = [square, squareSum]. Finally, we should require that the logical
ordering of the definitions is respected: if [d1, . . . , dn] is a list of function definitions,
then the syntactical validity or semantics of di, where i ∈ {1, . . . , n − 1}, cannot
depend on any later definition dj, where j ∈ {i+ 1, . . . , n}.

Definition 10. A function definition language L = (FL,SL) on the set U consists of
a nonempty computable set FL ⊆ List(List(S)) (the syntax of L), and a function
SL : FL → List(Func(U)) (the semantics of L). Let d = [d1, . . . , dn] ∈ FL. The
length of the list SL(d) must also be n, so that we can write SL(d) = [s1, . . . , sn].
In addition, it must be the case that if k < n, then we have [d1, . . . , dk] ∈ FL and
SL([d1, . . . , dk]) = [s1, . . . , sk].

It follows from the above definition that [ ] ∈ FL for all function definition
languages L. There exists a unique language L where [ ] is the only member of
FL. This is called the empty function definition language, and it corresponds to the
case where no new functions can be defined.

Very little has been assumed about function definition languages, but a simple
counting argument can show that no fixed function definition language can be ex-
pressive enough for all purposes. If U is infinite, then the number of all possible
functions Func(U) is uncountable. However, the set List(List(S)) is only count-
ably infinite, so the number of different functions that a function definition language
can represent is always countable.

If textbooks use different languages in an uncoordinated way, this can lead to
a situation where the same notation is used for subtly different things. This can
cause unnecessary confusion to the readers. Traditional textbooks are already guilty
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of this: as a trivial example, some authors use the symbol N to refer to the set
of nonnegative integers {0, 1, 2, . . .}, and others use it refer to the set of positive
integers {1, 2, 3, . . .}. We could argue that in an ideal world mathematicians would
standardize their notation to prevent this.

However, even in an ideal world we cannot assume that all textbooks would use
exactly the same function definition language, because no fixed language can be
expressive enough for all mathematics. Despite this, there is no reason why different
textbooks would have to use incompatible languages.

Definition 11. Suppose that L and K are function definition languages, where
FL ⊆ FK and SL(d) = SK(d) for all d ∈ FL. Then L is a sublanguage of K, or
alternatively, K is an extension of L.

As a thought experiment, we could imagine a standardization organization that
is in charge of maintaining a function definition language. This organization would
occasionally release new versions of the language in such a way that the new function
definition language Ln+1 is always an extension of the previous version Ln. This
would lead to a sequence of versions (L1, L2, L3, . . .). New versions can add useful
new features to the language, but they can also add complexity. However, because
of compatibility, different authors can safely choose different sublanguages of the
latest language version Ln.

4.2 Conditional statement languages

For the purposes of this thesis it is assumed that theorems in mathematical textbooks
are conditional statements that consist of three parts: the introduction of variables,
zero or more hypotheses that the variables must satisfy, and a conclusion that follows
from the hypotheses for all values of the variables. To make the formal definitions
easier to follow we start with an example from the conditional statement language
SD that is defined in Chapter 7.

A range declaration is a string that, informally speaking, introduces one or more
variables, and gives them a range of possible values. The string “x, y in Int” =
‘x, y ∈ Z’ is a range declaration in SD, and it introduces variables x and y that
can have any integer values. Zero or more range declarations specify a statement
language, which consists of all syntactically valid statements. These statements can
contain those free variables that have been declared by the range declarations. As
before, the statements of the object language are called formulas in order to distin-
guish them from the statements of the metalanguage. As an example, the range
declaration ‘x, y ∈ Z’ specifies a particular statement language, and the string
“x + y = 8” = ‘x+ y = 8’ is a formula of this language. Formulas such as this can
be used as both hypotheses and the conclusion in a conditional statement. Finally,
the function {‘x’ 7→ 3, ‘y’ 7→ 5} is a particular assignment of integer values to these
variables, and this particular assignment satisfies the formula, because x+ y = 8 is
true when x = 3 and y = 5. With this example in mind, it should be easier to follow
the formal definitions.
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Before we can represent statements as strings, we need some way of representing
variables. Variables in mathematics are often denoted by a single letter, but this
would impose an upper limit on the number of variables. Such a limit is undesirable
for theoretical, and sometimes even for practical reasons. In traditional mathematical
notation a potentially unlimited supply of variable names can be achieved in various
ways, such as by using subscripted variables (x1, x2, x3, . . .) or the prime symbol
(x′, x′′, x′′′, . . .). In programming languages, the usual answer is to allow variable
names to consist of multiple letters, and this is the approach that will be followed
here. Certain words are reserved for special use in the languages PL, FL, and SD,
and are disallowed as variable names.

Definition 12. The set of variable names, denoted by V ⊂ S, consists of all
nonempty strings that contain only letters (as defined in Section 2.2), except for
the following reserved words :

“in” “Bool” “and” “or” “not”
“Set” “forall” “exists” “Nat” “List”

Definition 13. Suppose that V ⊆ V. An assignment on V is a function A : V → U ,
where U is an arbitrary set.

Definition 14. A statement language L = (VL,FL,AL, |=L) consists of:

1. a finite set of free variables VL ⊆ V;

2. a computable set of formulas FL ⊆ S;

3. a nonempty set AL of assignments on VL; and

4. the satisfiability relation |=L : AL × FL → B, where A |=L φ can be read as
“in the language L, the formula φ is true for the assignment A.” Alternatively,
we may simply say that the assignment A satisfies the formula φ in L.

The definition given above is more general than Definition 6 in Section 2.8, which
did not support the concept of free variables and assignments. Definition 6 can be
thought of as a special case where VL = ∅ and the set AL is a singleton set, whose
only member is the empty function: the unique function whose domain is the empty
set. In other words, the empty assignment is the only possible assignment if the
statement language has zero free variables.

The set VL is restricted to be finite, because the framework defined in this chapter
is meant for studying the formalization of textbooks, and a textbook can only contain
a finite number of variables. In other contexts it may be useful to allow for an infinite
number of variables, and in Section 5.7 we give one example of this.

Definition 14 assumes so little that we cannot prove many strong theorems about
all statement languages. We can, however, introduce some common terminology.

Definition 15. Suppose that L is a statement language and let φ ∈ FL. If A |=L φ
for all A ∈ AL, then φ is L-valid. If A |=L φ for at least one A ∈ AL, then φ is L-
satisfiable. If φ is not valid, it is L-invalid. If φ is not satisfiable, it is L-unsatisfiable. If
φ1, φ2 ∈ FL are formulas that are satisfied by exactly the same assignments (that is,
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A |=L φ1 if and only if A |=L φ2), then φ1 and φ2 are L-equivalent. If the statement
language L is clear from context, we can drop the L-prefix, and simply speak of
validity, satisfiability, invalidity, unsatisfiability, and equivalence instead.

The satisfiability relation A |=L φ can be naturally extended to cases where
instead of a single formula φ we have a list of formulas or a set of formulas—possibly
even an infinite set of formulas. For any X ∈ List(FL) or X ∈ Set(FL), A |=L X
is defined as ∀φ ∈ X : A |=L φ. In addition to the satisfiability relation, the same
symbol |=L is customarily used for another relation as well.

Definition 16. Suppose that L is a statement language. The consequence relation
|=L : Set(FL) × FL → B is defined so that if S ∈ Set(FL) and φ ∈ FL, then
S |=L φ (read φ is a L-consequence of S, or φ follows from S in L) if and only if all
assignments that satisfy the formulas of S also satisfy φ. Symbolically, this means
that S |=L φ is equivalent to

∀A ∈ AL :
(
(∀φ ∈ S : A |=L φ)→ A |=L φ

)
.

The relation |=L : List(FL) × FL → B, which works for lists instead of sets, is
defined analogously.

We are now ready to give the definition of a conditional statement language.

Definition 17. A conditional statement language L consists of:

1. a function definition language DL;

2. for every list of function definitions d ∈ DL, a computable set RLd
⊆ List(S)

of lists of range declarations ; and

3. for each list of range declarations r ∈ RLd
, a statement language Ld(r).

Definition 18. For a fixed a conditional statement language L and a list of function
definitions d ∈ DL, a conditional statement is a triple (r, h, c) that consists of a list of
range declarations r ∈ RLd

, a list of hypotheses h ∈ List(FLd(r)), and a conclusion
c ∈ FLd(r). A conditional statement (r, h, c) is Ld -true if h |=Ld(r) c. If Ld is clear from
context, we can simply say that it is true. The set of all conditional statements is
denoted by CLd

and the set of all true conditional statements is denoted by TLd
⊆ CLd

.

As an example, let d = [ ]. This is a valid list of function definitions for SD, so we
have d ∈ DSD. The list of strings r = [‘x, y ∈ Z’] is a valid list of range declarations,
so we have r ∈ RSDd

. This list of range declarations specifies the statement language

SDd(r) = (VSDd(r),FSDd(r),LSDd(r), |=SDd(r)).

Here VSD(r) = {‘x’, ‘y’}. If we define φ = ‘x + y = 8’ and A = {‘x’ 7→ 3, ‘y’ 7→ 5},
then φ is a formula of SDd(r) (that is, φ ∈ FSDd(r)), A is an assignment of SDd(r)
(that is, A ∈ ASDd(r)), and A satisfies φ (that is, A |=SDd(r) φ). The conditional
statement

([‘x, y ∈ Z’], [‘x ≥ 2’, ‘y ≥ 3’], ‘x+ y ≥ 5’)

is SDd -true. In a traditional printed textbook, this might have been stated as follows:
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Suppose that x, y ∈ Z. If x ≥ 2 and y ≥ 3, then x+ y ≥ 5.

The conditional statement languages PL and FL do not support function defini-
tions, so they use the empty function definition language. In these cases d is always
equal to [ ], so we can simplify notation by writing simply L instead of Ld.

Note that conditional statements have a much simpler classification than the
formulas of a statement language. A formula in a statement language can be valid,
invalid, satisfiable, or unsatisfiable. In contrast, conditional statements are simply
either true or false.

Finally, we can define the notion of extensibility, which was defined for func-
tion definition languages in Definition 11, to statement languages and conditional
statement languages. The need for extensibility in conditional statement languages
follows directly from the fact that each conditional statement language uses a fixed
function definition language. An extension of the function definition language also
extends the conditional statement language.

Definition 19. Let L and K be statement languages, and suppose that FL ⊆ FK ,
AL ⊆ AK , and for all φ ∈ FL and A ∈ AL we have A |=L φ if and only if A |=K φ.
Then L is a sublanguage of K, or alternatively, K is an extension of L.

Definition 20. Let L and K be conditional statement languages, and suppose that:

1. DL is a sublanguage of DK ;

2. RLd
⊆ RKd

for all d ∈ DL;

3. Ld(r) is a sublanguage of Kd(r) for all d ∈ DL and r ∈ RLd
.

Then L is a sublanguage of K, or alternatively, K is an extension of L. If L 6= K,
then L is a proper sublanguage of K.

It is in the sense of Definition 20 that PL is a proper sublanguage of FL and FL
is a proper sublanguage of SD.

4.3 Proof languages

Formal proofs are often defined as sequences of steps, where each step can be encoded
as a formula. For the abstract definition below there is no need to make detailed
assumptions about the internal structure of proofs. We only assume that the proofs
are members of the set D. This minimal assumption is necessary in order to make
the requirement that the proof checking predicate is a computable function.

Definition 21. A proof language P for a conditional statement language L is a pair
P = (PP ,`P ), where PP ⊆ D is a computable set of proofs and the proof checking
predicate `P : PP × CL → B is a computable function. If p `P (r, h, c), then it must
be the case that h |=L(r) c. We read p `P (r, h, c) as “in the language P , p is a proof
of (r, h, c).”
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Definition 22. If P is a proof language for the conditional statement language
L, then Prov(P ) is the set of all conditional statements that have a proof in P .
Symbolically,

Prov(P ) = {(r, h, c) ∈ CL | p `P (r, h, c) for some p ∈ PP}.

The symbol ` is borrowed from logic, but it is used in a slightly different sense.
Usually ` refers to the provability relation with a set of formulas on the left-hand-
side and a single formula on the right-hand-side. This is related to using |= as a
consequence relation. In fact, in first-order logic the relations |= and ` are equivalent
(S |= φ if and only if S ` φ), but they are defined in different ways, and the
equivalence of the two is nontrivial to prove. In Definition 21 the relation `P is
instead used with a proof on the left-hand-side and a conditional statement on the
right-hand-side. The relation ` in the sense of being a provability relation is not
needed in this work.

In addition to function definition languages and conditional statement languages,
the notion of extensibility can be extended to proof languages also.

Definition 23. Let L1 be a conditional statement language that is a sublanguage
of another conditional statement language L2. Suppose that P1 is a proof language
for L1, and that P2 is a proof language for L2. If PP1 ⊆ PP2 , and for all p ∈ PP1 we
have p `P1 (r, h, c) if and only if p `P2 (r, h, c), then P1 is a sublanguage of P2, or
alternatively, P2 is an extension of P1.

The need for extensibility follows directly from the fact that every proof language
is defined for a particular conditional statement language, and this conditional state-
ment language may have to be extended. However, in the case of proofs there is also
a more subtle reason why extensibility is necessary. By Definition 21, every condi-
tional statement that is provable in P has to be true. It is also desirable that every
conditional statement that is true can be proven in P . However, depending on the
conditional statement language L, there might not exist such a proof language P .

Theorem 2. Let P be a proof language for a conditional statement language L.
Then the set Prov(P ) is computably enumerable.

Proof. The set of proofs PP and the set of conditional statements CL are both com-
putable. Therefore, it is possible to write a program that enumerates all possible
pairs of proofs p and conditional statements (r, h, c). For each pair, we can com-
putably check if p `P (r, h, c). If it is, we output the conditional statement (r, h, c).
This nonterminating programs eventually outputs a conditional statement if and
only if that statement is provable in P , and by definition, the output set of such a
nonterminating program is computably enumerable.

As a corollary, if the set of true conditional statements TL is not computably enu-
merable, then we cannot hope to find a proof language P that completely captures
the notion of truth in L. The converse also holds.
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Theorem 3. If L is a conditional statement language, then the following are equiv-
alent:

(1) There exists a proof language P such that Prov(P ) = TL.

(2) The set of true conditional statements TL is computably enumerable.

Proof. The set Prov(P ) is always computably enumerable. If there exists a proof
language P such that Prov(P ) = TL, then TL must also be computably enumerable.
Therefore, (1) implies (2).

To prove that (2) implies (1), assume that TL is computably enumerable. In the
trivial case TL = ∅ we can define a proof language P where p `P (r, h, c) is always
false. If TL 6= ∅, then by Definition 5 there exists a computable function f : N→ CL
whose range is

f(N) = {f(0), f(1), f(2), . . .} = {(r0, h0, c0), (r1, h1, c1), (r2, h2, c2), . . .} = TL.

Now we can simply use the natural number n as the “proof” of the conditional
statement f(n) = (rn, hn, cn). Specifically, define the proof language P = (N,`P ) so
that for p ∈ N and (r, h, c) ∈ CL the statement p `P (r, h, c) is true if and only if
f(p) = (r, h, c). Now the set of provable conditional statements Prov(P ) equals the
range of f , which is TL.

As will be shown in later chapters, the set TPL is computable, and the set TFL
is computably enumerable, but not computable. The set TSD not even computably
enumerable. To see what consequences this has, suppose that that (r, h, c) ∈ CL
for L ∈ {PL,FL, SD}. If L = PL, then there exists an algorithm that can tell if
r |=PL(r) c. If L = FL, then no such algorithm exists, but there does exist a proof
language P so that Prov(P ) = TFL. If L = SD, then there does not even exist a
proof language P such that Prov(P ) = TSD. The fact that there are conditional
statement languages whose notion of truth cannot be captured by any fixed proof
language explains why the idea of extensibility can be necessary for proofs even if
the conditional statement language is fixed.
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5 Propositional logic

In this chapter we formalize propositional logic as the conditional statement language
PL. Propositional logic is an example of a language that mathematicians are much
more likely to study as an object language than to use as a metalanguage. It is far
too weak to formalize any nontrivial textbook of mathematics. However, because of
its simplicity, it can serve as a motivating example for later chapters.

In Section 5.1 we define the syntax of PL in input notation, and in Section 5.2 we
describe the corresponding display notation. In Section 5.3 we define the semantics of
PL by defining truth assignments and satisfiability. In Section 5.4 we make it possible
to omit superfluous parentheses by defining the conditional statement language PLE,
which is an extension of PL. In Section 5.5 we describe the Boolean satisfiability
problem, which has many applications. One of them, the Erdős discrepancy problem,
is discussed in more detail in Section 5.6. Finally, in Section 5.7 we look at a more
theoretical application of propositional logic, and use the compactness theorem of
propositional logic to prove that if there is an infinite counterexample to the four
color theorem, then there has to be a finite counterexample as well.

Logic is the study of valid reasoning, and to make reasoning visible we have to
present it in some language. Classically, this is done using natural languages, but
in this work we are mostly concerned with reasoning that happens in the symbolic
language of mathematics. However, we start with a brief overview of logic in natural
languages, since much of the terminology comes from there. In philosophical logic, a
statement is a declarative sentence, or part of a sentence, that is capable of having
a truth value [31]. The English sentences

1. “If it is raining, then the sky is cloudy.”

2. “The sky is not cloudy.”

are statements, but the part “it is raining” is also by itself a statement. If we assume
that both of the statements above are true, then we can conclude that the statement
“it is not raining” also has to be true. This conclusion follows logically from the
assumptions, since it does not depend on anything else we might happen to know
about rain and clouds. The rules of the English language are rather complex, so it is
convenient to study some simplified model of it instead. In the case of propositional
logic we ignore everything about the statements that is not expressible in terms of
∨, ∧, ¬, →, and ↔. In this case we might introduce two Boolean variables raining
and cloudy. Now, if the statements raining→ cloudy and ¬cloudy are true, then we
can conclude that the statement ¬raining is also true.

5.1 Syntax

Let us start with an example of a theorem that we should be able to formalize using
the language PL. This theorem is only intended to serve as an example. It has no
interesting consequences, and its proof is trivial. It also contains more parentheses
than we would normally use, but we return to this issue in Section 5.4.
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Theorem 4. Suppose that x, y, z ∈ B. If (x ∨ (y ∧ False)) and (¬(z) ∧ y), then
(x ∧ y).

Proof. Since (x∨(y∧False)) is true even though (y∧False) is always false, x must
be true. And since (¬(z) ∧ y) is true, we also know that y must be true. Therefore,
(x ∧ y) is true.

Theorem 4 might have also been labeled a proposition instead of a theorem.
According to Timothy Gowers this is indicates a theorem that is slightly “boring”
in the sense that what is proved is not surprising, and the proof is not particularly
difficult [16, p. 73]. However, in the context of logic the word proposition is already
used in at least two other senses. Some writers use it synonymously with the word
statement [40, p. 12]. Others say that every statement expresses a proposition, but
different statements may express the same proposition [47, p. 8]. To avoid confusion
we do not use the term proposition at all. In particular, we use the word theorem as
a neutral technical term with no connotations of importance or nontriviality.

Since the character set for strings S (defined in Section 2.2) does not contain the
symbols ∈, B, ∧, ∨, ¬, →, and ↔, we will replace them with “in”, “Bool”, “and”,
“or”, “not”, “->”, and “<->”, respectively, in the input notation. Thus, the main
parts of Theorem 4 will be formalized as

r = [“x, y, z in Bool”]

h1 = “(x or (y and False))”

h2 = “(not(z) or y)”

c = “(x and y)”.

(7)

Therefore, to comply with this example, we need to define the range declarations
of PL in such a way that r ∈ RPL and the formulas of PL in such a way that
h1, h2, c ∈ FPL(r). In addition, we have to define the satisfiability relation |=PL in
such a way that [h1, h2] |=PL(r) c. Our first step is to define the syntactically valid
range declarations.

Definition 24. The set RPL ⊆ List(S) is defined so that r ∈ RPL if and only if:

1. Each string in the list r consists of one or members of V separated by “, ”
and followed by “ in Bool”.

2. The variable names found in r are distinct.

It is straightforward to check if a given list of strings belongs toRPL. For example,
the strings “x”, “y”, and “z” are nonempty, distinct, not reserved words, and consist
of nothing but letters. Therefore, if r is defined as in (7), then r ∈ RPL. In fact, it
is straightforward to write a program that checks for these properties. This implies
that the set RPL is computable, just as Definition 17 requires it to be. The reason
why Definition 24 requires variable names to be distinct is mainly stylistic. There
is no advantage in duplicating a variable declaration, and doing so could only cause
unnecessary confusion to the reader.
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Definition 25. If r ∈ R, then the set VPL(r) contains all variable names that are
listed in the range declarations.

For example, if r is defined as in (7), then VPL(r) = {“x”, “y”, “z”}. Based on
this we can now define the set of all formulas that can contain members of VPL(r) as
free variables.

Definition 26. Supposet that r ∈ RPL. The set FPL(r) ⊆ S of propositional formulas
is the smallest set of strings that satisfies the following:

1. VPL(r) ∪ {“True”, “False”} ⊆ FPL(r).

2. If a, b ∈ FPL(r), then “( a or b )” ∈ FPL(r).

3. If a, b ∈ FPL(r), then “( a and b )” ∈ FPL(r).

4. If a ∈ FPL(r), then “not( a )” ∈ FPL(r).

5. If a, b ∈ FPL(r), then “( a -> b )” ∈ FPL(r).

6. If a, b ∈ FPL(r), then “( a <-> b )” ∈ FPL(r).

If we are given some string s ∈ S and a list of range declarations r ∈ RPL, it is
straightforward to check if s ∈ FPL(r). We give one example of such an argument,
and omit them in the future.

Theorem 5. If r and h1 are defined as in (7), then h1 ∈ FPL(r).

Proof. We have VPL(r) = {“x”, “y”, “z”}. If a = “y” and b = “False”, then we have
a, b ∈ FPL(r), and now “( a and b )” = “(y and False)” ∈ FPL(r). Similarly, if we
define c = “x” and d = “(y and False)”, then we have c, d ∈ FPL(r). Consequently,
h1 = “( c or d )” = “(x or (y and False))” ∈ FPL(r).

5.2 Display notation

All of the range declarations and propositional formulas thus far have been written
in input notation, but we will now define a display notation for them. Intuitively,
we want to replace “in” by ‘∈’, and do other similar replacements, but only when
the strings appear “on their own”. In particular, the variable “raining” should not
become ‘ra∈ing ’ in display form.

Definition 27. In Boolean range declarations and propositional formulas, a token
is a nonempty substring that:

1. belongs to the set {“->”, “<->”, “(”, “)”, “,”}; or

2. consists of letters only and is maximally long.

Under this definition, we can represent a formula or a range declaration as a list
of tokens instead of a string of characters. The formula “(p and (q or False))”
can be represented as the list of tokens

[“(”, “p”, “and”, “(”, “q”, “or”, “False”, “)”, “)”].



36

In general, a program that transforms a string to a list of tokens is called a lexer. The
reason why this is a better representation is that it allows us to ignore the fact that
variable names may contain multiple characters, since each of them is represented
by a single token.

Some tokens have a special role in the statement language PL. In display form,
the tokens are replaced by symbols as follows:

Token Symbol Token Symbol Token Symbol

“in” ‘∈’ “Bool” ‘B’ “and” ‘∧’
“or” ‘∨’ “not” ‘¬’ “->” ‘→’
“<->” ‘↔’ “True” ‘True’ “False” ‘False’
“(” ‘(’ “)” ‘)’ “,” ‘,’

The remaining tokens are used as variable names. Most of them will be simply
displayed using an italic font, so that we have

“(x and (y or False))” = ‘(x ∧ (y ∨ False))’.

In addition, we can choose any number of variable names that should be replaced
by special symbols in display notation. This is where can easily add support for
all Greek letters: “alpha” = ‘α’, “beta” = ‘β’, . . . . A complete list of display
substitutions performed by the proof explorer is unimportant for the purposes of
this thesis, so it is omitted.

Now that the definition of a token has been given, it is possible to compare
the definition given in this chapter to the standard definition of propositional logic.
Propositional formulas are usually defined as strings of symbols rather than strings of
characters [40, p. 12]. The essential difference is that the set of different symbols can
be countably infinite, but our set of characters is finite. Since it is possible to have
a unique symbol for each variable, it is not necessary to construct variable names
from several characters, and tokens become unnecessary. In fact, we could think of
symbols as the abstract counterpart of tokens, or as tokens whose internal string
representation has been forgotten. It is meaningful to ask what is the first character
of a token, but not meaningful to ask what is the first character of a symbol. The
only thing we are allowed to know about symbols is that there is a countably infinite
supply of them, and that we can compare two symbols to see if they are equal or
not.

The decision to define propositional formulas as strings of characters instead of
strings of symbols reflects a different focus than the usual one. Propositional formulas
are often used for theoretical study, and in such cases it makes little difference if
the infinite supply of variables is constructed by using subscripts (x1, x2, x3, . . .),
prime notation (x′, x′′, x′′′, . . .), or multi-letter variable names. Therefore, it is better
to bypass characters and tokens, and just use symbols directly. However, from the
point of view of human readability this choice is far from irrelevant.
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5.3 Semantics

To define the semantics of the conditional statement language PL we need, for every
list of range declarations r ∈ RPL, a set of assignments APL(r) and the satisfiabil-
ity relation |=PL(r) : APL(r) × FPL(r) → B between assignments and propositional
formulas.

Definition 28. Let r ∈ RPL. The set of assignments APL(r) for the statement lan-
guage PL(r) is the set of predicates VPL(r) → B. These are called truth assignments.

Definition 29. Suppose that r ∈ RPL and A ∈ APL(r). The satisfiability relation
|=PL(r) : APL(r) × FPL(r) → B, which is abbreviated to just |= below, is defined
recursively as follows:

(T |= φ) =



True, if φ = ‘True’;

False, if φ = ‘False’;

T (φ), if φ ∈ VPL(r);
(T |= a) ∧ (T |= b), if φ = ‘( a ∧ b )’ for some a, b ∈ FPL(r);

(T |= a) ∨ (T |= b), if φ = ‘( a ∨ b )’ for some a, b ∈ FPL(r);

¬(T |= a), if φ = ‘¬( a )’ for some a ∈ FPL(r);

(T |= a)→ (T |= b), if φ = ‘( a → b )’ for some a, b ∈ FPL(r);

(T |= a)↔ (T |= b), if φ = ‘( a ↔ b )’ for some a, b ∈ FPL(r).

This definition is slightly different from the usual definitions of propositional
logic. Usually, the logical symbols ‘∨’, ‘∧’, ‘¬’, ‘→’, and ‘↔’ only exist in the object
language, and their meaning is defined by using ordinary English words, such as
“and”, “or”, and “not”. In this thesis we do not think of propositional logic as
a simplified model of English, or any other natural language; we think of it as a
sublanguage of set theory. Therefore, all symbols of the object language have to
exists in the metalanguage as well. When the symbol ‘∧’ is used in a propositional
formula, it follows the definition above. When the same symbol is used outside a
propositional formula, it follows the definition given in Section 2.7. The fact that
our object language is a sublanguage of our metalanguage is the reason why the
use quotation marks is so crucial for the current purposes: they are the only thing
that lets us distinguish statements of the metalanguage from formulas of the object
language.

Now that the satisfiability relation has been defined, Definition 16 automatically
gives us a consequence relation as well. As a sanity check, we now prove that the
formalization of Theorem 4 given in (7) works as expected.

Theorem 6. If r, h1, h2, and c are defined as in (7), then [h1, h2] |=PL(r) c.

Proof. Let us abbreviate |=PL(r) to simply |=. We have VPL(r) = {‘x’, ‘y’, ‘z’}. Let
T : VPL(r) → B be an arbitrary truth assignment. By definition of |=PL, we need to
prove that if T |= h1 and T |= h2, then T |=PL(r) c. Let us “mirror” the variables of
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the object language by introducing helper variables x, y, r ∈ B such that x = T (‘x’),
y = T (‘y’), and z = T (‘z’). This means that we have

(T |= h1)↔ (T |= ‘(x ∨ (y ∧ False))’)

↔ ((T |= ‘x’) ∨ (T |= ‘(y ∧ False)’))

↔ ((T |= ‘x’) ∨ ((T |= ‘y’) ∧ (T |= ‘False’)))

↔ (T (‘x’) ∨ (T (‘y’) ∧ False))

↔ (x ∨ (y ∧ False)).

Thus, the relation |=PL effectively translates the formula h1 into a statement of
set theory by replacing symbols ‘∧’ and ‘∨’ with the operations ∧ and ∨ and the
symbol ‘False’ with the constant False. If we do the same for h2 and c we find
that (T |= h2) ↔ (¬(z) ∨ y) and (T |= c) ↔ (x ∧ y). Since (T |= h1) and (T |= h2)
are true by assumption, the equivalent statements (x∧ (y ∨False)) and (¬(z)∨ y)
must also be true. By Theorem 4, this implies that (x∧y) is true, which is equivalent
to (T |= c), and is what we set out to prove.

In the end, defining the formal semantics of PL as in Definition 29 is merely a
long way of saying that the PL inherits its semantics directly from the language of
set theory. The languages to be defined later on follow the same principle, and from
now on, explicit definitions of semantics will be omitted.

5.4 Reducing the number of parentheses

We would like to reduce the number of parentheses in the propositional formula
‘((p ∧ q) ∧ r)’. The usual solution is quite simple: we do not change the definition
of a propositional formula, but introduce a shorthand notation under which we can
omit parentheses. In this case we could say that the notation ‘p∧ q ∧ r’ is simply an
abbreviation of ‘((p ∧ q) ∧ r)’.

This approach is slightly problematic for our current purposes. If we do so, then
‘p ∧ q ∧ r’ and ‘(p ∧ q) ∧ r’ are abbreviations of the same formula, which means
that the mapping between displayed formulas and their internal representations is
not one-to-one. For the usual purposes this would not matter, but in textbooks the
author might occasionally choose to insert superfluous parentheses, and in those
cases and the system should preserve them. For example, if the author is trying to
state and prove the formula ‘(p ∧ q) ∧ r ↔ p ∧ (q ∧ r)’, then some of its natural
symmetry is lost if it is instead displayed as ‘p ∧ q ∧ r ↔ p ∧ (q ∧ r)’.

Therefore, for the purposes of textbooks wish to maintain that ‘p ∧ q ∧ r’ and
‘(p∧q)∧r’ are different—but of course, equivalent—formulas. We leave the definition
of PL as is, and instead, define a new conditional statement language PLE as an
extension of PL, where some parentheses can be left out.

Definition 30. The conditional statement language PLE is defined so that the range
declarations and assignments are the same as in PL: RPLE = RPL and APLE(r) =
APL(r) for all r ∈ RPLE. The set of formulas FPLE(r) and the satisfiability relation
|=PLE(r) is defined so that the PLE is an extension of PL with the following additions:
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1. Redundant parentheses may be omitted. This includes the operations ∧ and
∨ when used associatively or inside the logical relations → and ↔. Also, the
outermost parentheses wrapping the whole formula can be omitted.

2. The logical symbols → and ↔ can be chained as relations.

For example, suppose that r = [‘x, y, z ∈ B’] and define

φ = ‘z ↔ (x ∨ y)→ x ∧ y ∧ z’.

We now have φ ∈ FPLE(r). Moreover, if T : VPLE(r) → B is a truth assignment,
x = T (‘x’), y = T (‘y’), and z = T (‘z’), then T |=PLE(r) φ if and only if z ↔
(x ∨ y)→ x ∧ y ∧ z, or equivalently,

((
z ↔ (x ∨ y)

)
∧
(
(x ∨ y)→ ((x ∧ y) ∧ z)

))
.

The chaining of ‘→’ and ‘↔’ as relations is the most nonstandard aspect of PLE;
most commonly these symbols would not chainable at all. However, if the author of
the textbook does not use this particular feature, then the reader does not need to
be aware of it. From the reader’s perspective, chaining of logical relations does not
increase the complexity of the language unless the author chooses to use it.

5.5 Boolean satisfiability problem

Suppose that (r, h, c) ∈ CPL, and let us investigate how we could find out if h |=PL(r) c.
If the number of different variables is k = |VPL(r)|, then there are 2k ways to assign
the value False or True to each variable. It is straightforward to write a computer
program that enumerates every assignment, and checks if all assignments that satisfy
hypotheses h also satisfy the conclusion c. The problem with this approach is that
if the number of variables k is large, then the number of truth assignments 2k can
become so large that even the fastest computer cannot enumerate them all. There
is clearly a need for better algorithms.

We can simplify problem a bit. If n ∈ Z+, then the statement

∀h1, . . . , hn, c ∈ B : (h1 ∧ . . . ∧ hn)→ c

is equivalent to
¬
(
∃h1, . . . , hn, c ∈ B : h1 ∧ . . . ∧ hn ∧ ¬(c)

)
.

Using a similar transformation we can, for a given h ∈ List(FPL(r)) and c ∈ FPL(r),
easily produce a formula that is unsatisfiable if and only h |=PL(r) c. For example, if
h1, h2, c ∈ PL(r), then [h1, h2] |=PL c if and only if the formula ‘ h1 ∧ h2 ∧ ¬( c )’ is
unsatisfiable. Therefore, if we can find an efficient algorithm that can tell if a single
formula is satisfiable or not, this algorithm can also be used to tell if a conclusion
follows from a list of hypotheses. The problem of telling if a formula is satisfiable is
known as the Boolean satisfiability problem or SAT, and the programs that are used
for solving it are known as SAT solvers [4].

None of the current SAT solvers are guaranteed to work efficiently for all possible
formulas. Boolean satisfiability is known to be NP-complete, and if P 6= NP (a major
unsolved problem in theoretical computer science), then there is no algorithm that
can solve the problem efficiently in the worst case. However, this theoretical obstacle
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has not prevented practical progress. The propositional formulas that typically arise
in applications do not necessarily represent the worst case, and modern SAT solvers
are routinely able to solve problems with over a million variables.

5.6 Erdős discrepancy problem

SAT solvers can often be applied to problems that on the surface do not seem to
involve Boolean variables at all. There are numerous practical examples from the
industry, but the example application given here is a purely mathematical one. Let
us consider finite sequences (x1, . . . , xN), where x1, . . . , xN ∈ {−1, 1}. For example,
let N = 11 and take the finite sequence

1 −1 −1 1 −1 1 1 −1 −1 1 1
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

(8)

For a parameter d ∈ Z+, we define the cumulative sum sd(k) =
∑k

i=1 xid for all
k ∈ N where kd ≤ N . The discrepancy of a ±1-sequence is defined as

max
d,k
|sd(k)| .

The discrepancy of sequence (8) is 1. This can be seen by calculating |sd(k)| for
all 29 values of k, d ∈ Z+ for which kd ≤ 11, and seeing its maximum value is 1.
This is visualized in Figure 3 for d ∈ {1, 2, 3}. The sequence (8) cannot be extended
by x12 ∈ {−1, 1} if we still want to keep the same discrepancy. If we choose x12 = 1,
we get |x6 + x12| = 2, and if we choose x12 = −1, we get |x3 + x6 + x9 + x12| = 2.
An exhaustive search will show that there are in fact no sequences of length 12 and

+1

−1

s1(k)

+1

−1

s2(k)

+1

−1

s3(k)

k = 0 11

Figure 3: The discrepancy of the sequence (8) is 1, since |sd(k)| ≤ 1 for all kd ≤ 11.
This is illustrated here for d ∈ {1, 2, 3}.
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discrepancy 1. Thus, our inability to extend the sequence is not just a consequence
of an unfortunate choice of (x1, . . . , x11); the length of ±1-sequences of discrepancy
C = 1 is bounded, and the maximum length is 11. Erdős conjectured that the length
of ±1-sequences of discrepancy C would be bounded for any C ∈ Z+. However, even
the case C = 2 was a long-standing open problem. This was resolved in 2014 by
Konev and Lisitsa. Using state-of-the-art SAT solvers, they showed that there exists
a discrepancy 2 sequence of length 1160, but no sequence of length 1161. [32]

It remains to explain how SAT solvers can be applied to this problem. Assume
that the length N and the maximum discrepancy C are fixed. It is easy to encode
the variables x1, . . . , xN as Boolean variables: introduce variables b1, . . . , bN ∈ B
such that bi = True for i ∈ {1, . . . , N} if and only if xi = 1. The harder part is to
encode all constraints that these variables have to satisfy as propositional formulas.

To do so, we can introduce auxiliary variables in such a way that the discrepancy
is at most C if and only if some set of formulas we is satisfiable. Let us introduce a
variable pd,k,c ∈ B for every d, k ∈ Z+ where dk ≤ N and −C ≤ c ≤ C. We want
pd,k,c to be true if and only if sd(k) = c and |sd(i)| ≤ C for all i < k. If k ≥ 1, then
sd(k) = sd(k − 1) + xk, meaning that

pd,k,c = (bk ∧ pd,k−1,c−1) ∨ (¬(bk) ∧ pd,k−1,c+1)

If |c| > C then we let pd,k,c = False. If k = 0, then we let pd,k,c = (c = 0). Finally,
for every k and d we add the requirement pd,k,−C ∨ . . . ∨ pd,k,C .

We have now found an alternative formulation of the problem where all variables
are Boolean, and every constraint can be represented by propositional formula. This
means that SAT solvers can now be used to attack the problem. It should be noted
that the encoding given above was intentionally simplistic. It is not as efficient as
the one given in [32], which uses a binary encoding for the values of sd(k).

Showing that none of the 21161 possible ±1-sequences have a discrepancy of 2 is
clearly beyond the reach of the simple brute force methods. More interestingly, it
had also been beyond the reach of previous specialized programs, tailored specifi-
cally to the Erdős discrepancy problem. This a powerful testimony of the level of
sophistication general purpose SAT solvers have achieved.

5.7 Compactness theorem

Definition 14 in Chapter 4 requires that the set of free variables VL in a statement
language is finite. This differs from the standard definition of propositional logic,
which allows for an infinite number of variables [40]. Even though a single propo-
sitional formula can only contain a finite number of variables, an infinite set of
formulas can, as a whole, contain an infinite number of variables. To explain why
this can be useful, we give one application of the compactness theorem of proposi-
tional logic. That said, the framework of Chapter 4 is meant for discussing languages
that are used for formalizing textbooks, and a textbook cannot contain an infinite
number of variables. Therefore, this is the only section in this thesis where statement
languages with an infinite number of variables are discussed.
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Theorem 7 (Compactness theorem of propositional logic, Gödel, 1930). A set of
propositional formulas for a countable set of variables is satisfiable if and only if
every finite subset of it is satisfiable.

Proof. See [40, p. 44].

As promised in Section 3.1, this theorem can be used to show that if there
is an infinite counterexample to the four-color theorem, then there has to be a
finite counterexample as well [15, p. 48]. This is a fairly representative example of
the applications of the compactness theorem of propositional logic, so we prove it
below. To use Theorem 7 we will first have to prove that the number of regions
is only countably infinite. The compactness theorem for propositional logic can be
extended to an uncountable number of variables, as proven by Maltsev in 1936, but
this makes it impossible to encode variable names as members of the countable set
of strings S.

Theorem 8. The number of regions in a simple planar map is countable.

Proof. Let R ⊆ Set(R2) be the set of regions of a map. Since regions are open
subsets of R2, every region contains a point whose coordinates are rational numbers,
and since the regions are pairwise disjoint, no point is contained in two different
regions. Therefore, the number of regions cannot be larger than the number points
with rational coordinates, and we have |R| ≤ |Q2| = ℵ0.

Theorem 9. If all simple planar maps with a finite number of regions can be four-
colored, then all maps can be four-colored.

Proof. Take some map with a countably infinite number of regions. Denote the set
of all of its regions by R ⊆ Set(R2). We are looking for a four-coloring, which can
be represented by a function c : R → {1, 2, 3, 4}, which satisfies the condition that
for any pair of adjacent regions (x, y) ∈ R2 we have c(x) 6= c(y).

For every region r, define the auxiliary variables r1, r2, r3, r4 ∈ B in such a way
that ri ↔ (c(r) = i). Exactly one of these four variables has the value True, or
equivalently, the following has to hold:

(r1 ∧ ¬r2 ∧ ¬r3 ∧ ¬r4) ∨ (¬r1 ∧ r2 ∧ ¬r3 ∧ ¬r4) ∨
(¬r1 ∧ ¬r2 ∧ r3 ∧ ¬r4) ∨ (¬r1 ∧ ¬r2 ∧ ¬r3 ∧ r4).

(9)

Now, for every pair of adjacent regions (x, y) ∈ R2 the requirement that c(x) 6= c(y)
is equivalent to

¬((x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3) ∨ (x4 ∧ y4)). (10)

The four-colorability of the infinite map is equivalent to the satisfiability of a certain
infinite set of propositional formulas. This set contains a formula like (9) for each
region, and a formula like (10) for each pair of adjacent regions. Therefore, it is
enough to prove that this infinite set of formulas is satisfiable.
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Every finite subset of this set of formulas can only refer to a finite number of
variables, and therefore only to a finite number of regions. By our assumption, the
submap that contains only these regions is four-colorable, and this coloring gives
one possible truth assignment that satisfies all formulas in the finite subset. Now
the compactness theorem of propositional logic tells us that since every finite subset
of the original set of formulas is satisfiable, the whole set is satisfiable, which is
exactly what we had to prove.
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6 First-order logic

First-order logic is an extension of propositional logic. Where propositional logic only
supports Boolean variables, first-order logic supports three new kinds of variables:
set-valued variables, whose values can be arbitrary sets; function-valued variables,
whose values can be arbitrary functions; and element variables, which can range over
one of the set variables. First-order logic supports universal and existential quantifi-
cation for element variables, but not for set-valued or function-valued variables.

In this chapter we formalize first-order logic as the conditional statement lan-
guage FL. More specifically, the variant of first-order logic that the conditional state-
ment language FL is based on is called many-sorted first-order logic with equality. It
supports the comparison of two element variables of the same sort or type using the
equality relation =. It can be contrasted with single-sorted first-order logic, where
every element variable ranges over the same set.

One motivation behind this chapter is the fact that first-order logic is closely
related to abstract algebra. Many classes of algebraic structures, such as rings, fields,
groups, vector spaces, and Boolean algebras are defined by giving a list of first-order
axioms that the structure has to satisfy. Therefore, support for first-order logic is
necessary for writing textbooks that talk about such things.

In Section 6.1 we discuss rings, which are an important example of a class of
algebraic structures whose axioms are equational laws. Boolean algebras, introduced
in Section 6.2, are another example of such a structure. In addition, Boolean algebras
are involved in the Robbins conjecture, which serves as another example of successes
of automated theorem proving. In Section 6.3 we look at examples of axioms that
go beyond equational laws, and in Section 6.4 we define the syntax and semantics
of the conditional statement language FL. In Section 6.5 we distinguish between two
types of axioms for later purposes. Finally, in Section 6.6 we look at some of the
theoretical results related to first-order logic. In particular, these results are needed
to understand the limitations of what can be expressed in terms of first-order logic.

6.1 Algebraic structures and rings

In this section we define what is meant by an algebraic structure, and look at rings
as a typical example of a class of algebraic structures.

Definition 31. An algebraic structure S consists of

1. an underlying set denoted by |S|,
2. zero or more operations |S|n → |S|, and

3. zero or more named elements that belong to |S|.

Formally, algebraic structures can be defined as a k-tuples whose first element is the
underlying set, and the remaining elements are the operations and named elements.

Algebraic structures appear both in abstract algebra and in mathematical logic,
but the terminology is slightly different. This chapters emphasizes the algebraic per-
spective, and therefore, uses the terminology that is more common in algebra. In
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more logically oriented texts the underlying set would more likely be called the uni-
verse or the domain of discourse. Similarly, the operations might be called functions,
and the named elements might be called constants.

In abstract algebra it is common to use a relaxed notation, where an algebraic
structure and its underlying set are both denoted by the same symbol S. For the
current purposes it is better to keep them notationally separate. The use of |S| for
the underlying set is unrelated to other uses this notation, such as absolute value
or cardinality. If we wish to combine the second and third items of Definition 31, it
is possible to think of the named elements as operations |S|0 → |S| that take zero
arguments.

Several subclasses of algebraic structures can be defined by stating some axioms
that the structure must satisfy. It is assumed that the named elements of a struc-
ture may be equal, unless the axioms say otherwise. All axioms considered before
Section 6.3 are equational laws, which we define as statements of the form

∀x1, . . . , xk ∈ |S| : a(x1, . . . , xk) = b(x1, . . . , xk)

where the functions a, b : |S|k → |S| are composed from the operations and named
elements of the structure. Classes of algebraic structures that are characterized by
equational laws are studied from slightly different perspectives in equational logic
and universal algebra.

A ring R, as we will soon define, is an algebraic structure with three operations
+R, ·R, and −R, and two named elements 0R and 1R. Before proceeding with the
definition we need to establish one notational convention. The elements 0R and 1R
can be arbitrary members of |R|, and are not necessarily equal to the numbers 0
and 1. Similarly, +R, ·R, and −R can be arbitrary functions. However, if x, y ∈ |R|,
it seems better to write x+ y than x+R y, since this reduces notational clutter, and
it is clear from the arguments that the symbol + in the expression x+ y must refer
to +R. However, if we also dropped the subscripts from the named elements, this
could sometimes lead to ambiguity. It would no longer be clear whether 1 + 1 refers
to the number 1 + 1 = 2, or to ring element 1R + 1R. We adopt a convention that is
intended to make the notation more readable, but still keep it unambiguous.

Convention. Named elements, such as 0R and 1R, are always written with sub-
scripts. Operations are written without subscripts when they are used as a part of
some expression, and with subscripts when they appear outside of an expression.

Definition 32. A ring R = (|R|,+R, ·R,−R, 0R, 1R) is an algebraic structure with
two binary operations +R, ·R : |R|2 → |R|, one unary operation −R : |R| → |R|, and
two named elements 0R, 1R ∈ |R|. The operation ·R has a higher precedence than
+R. The following axioms must hold for all a, b, c ∈ |R|:

(R1) (a+ b) + c = a+ (b+ c) (R2) a+ b = b+ a
(R3) 0R + a = a (R4) −a+ a = 0R
(R5) (a · b) · c = a · (b · c) (R6) 1R · a = a
(R7) a · 1R = a (R8) a · (b+ c) = a · b+ a · c
(R9) (a+ b) · c = a · c+ b · c
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The axioms above are all equational laws. For brevity, the universal quantifier is
not repeated in front of every axiom.

Definition 33. A ring R is commutative if

(R10) a · b = b · a

for all a, b ∈ |R|.

Since the operations +R and ·R are associative, they can be chained without
parentheses. For notational convenience, it is customary to define some additional
operations for rings. Ring elements can be subtracted: for a, b ∈ |R|, we define a− b
as a + (−b). They can also be multiplied by an integer or raised to a nonnegative
integer power, as defined below.

Definition 34. Suppose that R is a ring, a ∈ |R|, and n ∈ Z. Then

n · a =


0R, if n = 0;

a+ (n− 1) · a, if n > 0;

−((−n) · a), if n < 0.

Furthermore, we define nR as an abbreviation of n · 1R. Since 0R = 0 · 1R and
1R = 1 ·1R, this agrees with the notation that is used for the two named elements in
a ring. Every ring R includes the elements {. . . ,−2R,−1R, 0R, 1R, 2R, . . .}, but these
elements are not necessarily all distinct.

Definition 35. Suppose that R is a ring, a ∈ |R|, and n ∈ N. Then

an =

{
1R, if n = 0;

a · an−1, if n > 0.

One example of a ring is the ring of complex numbers (C,+, ·,−, 0, 1). It is a
commutative ring, since it satisfies all axioms from (R1) to (R10). To show that some
result holds in all rings, and not just on particular examples, we can derive it as a
consequence of the axioms. To show that 0R · a = 0R for all a ∈ |R| in an arbitrary
ring R, it is enough to note that

0R · a
(R3)
= 0R + 0R · a

(R4)
= (−(0R · a) + 0R · a) + 0R · a

(R1)
= −(0R · a) + (0R · a+ 0R · a)

(R9)
= −(0R · a) + (0R + 0R) · a
(R3)
= −(0R · a) + 0R · a

(R4)
= 0R.

(11)

This proof is a simple chain of equalities, where every step is justified directly
by some axiom. Sometimes simple mathematical statements require sophisticated
proofs, but this is not the case in ring theory, as guaranteed by the completeness
theorem of equational logic, which was proven by Birkhoff in 1935. Roughly speaking,
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the theorem says that if all axioms are equational laws, then all of their consequences
can be proven by a simple chain of equalities such as above. In particular, since the
axioms of a ring are equational laws, every equational law that holds in all rings
can be proven in such a way. See [41] for a more formal statement and proof of the
theorem.

Definition 36. Suppose that S and R are rings where |S| ⊆ |R|, 0S = 0R, 1S = 1R,
and that the operations +R, ·R, −R are equal to the operations +S, ·S, −S when
restricted to the set |S|. Then S is called a subring of R.

This definition is a special case of a more general notion of substructures that
can be naturally defined for all classes of algebraic structures whose axioms are
equational laws. In the special case of rings, the definition can be weakened. It is
unnecessary to demand that the restriction of −R equals −S and that 0S = 0R, since
these follow automatically if the other conditions are met [7].

The rings of integers, rational numbers, and real numbers are subrings of the
ring of complex numbers. As a more advanced example, we may take the ring of
algebraic reals. A real number—or more generally, a complex number—is algebraic
if it is a root of some nonzero polynomial with integer coefficients. For instance, the
number 3

√
2 is algebraic since it is one of the roots of the polynomial t3−2. Since all

algebraic reals are real numbers, the axioms from (R1) through (R10) automatically
hold for them as well. The hard part is to show that the sum and product of two
algebraic reals are also algebraic [27].

In addition to subrings, rings of functions provide another way of obtaining
new rings from existing ones. Again, the idea can be naturally generalized for other
classes algebraic structures as long as all of the axioms are equational laws.

Definition 37. Suppose that R is a ring and X is an arbitrary nonempty set. The
ring of functions from X to R is a ring T with the underlying set |T | = (X → |R|).
The elements 0T , 1T ∈ (X → |R|) are defined as the constant functions 0T (x) = 0R
and 1T (x) = 1R. The operations +T , ·T : |T |2 → |T | and −T : |T | → |T | are defined
pointwise so that for every a, b ∈ |T | we have

a+ b = (x 7→ a(x) + b(x))

a · b = (x 7→ a(x) · b(x))

−a = (x 7→ −a(x)).

Theorem 10. If R is a ring, then the ring of functions T from X to R is in fact a
ring.

Proof. We must show that every ring axiom holds. Let us look at the axiom (R9)
as an example, and show that (a + b) · c = a · c + b · c for all a, b, c ∈ |T |. Using
repeatedly the pointwise definition of the operations on T we see that

(a+ b) · c = (x 7→ (a(x) + b(x)) · c(x)).

The axiom (R9) for the ring R tells us that

(x 7→ (a(x) + b(x)) · c(x)) = (x 7→ a(x) · c(x) + b(x) · c(x)).



48

Finally, if we use the pointwise definition of the operations on T in reverse, we get

(x 7→ a(x) · c(x) + b(x) · c(x)) = a · c+ b · c.

Since the other axioms are also equational laws, they can be proved in essentially
the same way. Therefore, T is a ring.

Finally, we define the concepts of homomorphism and isomorphism.

Definition 38. Suppose R and S are rings. A function f : |R| → |S| is called a ring
homomorphism if for all a, b ∈ |R| we have f(a+b) = f(a)+f(b), f(a·b) = f(a)·f(b),
f(−a) = −f(a), f(0R) = 0S, and f(1R) = 1S.

The definition was written in the most straightforward way possible, but can
be weakened. It is only necessary to verify that f(a + b) = f(a) + f(b), f(a · b) =
f(a) · f(b), and f(1R) = 1S, since the facts that f(−a) = −f(a) and f(0R) = 0S
automatically follow [7].

Definition 39. Two rings R and S are isomorphic, denoted R ∼= S, if there exists
a bijective homomorphism from R to S.

In the case of isomorphisms it is not necessary to verify the property f(1R) = 1S
of homomorphisms. If f is bijective and f(a · b) = f(a) · f(b) for all a, b ∈ |R|, then

f(1R) = f(1R) · 1S = f(1R) · f(f−1(1S)) = f(1R · f−1(1S)) = f(f−1(1S)) = 1S.

6.2 Boolean algebras and the Robbins conjecture

In this section we look at Boolean algebras. Just like rings, Boolean algebras are
a class of algebraic structures that can be defined by using only equational laws
as axioms. There are several alternative notations for the operations of a Boolean
algebra. The notation used here is the same as in [36].

Definition 40. A Boolean algebra B = (|B|,∪B,∩B,�B, 0B, 1B) is an algebraic
structure that includes two binary operations ∪B and ∩B, one unary operation �B,
and two elements 0B and 1B. The following axioms must hold for all x, y, z ∈ |B|:

(B1) (x ∪ y) ∪ z = x ∪ (y ∪ z) (B2) (x ∩ y) ∩ z = x ∩ (y ∩ z)
(B3) x ∪ y = y ∪ x (B4) x ∩ y = y ∩ x
(B5) x ∪ (x ∩ y) = x (B6) x ∩ (x ∪ y) = x
(B7) x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (B8) x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z)
(B9) x ∪ x = 1B (B10) x ∩ x = 0B

The use notation + and · within the context rings suggested a connection with
ordinary addition and multiplication. Similarly, the use of notation ∪ and ∩ here
suggests a connection with the set-theoretic union and intersection. This in fact so. If
X is a nonempty set and S is the set complement X\S, then (Set(X),∪,∩,�, ∅, X)
is a Boolean algebra. We can generate more Boolean algebras if we replace Set(X)
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by some nonempty subset of Set(X) that is closed under finite unions, intersections,
and the complement.

It is straightforward to show that x ∩ y = x ∪ y for all x, y ∈ |B|. Therefore, if
we replace all instances of x∩ y by x ∪ y in the axioms, we can axiomatize Boolean
algebras without using the operation ∩ at all. We can also get rid of the named
elements 0B and 1B if we replace axioms (B9) and (B10) by

(B∗
9) x ∪ x = y ∪ y (B∗

10) x ∩ x = y ∩ y,

and take 1B to be a notational abbreviation for the value of x ∪ x, which does not
depend on x, and 0B as an abbreviation for the value of x ∩ x, which, again, does
not depend on x. This gives an axiomatization of Boolean algebras that has only
two operations ∪ and �, and no named elements.

At this point it is natural to ask if there is a simpler axiomatization than the 10
axioms given above. In 1930s Herbert Robbins asked if the three axioms

(H1) x ∪ (y ∪ z) = (x ∪ y) ∪ z
(H2) x ∪ y = y ∪ x
(H3) x ∪ y ∪ x ∪ y = x

would suffice. It is easy to show that these axioms follow from the axioms of a
Boolean algebra, but the question if the axioms of a Boolean algebra followed from
these three axioms remained an open problem until 1996. This question is known as
the Robbins conjecture.

The axioms of a Boolean algebra and the three axioms proposed by Robbins are
all equational laws. Therefore, if the Robbins conjecture is true, it follows that all
of the axioms of a Boolean algebra can be proven using simple chains of equalities,
where every step is justified by one of the axioms (H1) through (H3). In other words,
long before the Robbins conjecture was proved it was known that if the conjecture
is true, then it has a proof that is technically very straightforward.

Despite this, the problem remained open for decades. The Robbins conjecture
was proven in 1996 by McCune using the automated theorem proved EQP and
several days of computer time [38]. The proof, even when presented for a human
reader [36], has a distinctly mechanical flavor.

6.3 First-order axioms

Up to this point, all of the axioms we have worked with have been equational laws,
and all elements have been of the same type. This is not always enough. Fields
require existential quantification, ordered rings require other relations than just
equality, and vector spaces require multiple types of elements. For the most part, the
definitions given in this section will not be needed later in this thesis, but they serve
as motivating examples of situations where equational laws with a single underlying
set are not expressive enough.

A full first-order axiom, as opposed to an equational law, can contain logical
operations and relations (∧, ∨, ¬, →, ↔) and universal and existential quantifiers
over the underlying set |S|.
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Definition 41. A nontrivial ring is a ring where 0R 6= 1R. Formally, this is an
abbreviation of ¬(0R = 1R).

Definition 42. A field F is a nontrivial commutative ring with the additional axiom

∀x ∈ |F | : x 6= 0F → ∃y ∈ |F | : x · y = 1F .

In other words, a field is a nontrivial commutative ring where every nonzero element
is invertible.

Another use of first-order axioms is to reduce the number of operations and
named elements in a structure. For example, it is possible to define rings in such a
way that they only have two binary operations (+R and ·R) and no named elements
[7]. This can be done if we replace the axioms (R3), (R4), (R6), and (R7) by the
following variations:

(R∗
3) ∃e ∈ |R| : ∀a ∈ |R| : e+ a = a

(R∗
4) ∀e, x, a ∈ |R| : e+ x = x→ ∃b ∈ |R| : b+ a = e

(R∗
6) ∃u ∈ |R| : ∀a ∈ |R| : u · a = a

(R∗
7) ∃u ∈ |R| : ∀a ∈ |R| : a · u = a.

One benefit of doing so is that it simplifies notation, since we can talk about the
ring (|R|,+R, ·R) instead of the ring (|R|,+R, ·R,−R, 0R, 1R). In this work we stick
to using (|R|,+R, ·R,−R, 0R, 1R), because there are several theoretical advantages in
using equational laws whenever possible. Having access to the completeness theorem
of equational logic is just one these advantages.

If F is a field and X is a nonempty set, then the ring of functions X → F is
not necessarily a field. As a simple example, take the ring of functions R→ R. The
function x 7→ x is not identically zero, so it should have an inverse x 7→ g(x) such
that x · g(x) = 1 for all x ∈ R. But this is impossible for x = 0, which means that
the ring of functions from R to R is not a field. The kind of reasoning that was
used in the proof of Theorem 10 worked for equational laws, but it does not work
for full first-order axioms. If we use full first-order axioms for defining rings, the we
lose sight of the reason why a ring of functions is a ring, but a ring of fields is not
usually a field. This is one the reasons why it is desirable to use equational laws as
axioms whenever possible. Furthermore, the definitions of a subring (Definition 36)
and a ring homomorphism (Definition 38) give special treatment to the element 1R.
If rings are defined in a way that does not list 1R as a named element, it makes these
definitions feel less natural.

Equality (=) is the only relation we have used so far, but sometimes it is also use-
ful to equip algebraic structures with other relations, or more generally, predicates.
We drop the word algebraic, and define a structure as the appropriate generalization
that allows just that.

Definition 43. A structure S consists of

1. an underlying set denoted by |S|,
2. zero or more operations |S|n → |S|,
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3. zero or more named elements that belong to |S|, and

4. zero or more predicates |S|n → B.

The ordered ring, which we define below, is a simple example of such a structure.

Definition 44. An ordered ring R is a ring with an additional relation ≤R : |R|2 →
B where the following hold for all a, b, c ∈ |R|:

(O1) a ≤ b ∧ b ≤ a→ a = b (O2) a ≤ b ∧ b ≤ c→ a ≤ c
(O3) a ≤ b ∨ b ≤ a (O4) a ≤ b→ a+ c ≤ b+ c
(O5) 0R ≤ a ∧ 0R ≤ b→ 0R ≤ a · b

Finally, it is sometimes useful to have several underlying sets that correspond to
elements of different sorts or types. Perhaps the most common example is the vector
space, where we distinguish between vectors and scalars.

Definition 45. A vector space V over the field F consists of a field F , and an-
other underlying set |V | with the named element 0V ∈ |V |. In addition to the field
operations on F it has the operations +V : |V |2 → |V |, −V : |V | → |V |, and
·F,V : |F | × |V | → |V | such that the following axioms hold for all a, b ∈ |F | and
u, v, w ∈ |V |:

(V1) u+ (v + w) = (u+ v) + w (V2) u+ v = v + u
(V3) v + 0V = v (V4) −v + v = 0V
(V5) a · (b · v) = (a · b) · v (V6) 1F · v = v
(V7) a · (u+ v) = a · u+ a · v (V8) (a+ b) · v = a · v + b · v

Numerous other examples of classes of structures with first-order axioms can be
given.

6.4 Syntax and semantics

In the following, the statement X1, . . . , Xn : Set means that X1, . . . , Xn are arbi-
trary sets. As an example of the syntax of FL, we can take the following nonsensical
(and false!) conditional statement:

For: ‘p, q, r ∈ B’
‘S, T : Set’
‘f : S × T → S’
‘P : T → B’
‘x, y ∈ S’

If: ‘∀a ∈ S : ∃b ∈ T : P (f(a, b))’
Then: ‘x = y’

It contains five range declarations, one hypothesis, and the conclusion. The con-
ditional statement language FL inherits its semantics directly from set theory, so
we only need to describe its syntax. For notational simplicity, the items 1 through
5 below are written for two variables, but the definitions apply—with the obvious
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generalizations—to any number of variables. Similarly, the items 3 through 6 below
are written for binary functions only, but they apply to any number of inputs. An
undeclared variable is a member of the set V that has not been declared by any
previous range declaration. The word “afterward”, when used in the context of a
range declaration, refers to all range declarations that appear later, all hypotheses,
and the conclusion.

1. If v1, v2 ∈ V are undeclared variables, then ‘ v1 , v2 ∈ B’ is a range declaration.
Afterward, v1 and v2 are formulas.

2. If S1, S2 ∈ V are undeclared variables, then ‘ S1 , S2 : Set’ is a range declara-
tion. Afterward, S1 and S2 are set-valued terms.

3. If v1, v2 ∈ V are undeclared variables and S is a set-valued term, then ‘ v1 , v2 ∈
S ’ is a range declaration. Afterward, v1 and v2 are S-valued terms.

4. Suppose that f, g ∈ V are undeclared variables and S1, S2, T ∈ S are set-valued
terms. Then ‘ f , g : S1 × S2 → T ’ is a range declaration. Afterward, f and
g is a function-valued terms of the type S1 × S2 → T .

5. Suppose that f, g ∈ V are undeclared variables and S1, S2 ∈ S are set-valued
terms. Then ‘ f : S1 × S2 → B’ is a range declaration. Afterward, f and g
are predicate-valued terms of the type S1 × S2 → B.

6. Suppose that a is an A-valued term and b is a B-valued term. If f is a function-
valued term of type A×B → C, then ‘ f ( a , b )’ is a C-valued term. If f is a
predicate-valued term of type A×B → B, then ‘ f ( a , b )’ is a formula.

7. If a and b are both A-valued terms, then ‘ a = b ’ is a formula.

8. If p and q are formulas, then so are ‘( p ∨ q )’, ‘( p ∧ q )’, ‘¬( p )’, ‘( p → q )’,
and ‘( p ↔ q )’. Redundant parentheses, as defined in Section 5.4, can be
omitted.

9. Let v be an undeclared variable and S be a set-valued term. Assume that φ
is a formula under the additional assumption that v in φ is a S-valued term.
Then ‘∀ v ∈ S : φ ’ and ‘∃ v ∈ S : φ ’ are formulas.

As a consequence of defining PL as sublanguage of the language of set theory, the
definition given above has some unusual features when compared to a more standard
definition, such as the one given in [40]. First of all, the standard definition describes
string representations for terms and formulas only, but the definition above also gives
string representations for range declarations.

The standard definition of first-order logic is usually given in terms of a sin-
gle underlying set, but the definition above uses multiple sets. This distinction
corresponds to a standard one between one-sorted and many-sorted variations of
first-order logic. In single-sorted syntax, the formula ‘∃x, y ∈ S : x 6= y’ would be
expressed as ‘∃x, y : x 6= y’ instead. Single-sorted syntax is usually more convenient
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for theoretical study, but it is also less explicit. In the given example, the truth value
of the formula depends solely on the size of the set S. If |S| > 1, then the formula
is true; otherwise it false. In many-sorted syntax the dependency on the set S is
visible, and in single-sorted syntax it is hidden.

Finally, in first order logic it is customary to assume that the underlying set is
nonempty. This means, for example, that the formula ‘∃x ∈ S : x = x’ is considered
to be valid, although it is not true if S = ∅. However, FL inherits its semantics
directly from set theory, and the notation S : Set does not imply that the set S
is nonempty. Therefore, the conditional statement language FL does not guarantee
that sets are nonempty, unless explicitly assumed otherwise. In fact, the formula
‘∃x ∈ S : x = x’ is one possible way to state the assumption that S is nonempty.

6.5 Structural and foundational axioms

Let us make a distinction between structural axioms and foundational axioms. The
axiom

∀a, b ∈ |R| : a+ b = b+ a (12)

is an example of a structural axiom. It is not true or false by itself, because its truth
value depends on R. Instead, it is simply one the requirements that R must satisfy
before we are entitled to call R a ring. In contrast,

∀a, b ∈ N : a+ b = b+ a (13)

is a true statement about a specific set: the set of natural numbers N. Whether (13)
can be proved depends on the definitions that have been chosen. We may choose
to take the addition of natural numbers as a primitive concept that is not formally
defined in terms of anything else. In this case a formal proof of (13) is not possible,
but we can at least can give a combinatoric or a geometric explanation of why (13)
has to be true, and choose to accept (13) as a foundational axiom. Alternatively, we
may define addition formally in terms of the successor function S : N → N so that
for any x, y ∈ N we have x+ 0 = 0 and x+ S(y) = S(x+ y). In this case we do not
have to accept (13) without a formal proof: it can be proved by induction on y.

It is not possible to get rid of all primitive concepts in a language. We can define
addition in terms of the successor function, the successor function in terms of higher-
order logic, and higher-order logic in terms of set theory. But sooner or later this
has to stop, and if we want the textbook to be understandable it may be better to
stop sooner rather than later. Otherwise we end up defining an intuitively accessible
concept, such as the addition of natural numbers, in terms of something that is far
more difficult to understand.

With this in mind, we can think of foundational axioms as true statements that
we accept without a formal proof, because we they involve concepts that we have
chosen not to define formally.
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6.6 Theoretical results

This section gives a brief tour of some standard theoretical results related to first-
order logic. For concreteness, many results will only be stated in the special case of
rings. Where not stated otherwise, the general results and their proofs can be found
in [37].

A formula without free variables is called a sentence, and in this section the
sentences are written using single-sorted syntax, meaning that the underlying set is
implicit. The usual notational conveniences are allowed: the operations are written
in infix, associative operations do not require parentheses, and multiplication by an
integer and the exponentiation to a nonnegative integer power are allowed. There-
fore, ‘∃x : x2 = 2R’ is a sentence in the language of rings. This particular sentence
is true in the ring (R,+, ·,−, 0, 1), but false in the ring (Q,+, ·,−, 0, 1).

A theory is an arbitrary set of such sentences. A structure that satisfies a theory
T is called a model. If T is a theory, then Con(T ) is the set of consequences of T : the
set of sentences that hold in all models of T . Some theories, such as the theory of
rings, consist of a finite set of axioms. In a more theoretical setting a theory can be
an infinite set and its structure can be arbitrarily complex. As a case in point, if R
is some particular ring, then let the full theory of R, denoted by Th(R), be the set
of all sentences that are true in R. For example, Th(Z,+, ·,−, 0, 1) is the full theory
of the ring of integers. This theory includes the sentence ‘∀x, y : x · y = y · x’, but
not the sentence ‘∃x : 2 · x = 1R’.

Definition 46. A theory T is decidable if Con(T ) is a computable set.

Theorem 11. If R is a ring, then Th(R) is decidable if and only if there exists an
algorithm that can, for a given sentence, decide if it is true in R.

Proof. It is enough to show that the set Con(Th(R)) contains exactly those sentences
that are true in R. A sentence that is true in R belongs to Th(R), and by definition,
is true in every model of Th(R). Therefore, it belongs to Con(Th(R)). Conversely,
a sentence that is false is R cannot belong to Con(Th(R)), because it would have to
be true in all models of Th(R), and R itself is a model of Th(R).

Gödel proved in 1931 that Th(Z,+, ·,−, 0, 1) is undecidable [13], and Robinson
proved in 1949 that Th(Q,+, ·,−, 0, 1) is also undecidable [45]. Tarski proved in
1951 that Th(R,+, ·,−, 0, 1) is decidable [51]. See [42] for a more comprehensive
list of results of this type. It may be surprising that real numbers are in this sense
easier than integers or rationals. For a simple plausibility argument we can note that
if we can find at least one positive and one negative value for a multivariate real
polynomial, then it has to have a zero as well. A similar argument does not hold for
integers or rationals.

Gödel’s completeness theorem, stated in the terminology of this thesis, says that
there exists a proof language P that completely captures the notion of truth for
conditional statements in FL: a conditional statement is true in FL if and only if
it is provable in P . This is useful as a pure existence result even if we do not say
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anything about the proof language P . According to Theorem 3 it implies that the
set TFL of true conditional statements in FL is computably enumerable.

It is reasonably straightforward to show that if two rings isomorphic, then they
satisfy the same sentences. However, the converse does not hold. The ring of reals and
the ring of algebraic reals satisfy the same sentences, but they cannot be isomorphic,
since the set of algebraic reals is countable and the set of real numbers is uncountable.
Generally, we say that two rings R1 and R2 are elementarily equivalent if they satisfy
exactly the same sentences. The situation concerning the real numbers and algebraic
real numbers is an example of a more general result. Every infinite ring R has a
countable subring R that is elementarily equivalent to R. Even more generally,
if a first-order theory has an infinite model, then it has a model of all infinite
cardinalities. In other words, first-order axioms cannot control the cardinality of
infinite models in any way.

In practice, this means that while first-order axioms are useful for defining classes
of structures, such as rings, they are not as well suited for defining specific examples
of such structures. For example, suppose that we would use first-order axioms to
describe the ring of real numbers. Since the ring of real numbers and the ring of
algebraic reals are elementarily equivalent, any first-order axiomatization is unable
to distinguish between these two.

This is not a problem as long as we continue to use first-order logic, because of
first-order logic by definition is unable to distinguish between elementarily equivalent
models. However, in the spirit of extensibility we should require that our definitions
never become obsolete when the conditional statement language is extended. The
conditional language FL only supports two quantifiers (“for all” and “there exists”),
but an extension of FL could add support for news quantifiers, such as “for countably
many”, and using this quantifier it would be possible to distinguish between the ring
of reals and the ring of algebraic reals.

The problem becomes even worse if we try to axiomatize the ring of integers.
In other words, we want to choose a theory T ⊆ Th(Z,+, ·,−, 0, 1) that is a subset
of the full theory of integers, but in such a way that Con(T ) = Th(Z,+, ·,−, 0, 1).
Preferably, we would want T to be a finite set. If this is not possible, then we
would want T to be a computable set, or by the very least, computably enumerable.
Without such an assumption we cannot use the theory T in a proof checker. However,
it follows from Gödel’s completeness theorem that if T is computably enumerable,
then Con(T ) is also computably enumerable. Since the full theory Th(Z,+, ·,−, 0, 1)
is not computably enumerable, a set T that satisfies our requirements does not exist.

The semantics of first-order logic is defined by quantifying over all possible sets,
all possible operations, and all possible predicates. The number of all sets is much
larger 2ℵ0 , which makes this potentially problematic in the light of assumption (4)
in Section 2.9. Therefore, let us return to the fact that if a first-order theory has an
infinite model, then it also has a countable model. If the model is countably infinite,
then the cardinality of all operations and predicates is just 2ℵ0 . Since there is no
need to quantify over sets that are larger than 2ℵ0 , we can conclude that according
to assumption (4) the semantics of first-order logic is unambiguously defined.
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7 A second-order language

In the previous chapter we saw two limitations of first-order logic. First, arbitrary
sets of axioms cannot specify infinite structures up to isomorphism; they can only
be specified up to elementary equivalence. Second, even specifying a structure up
to elementary equivalence can require a set of axioms that is not computably enu-
merable. This happens, for example, for the ring of integers and the ring of rational
numbers.

These problems can be fixed by using higher-order logic, which is discussed in
Section 7.1. Higher-order logic is much more expressive than first-order logic, but
brings with it two major problems. First of all, there does not exist a proof language
that fully captures the notion of truth for conditional statements in higher-order
logic. Even worse, the semantics of higher-order logic is rather vague: it is unclear
what does it even mean for a conditional statement in higher-order logic to be true.
We argue that the first problem is unavoidable, but the second can be avoided by
choosing another way to extend first-order logic. This leads to the definition of the
conditional statement language SD in Section 7.2. This language is closely related
to second-order arithmetic, but the underlying set in second-order arithmetic is the
set of integers, and the underlying set in SD is the set D. The language SD contains
a number of built-in functions. This is complemented by the ability to define new
functions by using a simple programming language, which we describe in Section 7.3.

Using the language SD for expressing theorem statements is a major difference
between this work and most of the currently existing systems. There exists a fairly
large number of proof systems, and the differences between them can be subtle, so
it is beyond the scope of this thesis to give a detailed account of the other systems.
However, Wiedijk gives a comparison of 17 commonly used proof assistants, and 15
of them—the exceptions 2 being ACL2 and Minlog—are listed as being based on
either higher-order logic of ZFC set theory [52]. The two exceptions are not very close
to the language SD either: ACL2 specializes in large scale software verification, and
it uses a quantifier-free logic [30]. Minlog is based on minimal rather than classical
logic [48].

7.1 Second-order and higher-order logics

First-order logic supports several different types of variables: elements, functions,
predicates, sets, and Booleans. However, it only supports quantification over element
variables. This is extended in higher order logics. If S is a set, then second-order
logic allows quantification over the power set Set(S). Going further, third-order
logic allows quantification over Set(Set(S)). However, even though second-order
logic is more expressive than first-order logic, third-order logic is not more expressive
than second-order logic. For any sentence in third-order or even higher-order logics
it is possible to construct a second-order sentence that is valid if and only if the
original sentence is valid [10]. Because of this, it is not particularly important to
keep track of different orders, and we shall simply talk about higher-order logic.

One advantage of higher-order logic is that it makes it possible to define infinite
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structures up to isomorphism. As an example, we shall look at how to define the
ring of integers up to isomorphism by adding a second-order induction axiom.

Theorem 12. An ordered ring R is isomorphic to the ring of integers if it satisfies
the following second-order axiom:

∀S ∈ Set(|R|) : (0R ∈ S∧∀s ∈ S : s+1 ∈ S)→ (∀x ∈ |R| : x ≥ 0R → x ∈ S). (14)

Proof. Define the function f : Z→ |R| so that f(n) = n · 1R. To verify that this is
a ring homomorphism we first note that f(1) = 1R. Also, for all a, b ∈ Z we have
f(a+ b) = (a+ b) ·1R = a ·1R + b ·1R and f(a · b) = (a · b) ·1R = (a ·1R) · (b ·1R). The
function f is an injection. To see why, assume that a, b ∈ Z and a 6= b. Without loss
of generality, we can assume that a < b. Since R is an ordered ring, the fact that
a < b implies that a · 1R < b · 1R, so the elements f(a) = a · 1R and f(b) = b · 1R
cannot be equal.

Finally, we show that f(Z) is in fact equal to |R|. By contradiction, suppose
that there is such an element k that k ∈ |R| but k 6∈ f(Z). The set f(Z) is closed
under negation, so we also have −k ∈ |R|, but k 6∈ f(Z). Therefore, without loss
of generality we can assume that k ≥ 0R. Let N = {n ∈ f(Z) | n ≥ 0R} be the
set of nonnegative elements in the image of f . If we set S = N and x = k in the
axiom (14), then we see that k ∈ N , which implies that k ∈ f(Z). We have found a
contradiction.

Being able to describe infinite structures up to isomorphism is a clear advantage
of higher-order logic, but it has also two major disadvantages. The first disadvantage
is that unlike first-order logic, higher-order logic does not admit a complete proof
theory.

Theorem 13. There does not exist a complete proof language for the conditional
statements of higher-order logic.

Proof. In Theorem 12 it was shown that the ring of integers can be defined up to
isomorphism, and therefore, up to elementary equivalence, using a finite number
of higher-order axioms. If a complete proof language for higher-order logic were to
exist, then this proof language should be able to prove every first-order sentence that
is true in the ring of integers. According to Theorem 3 this would imply that the set
of true sentences in the ring (Z,+, ·,−, 0, 1) is computably enumerable. However,
as noted in Section 6.6, this is not so, and therefore, a complete proof language for
higher-order logic cannot exist.

The second disadvantage of higher-order logic is that it is, in a sense, so expressive
that even its semantics is no longer clear. It is possible to define the semantics of
higher-order logic by using set theory, but this makes it subject to the ambiguities
that concern quantification over very large sets. As discussed in Section 2.9, the
assumption that is made in this thesis is that quantification is unproblematic as
long as the sets are not larger than the set of real numbers. There exists a sentence
in higher-order logic that is valid if and only if the continuum hypothesis is true
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[10]. If we regard the continuum hypothesis as something that does not necessarily
have a definite truth value, then we must adopt the same attitude with the notion
of validity in higher-order logic. In fact, Quine famously criticized higher-order logic
as being “set theory in sheep’s clothing” [44].

We have now listed two disadvantages of higher-order logic: it does not admit a
complete proof language, and its semantics is ambiguous. By examining the proof
of Theorem 12 we can see that the first disadvantage is practically unavoidable if
we want a language that can talk about integers. Since the full theory of the ring of
integers is undecidable, there cannot exist a language that is simultaneously simple
enough to have a complete proof language, but also expressive enough to be able to
describe the ring of integers up to isomorphism, or even just elementary equivalence.

The second disadvantage, however, can be avoided. It is possible to have a lan-
guage “in the middle ground” that only has the first disadvantage, but not the
second. Perhaps the simplest answer is to choose a language that is not, properly
speaking, a logic. When a language is called a logic, no assumptions are usually
made about the domain of discourse. However, we can just as well choose to study
a language whose domain of discourse is, by definition, some particular set. As long
as we are working with sublanguages of set theory, we only need to choose some
built-in sets, and functions, and constants to define such a language.

Definition 47. The conditional statement language FA (first-order arithmetic) has
the built-in set Z, the constants 0, 1 ∈ Z, and the functions +, · : Z2 → Z and
− : Z→ Z.

First-order arithmetic is often defined for natural numbers instead of integers.
This work uses integers because integers are a ring, but the difference is fairly minor.
The above definition means that, for example

([‘a ∈ Z’], [ ], ‘∃b ∈ Z : a = b+ b’) (15)

is a conditional statement of FA. In this language the symbol ‘Z’, by definition,
refers to the set of integers, and the symbol ‘+’ refers to the addition of integers.
Therefore, if a is odd, then such an integer b does not exist, which means that (15)
is a false conditional statement.

According to assumption (4) we can safely quantify over sets as large 2ℵ0 . This
means that FA is safe, since it only quantifies over the countably infinite set Z.
In fact, we can extend FA by adding support for the set Set(Z) and the relation
∈ : Z × Set(Z) → B. This results in a language that can be called second-order
arithmetic.

7.2 Syntax and semantics of SD

The theoretical benefits of second-order arithmetic do not require that the underly-
ing set would have to be Z. The same properties hold as long as it is a countably
infinite set. In the language SD, which we describe in this section, that set is a subset
of D. In the name SD the letter S refers to the fact that it is a second-order language,
and the letter D refers to the set D (“data”).



59

We distinguish between first-order sets, which have cardinality ℵ0, and second-
order sets, which have cardinality 2ℵ0 . The built-in sets are the following:

1. Z is a first-order set.

2. If X is a first-order set, then List(X) is a first-order set.

3. If X is a first-order set, then Set(X) is a second-order set.

4. If X1, . . . , Xn and Y are first-order sets, then X1, . . . , Xn → Y is a second-order
set.

It is possible to quantify over both first-order and second-order sets. The lan-
guage has a constant symbol for every integer (. . . ,−2,−1, 0, 1, 2, . . .). The built-in
functions are the following:

1. It is possible to write lists of elements of that consists of elements of the same
type. For example, we can write [[2, 5], [ ], [3]] where all elements are of the type
List(Z). Technically, if τ is a type and n ∈ N, then there exists a function
[ ] : τn → List(τ).

2. It is possible to construct finite sets by enumerating their elements. For ex-
ample, we can write {[2, 5], [ ], [3]} where all elements are of the type List(Z).
Technically, if τ is a type and n ∈ N, then there exists a function { } : τn →
Set(τ).

3. The following built-in functions exist for integers: +, · : Z2 → Z, − : Z → Z,
range : Z → List(Z), <,>,≤,≥: Z2 → B. Here range : Z → List(Z) is
defined so that range(a, b) = [a, . . . , b] when a ≤ b, and range(a, b) = [ ] when
a > b.

4. For every type τ there exists the list concatenation function � : List(τ)2 →
List(τ). For example, [2, 5] � [6, 7, 1] = [2, 5, 6, 7, 1].

5. For every type τ there exists the membership relation ∈ : τ × Set(τ) → B,
and the union and intersection operators ∪,∩ : Set(τ)2 → Set(τ).

6. It is possible to define new functions, as defined in Section 7.3.

7.3 Defining new functions

The function definition language of SD is a simple programming language, which
means that all definable functions are automatically computable functions. This
language can evaluate expressions, assign values to variables, and it has the standard
if/else statement for conditional evaluation and the for/in statement for looping
over a list. The source code in Figure 4 demonstrates this language by defining the
absolute value function, the “is divisible by” relation, and a primality test.
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abs : Int -> Int

abs(x):

if x >= 0:

return x

else:

return -x

divides : Int * Int -> Bool

divides(a, b):

if b == 0:

return True

else:

foundDivisor = False

for k in range(1, abs(b)):

foundDivisor = foundDivisor or abs(a) * k == abs(b)

return foundDivisor

IsPrime : Int -> Bool

IsPrime(n) -> Bool:

if n < 2:

return False

else:

foundDivisor = False

for k in range(1, n):

foundDivisor = foundDivisor or (1 < k and k < n and divides(k, n))

return foundDivisor

Figure 4: Three computable functions defined in the function definition language of
SD.

The language has some important limitations. First of all, it is a strongly typed
language, meaning that we can statically rule out all cases where a function is given
an argument that is outside of its domain. For example, let us look how the argument
n (which is integer-valued) is used in the body of IsPrime. It is used in four places:
twice as an argument of <, once as the second argument of range, and once as the
second argument of divides. The system is automatically able to determine that
all of these are safe.

In addition, one noteworthy aspect of this programming language is that it does
not allow recursion. A function definition can only call functions that appear earlier;
it cannot call itself or any of the functions that are defined later. On the positive
side, this means that all functions are total, meaning that their execution always
terminates after a finite number of steps. With recursive definitions this is not always
guaranteed. One downside of this is that there are computable functions, such as
the Ackermann function, that cannot be defined at all with a language like this. Of
course, some future extension of SD can make the Ackermann function definable.
Dealing with limitations such as this is one of the reasons why the framework for
extensible languages in Chapter 4 was defined in the first place.
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8 A proof explorer

In this chapter we look at the more practical side of producing textbooks that
contain interactively explorable proofs. The interactive textbook is written in a
text-based file format that is understood by two programs: the proof checker and
the proof explorer. The proof checker is an noninteractive program that reads the
input file, and checks that all definitions and theorems statements in the textbook
are syntactically valid, and that all proofs are correct. If they are not, it produces an
error message. The proof explorer handles the interactive part. It is implemented as a
web page, with the interactive parts created using JavaScript. This makes it possible
to read the textbooks on a wide variety of hardware, such as personal computers
and tablets.

To illustrate the capabilities of the system, a formal proof of Bertrand’s postulate
was written. Bertrand conjectured in 1845 that for all positive integers n, there exists
a prime number p such that n < p ≤ 2n. This was originally proven by Chebyshev
in 1850, but we use a later proof by Erdős instead [2]. This proof is divided into
two cases: n ≤ 4000 and n > 4000. The first case is handled by computation,
and the second case is handled by studying the central binomial coefficient

(
2n
n

)
=

((n + 1) · . . . · (2n))/(n!). This theorem was chosen because the proof as a whole is
difficult enough to be interesting, and because the first case relies on a nontrivial
amount of computation.

8.1 User interface

The paragraph at the top of Figure 5 (“The following theorem. . . ”) is a comment
intended to provide historical information about the theorem. Comments like this
can appear at all levels of the proof, and both cases in the proof begin with such
a paragraph (“The proof is based on. . . ” and “For larger values of n, . . . ”). The
comments are not a part of the formal contents of the textbook, and they are ignored
by the proof checker.

The statements in the proof are presented in English, rather than using a com-
pletely symbolic notation. For example, the conclusion “There exists p in Z+ such
that p is prime and n < p ≤ 2n” is a pretty-printed version of the symbolic state-
ment ‘∃p ∈ Z+ : IsPrime(p) ∧ n < p ≤ 2n’. Similarly, step 1.1 internally uses the
function range : Z2 → Set(Z), where range(a, b) = {k ∈ Z | a ≤ k ≤ b}, but it is
displayed as {a, . . . , b}.

The reader can click any symbol to look up its meaning. In Figure 5 the reader has
clicked the symbol ‘<’ in the conclusion of the theorem statement, and in response,
the proof explorer has displayed an explanation of its meaning. For a function or
a relation, the explanation to be shown can depend on the types of its arguments.
In this case, the proof explorer can infer that n and p both belong to Z+, and the
explanation reflects this. In another context, the meaning of the symbol ‘<’ could
be different.
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Figure 5: An explorable proof of Bertrand’s postulate.
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The hierarchical numbering of steps is strongly influenced by Lamport’s hier-
archical proofs [33, 34]. The reader can choose to show or hide the proofs of the
steps. In Figure 5 the proofs of steps 1.1 and 1.2 are visible, but the proofs of steps
1.2.1 and 1.3 are hidden. The numbering is useful for referring to earlier steps. For
example, the proof of the step 1.2 refers to the step 1.1.

Suppose that v is a variable in a conditional statement, and one of its hypotheses
is of the form ‘v ∈ . . .’ or of the form ‘v = . . .’. In these cases it is unnecessary to
explicitly show the range declaration for the variable v. For example, the conditional
statement in step 1.1 should technically contain the range declaration ‘k ∈ Z’, but
this is unnecessary, because it is implied by the hypothesis ‘k ∈ {1, . . . , 4000}’. The
proof explorer recognizes these situations, and can hide the range declaration.

8.2 Substitution

The Hilbert system is one of the oldest and best known systems for formal proof.
It views a formal proof as a sequence of steps, where each step must be directly
justifiable by one of the axioms, or one of the few inference rules. As an example,
one of the inference rules, which is known by its Latin name modus ponens, says that
if we have deduced both P and P → Q, then we can infer Q. Hilbert style proofs are
well suited for theoretical study because of their simple structure, but they do not
closely reflect the way humans usually think about proofs. The system used here is
much closer to an alternative system called natural deduction. The proofs are not
thought of as linear sequences of steps; instead they have a hierarchical, tree-like
structure.

Suppose that (r, h, c) is a conditional statement in SDd. The basic method of
proving such a theorem is by means of conditional proof. The variables that are
introduced in the range declaration r are added to the list of known variables, and
the hypotheses in the list h are added to the list of known statements. After this,
we need to justify the conclusion.

Suppose that we wish to justify the conclusion c by appealing to some other
conditional statement (r′, h′, c′) that is already established to be true. We start by
choosing expressions to be substituted to the variables declared in r′. The proof
checker automatically performs those substitutions to the hypotheses h′ and the
conclusion c′. The author has to prove that the hypotheses hold, but the system
automatically verifies that the conclusion matches exactly the original conclusion c.
For example, suppose that we wish to prove the conditional statement

(‘x ∈ Z’, [‘x > 1’], ‘x2 ≥ 4’) (16)

by appealing to the conditional statement

(‘a, b, c ∈ Z’, [‘a ≥ b’, ‘b ≥ 0’, ‘b2 = c’], ‘a2 ≥ c’). (17)

At this point we choose to substitute ‘x’ for ‘a’, ‘2’ for ‘b’, and ‘4’ for ‘c’. The proof
checker automatically performs the substitutions to (17), producing the hypotheses
[‘x ≥ 2’, ‘2 ≥ 0’, ‘22 = 4’] and the conclusion ‘x2 ≥ 4’. The proof checker automat-
ically verifies that the substitution is type-safe, and that the conclusion ‘x2 ≥ 4’
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exactly matches the conclusion in (16). To conclude the proof, the author must still
prove that the hypotheses ‘x ≥ 2’, ‘2 ≥ 0’, and ‘22 = 4’ hold under the assumption
‘x > 1’. This is also where the explorable nature of these formal proofs come in.
These subproofs are hidden by default, but the reader can ask the proof explorer to
show any of them.

8.3 Automatic computation

When discussing the proof of (16) in Section 8.2, we were left with three hypotheses
to justify. Two of these, ‘2 ≥ 0’ and ‘22 = 4’, seem particularly straightforward, since
they do not contain any variables, and all of the functions involved are computable.
In cases like this, the proof checker can simply perform the computation, and check
that the result is true. This also applies to user-defined functions.

Beyond trivial statements like this, there are also more complicated situations
where the ability to automatically verify computations is useful. Step 1.1. in Figure 5
states that if k ∈ {1, . . . , 4000}, then there exists p in {k + 1, . . . , 2k} such that p
is prime and k < p ≤ 2k. This conditional statement contains quantification, but
the quantification happens only over finite sets, and therefore, it can be proven by
computation. The proof checker enumerates all possible values of k, and for each k,
checks that the statement “p is prime and k < p ≤ 2k” evaluates to true for at least
one p ∈ {k + 1, . . . , 2k}.

8.4 Automating trivial simplifications

The goal of the proof system is that the formal proofs correspond as closely as
possible to how humans think of proofs. For example, suppose that the substitution
p = ‘x < y’ is made into the formula ‘¬p’. Technically speaking, the resulting formula
would be ‘¬(x < y)’, but it is highly unlikely that such an expression would ever be
written down as a part of a conventional proof. More likely, the author of the proof
would perform the obvious simplification, and write ‘x ≥ y’ instead.

For this reason, the proof checker automatically performs certain trivial simpli-
fications when doing substitutions. Every built-in relation in the language SD has a
corresponding negated operator: (=, 6=), (<,≥), and (>,≤). A similar simplification
is performed whenever any one of these relations is substituted inside a negation.
In addition, double negation elimination is performed automatically: if p = ‘¬q’ is
substituted into ‘¬p’, then the result is automatically simplified into q.

In addition, the substitution engine is aware of the associativity of the built-in
functions ‘+’, ‘·’, and ‘�’. If x = ‘a+ b’ is substituted into 2 +x, then technically the
resulting expression should be ‘2 + (a + b)’. However, since the substitution engine
knows that addition is associative, it can automatically leave the parentheses out,
resulting in ‘2 + a+ b’.

The substitution engine is not—and is not supposed to be—a powerful system
for automatically simplifying expressions. It does not try to make proofs easier to
write; it tries to make them easier to read by hiding some of the more mechanical
parts of the proof.
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8.5 Chains of equalities

A chain of equalities, such as (11) in Section 6.1, is a common and straightforward
style of writing proofs. Let us take a look at technical details that are hidden inside
such a proof. The first step is to prove that x1 = . . . = xn. By definition, this
is equivalent to x1 = x2 ∧ . . . ∧ xn−1 = xn, so we can proceed by proving the
equations x1 = x2, . . . , xn−1 = xn separately. When proving one of these equations
(say, xk = xk+1), it is often the case that the expressions xk and xk+1 are mostly the
same, but differ in some small part. For example, to prove that a + b · (2 · 3 + c) =
a+b · (6+c), it is enough to prove that 2 ·3 = 6. Technically, this works by using the
general principle that whenever x = y, we also have P (x) = P (y). If we substitute
x = 2 · 3, y = 6, and P (z) = a+ b · (z + c), then we find that 2 · 3 = 6 implies that
a+ b · (2 · 3 + c) = a+ b · (6 + c). After all the equations x1 = x2, . . . , xn−1 = xn have
been proven, we can show that x1 = xn by repeatedly using the transitive property
of equality.

This description may seem complicated, but this is only because after years of
training all users of mathematics have internalized the ideas behind chains of equal-
ities to such a level that they do not have to consciously think about “transitivity of
equality” or other such the details. To take advantage of this, the system has special
supports for chains of equalities. It combines the features presented above into a
single building block. From a proof-theoretic point of view this is redundant, since
all proofs could also be written without this feature. However, if we want to write
proofs in human-readable form, features like this are indispensable.

Since the logical relation↔ can be seen as a special case of equality, these proofs
work entirely analogously for chains of equivalences as well.

8.6 Working with function definitions

Since the conditional statement language SD makes it possible to define new func-
tions, it should also make it possible to prove theorems about those functions. The
functions are defined using a simple programming language, and there are existing
fully fledged proof systems, such as Hoare logic, that can be used to prove properties
of complicated programs.

The approach taken here is lighter. It is based on recognizing certain simple
patterns in function definitions, and providing customized support for them. To
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illustrate this, consider the following functions:

funcA : Int * Int -> Int

funcA(a, b):

return a * b - 2

funcB : Int * Int -> Int

funcB(a, b):

c = a + b

return c * c

abs : Int -> Int

abs(n):

if n >= 0:

return n

else:

return -n

sum : List(Int) -> Int

sum(list):

ans = 0

for k in list:

ans = ans + k

return ans

The first function (funcA : Z×Z→ Z) is the easiest, since its definition consists
of a single return statement. From this function definition the system can infer that
if a, b ∈ Z, then funcA(a, b) = a · b − 2. The second function (funcB : Z × Z → Z)
is slightly trickier, since it contains an auxiliary variable c. One option would be to
automatically expand this variable. In this case the system would infer from this
definition that if a, b ∈ Z, then funcB(a, b) = (a+ b) · (a+ b). However, expanding all
auxiliary variables can sometimes make the theorem harder to read. For this reason,
the system keeps the variable as is, and produces the following theorem instead:

• Suppose that a, b, c ∈ Z. If c = a+ b, then funcB(a, b) = c · c.

The next function definition (abs : Z→ Z) consists of an if/else statement with
a simple return statement in each branch. In this case the system will produce two
theorems:

• Suppose that n ∈ Z. If n ≥ 0, then abs(n) = n.

• Suppose that n ∈ Z. If n < 0, then abs(n) = −n.

The second theorem takes advantage of the automatic simplification of negations
from Section 8.4. This is why it contains the hypothesis ‘n < 0’ instead of ‘¬(n ≥ 0)’.
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The last function definition (sum : List(Z) → Z) is the most involved. The
system is able to detect that it is a specific instance of this common pattern:

f : List(A) -> B

f(list):

ans = init

for elem in list:

ans = update(ans, elem)

return ans

There are two distinct cases of interest here. First, if list = [ ], then the loop is
never executed, and we have f([ ]) = init. Second, let us compare what happens if
we evaluate f(list) versus f(list � [elem]). The value of the parameter list does not
affect the initial value or the updates, so the execution starts in the same way. The
only difference is that when f(list) has looped over the entire list, f(list � [elem])
will run the update function one more time. Therefore, we can conclude that f(list �
[elem]) = update(f(list), elem). In the case of the function sum : List(Z) → Z this
means that we get the following two theorems:

• sum([ ]) = 0.

• Suppose that list ∈ List(Z) and k ∈ Z. Then sum(list � [k]) = sum(list) + k.

In its current form, the system is limited to function definitions that strictly fol-
low one of these patterns. Consequently, the system is unable to prove any properties
of functions whose definitions are more complicated. This includes, for instance, the
definitions of divides : Z×Z→ B and IsPrime : Z→ B given in Section 7.3. One pos-
sible future extension is to add support for Hoare logic, or some other system like it.
In the meantime, it is always possible to write all functions definitions in a way that
fits these patterns. However, this may require new auxiliary functions to be defined.
As an example, here is an alternative definition of the function IsPrime : Z → B
that follows these patterns.

anyElementDivides : List(Int) * Int -> Bool

anyElementDivides(list, n):

foundDivisor = False

for elem in list:

foundDivisor = foundDivisor or divides(elem, n)

return foundDivisor

IsPrime : Int -> Bool

IsPrime(n) -> Bool:

return anyElementDivides(range(2, n), n)



68

9 Conclusions

By using formal proofs it is possible to develop interactive textbooks of mathematics,
where the student can request a more detailed explanation of any part of a proof that
he or she does not understand. Such a system would be useful for research articles as
well, but at the current time textbooks are a more realistic goal. Formal, computer-
verifiable proofs are also helpful for verifying proofs that are unusually complicated,
and therefore difficult for humans to verify. In the context of textbooks, however,
formal proofs would be used not so much to avoid errors, but to ensure that the
proof explorer is able to explain every part of the proof.

As a first step, the author of such a textbook should choose appropriate formal
languages for representing definitions, theorem statements, and proofs. Any fixed
choice of languages cannot be expressive enough for all mathematics, so the choices
have to be made by considering the particular requirements of the textbook. For
example, if the textbook needs to talk about integers, then it either needs a language
where integers are a primitive concept, or a language that is expressive enough to
adequately define integers in terms of the primitive concepts it does support.

In addition to giving a general overview of formal proofs, this thesis has three
main contributions. The first contribution is the theoretical framework for extensible
languages defined in Chapter 4. The fact that propositional logic can be extended to
first-order logic is, of course, well known. The importance of defining a framework
like this lies in the fact that it says explicitly what kind of future extensions beyond
first-order logic are allowed. In particular, definitions should never become obsolete
in future extensions of a conditional statement language. For example, let T =
Th(R,+, ·,−, 0, 1) be the full first-order theory of the ring of reals. One of the models
of T is, by definition, the ring (R,+, ·,−, 0, 1), but it also has models that are not
isomorphic to it, such as the ring of algebraic reals. First-order logic is unable to
distinguish between these two models, but there are extensions of first-order logic
that can make this distinction. For this reason, the theory T is not an adequate
definition of the ring of real numbers in general, although it would be adequate for
the purposes of first-order logic.

The second contribution is the conditional statement language SD. Because it
is a sublanguage of set theory, its notation should be immediately recognizable for
mathematicians. However, unlike the full language of set theory or the language
of higher-order logic, it does not allow unrestricted quantification over sets whose
cardinality is larger than 2ℵ0 . Therefore, it manages to avoid some conceptually
difficult questions, such as the question of whether the continuum hypothesis has
a definite truth value or not. By expressive power, it corresponds to second-order
arithmetic, but it has a broader computational emphasis. At its current form the
language is more suited to textbooks whose subject belongs to discrete rather can
continuous mathematics: elementary number theory, combinatorics, graph theory,
or abstract algebra, but not, for example, analysis.

The third contribution is the prototype of the proof explorer, and the accompany-
ing discussion of its design goals. The proof explorer displays proofs hierarchically,
and can answer two kinds of questions the reader might have when examining a
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statement that is a part of a proof: what is the meaning of some symbol in that
statement, and why is that statement true.

Possible future work might include extending the language SD so that it can con-
veniently work with real and complex numbers. On the more practical side, it would
be useful to improve the textbook authoring tools. The prototype proof explorer
is mostly concerned with the experience of the reader, and the interface that the
author has to use is still rather crude. Bertrand’s postulate is a nontrivial theorem,
but it is still just one theorem. With slightly more sophisticated authoring tools it
should be feasible to write a complete textbook instead. Writing a complete text-
book, using it on some university course, and gathering feedback from the teacher
and the students would undoubtedly be valuable for further development.
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