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We show that it is possible to construct low-noise single-electron transistors~SETs! using
free-standing multiwalled carbon nanotubes. The 1/f a-noise of our devices, 631026 e/AHz at 45
Hz, is close in the performance to the best metallic SETs of today. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1362281#

Carbon nanotubes present a promising class of building
blocks for nanoelectronics.1 Single walled nanotubes
~SWNT! are believed to be ballistic conductors,2 whereas
experimental work on multiwalled nanotubes~MWNT! has
yielded conflicting results on the nature of conduction: Frank
et al.3 have obtained evidence that conductance in MWNTs
is ballistic, while the magnetoresistance investigations by
Langeret al.4 and by Scho¨nenberger and coworkers5 suggest
diffusive conduction.

Contact resistance between a metal and a nanotube is
commonly on the order of quantum resistanceRQ5h/e2

526.5 kV. Hence, quantum fluctuations do not destroy
charge quantization6 and it is possible to construct sensitive
electrometers based on electrostatically-controlled single
electron tunneling. Such devices, called single electron tran-
sistors~SETs!, are the best electrometers known at present.
The sensitivity of SETs approaches the quantum limit at high
frequencies,7 but at frequencies below 1 kHz, these devices
are plagued by the presence of 1/f a-noise (a;1 – 2).
The present picture of 1/f a-noise, based on several
investigations,8 indicates that typically the fluctuations are
caused by trapping centers of charge, either in the vicinity of
the island or in the tunnel barriers, while sometimes conduc-
tance variations in the tunneling resistances are the main
cause of noise.9

The only known way to reduce 1/f a-noise in SETs is to
avoid contact of the central island with any dielectric
material.9 In our device, this is achieved by using a free-
standing nanotube as an island. We used manipulation by
atomic force microscope10 to move a multiwalled carbon
nanotube~MWNT! on top of two adjacent gold electrodes
~see Fig. 1!. Vacuum brazing at 700 C for 30 sec was em-
ployed to embed the tube 6 nm into the gold. In the final
structure, the MWNT (f514 nm! has a 275 nm long free-
standing section hanging at a distance of 17 nm above the
substrate. We measured a total resistance ofR.40 kV at
voltagesV.10 mV outside the Coulomb blockade regime.
We estimateRT;15 kV for the tunneling resistance of the
200–400 nm long Au-NT overlap sections using the assump-
tions that the device has a symmetric structure and a resis-
tance ofR;10 kV for the tube itself. The junction capaci-
tance CT540 aF corresponds to the offset voltage in the
IV-curve measured atV.10 mV.

Figure 2 displays aIV-curve of our device measured at
T5150 mK. Contrary to the expected Coulomb blockade,
there is an increase of conductance near zero bias voltage.

We attribute this to resonant tunneling which, however, leads
to only two weakly quantized steps in theIV-curve. Thus,
our sample is semiballistic, i.e., its behavior is intermediate
between ballistic and diffusive propagation. We believe that
ballisticity of free-standing tubes is enhanced over regular
samples for three reasons:~1! impurities on the substrate are
further away and fluctuations induced by them become more
unlikely, ~2! the amount of dirt on the surface of the nano-
tube is reduced during the AFM manipulation, and finally~3!
the plasmon speed, sensitive to the permittivity of the sub-
strate material, is increased.

FIG. 1. Top: Non-contact-mode atomic force microscope image of a free-
standing, multiwalled carbon nanotube stretching between two gold elec-
trodes. The gold-nanotube contact sections are seen to be slightly asymmet-
ric. Distance from the nanotube to the side gate, not shown in the image, is
700 nm. Bottom: Schematic cross-sectional view of our nanotube sample
showing the most important geometrical dimensions in nanometers.
The titanium sticking layer between gold and silicon dioxide is 2 nm in
thickness.
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Current modulation with respect to the gate voltage,
shown in the inset of Fig. 2, illustrates the sensitivity of our
SET device. The modulation curve has been measured with a
voltage bias atVbias570 mV which corresponds to a peak
current of 1.2 nA. At the point marked by A in Fig. 2, we
have the maximum slope ofk511 nA/V. The roundedness
of the modulation curve is assigned to strong tunneling ef-
fects since the tunneling resistances are belowRQ . In terms
of the total SET resistance, the modulation curve corre-
sponds to a variation over the rangeR560– 300 kV.

In addition to Coulomb blockade phenomena, one has to
account for the quantum-dot-like behavior in a semiballistic
device. In order to obtain the charge sensitivity, we rely on
the arguments presented for semiconducting nanostructures:
for a small carrier density on the island, as should be for a
nanotube, the gate modulation period is given by the formula
DVgate5DE/e1e/Cgate.11 Since the single-particle level
separationDE5hvF/2L;1 mV ~using Fermi velocityvF

583105 m/s and lengthL51 mm!, and since our device is
equipped with a remote side gate havingCgate50.44 aF, the
gate modulation period is governed by Coulomb effects.
Here we neglect effects related with the fact that the coupling
of the gate is stronger to the free-standing part than to the
sections sitting on gold, which may lead to interesting phe-
nomena of their own.12 Due to the large number of modes in
a MWNT, Luttinger liquid behavior observed in single
walled nanotubes13 is expected to be weakened strongly.
Hence, our current noise measurements can be interpreted in
a similar fashion as in regular metallic devices. From the
inset of Fig. 2, we deduce a value for the charge sensitivity
gch5DI /Dq 5kDVgate/e54 nA/e at point A.

The noise current, measured both at maximum and mini-
mum gain of the electrometer~points A and B in Fig. 2,
respectively!, is displayed in Fig. 3. At the maximum gain,
we obtain the minimum equivalent input charge noise of our
device. The frequency dependence of this minimum noise is
close to 1/f 2, a relationship that has occasionally been ob-
served on metallic samples as well.9 At a frequency off
545 Hz, we obtain a charge noise of 631026 e/AHz, which
is close in the performance to the best metallic devices with

831026 e/AHz at 10 Hz (;431026 e/AHz at 45 Hz ex-
trapolated using 1/f noise dependence!.9 We note that our
results have been obtained in the range of large currents
where the separation of preamplifier noise does not pose any
problems, unlike in many previous works.

According to theoretical analysis,14 the minimum noise
level for a SET is given bydQmin5\CSD f RQ/4RT where
CS;2CT is the total island capacitance andD f denotes the
frequency span of the measurement. TakingRQ/4RT;1 and
assuming that the cotunneling rate is not large, we get for the
noise floor 131026 e/AHz. In fact, the actual noise limit for
a resonant tunneling structure might be slightly less, as the
ultimate energy sensitivity of such a device was recently
shown to be\/A3.15 Thus, we expect that white noise will
dominate over 1/f 2-noise above 3 kHz in our device. This
shot noise dominated region is just within reach using avail-
able, high-quality current preamplifiers.

In summary, we have shown that multi-walled carbon
nanotubes provide excellent building blocks for nanoelec-
tronics and that they allow the construction of record-
sensitive electrometers based on single electron tunneling in
the semiballistic regime. Owing to the 15 kV impedance of
the gold-nanotube junctions, quantum limited performance
can be easily reached at frequencies around 3 kHz, without
any recourse to elaborate microwave read-out schemes.7
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