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Superconductive Cu2Ba2RCu2O8 samples with R ranging from Gd to Tm have been synthesized
through a sol-gel route. Both iodometric titration and Cu L-edge x-ray absorption near-edge
structure �XANES� spectroscopy data indicate that the average Cu valence remains constant,
whereas Tc increases with decreasing size of the R constituent. An explanation for this trend is
revealed from O K-edge XANES spectra, which show that the smaller-for-larger R-cation
substitution results in a shift of holes from the Cu2O2 charge reservoir to the superconductive CuO2

planes. Since Cu2Ba2RCu2O8 samples are underdoped, such a shift of holes raises the value of Tc.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2431458�

A common feature for isostructural compounds consti-
tuting of rare earth �R� elements is that the R element can be
replaced by most of the other R’s without drastically affect-
ing the material properties. However, a certain “size” or
“chemical-pressure” effect is often seen which smoothly
controls the properties when going from the largest to the
smallest R species, or vice versa. For instance, for the pro-
totype “R-123” high-Tc superconductors �more systemati-
cally named as CuBa2RCu2O7−� or Cu-1212 phases� a de-
crease in the ionic radius of the trivalent R constituent,
r�RIII�, decreases the superconductivity transition tempera-
ture Tc.

1,2 Rather interestingly, the opposite is true for the
other well-known R-based superconductive copper oxide
system, “R-124” �i.e., Cu2Ba2RCu2O8 or Cu-2212�.3,4 Hence
changes in Tc cannot simply be explained by the change in
the distance between the superconductive CuO2 planes over
the RIII-cation layer. Instead, we suggest that chemical pres-
sure controls the charge distribution over the different layers
in superconductive copper oxide phases.5 The aim of the
present work is to gain deeper understanding on the
chemical-pressure effects on multilayered copper oxides. The
Cu2Ba2RCu2O8 �Cu-2212� superconductor family was se-
lected for the target system. The advantage of the Cu-2212
system in comparison with, e.g., the Cu-1212 system is that
the Cu-2212 copper oxides are believed to be essentially
oxygen stoichiometric.6 �Here it should be emphasized that
in order to probe pure chemical-pressure effects, oxygen
content of the target system should remain constant through-
out the substitution range investigated.2� For sample charac-
terization, x-ray absorption near-edge structure �XANES�
spectroscopy at both Cu L2,3 and O K edges is employed.
The former spectral area allows relatively accurate determi-
nation of the total amount of excess positive charge, whereas

the latter turned out to be selective enough to distinctively
probe the Cu2O2-charge-reservoir and CuO2-plane hole
densities.

Polycrystalline samples of Cu2Ba2RCu2O8 with R=Gd
Dy, Y, Ho, Er, and Tm were synthesized under ambient
pressure from a homogeneous Cu-Ba-R-O precursor pre-
pared by means of a simple acetate tartrate sol-gel route.7

Stoichiometric amounts of R2O3, Ba�CH3COO�2, and
Cu�CH3COO�2 ·H2O were used as starting chemicals for the
three metal constituents. The rare earth oxide R2O3 was dis-
solved as a powder in a 0.2M aqueous acetic acid solution at
55–60 °C after which Ba and Cu acetates were added to the
solution as 0.5M water solutions. Finally, 160 mol % of tar-
taric acid was added to the acetate solution for the gel for-
mation. The excess solvent was evaporated from the solution
in approximately 6 h at 65 °C in an open beaker with con-
tinuous stirring to obtain a clear blue gel. The gel was dried
in air at 120 °C for 12 h and then slowly �2 °C/min� heated
in O2 gas flow up to 750 °C and kept at that temperature for
24 h for calcination. After regrinding, the thus obtained ho-
mogeneous Cu-Ba-R-O powder was used as a precursor for
the Cu-2212-phase synthesis carried out in 1 atm O2 gas
flow at 750–785 °C for 24 h. The synthesis temperature was
optimized for each R constituent separately, i.e., 750 °C for
Gd and Dy, 770 °C for Ho, 780 °C for Y, and 785 °C for Er
and Tm. Another important factor was to spread the sample
powder as thin as possible on an Al2O3 plate to ensure uni-
form temperature and atmosphere conditions throughout the
sample during the synthesis. For each R constituent, the syn-
thesis yielded phase-pure Cu-2212 samples within the detec-
tion limit of powder x-ray diffraction measurements �Rigaku
RINT2550VK/U equipped with a rotating Cu anode�. More-
over, accurate chemical analysis by means of iodometric ti-
tration confirmed that the samples were essentially stoichio-
metric in terms of oxygen: for each sample an oxygen-
content value �per f.u.� of 7.99±0.01 was obtained.
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All the samples were superconductive. The Tc values
�defined at the onset of diamagnetic signal� were determined
from the field-cooling curves recorded at 10 Oe with a su-
perconducting quantum interference device magnetometer
�Quantum Design: MPMS-XL�. In Fig. 1, the value of Tc is
plotted against r�RIII� �Ref. 8� for the six Cu-2212 samples.
With decreasing r�RIII�, Tc increases almost linearly �from
74 K for R=Gd to 82 K for R=Tm�, in accordance with
results from previous reports.3,4

The Cu L2,3-edge and O K-edge XANES spectra were
collected for the samples at room temperature in x-ray
fluorescence-yield mode at the 6 m high-energy spherical
grating monochromator �HSGM� beamline of the National
Synchrotron Radiation Research Center in Hsinchu, Taiwan;
experimental details are as previously given elsewhere.9

The obtained spectra were corrected for the energy-
dependent incident photon intensity variation as well as for
self-absorption effects10,11 and normalized to tabulated stan-
dard absorption cross sections12 in the energy range of
600–620 eV for the O K edge and 1000–1020 eV for the Cu
L2,3 edge.

The Cu L2,3-edge absorption spectra of the
Cu2Ba2RCu2O8 samples look all nearly identical. A represen-
tative spectrum is displayed in Fig. 2 �shown here for the
smallest R constituent, Tm�. The spectra exhibit two narrow
peaks centered at �931.2 and �951.2 eV. Both peaks are
due to divalent copper states.13 Oxidation of copper beyond
the divalent state is seen as shoulders on the high-energy side
of these peaks.9,14 For each sample, the spectrum was sepa-
rately analyzed for both the L3 and L2 spectral ranges. The
analysis procedure is illustrated for the former case in Fig. 2.
In brief, the background, fitted with a straight line, was first
subtracted from the spectrum after which the fittings of the
main peak �due to CuII� and its shoulder �due to CuII� were
done using combined Lorentzian and Gaussian functions to
account for the intrinsic and experimental broadenings, re-

spectively. From the integrated intensities of the main peak
�I�CuII�� and the shoulder �I�CuIII�� an estimate for the aver-
age valence of copper was then calculated with V�Cu�=2
+ I�CuIII� / �I�CuII�+ I�CuIII��. For the sake of verification, the
V�Cu� value was estimated on the basis of both the L3 and L2

data: for each sample the two V�Cu� estimates agreed with
each other within ±0.01. In Fig. 3, the resultant V�Cu� values
�each value taken as an average of the two estimates� are
given for the samples against r�RIII�. For all the six
Cu2Ba2RCu2O8 samples, V�Cu�=2.255±0.005, in excellent
agreement with the value of 2.25 expected on the basis of
stoichiometric oxygen content.

In the O K-edge spectra of the Cu-2212 samples shown
in Fig. 4 three pre-edge peaks are distinguished below
�530 eV. According to local-density approximation band-
structure calculations15 and previous XANES data15,16 for
Cu2Ba2YCu2O8, the peaks are assigned as follows: the most
prominent peak at �528.3 eV is due to superposition of the
hole states of the CuO2 planes and the Cu2O2 double chain,
the low-energy shoulder at �527.5 eV accounts for the hole
states at the apical oxygen site, and the broad peak about
529–530 eV has its origin in the hole states of the upper
Hubbard band �UHB�. It is well known that for the p-type
high-Tc superconductive copper oxides the intensity of the
peak due to UHB inversely correlates with the CuO2-plane
hole density, and at the same time it is believed not to have

FIG. 1. Tc values for the Cu2Ba2RCu2O8 samples plotted against the ionic
radius r�RIII�, of the R constituent.

FIG. 2. Representative example of the Cu L2,3-edge XANES spectra ob-
tained for the Cu2Ba2RCu2O8 samples �here R=Tm� and illustration of the
fitting of the spectral features �in the L3 area� into CuII and CuIII

components.

FIG. 3. Average valence of copper, V�Cu�, in the Cu2Ba2RCu2O8 samples as
estimated from the Cu L2,3-edge XANES spectra and plotted against r�RIII�.

FIG. 4. O K-edge XANES spectra obtained for the Cu2Ba2RCu2O8 samples
�R=Tm, Er, Ho, Y, Dy, and Gd�.
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any correlation with the CuO-chain hole states.15–17 From
Fig. 4, we can clearly see that for the present Cu-2212
samples the intensity of the UHB peak decreases with de-
creasing size of the R constituent, i.e., going from Gd to Tm,
indicating that the CuO2-plane hole density increases with
decreasing r�RIII�. Since the total amount of holes remains
constant, we may conclude that when the size of the R con-
stituent decreases, holes are gradually shifted from the
Cu2O2 charge reservoir to the CuO2 planes. In order to de-
rive quantitative numbers for the distribution of holes among
the different oxygen sites, we analyzed the spectral features
by fitting the three pre-edge peaks with Gaussian functions.
In Fig. 5, the relative peak intensities are plotted against
r�RIII�. In this figure, it is seen that with decreasing r�RIII� not
only the intensity of the UHB peak but also that of the
527.5 eV peak decreases, whereas the 528.3 eV peak in-
creases. The hole states residing at the apical oxygen site
�527.5 eV peak� are commonly counted as part of the
charge-reservoir holes.17 Hence the observed variations in
the pre-edge peak intensities are all consistent with our con-
clusion that application of chemical pressure forces a portion
of the Cu2O2-charge-reservoir holes to shift to the CuO2
planes.

Now we are ready to propose an explanation for the
different Tc vs r�RIII� behaviors of the Cu-1212 and Cu-2212
systems. It is well known that the Cu-2212 superconductors
are underdoped �unless RIII is partly substituted by divalent
calcium�. This is why Tc increases with decreasing r�RIII�
and increasing CuO2-plane hole density in Cu-2212. Fully
oxygenated Cu-1212 superconductors, on the other hand, are
in a slightly overdoped state. We suggest that also in this
system holes are gradually shifted from the CuO1−� charge
reservoir to the CuO2 planes with decreasing r�RIII�. �Earlier
Seebeck18 and bond-valence-sum calculation2,19 data for
CuBa2RCu2O7−� are consistent with this view.� Therefore a

decrease in r�RIII� decreases the value of Tc as it makes the
Cu-1212 phase more heavily overdoped.

In conclusion, we have synthesized high-quality samples
of the Cu2Ba2RCu2O8 superconductor system with R con-
stituents ranging from Gd to Tm and characterized them by
means of iodometric titration and Cu L-edge and O K-edge
XANES measurements for the overall and layer-specific hole
contents, respectively. The results provided us with a clear
explanation for the trend of increasing Tc with decreasing
size of the R constituent among samples that possessed the
same average Cu valence value. It was concluded that the
smaller-for-larger R-cation substitution results in a shift of
holes from the Cu2O2 charge reservoir to the superconduc-
tive CuO2 planes such that the hole-doping level of the CuO2
planes increases. Since the Cu2Ba2RCu2O8 samples are un-
derdoped, such a shift of holes increases the value of Tc.
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